US8088830B2 - Paper production with modified silica gels as microparticles - Google Patents
Paper production with modified silica gels as microparticles Download PDFInfo
- Publication number
- US8088830B2 US8088830B2 US12/685,947 US68594710A US8088830B2 US 8088830 B2 US8088830 B2 US 8088830B2 US 68594710 A US68594710 A US 68594710A US 8088830 B2 US8088830 B2 US 8088830B2
- Authority
- US
- United States
- Prior art keywords
- silica sol
- reacted
- groups
- silica
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 99
- 239000011859 microparticle Substances 0.000 title abstract description 13
- 238000004519 manufacturing process Methods 0.000 title abstract description 7
- 239000000499 gel Substances 0.000 title description 2
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 48
- 125000000542 sulfonic acid group Chemical group 0.000 claims abstract description 12
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 53
- 238000006243 chemical reaction Methods 0.000 claims description 35
- 150000001875 compounds Chemical class 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 22
- 229910052681 coesite Inorganic materials 0.000 claims description 21
- 229910052906 cristobalite Inorganic materials 0.000 claims description 21
- 229910052682 stishovite Inorganic materials 0.000 claims description 21
- 229910052905 tridymite Inorganic materials 0.000 claims description 21
- -1 mercapto compounds Chemical class 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 125000000524 functional group Chemical group 0.000 claims description 14
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 9
- 239000011593 sulfur Substances 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 7
- 229910052783 alkali metal Inorganic materials 0.000 claims description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 150000001340 alkali metals Chemical class 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 4
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- 239000011541 reaction mixture Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 125000002947 alkylene group Chemical group 0.000 claims description 3
- 239000012736 aqueous medium Substances 0.000 claims description 3
- 125000004429 atom Chemical group 0.000 claims description 3
- 125000002993 cycloalkylene group Chemical group 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 abstract description 18
- 230000014759 maintenance of location Effects 0.000 abstract description 5
- 239000000243 solution Substances 0.000 description 56
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 36
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 22
- 229910000077 silane Inorganic materials 0.000 description 22
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 21
- 239000007787 solid Substances 0.000 description 18
- 238000003756 stirring Methods 0.000 description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- QIYAADGGFQEDSN-UHFFFAOYSA-N 1-trihydroxysilylpropane-1-sulfonic acid Chemical compound CCC([Si](O)(O)O)S(O)(=O)=O QIYAADGGFQEDSN-UHFFFAOYSA-N 0.000 description 11
- 239000012670 alkaline solution Substances 0.000 description 11
- 238000001704 evaporation Methods 0.000 description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 11
- 230000008020 evaporation Effects 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 229910006069 SO3H Inorganic materials 0.000 description 8
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 229920002401 polyacrylamide Polymers 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 229920006317 cationic polymer Polymers 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 238000004448 titration Methods 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 2
- XKBBXNPOEBEBPG-UHFFFAOYSA-N C.CCC.CCC.CCC1=CC=CC=C1.CCC1CCCCC1 Chemical compound C.CCC.CCC.CCC1=CC=CC=C1.CCC1CCCCC1 XKBBXNPOEBEBPG-UHFFFAOYSA-N 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 235000012216 bentonite Nutrition 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 2
- MLIWQXBKMZNZNF-KUHOPJCQSA-N (2e)-2,6-bis[(4-azidophenyl)methylidene]-4-methylcyclohexan-1-one Chemical compound O=C1\C(=C\C=2C=CC(=CC=2)N=[N+]=[N-])CC(C)CC1=CC1=CC=C(N=[N+]=[N-])C=C1 MLIWQXBKMZNZNF-KUHOPJCQSA-N 0.000 description 1
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- KIFPIAKBYOIOCS-UHFFFAOYSA-N 2-methyl-2-(trioxidanyl)propane Chemical compound CC(C)(C)OOO KIFPIAKBYOIOCS-UHFFFAOYSA-N 0.000 description 1
- HBZVNWNSRNTWPS-UHFFFAOYSA-N 6-amino-4-hydroxynaphthalene-2-sulfonic acid Chemical compound C1=C(S(O)(=O)=O)C=C(O)C2=CC(N)=CC=C21 HBZVNWNSRNTWPS-UHFFFAOYSA-N 0.000 description 1
- KYARBIJYVGJZLB-UHFFFAOYSA-N 7-amino-4-hydroxy-2-naphthalenesulfonic acid Chemical compound OC1=CC(S(O)(=O)=O)=CC2=CC(N)=CC=C21 KYARBIJYVGJZLB-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VIZFNJKFXKKMOZ-UHFFFAOYSA-N C.CCC.CCC.CCC1=CC=CC=C1.CCC1CCCCC1.[HH] Chemical compound C.CCC.CCC.CCC1=CC=CC=C1.CCC1CCCCC1.[HH] VIZFNJKFXKKMOZ-UHFFFAOYSA-N 0.000 description 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 1
- 244000303965 Cyamopsis psoralioides Species 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910005948 SO2Cl Inorganic materials 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000012935 ammoniumperoxodisulfate Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- YBGQXNZTVFEKEN-UHFFFAOYSA-N benzene-1,2-disulfonyl chloride Chemical class ClS(=O)(=O)C1=CC=CC=C1S(Cl)(=O)=O YBGQXNZTVFEKEN-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- OSVXSBDYLRYLIG-UHFFFAOYSA-N chlorine dioxide Inorganic materials O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- VUEXNBPCFIUYJN-UHFFFAOYSA-N naphthalene-1,2-disulfonyl chloride Chemical class C1=CC=CC2=C(S(Cl)(=O)=O)C(S(=O)(=O)Cl)=CC=C21 VUEXNBPCFIUYJN-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- FHHJDRFHHWUPDG-UHFFFAOYSA-N peroxysulfuric acid Chemical compound OOS(O)(=O)=O FHHJDRFHHWUPDG-UHFFFAOYSA-N 0.000 description 1
- 229920000962 poly(amidoamine) Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- JLKDVMWYMMLWTI-UHFFFAOYSA-M potassium iodate Chemical compound [K+].[O-]I(=O)=O JLKDVMWYMMLWTI-UHFFFAOYSA-M 0.000 description 1
- 239000001230 potassium iodate Substances 0.000 description 1
- 235000006666 potassium iodate Nutrition 0.000 description 1
- 229940093930 potassium iodate Drugs 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- QPILZZVXGUNELN-UHFFFAOYSA-M sodium;4-amino-5-hydroxynaphthalene-2,7-disulfonate;hydron Chemical compound [Na+].OS(=O)(=O)C1=CC(O)=C2C(N)=CC(S([O-])(=O)=O)=CC2=C1 QPILZZVXGUNELN-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/3081—Treatment with organo-silicon compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/146—After-treatment of sols
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/146—After-treatment of sols
- C01B33/148—Concentration; Drying; Dehydration; Stabilisation; Purification
- C01B33/1485—Stabilisation, e.g. prevention of gelling; Purification
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/63—Inorganic compounds
- D21H17/67—Water-insoluble compounds, e.g. fillers, pigments
- D21H17/69—Water-insoluble compounds, e.g. fillers, pigments modified, e.g. by association with other compositions prior to incorporation in the pulp or paper
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/06—Paper forming aids
- D21H21/10—Retention agents or drainage improvers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- the invention relates to the use of modified silica sols for paper production, modified silica sols as such and processes for their preparation.
- microparticle systems are used for improving retention, drainage behavior and formation (this is understood as meaning the “uniformity” or “cloudiness” of the paper). These may be both of an organic or an inorganic nature. They are preferably used in combination with cationic polymers.
- Preferably used inorganic microparticles are bentonites and silica sols (cf. EP-A-0 635 602).
- inorganic microparticle systems based on bentonite or silica sol have the disadvantage that they achieve their optimum effect only in a neutral alkaline medium.
- Silica sols moreover have the disadvantage that they tend to gel on prolonged storage. This in turn necessitates further additives, such as dispersants or surface doping with aluminum ions (EP-A-0185 068, U.S. Pat. No. 5,603,805, K. K. Iler, The Chemistry of Silica, Wiley & Sons, New York, 1979, pages 407-410).
- the known silica sols for the purpose of the microparticle system have a cost/effect relationship which is in need of improvement.
- silica sols containing sulfonic acid groups and/or mercapto groups achieve this object.
- the invention therefore relates to the use of silica sols containing sulfonic acid groups and/or mercapto groups as microparticles in paper production, in particular for paper retention.
- acid group is also understood as meaning salts thereof, in particular alkali metal salts, such as sodium and potassium salts, alkaline earth metal salts, such as magnesium salts and calcium salts, or ammonium salts.
- Preferred silica sols are those which have, bonded to a silicon atom, a group of the formula (I) and/or II —B—(SO 3 M) p - (I), —B—(SH) p — (II), in which
- B is particularly preferably bivalent, i.e. p is 1.
- B is preferably a linear or branched alkylene group optionally interrupted by one or more oxygen atoms and having 1 to 15 C atoms, a cycloalkylene group having 5 to 8 C atoms or a unit of the formulae
- B is very particularly preferably—(CH 2 ) n — where n is 1 to 6, in particular 3.
- Silica sols having sulfonic acid groups in particular those of the formula (I), particularly preferably those of the formula (Ia) —(CH 2 ) 3 —SO 3 M (Ia) are preferably used, M having the abovementioned meaning.
- the sulfur content, based on SiO 2 of the silica sol, is preferably from 0.1 to 30 mol %, preferably from 0.1 to 8 mol %, in particular from 1 to 5 mol %.
- the sulfur content may be determined, for example, by elemental analysis.
- the silica sols used according to the invention preferably have a mean particle size of less than 400 nm, preferably of 2-200 nm, in particular of 2-45 nm, particularly preferably of 2-20 nm.
- the silica sols according to the invention preferably have a specific surface area of from 300 to 1200 m 2 /g, preferably from 400 to 1200 m 2 /g, in particular from 450 to 1200 m 2 /g, measured by Sears titration with sodium hydroxide.
- the specific surface area is determined by titrating the silica sol with NaOH according to the Sears method (G. W. Sears, Analytical Chem. 28, 12, page 1981 et seq., 1956).
- the specific surface area of this calibration sol is determined using the BET method (S. Brunauer, P. H. Emmet and E. Teller, J. Amer. Soc. 60, 309-319, 1938).
- silica sols according to the invention which have an S value from 2 to 80, preferably from 2.5 to 70, in particular from 20 to 70.
- the silica sols used according to the invention are preferably present as an aqueous dispersion, preferably having a content of from 5 to 20% by weight of silica sol, based on the dispersion, preferably from 7.5 to 15% by weight, in particular from 10 to 15% by weight.
- These dispersions, to which the present invention likewise relates may furthermore contain salts of the alkali metal or alkaline earth metal elements or compounds of aluminum or of boron. Furthermore anionic or nonionic dispersants may be present.
- the dispersions preferably have an Al content of less than 0.1% by weight. If the salt content is too high, it can be reduced, for example by means of a membrane method.
- the silica gel contents in the dispersion can also be adjusted by means of membranes, for example by concentration of less concentrated dispersions.
- the silica sol according to the invention is preferably used in combination with cationic polymers, in particular those from the group consisting of the polyethylenimines, polyamidoamides, polyacrylamides, polyvinylamine, starch or guar flour which may optionally be further modified and which may be used individually or in any desired mixture with one another.
- cationic polymers in particular those from the group consisting of the polyethylenimines, polyamidoamides, polyacrylamides, polyvinylamine, starch or guar flour which may optionally be further modified and which may be used individually or in any desired mixture with one another.
- Preferred polyacrylamides may be both linear and branched.
- the molecular weight may be from 2 million to 30 million Dalton, preferably from 2.5 million to 15 million Dalton.
- Cationic starches based on potatoes, tapioca, maize, wheat or rice may be mentioned as preferred starch derivatives. They preferably have a degree of substitution of from 0.005 to 0.15, particularly preferably a degree of substitution of from 0.02 to 0.08. The starches may optionally also be partly degraded.
- the invention furthermore relates to silica sols containing sulfonic acid groups and/or mercapto groups and having a mean particle size, measured according to TEM, of 2-45 nm, preferably of 2-20 nm. Otherwise, the abovementioned preferred ranges are applicable.
- the invention furthermore relates to silica sols containing sulfonic acid groups and/or mercapto groups and having a sulfur content, based on SiO 2 of the silica sol, of from 0.1 to 30 mol, preferably from 0.1 to 8 mol %, in particular from 1 to 5 mol %.
- silica sols according to the invention which have such a sulfur content are preferred in particular when they have a radical of the formula—(CH 2 ) 3 —SO 3 M, in which M has the above meaning and is in particular H or Na.
- silica sols according to the invention which have mercapto groups, in particular which have those of the formula (II) bonded to an Si atom, and which have a content of sulfonic acid groups of less than 1 mol %, based on SiO 2 of the silica sol.
- the invention furthermore relates to a process for the preparation of the silica sols according to the invention, which is characterized in that a silica sol which is free of SH and SO 3 M groups and in which M has the above meaning,
- the variants a), b) and b1) are particularly preferred.
- a mercapto (SH) compound which is oxidized after the reaction to give an SO 3 M compound is preferably used as a compound containing at least one functional group.
- Preferred mercapto compounds which may be mentioned are those of the formula (IV) (CH 3 ) q Si(OR) m (OH) p —(CH 2 ) n —SH (IV), in which m, p and q have the abovementioned meanings, n is from 1 to 15, in particular from 1 to 6, preferably 3, and R has the abovementioned meaning, and is preferably methyl or ethyl.
- a preferred compound of the formula IV is that of the formula (IVa) (CH 3 ) q Si(OCH 3 ) m (CH 2 ) 3 —SH (IVa), in which the sum of q and m is 3, and a compound of the formula (IVb) (CH 3 ) q Si(OH) p (CH 2 ) 3 —SH (IVb), in which the sum of q and p is 3 and in which m, p and q each have the abovementioned meaning.
- the reaction of silica sol with compounds carrying functional groups, in particular with the mercapto compounds, preferably those of the formulae IV and IVa, is preferably characterized in that the two components are allowed to react at a temperature of from 0° C. to 150° C., preferably from 0° C. to 100° C.
- Possible condensation products, such as water and alcohols, can preferably be removed continuously from the reaction mixture, for example by distillation.
- the procedure can optionally also be effected in a solvent.
- the mercapto groups of the silica sol thus obtained can subsequently be oxidized with an oxidizing agent, preferably H 2 O 2 , in a known manner to give sulfonic acid groups.
- an oxidizing agent preferably H 2 O 2
- the oxidation can alternatively also be carried out with ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate, iron nitrate, tert-butyl hydroxyperoxide, oxone (Caro's acid), potassium iodate, potassium periodate or periodic acid.
- Such compounds have, for example, the general formula (V) (CH 3 ) q Si(OH) m (CH 2 ) 3 —F, (V) in which F is a functional group which can be further reacted, such as, for example, an SH group or a primary or secondary amino group, and q and m have the abovementioned meaning.
- Preferred compounds carrying functional groups are: Si(OCH 3 ) 3 —(CH 2 ) 3 —SH (VI), CH 3 Si(OCH 3 ) 2 (CH 2 ) 3 —SH (VII), Si(OH) 3 —(CH 2 ) 3 —SH (VIII), CH 3 Si(OH) 2 (CH 2 ) 3 —SH (IX), Si(OC 2 H 5 ) 3 —(CH 2 ) 3 —SH (X), CH 3 Si(OC 2 H 5 ) 2 —(CH 2 ) 3 —SH (XI), Si(OCH 3 ) 3 —(CH 2 ) 3 —NH 2 (XII), CH 3 Si(OCH 3 ) 2 (CH 2 ) 3 —NH 2 (XIII), Si(OH) 3 —(CH 2 ) 3 —NH 2 (XIV), CH 3 Si(OH) 2 (CH 2 ) 3 —NH 2 (XV), Si(OC 2 H 5 ) 3 —(CH 2 ) 3 —NH 2
- benzenedisulfonic acid chlorides toluenedisulfonic acid chlorides or naphthalenedisulfonic acid chlorides or naphthalenetrislfonic acid chlorides, which in turn can be substituted so that, for example, a microparticle system of the general formula SiO 2 )—(CH 2 ) 3 —NH—SO 2 —C 10 H 6 —SO 3 M (XVIII) results.
- components of the general formulae VI to XVII with bi- or trifunctional reagents which in turn carry no further acidic group and are capable of bridge formation.
- bi- or trifunctional reagents which in turn carry no further acidic group and are capable of bridge formation.
- Such compounds are, for example, cyanuric chloride or diisocyanates, in particular hexamethylene diisocyanate, p-phenylene diisocyanate or toluene diisocyanate. They can in turn be reacted with compounds which are substituted by sulfonic acid groups.
- Such compounds may be:
- taurine or aromatic sulfonic acids known from dye chemistry and substituted by amino groups, for example H-acid (1-amino-8-hydroxinaphthalene-3,6-disulfonic acid), 1-acid (2-amino-5-hydroxy-naphthalene-7-sulfonic acid) or ⁇ -acid (2-amino-8-hydroxy-6-sulfonic acid).
- the compounds III to XVII are preferably used in an amount of from 0.1 to 30 mol %, in particular from 0.5 to 5 mol %, based on Si of the silica sol.
- the invention also relates to the products obtainable by reaction of silica sol and a compound of the formula III or IV and optionally subsequent oxidation.
- Silica sols containing sulfone groups are already known in a different form (for example different particle size or different sulfur content) for catalyst purposes from EP-A-1 142 640, EP-A-63 471, DE-A-2 426 306 and R-D. Badley, T. Ford. J. Org. Chem. 1989, 54, 5437-5443.
- the invention furthermore relates to a process for the production of paper, which is characterized in that the silica sol according to the invention and a cationic polymer are added to an aqueous cellulose dispersion in any desired sequence and then the sheet formation, drainage and drying of the sheet are carried out.
- a process for the production of paper which is characterized in that the silica sol according to the invention and a cationic polymer are added to an aqueous cellulose dispersion in any desired sequence and then the sheet formation, drainage and drying of the sheet are carried out.
- Such processes are described, for example, in U.S. Pat. No. 5,643,414.
- the silica sols according to the invention are distinguished by a substantially improved shelf-life. At the same time, they exhibit substantially improved efficiency in drainage rate and retention, in particular in combination with cationic polymers of low charge density.
- a concentrated aqueous solution of waterglass having the empirical composition (Na 2 O.3.3SiO 2 ) is diluted with water to an SiO 2 content of 6%.
- the aqueous solution is adjusted to pH 2.3 to 2.5 with an acidic ion exchanger.
- the solution obtained is referred to below as “fresh sol”.
- the fresh sol solution prepared in example 1 is added dropwise to a dilute waterglass solution in 0.5 hour and thermostated in an alkaline medium for about half an hour at a temperature of 72° C. and then for half an hour at a temperature of 76° C.
- the pH should be between 8 and 10. Evaporation is then effected under a slight vacuum to a solids content of 10%.
- Si(OR) 3 —(CH 2 ) 3 —SH, where R ⁇ C 2 H 5 , can also be used in an analogous manner.
- Si(OR) 3 —(CH 2 ) 3 —SH, where R ⁇ C 2 H 5 , can also be used in an analogous manner.
- Si(OR) 3 —(CH 2 ) 3 —SH, where R ⁇ C 2 H 5 , can also be used in an analogous manner.
- a solution according to example 9 100 g of a solution according to example 9 are oxidized by dropwise addition of hydrogen peroxide.
- the procedure is as in example 3, except that 2.5 mol % of the hydrolyzed silane from example 9 are metered in instead of the silane containing alkoxy groups.
- the mercapto group is then oxidized in a known manner to SO 3 H by adding 35% strength H 2 O 2 solution. Evaporation is effected to a solids content of 10%.
- the procedure is as in example 3, except that 5 mol % of the hydrolyzed silane from example 9 are metered in instead of the silane containing alkoxy groups.
- the mercapto group is then oxidized in a known manner to SO 3 H by adding 3% strength H 2 O 2 solution. Evaporation is effected to a solids content of 10%.
- the content in each reaction vessel is thoroughly mixed by means of a propeller stirrer.
- the reactor content is heated indirectly with steam.
- heating coils through which steam flows are mounted in the interior of the reaction vessels.
- the vapors are passed via a water cooler and condensed, and the volume of the condensate is then measured.
- aqueous solution of acidic fresh sol was introduced into the first of the three overflow reactors by means of a feed apparatus, said aqueous solution having been prepared according to U.S. Pat. No. 2,244,325.
- the feed apparatus was chosen so that the addition could also be effected into individual, selected reactors.
- the addition of the silane solution and optionally a solution of a further base was likewise possible via a metering apparatus.
- the silane solution was not cooled but was used at the ambient temperature.
- a finely divided, partly structured silica sol which had a density of 1.065 g/ml, a pH of 9.7, a BET surface area of 480 m 2 /g and an SO 3 H content of 1 mol % was obtained.
- a steady state with an average residence time of 14 min in the 1st reaction vessel, 16 min in the 2nd reaction vessel and 20 min in the 3rd reaction vessel was established by introducing 1600 ml of fresh sol with 5.6% by weight of SiO 2 per hour into the first reaction vessel and 128 ml of a 2.25% strength by weight ethanolic solution of trimethoxysilylpropylmercaptan per hour likewise into the 1st reaction vessel and by evaporating 390 ml of water/ethanol in the 3rd reaction vessel.
- the unmodified silica sol from example 2 served as a standard. Its efficiency was set at 100%.
- a mixture of long and short fibers with addition of 20% of filler was used as a model system for the tests (58.35% of bleached short-fiber and 25% of bleached long-fiber pulp, 16.65% of precipitated calcium carbonate GCC). The preferred consistency is 0.5%.
- the stock is initially introduced with stirring (500 rpm) and a solution of the polyacrylamide, which was prepared as described below, is metered in after 10 s. After 20 s, shearing is effected for a further 20 s at 1200 rpm and the microparticles are then added. After a mixing phase (200 rpm, 10 s) and a further shearing phase (500 rpm, 10 s), the valve below the wire (mesh size: 0.25 mm) is opened and the drainage time is measured. The drainage time of the zero sample was about 60 s.
- the dilute silica sol has a pH of about 2 and an NaCl concentration of 4.9 M/l).
- 150 ml of the dilute silica sol are titrated at a defined temperature with a 0.1 MNaOH solution.
- the end pH of the titration EP is determined using a calibration sol for which the specific surface area and hence theoretical NaOH consumption V t are known.
- the sample was completely frozen and thawed in three freezing cycles at ⁇ 10° C. in each case in order subsequently to be dried at 110° C. ** The relative viscosity is determined by means of an Ostwald viscometer, and the relative volume fraction of the dispersed phase is calculated therefrom. According to Iller et al. the S-value is obtained therefrom with a knowledge of the solids concentration.
- the S-value indicates the proportion of silica in the dispersed phase, in percent by weight.
- Sample preparation shortly before the measurement of the viscosity, the alkaline samples are adjusted to pH 2. For this purpose, the samples are poured over a fresh ion exchanger in order simultaneously to exchange sodium ions for protons. Thereafter, filtration is effected and the pH is adjusted to 2 with 1 N HCl. The silica concentration is determined gravimetrically.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Silicon Compounds (AREA)
- Paper (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
—B—(SO3M)p- (I),
—B—(SH)p— (II),
in which
- B is a (p+1)-valent bridge member,
- p is a number from 1 to 3 and
- M is hydrogen, an alkali metal, in particular Na, Li or K, an alkaline earth metal, in particular Mg or Ca, or ammonium.
—(CH2)3—SO3M (Ia)
are preferably used, M having the abovementioned meaning.
- a) is reacted with mercapto compounds and
for the optional introduction of the sulfonic acid groups, - b) is reacted with a compound containing SO3M groups or
- b1) is reacted with a compound containing a functional group and the functional group itself is converted into an SO3M group, in particular the mercapto compound obtained according to a) is oxidized, or
- b2) is reacted with a compound containing a functional group and the silica sol derivatized in this manner is further reacted with a compound containing SO3M groups,
the reaction being carried out in an aqueous medium having a water content of at least 75% by weight in at least one of the stages a), b), b1) or b2), based on the respective reaction mixture.
(CH3)qSi(OR)m(OH)p—(CH2)n—SO3M (III),
in which
m and p are each a number from 0 to 3,
q is 0 the 1 and
the sum of q and m and p is 3,
n=1 to 15, preferably 1 to 6, in particular 3,
M has the above meaning and
R is C1-C3-alkyl, in particular methyl or ethyl,
is preferably to be mentioned as a compound containing SO3M groups.
(CH3)qSi(OH)p—(CH2)3—SO3M (IIIa),
in which
M, p and q have the abovementioned meaning, in particular p is 3 and q is 0,
are particularly preferred.
(CH3)qSi(OR)m(OH)p—(CH2)n—SH (IV),
in which
m, p and q have the abovementioned meanings,
n is from 1 to 15, in particular from 1 to 6, preferably 3, and
R has the abovementioned meaning, and is preferably methyl or ethyl.
(CH3)qSi(OCH3)m(CH2)3—SH (IVa),
in which the sum of q and m is 3,
and a compound of the formula (IVb)
(CH3)qSi(OH)p(CH2)3—SH (IVb),
in which the sum of q and p is 3 and
in which m, p and q each have the abovementioned meaning.
(CH3)qSi(OH)m(CH2)3—F, (V)
in which
F is a functional group which can be further reacted, such as, for example, an SH group or a primary or secondary amino group, and q and m have the abovementioned meaning.
Si(OCH3)3—(CH2)3—SH (VI),
CH3Si(OCH3)2(CH2)3—SH (VII),
Si(OH)3—(CH2)3—SH (VIII),
CH3Si(OH)2(CH2)3—SH (IX),
Si(OC2H5)3—(CH2)3—SH (X),
CH3Si(OC2H5)2—(CH2)3—SH (XI),
Si(OCH3)3—(CH2)3—NH2 (XII),
CH3Si(OCH3)2(CH2)3—NH2 (XIII),
Si(OH)3—(CH2)3—NH2 (XIV),
CH3Si(OH)2(CH2)3—NH2 (XV),
Si(OC2H5)3—(CH2)3—NH2 (XVI),
CH3Si(OC2H5)2—(CH2)3—NH2 (XVII),
which in turn can be reacted with bifunctional compounds of the general formula
ClO2S—B1—(SO2Cl)n,
in which n is 1 or 2
and B1 is an aromatic bridge member having 6 or 10 carbon atoms.
SiO2)—(CH2)3—NH—SO2—C10H6—SO3M (XVIII)
results.
| TABLE | |||||
| Sulfur content | Increase | ||||
| Silica | in mol %, based | in the | Particle | Surface | |
| sol | on SiO2 of the | drainage | sizes | area * | |
| from ex. | silica sol | rate in % | [nm] | S-value ** | [m2/g] |
| 2 | 0 | 100 | 3-35 | 64 | 545 |
| 3 | 1 | 103 | 5-40 | 67 | 574 |
| 5 | 2.5 | 115 | 3-40 | 60 | 515 |
| 7 | 5 | 140 | 5-40 | 48 | 469 |
| 11 | 1 | 103 | 5-40 | 62 | 520 |
| 12 | 2.5 | 110 | 3-40 | 59 | 580 |
| 13 | 5 | 152 | 5-40 | 50 | 414 |
| 14 | 1 | 104 | 3-40 | 65 | 530 |
| 15 | 2.5 | 114 | 3-40 | 63 | 545 |
| 16 | 5 | 158 | 5-40 | 47 | 570 |
| 19 | 0.5 | 120 | 2-7 | 24.2 | 835 |
| 20 | 0.5 | 125 | 2-7 | 25.0 | 854 |
| 22 | 1 | 124 | 2-7 | 32 | 854 |
| 24 | 2.5 | 120 | 2-7 | 35.3 | 622 |
| 26 | 5 | 130 | 2-7 | 32.5 | 874 |
| 27 | 10 | 140 | 2-7 | 41 | 867 |
| * For this purpose, 350 ml of an NaCl solution (0.286 kg/l) and 2 ml of 1 M HCl are added to a defined amount of silica sol (5 g of solid, based on SiO2) and the silica sol is made up to 500 ml with demineralized water. The dilute silica sol has a pH of about 2 and an NaCl concentration of 4.9 M/l). 150 ml of the dilute silica sol are titrated at a defined temperature with a 0.1 MNaOH solution. The consumption V (ml) between pH = 4 and an end pH (EP) of about 9 is determined. The specific surface area Osp in m2/g is obtained using the formula: Osp = 23 · V − 25. The end pH of the titration EP is determined using a calibration sol for which the specific surface area and hence theoretical NaOH consumption Vt are known. | |||||
| In the sample preparation for the BET measurement, the calibration sol is diluted to about 5% with demineralized water and adjusted to pH <5 with an ion exchanger. Thereafter, the ion exchanger is filtered off and the filtrate is adjusted to exactly pH = 5 with sodium hydroxide solution. The sample was completely frozen and thawed in three freezing cycles at <−10° C. in each case in order subsequently to be dried at 110° C. | |||||
| ** The relative viscosity is determined by means of an Ostwald viscometer, and the relative volume fraction of the dispersed phase is calculated therefrom. According to Iller et al. the S-value is obtained therefrom with a knowledge of the solids concentration. The S-value indicates the proportion of silica in the dispersed phase, in percent by weight. Sample preparation: shortly before the measurement of the viscosity, the alkaline samples are adjusted to pH 2. For this purpose, the samples are poured over a fresh ion exchanger in order simultaneously to exchange sodium ions for protons. Thereafter, filtration is effected and the pH is adjusted to 2 with 1 N HCl. The silica concentration is determined gravimetrically. | |||||
Claims (13)
—B—(SO3M)p-, Formula (I)
—B—(SO3Mp-, Formula (I)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/685,947 US8088830B2 (en) | 2003-07-04 | 2010-01-12 | Paper production with modified silica gels as microparticles |
Applications Claiming Priority (9)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10330395 | 2003-07-04 | ||
| DE103-30-395.2 | 2003-07-04 | ||
| DE10330395 | 2003-07-04 | ||
| DE102004020112 | 2004-04-24 | ||
| DE10-2004-020-112.9 | 2004-04-24 | ||
| DE102004020112A DE102004020112A1 (en) | 2003-07-04 | 2004-04-24 | Paper production with modified silica sols as microparticles |
| PCT/EP2004/007081 WO2005003455A1 (en) | 2003-07-04 | 2004-06-30 | Paper production with modified silica gels as microparticles |
| US56162007A | 2007-03-06 | 2007-03-06 | |
| US12/685,947 US8088830B2 (en) | 2003-07-04 | 2010-01-12 | Paper production with modified silica gels as microparticles |
Related Parent Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/561,620 Continuation US7708862B2 (en) | 2003-07-04 | 2004-06-30 | Paper production with modified silica gels as microparticles |
| PCT/EP2004/007081 Continuation WO2005003455A1 (en) | 2003-07-04 | 2004-06-30 | Paper production with modified silica gels as microparticles |
| US56162007A Continuation | 2003-07-04 | 2007-03-06 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20100108277A1 US20100108277A1 (en) | 2010-05-06 |
| US8088830B2 true US8088830B2 (en) | 2012-01-03 |
Family
ID=33521366
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/685,947 Expired - Fee Related US8088830B2 (en) | 2003-07-04 | 2010-01-12 | Paper production with modified silica gels as microparticles |
Country Status (11)
| Country | Link |
|---|---|
| US (1) | US8088830B2 (en) |
| EP (1) | EP1961862B1 (en) |
| JP (1) | JP4833839B2 (en) |
| CN (2) | CN101824775B (en) |
| AT (1) | ATE502158T1 (en) |
| DE (2) | DE102004020112A1 (en) |
| DK (1) | DK1644579T3 (en) |
| ES (2) | ES2308192T3 (en) |
| PL (1) | PL1961862T3 (en) |
| PT (2) | PT1961862E (en) |
| SI (2) | SI1644579T1 (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102007046904A1 (en) | 2007-09-28 | 2009-04-09 | H.C. Starck Gmbh | Particles with core-shell structure for conductive layers |
| JP2010269985A (en) * | 2009-05-22 | 2010-12-02 | Fuso Chemical Co Ltd | Sulfonic acid-modified aqueous anionic silica sol and process for producing the same |
| WO2011093153A1 (en) * | 2010-02-01 | 2011-08-04 | Jsr株式会社 | Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method using same |
| WO2011142130A1 (en) * | 2010-05-14 | 2011-11-17 | 株式会社Kri | Modified metal oxide sol |
| JP5840930B2 (en) * | 2011-11-11 | 2016-01-06 | 株式会社Kri | Method for producing modified metal oxide sol |
| CN106715544B (en) * | 2014-06-30 | 2019-08-20 | 固铂轮胎与橡胶公司 | Modified fillers for rubber compounds and masterbatches derived from them |
| CA2936403C (en) * | 2015-07-23 | 2024-02-27 | Dow Global Technologies Llc | Aqueous dispersion of hydrophobically modified pigment particles |
| JP2023146033A (en) * | 2022-03-29 | 2023-10-12 | 株式会社フジミインコーポレーテッド | Sulfonic acid-modified colloidal silica |
Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2244324A (en) | 1939-12-06 | 1941-06-03 | Dow Chemical Co | Process for the production of an alkyl bromide |
| DE2426306A1 (en) | 1974-05-29 | 1975-12-04 | Imrich Dipl Chem Dr Sebestian | PROCESS FOR CHEMICAL MODIFICATION OF SOLID SURFACES |
| WO1986000100A1 (en) | 1984-06-07 | 1986-01-03 | Eka Ab | Papermaking process |
| EP0063471B1 (en) | 1981-04-15 | 1986-03-12 | Exxon Research And Engineering Company | Composition and method for releasing stuck drill pipes |
| US4798653A (en) * | 1988-03-08 | 1989-01-17 | Procomp, Inc. | Retention and drainage aid for papermaking |
| US5368833A (en) | 1989-11-09 | 1994-11-29 | Eka Nobel Ab | Silica sols having high surface area |
| US5603805A (en) | 1992-08-31 | 1997-02-18 | Eka Nobel, Ab | Silica sols and use of the sols |
| EP0635602B1 (en) | 1993-07-19 | 1998-05-20 | Cytec Technology Corp. | Compositions and methods for improving performance during separation of solids from liquid particulate dispersions |
| US5760126A (en) * | 1996-12-20 | 1998-06-02 | Minnesota Mining And Manufacturing Company | Aqueous fluorochemical compositions and abrasion-resistant coatings therefrom |
| US5888290A (en) * | 1996-05-24 | 1999-03-30 | Minnesota Mining And Manufacturing Company | Composition and process for imparting durable repellency to substrates |
| WO2000069976A1 (en) | 1999-05-12 | 2000-11-23 | Universite De Franche-Comte | Silica sol, composition containing the same, method for treating said silica sol and uses thereof |
| DE10050343A1 (en) | 1999-10-27 | 2001-06-21 | Agilent Technologies Inc | Porous silica microsphere as a cleaning agent |
| EP1142640A1 (en) | 2000-04-04 | 2001-10-10 | Mitsui Chemicals, Inc. | Polyorganosiloxane catalyst for use in producing bisphenol A |
| US20020011191A1 (en) * | 2000-06-22 | 2002-01-31 | Peter Greenwood | Mixture of silica sols |
| US20030054948A1 (en) * | 2001-05-24 | 2003-03-20 | Board Of Trustees Operating Michigan State University | Ultrastable organofunctional microporous to mesoporous silica compositions |
| WO2005003455A1 (en) | 2003-07-04 | 2005-01-13 | H.C. Starck Gmbh | Paper production with modified silica gels as microparticles |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0837963A1 (en) * | 1995-06-23 | 1998-04-29 | Minnesota Mining And Manufacturing Company | Composition and process for imparting durable repellency to substrates |
| JP3493109B2 (en) * | 1996-12-28 | 2004-02-03 | 触媒化成工業株式会社 | Method for producing organic group-containing silica fine particle dispersion sol |
| JPH10251991A (en) * | 1997-03-10 | 1998-09-22 | Mitsubishi Paper Mills Ltd | Coated base paper for web offset printing |
| US6083997A (en) * | 1998-07-28 | 2000-07-04 | Nalco Chemical Company | Preparation of anionic nanocomposites and their use as retention and drainage aids in papermaking |
| JP2004288582A (en) * | 2003-03-25 | 2004-10-14 | Fuji Photo Film Co Ltd | Organic-inorganic hybrid proton conducting membrane and fuel cell |
-
2004
- 2004-04-24 DE DE102004020112A patent/DE102004020112A1/en not_active Withdrawn
- 2004-06-30 AT AT08010123T patent/ATE502158T1/en active
- 2004-06-30 PT PT08010123T patent/PT1961862E/en unknown
- 2004-06-30 CN CN2010101632532A patent/CN101824775B/en not_active Expired - Fee Related
- 2004-06-30 PL PL08010123T patent/PL1961862T3/en unknown
- 2004-06-30 ES ES04740462T patent/ES2308192T3/en not_active Expired - Lifetime
- 2004-06-30 ES ES08010123T patent/ES2361132T3/en not_active Expired - Lifetime
- 2004-06-30 SI SI200430838T patent/SI1644579T1/en unknown
- 2004-06-30 EP EP20080010123 patent/EP1961862B1/en not_active Expired - Lifetime
- 2004-06-30 DK DK04740462T patent/DK1644579T3/en active
- 2004-06-30 JP JP2006518069A patent/JP4833839B2/en not_active Expired - Fee Related
- 2004-06-30 SI SI200431660T patent/SI1961862T1/en unknown
- 2004-06-30 PT PT04740462T patent/PT1644579E/en unknown
- 2004-06-30 CN CN2004800190458A patent/CN1816663B/en not_active Expired - Fee Related
- 2004-06-30 DE DE200450012320 patent/DE502004012320D1/en not_active Expired - Lifetime
-
2010
- 2010-01-12 US US12/685,947 patent/US8088830B2/en not_active Expired - Fee Related
Patent Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2244324A (en) | 1939-12-06 | 1941-06-03 | Dow Chemical Co | Process for the production of an alkyl bromide |
| DE2426306A1 (en) | 1974-05-29 | 1975-12-04 | Imrich Dipl Chem Dr Sebestian | PROCESS FOR CHEMICAL MODIFICATION OF SOLID SURFACES |
| EP0063471B1 (en) | 1981-04-15 | 1986-03-12 | Exxon Research And Engineering Company | Composition and method for releasing stuck drill pipes |
| WO1986000100A1 (en) | 1984-06-07 | 1986-01-03 | Eka Ab | Papermaking process |
| EP0185068B1 (en) | 1984-06-07 | 1989-09-27 | Eka Nobel Aktiebolag | Papermaking process |
| US4798653A (en) * | 1988-03-08 | 1989-01-17 | Procomp, Inc. | Retention and drainage aid for papermaking |
| US5643414A (en) | 1989-11-09 | 1997-07-01 | Eka Nobel Ab | Silica sols in papermaking |
| US5368833A (en) | 1989-11-09 | 1994-11-29 | Eka Nobel Ab | Silica sols having high surface area |
| US5603805A (en) | 1992-08-31 | 1997-02-18 | Eka Nobel, Ab | Silica sols and use of the sols |
| EP0635602B1 (en) | 1993-07-19 | 1998-05-20 | Cytec Technology Corp. | Compositions and methods for improving performance during separation of solids from liquid particulate dispersions |
| US5888290A (en) * | 1996-05-24 | 1999-03-30 | Minnesota Mining And Manufacturing Company | Composition and process for imparting durable repellency to substrates |
| US5760126A (en) * | 1996-12-20 | 1998-06-02 | Minnesota Mining And Manufacturing Company | Aqueous fluorochemical compositions and abrasion-resistant coatings therefrom |
| WO2000069976A1 (en) | 1999-05-12 | 2000-11-23 | Universite De Franche-Comte | Silica sol, composition containing the same, method for treating said silica sol and uses thereof |
| DE10050343A1 (en) | 1999-10-27 | 2001-06-21 | Agilent Technologies Inc | Porous silica microsphere as a cleaning agent |
| EP1142640A1 (en) | 2000-04-04 | 2001-10-10 | Mitsui Chemicals, Inc. | Polyorganosiloxane catalyst for use in producing bisphenol A |
| US20020011191A1 (en) * | 2000-06-22 | 2002-01-31 | Peter Greenwood | Mixture of silica sols |
| US20030054948A1 (en) * | 2001-05-24 | 2003-03-20 | Board Of Trustees Operating Michigan State University | Ultrastable organofunctional microporous to mesoporous silica compositions |
| WO2005003455A1 (en) | 2003-07-04 | 2005-01-13 | H.C. Starck Gmbh | Paper production with modified silica gels as microparticles |
Non-Patent Citations (5)
| Title |
|---|
| Badley, et al., "Silica-Bound Sulfonic Acid Catalysts," J. Org. Chem., (1989), 54, 5437-5443. |
| Iler, "Sols of Silica Particles with Modified Surfaces," The Chemistry of Silica, Wiley & Sons, New York, (1979), 407-410. |
| Iler, et al., "Degree of Hydration of Particles of Colloidal Silica in Aqueous Solution," Journal of Physical Chemistry, (1956), 60, 955. |
| S. Brunauer, et al., "Adsorption of Gases in Multimolecular Layers," J. Amer. Soc., (1938), 60, 309-319. |
| Sears, "Determination of Specific Surface Area of Colloidal Silica by Titration with Sodium Hydroxide," Analytical Chem., (1956), 28, 12, 1981-1983. |
Also Published As
| Publication number | Publication date |
|---|---|
| ES2361132T3 (en) | 2011-06-14 |
| SI1961862T1 (en) | 2011-06-30 |
| PT1644579E (en) | 2008-09-16 |
| CN1816663B (en) | 2010-06-16 |
| SI1644579T1 (en) | 2008-12-31 |
| PL1961862T3 (en) | 2011-08-31 |
| ES2308192T3 (en) | 2008-12-01 |
| CN1816663A (en) | 2006-08-09 |
| PT1961862E (en) | 2011-05-17 |
| US20100108277A1 (en) | 2010-05-06 |
| CN101824775A (en) | 2010-09-08 |
| EP1961862B1 (en) | 2011-03-16 |
| JP2007527471A (en) | 2007-09-27 |
| EP1961862A1 (en) | 2008-08-27 |
| DE102004020112A1 (en) | 2005-01-20 |
| DE502004012320D1 (en) | 2011-04-28 |
| DK1644579T3 (en) | 2008-09-29 |
| JP4833839B2 (en) | 2011-12-07 |
| ATE502158T1 (en) | 2011-04-15 |
| CN101824775B (en) | 2013-11-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8088830B2 (en) | Paper production with modified silica gels as microparticles | |
| US8148434B2 (en) | Silica-based sols and their production and use | |
| US20030051841A1 (en) | Method and apparatus for production of precipitated calcium carbonate and silicate compounds in common process equipment | |
| FI120318B (en) | Silicon containing starch composites, process for making them and use in making paper and paperboard | |
| US7708862B2 (en) | Paper production with modified silica gels as microparticles | |
| NZ549594A (en) | Silica-based sols and their production and use | |
| CN103011180B (en) | Silica-based sols | |
| WO1996005139A1 (en) | Synthetic mineral microparticles for retention aid systems | |
| US20130068139A1 (en) | Silica gel comprising guanidine carbonate | |
| EP0200830A2 (en) | Use of amidoximated starch in paper making | |
| US3391995A (en) | Method of preparing satin white | |
| CA2522247A1 (en) | Papermaking using modified sheet silicates as microparticles | |
| RU2235683C2 (en) | Silica-based sols | |
| JPS61174111A (en) | Production of amorphous aluminosilicate | |
| HK1084092B (en) | Silica gel comprising guanidine carbonate |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: KEMIRA OYJ,FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEISEL, KARLHEINRICH;THIELE, BERND;RENNER, GERD-FRIEDRICH;AND OTHERS;SIGNING DATES FROM 20070209 TO 20070214;REEL/FRAME:023766/0173 Owner name: KEMIRA OYJ, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEISEL, KARLHEINRICH;THIELE, BERND;RENNER, GERD-FRIEDRICH;AND OTHERS;SIGNING DATES FROM 20070209 TO 20070214;REEL/FRAME:023766/0173 |
|
| AS | Assignment |
Owner name: AKZO NOBEL CHEMICALS INTERNATIONAL B.V., NETHERLAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KEMIRA OYJ;REEL/FRAME:025584/0360 Effective date: 20100903 Owner name: KEMIRA OYJ, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KEMIRA OYJ;REEL/FRAME:025584/0360 Effective date: 20100903 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200103 |


