WO2000069976A1 - Silica sol, composition containing the same, method for treating said silica sol and uses thereof - Google Patents
Silica sol, composition containing the same, method for treating said silica sol and uses thereof Download PDFInfo
- Publication number
- WO2000069976A1 WO2000069976A1 PCT/FR2000/001286 FR0001286W WO0069976A1 WO 2000069976 A1 WO2000069976 A1 WO 2000069976A1 FR 0001286 W FR0001286 W FR 0001286W WO 0069976 A1 WO0069976 A1 WO 0069976A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soil
- silica
- chosen
- equal
- silica sol
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/3045—Treatment with inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/3063—Treatment with low-molecular organic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/3081—Treatment with organo-silicon compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/309—Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
- C09D5/082—Anti-corrosive paints characterised by the anti-corrosive pigment
- C09D5/084—Inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/68—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
Definitions
- the present invention relates to a silica sol, to a composition and to a pigment comprising it, to a surface treatment method as well as to various uses of this sol.
- anticorrosion pigments for the metal for example of the zinc phosphate, aluminum triphosphate, calcium silicate, zinc silicate type, in paint compositions.
- the subject of the invention is therefore a silica sol, comprising silica nanoparticles with an average size of between 3 and 50 nm, surface-treated by grafting and / or by adsorption of at least one organic molecule, and / or by doping with at least one doping agent, characterized in that the organic molecule is chosen from amines, polyamines, quaternary amines, a mo silanes, silanes, phosphonates, diamines, polyamines, polyacrylates, acids, diacids, triacids, polyacids, organic hydroxy acids, polyvinyl alcohols, polyoxyethylene, conductive polymers, silane derivatives of the following general formulas: (I) XR-Si (Y) 3 , (II) XR-Si (Y) 2 R 'r or (III) XR-Si (R' R ”) Y Where, - X is a group chosen from vinyl, methacrylate, methyl, phosphat
- - X is a group chosen by the amino, epoxy, polysulphide or mercapto groups when R is a carbon chain of the type - (CH2 ⁇ ) n " or n is equal to 19 or 20,
- the floor according to the invention has the advantage of being able to be manufactured easily and quickly, of being able to increase the resistance of unpainted and untreated metal parts with respect to corrosion when these parts are covered with a composition comprising sol according to the invention, and to be able to replace all or part of the chromating layer of zinc parts.
- Another advantage of the soil according to the invention is that it includes new sites due to the modification of its surface, which are nonexistent on an untreated silica sol.
- the sol of the invention also presents other advantages of allowing better fixation of resins on the silica atoms, of allowing better compatibility of the silica atoms with other ingredients of a composition, of facilitating the dispersion of silica atoms when brought into contact with polymers or solvents, to show better fixing qualities on metals which have already undergone a pretreatment, and finally to allow better fixing on steel, of a paint composition comprising the floor of the invention.
- the mechanism of the anticorrosion process is based on an ion exchange mechanism between the ions present on the surface of the metal and the ions fixed on the support of amorphous and porous silica, so as to protect the surface of the metal.
- this ion exchange takes place with calcium ions or with functionalized silanes, with amino derivatives, or with phosphates, all of which have good results in protecting metals against corrosion.
- the organic molecule, which is grafted and / or adsorbed on the silica sol can be chosen from amines, polyamines, quaternary amines, amino silanes, silanes, phosphonates, diamines, polyamines, polyacrylates, acids, diacids, triacids, polyacids, organic hydroxy acids, polyvinyl alcohols, polyoxyethylenes, conductive polymers such as polyortho-toluidine, polyanilme, polythiophene, polypyrrole, as well as the salts of these conductive polymers (for example of the chloride or sulfate type), the silane derivatives of the following general formulas:
- X is a group chosen from amine, hydroxide, epoxy, vinyl, polysulphide, methacrylate, metyl, fluoride, mercapto, phosphate, proton groups
- Y is a group chosen from ethoxy, methoxy, chloro groups
- R is a chain carbon of type - (- CH2-) n - where n is an integer between 1 and 20, R and R "are independently of one another chosen from a proton, a hydroxide, an ester, an ether or a hydrocarbon chain of the type - (- CH2-) n ⁇ or n es1: an integer between 1 and 20.
- the agent doping the silica sol can be in the form of an inclusion or a solid solution, and can be chosen from the salts of monovalent cations, divalent cations, t ⁇ valent cations, quadruple cations in their chloride, nitrate, sulfate, phosphate, phosphonate, silicate, hydroxide, oxide, acetate or gluconate form, and mixtures thereof.
- the doping agent is present in an amount less than 10 ° by weight relative to the total weight of the silica.
- the silica sol does not comprise any doping agent.
- the soil according to the invention makes it possible to prevent and / or inhibit any type of metallic corrosion. It is recalled that corrosion of a metal is a complex process which involves several electrochemical and chemical reactions.
- the soil of the invention can stop corrosion by playing the role of soluble anode (in the case of treatment of the soil with zinc), or provide cations, such as ions calcium, magnesium, aluminum to form a passivating layer or even block the stages of corrosion due to the presence of corrosion inhibitors which have been adsorbed on the soil, such as phosphates, amines, silanes.
- soluble anode in the case of treatment of the soil with zinc
- cations such as ions calcium, magnesium, aluminum to form a passivating layer or even block the stages of corrosion due to the presence of corrosion inhibitors which have been adsorbed on the soil, such as phosphates, amines, silanes.
- Ion exchange with calcium is the most commonly used process to inhibit corrosion.
- the sol of the invention also makes it possible to provide very good results when it is treated at the surface with a functionalized silane, with at least one amine derivative or with a phosphate.
- the quality of the result obtained depends both on the nature of the metallic support on which the soil is applied, as well as on the nature of the corrosion.
- the liquid phase of the soil of the invention may comprise anions and free cations in a concentration less than or equal to 0.05 mol / l and preferably less than or equal to 0.005 mol / l.
- the pH of the soil of the invention is between 3 and 11.
- Soil can be defined by characteristics which are translucency, conductivity, and silica concentration.
- the translucency of the soil is preferably greater than or equal to 95% and more preferably greater than or equal to 98%, with light transmission between 400 and 650nm.
- the conductivity of the soil can be between 100 and 500 ⁇ S / cm, when it includes a silica concentration of 10%.
- the sol of the invention can have a silica concentration of between 1 and 300 g / l.
- the sol of the invention has a nanometric silica dispersion of reduced polydispersity.
- Two other objects of the invention are an anticorrosion pigment and, a composition each comprising at least one silica sol according to the invention as defined above.
- the composition may, in addition, comprise at least one additive chosen from latexes such as styrenes acrylates, styrenes butadienes, vinyl acetates, vinyl acetate modified maleic acetates or polyvinyl alcohol marketed under the brand RHODOPAS by the Company RHODIA, alkylsiliconates such as potassium methylpropylsiliconate marketed by the company Wacker, poly (oxyethylene) polyoxypropylene copolymers sold under the brand SYNPERONIC PE 135 by the company ICI, cationic surfactants (sold under the brand ARQUAD by the company AKZO NOBEL) , anionic surfactants
- polytetrafluoroethylene silicones
- water-soluble polymers such as xanthan gums (Rhodopol from Rhodia), hydroxy- and carboxy-methylcelluloses (Natrosol from Hercules), silicone resins (Rhodorsil from Rhodia), epoxy ester resins (Residorl from V E37L from Hoechst), polyesters, alkyds, polyurethanes, polyols (polyvinyl alcohols, polyethylene glycol, polypyrolidone).
- This additive can be present in an amount ranging from 0.01 to 10% by weight relative to the total weight of the composition.
- the sol may be present in the composition in an amount ranging from 0.1 to 5% by weight relative to the total weight of the composition.
- the soil as defined above can be prepared according to the following known conventional operating method which comprises four stages.
- a base stock by adding silicate, deionized water and acid to obtain silica particles.
- the amount of silicate in the base stock can either be equal to the total amount used in the reaction or represent only a part of it.
- the concentration of silica in the initial base stock can be less than 100 g / l, preferably less than 20 g / l when using a cationic resin alone as an acidifying agent, and preferably less than 2 g / l when using as an acidifying agent an ore acid.
- the temperature can vary from 20 ° to 95 ° C. Control of the number concentration of particles therefore allows control of the final size of the silica particles.
- an acidifying agent is added to the silica particles so as to increase the concentration of silica and the size of the silica particles.
- the addition of the acidifying agent causing a drop in pH is done until a pH equal to at least 8, but generally between 9 and 11 is reached. Once this pH value is reached, and when the base stock comprises only part of the total amount of silica involved in the chemical reaction, a complementary and simultaneous addition of acidifying agent and the amount of remaining silicate are carried out.
- silicate is made in a manner well known per se.
- the latter has a weight ratio S ⁇ 2 / a2 ⁇ of between 2 and 4, and more particularly between 3 and 3.8.
- the choice of acidifying agent is chosen so as to avoid an excessive increase in the salt concentration in the reaction medium, during acidification or at the end of acidification.
- the acidifying agent may optionally be a cationic cation exchange resin in its protonated form, or a more complex acidifying system consisting of a mineral or organic acid combined with a cationic resin and an anionic resin.
- a mineral acid sulfuric acid, acid can be used. hydrochloric acid, nitric acid, phosphoric acid and their mixture.
- organic acid acetic acid, formic acid, carbonic acid and their mixture can be used.
- Resins such as weak acid type resins in protonated form such as polystyrene, polyacrylate or polymethacrylate resins containing carboxylic groups (sold under the brand IMAC HP 336 by Rohm and Haas or DOWEC CCR3 by Dow Chemical can also be used as the acid).
- Resins of the strong acid type can also be used, such as polystyrene resins containing sulfonate groups (sold under the name
- the concentration of silica in the final reaction mixture can be less than 50 g / l, preferably less than 20g / l and even more preferably less than 10g / l.
- the salt concentration formed in the final reaction mixture, at the end of this second step, is preferably less than 0.1 mol / l when using a mineral acid, and can be less than 0.01 mol / l when a cationic resin is used.
- the silica sol obtained at the end of the previous step is firstly filtered through a sieve having meshes of about 100 ⁇ m to remove for example the resin, then washed to remove all the soluble salts possibly formed during the synthesis which can be for example sodium sulphate when sulfuric acid is used as acidifier.
- the acidifying agent is a resin, there is no salt formation.
- the washing of the soil can be carried out by bringing the silica sol into contact, on the one hand with a cationic resin in protonated form which then makes it possible to remove the cationic species soluble in the aqueous phase, and, on the other hand with a anionic resin in hydroxide form which makes it possible to remove the soluble anionic species.
- the pH is from " pre een to htenu constant between 8 " and 10 "” so as to " avoid agglomeration of the particles.
- the pH can be kept constant by the simultaneous addition of two types of resins.
- the pH can also be adjusted by the additional addition of one of the two resins used for washing. Detection of the end of washing can be carried out by measuring the conductivity of the soil. reaches a value of about lmS / cm, the washing is stopped.
- Washing can be carried out - when the silica concentration is at most 100g / l, and preferably less than 50 g / 1.
- the silica sol is washed until the molar concentration of free ionic species is at most 0.01 mol / l and preferably less than 0.005 mol / l.
- the washing is carried out by dialysis or by tangential filtration while keeping the volume of the silica sol constant by the addition of deionized water.
- the pH of the silica sol is advantageous to adjust to a value between 2 and 11.
- This adjustment can be carried out conventionally by adding cationic resin to lower the pH, or adding alkaline hydroxide (sodium hydroxide, potassium hydroxide) to increase the pH.
- alkaline hydroxide sodium hydroxide, potassium hydroxide
- the silica sol is concentrated under vacuum, by ultrafiltration or by tangential filtration so as to release the water.
- This concentration can be carried out under reduced pressure, at a temperature below 80 °, and preferably below 60 ° C.
- This evaporation can be carried out at a speed of at least 100 g of water per liter of soil and per hour.
- the silica sol, obtained at the end of the four known previous stages is treated on the surface by grafting and / or by adsorption of at least one organic molecule or also by deposition of metal salt particles.
- the grafting treatment is therefore carried out when the resins and the salts have all been removed.
- An attachment is then carried out, by grafting and / or by adsorption, of organic molecules by means of a chemical reaction with the silanol sites present on the surface of the silica sol.
- the bonds formed are covalent in nature and are therefore identifiable by conventional spectroscopic techniques such as infrared, nuclear magnetic resonance.
- the organic molecule is preferably chosen from amines, amino silanes, silanes, phosphonates, diam es, polyamines, polyacrylates, organic hydroxy acids, polyvinyl alcohols, polyoxyéhylènes, conductive polymers.
- the organic molecule can also be chosen from silane derivatives of the following general formulas:
- X is a group chosen from amine and hydroxide groups , epoxy, vinyl, polysulfide, methacrylate, methyl, fluoride, mercapto, phosphate, proton
- Y is a group chosen from the groups ethoxy, methoxy, chloro
- R is a carbon chain of the type - (- CH2 ⁇ ) n- where n is an integer between 1 and 20, R 'and R "are independently of each other chosen from a proton, a hydroxide, an ester , an ether or a hydrocarbon chain of the type - (- CH2) n- where n is an integer between 1 and 20.
- the organic molecule can also be chosen from mixtures of all these constituents. at the end of the last step, but before the resins are removed.
- additional cationic resin is added so as to reduce the pH to a value between 8 and 2.
- the metal oxide particles become fixed then on the surface of the silica particles by a phenomenon of co-aggregation.
- the silica sol can optionally be doped using at least one doping agent in the form of an inclusion or a solid solution.
- This treatment with a doping agent consists in carrying out a co-addition of silicates, of an acid with the doping agent.
- the doping agent is incorporated into the last layers of silica in the form of an inclusion or a solid solution.
- the doping agent can be added before the end of the second step, and can be chosen from the salts of monovalent cations, divalent cations, t ⁇ valent cations, quadrivalent cations, the salts possibly being in their chloride, nitrate, sulfate form , phosphate, phosphonate, silicate, hydroxide, oxide, acetate or gluconate or mixtures thereof.
- the doping agent can be chosen from calcium hydroxide, magnesium hydroxide, aluminum sulphate, zinc sulphate, calcium sulphate, cerium nitrate, cerium oxide, alum sodium ate, sodium zmcate, sodium phosphate, sodium phosphonate, and mixtures thereof.
- the doping agent is introduced in the last phase of addition of the acid.
- concentration by weight of doping agent is preferably less than 10% relative to the weight of silica.
- the doping agent is preferably introduced at a pH greater than 8 and even more preferably greater than 10.
- the silica sol does not comprise any doping agent.
- the doping agent may be present in an amount less than 10% by weight relative to the total weight of the silica.
- the treated soil obtained according to the process as defined above may have a chemical treatment rate of between 0.1 and 50%, and more particularly between 0.1 and 5%.
- the last objects of the invention are different uses of this soil.
- soil as an anticorrosive agent for metal.
- soil as an adhesion initiator intended to facilitate the adhesion of a layer of polymer or mineral to a support.
- soil as a raw material to obtain mineral membranes with pore sizes less than 20nm.
- the use of such a treated soil according to the invention makes it possible to obtain better selectivity of the molecules to be separated, such as pollutants, gases.
- the membranes thus obtained have the advantage of being biocompatible and thus allowing the separation of biological species.
- the invention also relates to a use of the soil as a rheological additive in the composition of emulsions, such as suspensions, paints, varnishes, coatings or ceramics.
- Soil is also used as a reinforcing filler in plastics, such as elastomers, rubbers or silicones.
- Another use of the soil of the invention is a use as an additive in redispersible agrochemical compositions.
- the acidifying agent is a cationic resin.
- a base is formed by introducing into a stainless steel reactor fitted with a turbine stirring system, heating by electrical elements, and a temperature and pH regulation system, 10400g of purified water with conductivity less than 5 ⁇ S / cm and having a temperature equal to 25 ° C, and 5600g of sodium silicate with a weight ratio S ⁇ 2 / Na2 ⁇ equal to 3.25 and a mass concentration of silica of 260g / kg.
- a second step after a waiting time of 10 minutes, 6000 g of cationic resin suspension in protonated form containing 28% dry extract (of IMAC HP 336 type from ROHM AND HAAS) are introduced into the reaction medium. bring the pH of the reaction medium to a final pH of 10.8 +/- 0.2. The duration of this simultaneous introduction is fixed at 30 minutes. A silica sol is thus obtained with a silica concentration of approximately 60 g / kg and having a pH of 10.8.
- reaction temperature is raised from 25 ° to 70 ° C in about 15 minutes.
- 5.1 g of ac ⁇ de-1-hydroxy ethylene 1.1 diphosphonic acid 60O acid (DEQUEST 2010 MONSATO). The reaction medium is left at this temperature for 20 minutes.
- a fourth step the medium is cooled to 25 ° C., and then approximately 800 g of resin of the type described above is introduced. This addition is done until a pH value of the medium is obtained reactional equal to 10.00 +/- 0.1. The duration of this introduction is fixed at approximately 10 minutes. At the end of this step, the reaction mixture is allowed to mature at 25 ° C and at a pH equal to 10 for 30 minutes. We then proceed to a second filtration of the silica sol on a nylon fabric having pores of about 100 ⁇ m to remove the resin. This gives a transparent silica sol having a pH of 10 and a silica concentration of 15 g / kg. At the end of this step, the sol is concentrated to a silica concentration of 95 g / kg by evaporation under vacuum at 60 ° C. The duration of the operation is 6 hours.
- Example 1 The procedure of Example 1 is repeated, in which 11.2 g of a 50% aqueous solution of ammo-tris-methylenephosphonic acid (DEQUEST 2000 from MONSATO) are added in the third step to obtain a rate grafting of 3840ppm.
- DEQUEST 2000 a 50% aqueous solution of ammo-tris-methylenephosphonic acid
- EXAMPLE 4 Silica Sol Treated with Polyphosphate Acid (H n +? P n ⁇ 3n +] __) _ The procedure of Example 1 is repeated, in which 46.6 g of a 10% aqueous polyphosphoric acid solution to obtain a grafting rate of 3200ppm.
- EXAMPLE 5 Silica Sol Treated with the Potassium Sol of the Phosphoric Ester
- example 1 The procedure of example 1 is repeated, in which 8.7 g of 25% aqueous tetramethylammonium hydroxide solution is added at the end of step 4 to obtain a grafting rate of 1500 ppm.
- the sol is then concentrated to a silica concentration of 95 g / kg by evaporation under vacuum at 60 ° C.
- Example 7 Silica Sol Treated with 3-aminopropyl-trlethoxysliane
- the procedure of Example 1 is repeated, in which the silica sol, obtained at the end of step 4, having a pH equal to 10 and a silica concentration of 15g / kg is transferred to a reactor fitted with an eccentric high speed dispersion system (10000t / mm) (deflocculating toothed blades), having four blades and a centered propeller rotating at 300t / mm.
- an eccentric high speed dispersion system (10000t / mm) (deflocculating toothed blades), having four blades and a centered propeller rotating at 300t / mm.
- 223 g of an aqueous solution containing 11.65 g of 3-ammopropyl-triethoxysilane (A1100 from WITCO) and 9.71 g of pure acetic acid are added at 20 ° C. and over 10 minutes.
- the sol is then concentrated to a silica concentration of 95 g / kg by evaporation under vacuum at 60 ° C.
- the acidifying agent is sulfuric acid.
- EXAMPLE 8 Synthesis of the silica sol
- 8137 g of purified water with a conductivity of less than 5 ⁇ S / cm are introduced into a stainless steel reactor equipped with a turbine stirring system, with element heating. electrical, and a temperature and pH control system. The whole is heated to a temperature equal to 60 ° C. Then introduced in 15 minutes, at a constant temperature of 60 ° C and with constant stirring 220t / mm, 902g of sodium silicate having a weight ratio S ⁇ 2 / Na2 ⁇ equal to 3.25 and having a mass concentration of silica of 50g / kg.
- the reaction temperature is raised from 60 ° C to 90 ° C in about 15 minutes, then maintained at 90 ° C until the end of the reaction.
- 7648 g of silicate of the type described above and approximately 6170 g of dilute sulfuric acid with an acid concentration equal to 29 g / kg are then introduced jointly into the reaction medium.
- This simultaneous introduction of acid and silicate is carried out in such a way that the pH of the reaction medium is constantly equal to 9 +/- 0.1, and the temperature equal to 90 ° C.
- the duration of this simultaneous introduction is fixed at 90 minutes.
- the reaction mixture is left to mature at 90 ° C., at a pH of 9, for 30 minutes.
- the reaction medium is cooled to 25 ° C. This gives a silica sol with a silica concentration of 18.71 g / kg and a pH of 10.5.
- the silica sol is then washed at a constant pH of 10.5 by simultaneous addition suspension of cationic resins in protonated form and anionic resins in hydroxide form having a respective concentration of 50% in the reaction medium and, with stirring of 200 t / min.
- This simultaneous introduction of dispersion of action resins and anion resins is carried out in such a way that the pH of the reaction medium is constantly equal to 10.00 +/- 0.1.
- This simultaneous addition is done until a ground conductivity value less than 1 ⁇ S / c is obtained.
- the duration of the washing operation is 30 minutes.
- a complementary introduction of cationic resins is carried out to bring the pH of the silica sol to a value of 8.5, and the mixture thus obtained is left to stand for 60 minutes.
- the mixture consisting of the resin and the silica sol thus formed is then filtered a first time on a filter having a porosity equal to 100 ⁇ m.
- a second filtration of the soil is then carried out on a filter with a porosity of less than 10 ⁇ m. This gives a transparent silica sol having a pH of 8.5 and a silica concentration of 15 g / kg.
- Example 8 The procedure of Example 8 is repeated, modifying the second step according to the following terms.
- the reaction temperature is then brought from 60 ° to 90 ° C in about 15 minutes, then maintained at 90 ° C until the end of the reaction.
- 6900 g of sodium silicate and approximately 5629 g of sulfuric acid are then introduced jointly into the reaction medium.
- diluted acid concentration equal to 29g / kg.
- This simultaneous introduction of acid and silicate is carried out in such a way that the pH of the reaction medium is constantly equal to 9.00 ⁇ 0.1 and the temperature equal to 90 ° C.
- the duration of this simultaneous introduction is fixed at 75 minutes.
- This operation is carried out in such a way that the pH of the reaction medium is constantly equal to 9.00 +/- 0.1. The duration of this simultaneous introduction is fixed at 10 minutes. After carrying out the doping, the reaction mixture is left to mature at 90 ° C. and at a pH equal to 9 for 30 minutes. After cooling to 25 ° C., a silica sol with a silica concentration of 18.21 g / kg and having a pH of 10.5 is thus obtained. We then repeat steps 3 and 4 of Example 8 to obtain a calcium-treated silica sol.
- ZnSO4 equal to 20g / kg and approximately 2462g of sulfuric acid.
- the sulfuric acid flow is adjusted so that the pH of the reaction medium is constantly equal to 9 +/- 0.1.
- the duration of this simultaneous introduction of the 3 reagents is fixed at 35 minutes.
- the reaction mixture is allowed to mature at 90 ° C and at a pH of 9 for 30 minutes.
- a silica sol with a silica concentration of 19.14 g / kg and having a pH of 10.5 is thus obtained.
- the reaction temperature is maintained at 90 ° C until the end of the reaction.
- 6500 g of sodium silicate and approximately 6523 g of dilute sulfuric acid having an acid concentration equal to 16 g / kg are then introduced jointly into the reaction medium.
- This simultaneous introduction of the acid and of the sodium silicate is carried out in such a way that the pH of the reaction medium is constantly equal to 9.1 +/- 0.1.
- the duration of this simultaneous introduction is fixed at 70 minutes.
- 163g of sodium silicate and 228g of cerium sol with a concentration expressed in Ce ⁇ 2 of 80g / kg and having a N rapport3 / Ce ⁇ 2 mass ratio are then introduced jointly into the reaction medium.
- the duration of this simultaneous introduction is fixed at 10 minutes.
- the reaction mixture is left to mature at 90 ° C. after adjusting the pH to 9 for 30 minutes. After cooling to 25 ° C., a silica sol is thus obtained having a silica concentration of 105 g / kg.
- Example 8 is repeated by modifying the fourth step.
- the transparent silica sol having a pH of 8.5 and a silica concentration of 15 g / kg obtained at the end of step 3, is heated to 60 ° C. 50 g of an aqueous solution of sodium alummate with an Al 2 O 3 concentration equal to 7% and of Al / Na molar ratio equal to 0.304.
- the mixture is heated at 60 ° C for 12 minutes.
- the sol is then concentrated to a silica concentration of 160 g / kg by evaporation under vacuum at 60 ° C. The duration of the operation is 6 hours.
- Example 8 is repeated by modifying the third step, bringing the final pH to 3 by adding cationic resin instead of 8.5.
- the final sol having a pH equal to 3 and a silica concentration of 15 g / kg, is cooled to 5 ° C.
- 3 g of polyanilme are added thereto under vigorous stirring.
- 10 g of ammonium persulfate are then added and the mixture is left to mature for 5 hours.
- the soil is then concentrated to 150 g / kg by evaporation under vacuum at 50 ° C.
- Table (I) below shows the differences between a soil of the state of the art and the soil according to the invention. These differences are characterized by the measurement of conductivity, light transmission, viscosity and particle diameter for each of the soils.
- the soil according to the invention has a very low conductivity, maximum light transmission, and a viscosity significantly lower than the soils of the prior art.
- the average diameter of the soil particles of the invention is much smaller than that of the particles of known soils.
- Accelerated anticorrosion test This test consists in immersing, at a temperature of around 25 ° C, an ordinary steel plate with a surface of 20c ⁇ .2 and a thickness of 2mm in 100ml of rainwater with a constant composition. Water transmission is measured using a Metrom photocolorimeter at 550nm wavelength and for an optical path of 10cm as a function of time.
- the steel plates are degreased beforehand by washing with acetone followed by washing with ethanol and washing with water.
- the plates are then immersed in a 1M sodium hydroxide solution, then rinsed with deionized water and finally immersed for 30 minutes in the sol according to the invention dilutes 1% silica by adding water and heated to 80 ° C.
- the presence of rust disturbs the water and therefore does not make it possible to obtain a transmission of light of such good quality.
- the very low light transmission values of the steel plate treated with the soil of the state of the art clearly show that the plate comprises rust which can appear simply in the form of traces.
- the invention is in no way limited to the embodiments described, which have been given only by way of example. In particular, it includes all the means constituting technical equivalents of the means described as well as their combinations, if these are carried out according to the spirit of the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Silicon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The invention relates to a novel silica sol, to a composition containing said silica sol, to a method for treating the silica sol and to various uses thereof. The silica sol is surface-treated by grafting and/or by adsorption of at least one organic molecule and/or by doping with at least one doping agent, said sol comprising silica nanoparticles whose average size is between 3 and 50 nm. Said particles are monodispersed in a liquid phase and are present in a concentration greater than or equal to 5 % and preferably greater than or equal to 10 %.
Description
SOL DE SILICE, COMPOSITION LE COMPRENANT, PROCEDE DE TRAITEMENT ET SES UTILISATIONS SILICA SOL, COMPOSITION COMPRISING SAME, TREATMENT METHOD AND USES THEREOF
La présente invention se rapporte a un sol de silice, à une composition et à un pigment le comprenant, à un procède de traitement de surface ainsi qu'à différentes utilisations de ce sol.The present invention relates to a silica sol, to a composition and to a pigment comprising it, to a surface treatment method as well as to various uses of this sol.
Il est actuellement dé à bien connu d'utiliser des pigments anticorrosion du métal par exemple du type phosphate de zinc, triphosphate d'aluminium, silicate de calcium, silicate de zinc, dans des compositions de peinture .It is currently well known to use anticorrosion pigments for the metal, for example of the zinc phosphate, aluminum triphosphate, calcium silicate, zinc silicate type, in paint compositions.
De tels pigments présentent le principal inconvénient de libérer les substances actives qu'ils contiennent, à n'importe quel endroit de la surface sur laquelle ils sont appliques. Une telle libération entraîne par conséquent une protection inégale du support vis-a-vis de la corrosion. Ces pigments présentent encore comme inconvénient de ne pas pouvoir être utilisés sur tout type de support métallique. Leur application pose en outre le problème d'être spécifique à la nature du support.The main drawback of such pigments is that they release the active substances which they contain, anywhere on the surface to which they are applied. Such a release therefore results in uneven protection of the support against corrosion. These pigments also have the drawback of not being able to be used on any type of metallic support. Their application also poses the problem of being specific to the nature of the support.
Il est encore connu d'incorporer des pigments sous forme de silice précitée ou sous forme de gel de silice dans des compositions de peinture. Mais ces silices présentent l'inconvénient de se disperser a des tailles supérieures a 0,2μm. Le procède de fabrication de ces sols de silice aqueux concentre constitue de nanoparticules est notamment connu du document US 4 410 405. Aussi il subsiste le besoin de disposer d'un nouveau sol de silice ayant des propriétés anticorrosives efficaces et générales, applicable sur tout type de support métallique peint ou non, éventuellement zmgue ou chromate, pouvant être
facilement incorporé dans des compositions d'emulsion par exemple de type peinture, et pouvant libérer progressivement les substances actives uniquement sur les endroits fragilises a protéger ou a reparer. L'invention a donc pour objet un sol de silice, comprenant des nanoparticules de silice d'une taille moyenne comprise entre 3 et 50 nm, traité en surface par greffage et/ou par adsorption d'au moins une molécule organique, et/ou par dopage avec au moins un agent dopant, caractérise en ce que la molécule organique est choisie parmi les aminés, les polyamines, les aminés quaternaires, les a mo silanes, les silanes, les phosphonates, les diamines, les polyamines, les polyacrylates, les acides, les diacides, les triacides, les polyacides, les hydroxy- acides organiques, les polyvmylalcools, le polyoxyéthylène, les polymères conducteurs, les dérivés de silanes de formules générales suivantes : (I) X-R-Si (Y) 3 , (II) X-R-Si (Y) 2 R ' r ou (III) X-R-Si (R 'R ") Y Où, - X est un groupement choisi parmi les groupements vinyl, méthacrylate, méthyl, phosphate, proton, quand R est une chaîne carbonée du type - (CH2~) n ~ ou n es^ un entier compris entre 1 et 20,It is also known to incorporate pigments in the above-mentioned silica form or in the form of silica gel in paint compositions. However, these silicas have the drawback of dispersing at sizes greater than 0.2 μm. The process for manufacturing these concentrated aqueous silica soils consisting of nanoparticles is known in particular from document US 4,410,405. There also remains the need for a new silica sol having effective and general anticorrosive properties, applicable to all types of painted or unpainted metal support, possibly zmgue or chromate, which can be easily incorporated into emulsion compositions, for example of the paint type, and capable of gradually releasing the active substances only on the fragile areas to be protected or repaired. The subject of the invention is therefore a silica sol, comprising silica nanoparticles with an average size of between 3 and 50 nm, surface-treated by grafting and / or by adsorption of at least one organic molecule, and / or by doping with at least one doping agent, characterized in that the organic molecule is chosen from amines, polyamines, quaternary amines, a mo silanes, silanes, phosphonates, diamines, polyamines, polyacrylates, acids, diacids, triacids, polyacids, organic hydroxy acids, polyvinyl alcohols, polyoxyethylene, conductive polymers, silane derivatives of the following general formulas: (I) XR-Si (Y) 3 , (II) XR-Si (Y) 2 R 'r or (III) XR-Si (R' R ") Y Where, - X is a group chosen from vinyl, methacrylate, methyl, phosphate, proton groups, when R is a chain carbon of type - (CH2 ~ ) n ~ or n es ^ an integer between 1 and 20,
- X est un groupement choisi par les groupements aminés, époxy, polysulfure, mercapto quand R est une chaîne carbonée du type - (CH2~) n " ou n est égale à 19 ou 20,- X is a group chosen by the amino, epoxy, polysulphide or mercapto groups when R is a carbon chain of the type - (CH2 ~ ) n " or n is equal to 19 or 20,
- R 'R " sont indépendamment l'un de l'autre choisis parmi un proton, un hydroxyde, un ester, un ether ou une chaîne hydrocarbonee du type - (CH2~) n ~~ ou n est un entier compris entre 1 et 20,
et les mélanges de tous ces constituants, les dites nanoparticules étant présentes en une concentration supérieure ou égale à 5% et de préférence supérieure ou égale à 10%. Le sol selon l'invention présente l'avantage de pouvoir être fabriqué facilement et rapidement, de pouvoir augmenter la résistance des pièces métalliques non peintes et non traitées vis-à-vis de la corrosion lorsque ces pièces sont recouvertes d'une composition comprenant le sol selon l'invention, et de pouvoir remplacer tout ou partie de la couche de chromatation de pièces en zinc.- R 'R "are independently of one another chosen from a proton, a hydroxide, an ester, an ether or a hydrocarbon chain of the type - (CH2 ~ ) n ~~ or n is an integer between 1 and 20, and mixtures of all these constituents, said nanoparticles being present in a concentration greater than or equal to 5% and preferably greater than or equal to 10%. The floor according to the invention has the advantage of being able to be manufactured easily and quickly, of being able to increase the resistance of unpainted and untreated metal parts with respect to corrosion when these parts are covered with a composition comprising sol according to the invention, and to be able to replace all or part of the chromating layer of zinc parts.
Un autre avantage du sol selon l'invention est qu'il comprend de nouveaux sites du fait de la modification de sa surface, qui sont inexistants sur un sol de silice non traité.Another advantage of the soil according to the invention is that it includes new sites due to the modification of its surface, which are nonexistent on an untreated silica sol.
En effet, on peut par exemple créer des sites positifs par l'ajout de cation, tel que des ions aluminium, on peut contrôler le rapport sites négatifs/sites positifs, on peut créer des sites acides ou basiques. Ces nouveaux sites sont susceptibles de pouvoir former des liaisons de nature covalente, hydrogène ou ionique.Indeed, one can for example create positive sites by the addition of cation, such as aluminum ions, one can control the ratio negative sites / positive sites, one can create acid or basic sites. These new sites are likely to be able to form bonds of covalent, hydrogen or ionic nature.
Enfin le sol de 1 ' invention présente encore comme autres avantages de permettre une meilleure fixation de résines sur les atomes de silice, de permettre une meilleure compatibilité des atomes de silice vis-à-vis d'autres ingrédients d'une composition, de faciliter la dispersion d'atomes de silice lorsqu'ils sont mis au contact de polymères ou de solvants, de montrer de meilleures qualités fixation sur des métaux ayant déjà subis un prétraitement, et enfin de permettre une meilleure fixation sur l'acier, d'une composition de peinture comprenant le sol de l'invention.
Le mécanisme du processus anticorrosion est basé sur un mécanisme d'échange d'ion entre les ions présents sur la surface du métal et les ions fixés sur le support de silice amorphe et poreux, de manière à protéger la surface du métal. De façon préférée, cette échange ionique s'effectue avec des ions calcium ou encore avec des silanes fonctionnalisées, avec des dérivés des aminés, ou avec des phosphates, qui présentent tous de bons résultats de protection de métaux vis-à-vis de la corrosion. la molécule organique, qui est greffée et/ou adsorbée sur le sol de silice peut être choisie parmi les aminés, les polyamines, les aminés quaternaires, les amino silanes, les silanes, les phosphonates, les diamines, les polyamines, les polyacrylates, les acides, les diacides, les triacides, les polyacides, les hydroxy-acides organiques, les polyvmylalcools, le polyoxyéthylènes, les polymères conducteurs tels que le polyortho-toluidine, la polyanilme, le polythiophène, le polypyrrole, ainsi que les sels de ces polymères conducteurs (par exemple de type chlorure ou sulfate), les dérivés de silanes de formules générales suivantes:Finally, the sol of the invention also presents other advantages of allowing better fixation of resins on the silica atoms, of allowing better compatibility of the silica atoms with other ingredients of a composition, of facilitating the dispersion of silica atoms when brought into contact with polymers or solvents, to show better fixing qualities on metals which have already undergone a pretreatment, and finally to allow better fixing on steel, of a paint composition comprising the floor of the invention. The mechanism of the anticorrosion process is based on an ion exchange mechanism between the ions present on the surface of the metal and the ions fixed on the support of amorphous and porous silica, so as to protect the surface of the metal. Preferably, this ion exchange takes place with calcium ions or with functionalized silanes, with amino derivatives, or with phosphates, all of which have good results in protecting metals against corrosion. . the organic molecule, which is grafted and / or adsorbed on the silica sol can be chosen from amines, polyamines, quaternary amines, amino silanes, silanes, phosphonates, diamines, polyamines, polyacrylates, acids, diacids, triacids, polyacids, organic hydroxy acids, polyvinyl alcohols, polyoxyethylenes, conductive polymers such as polyortho-toluidine, polyanilme, polythiophene, polypyrrole, as well as the salts of these conductive polymers (for example of the chloride or sulfate type), the silane derivatives of the following general formulas:
( I ) X-R-Si (Y) 3 '(I) X-R-Si (Y) 3 '
( I I ) X-R-Si ( Y ) 2 R ' / ou(I I) X-R-Si (Y) 2 R '/ or
( I I I ) X-R-S i ( R ' R " ) Y(I I I) X-R-S i (R 'R ") Y
OÙOR
X es t un groupement cho i s i parmi les groupements amine, hydroxyde, époxy, vinyl, polysulfure, méthacrylate, métyl, fluorure, mercapto, phosphate, proton, Y est un groupement choisi parmi les groupements éthoxy, méthoxy, chloro, R est une chaîne carbonée du type -(-CH2-)n- où n est un entier compris entre 1 et 20,
R et R" sont indépendamment l'un de l'autre choisis parmi un proton, un hydroxyde, un ester, un ether ou une chaîne hydrocarbonee du type -(-CH2-)n ~ ou n es1: un entier compris entre 1 et 20. et les mélanges de tous ces constituants . L'agent dopant le sol de silice peut se présenter sous forme d'inclusion ou de solution solide, et peut être choisi parmi les sels de cations monovalents, de cations divalents, de cations tπvalents, de cations quadπvalents sous leur forme chlorure, nitrate, sulfate, phosphate, phosphonate, silicate, hydroxyde, oxyde, acétate ou gluconate, et leurs mélanges.X is a group chosen from amine, hydroxide, epoxy, vinyl, polysulphide, methacrylate, metyl, fluoride, mercapto, phosphate, proton groups, Y is a group chosen from ethoxy, methoxy, chloro groups, R is a chain carbon of type - (- CH2-) n - where n is an integer between 1 and 20, R and R "are independently of one another chosen from a proton, a hydroxide, an ester, an ether or a hydrocarbon chain of the type - (- CH2-) n ~ or n es1: an integer between 1 and 20. and mixtures of all these constituents The agent doping the silica sol can be in the form of an inclusion or a solid solution, and can be chosen from the salts of monovalent cations, divalent cations, tπvalent cations, quadruple cations in their chloride, nitrate, sulfate, phosphate, phosphonate, silicate, hydroxide, oxide, acetate or gluconate form, and mixtures thereof.
De préférence, l'agent dopant est présente en une quantité inférieure a 10° en poids par rapport au poids total de la silice.Preferably, the doping agent is present in an amount less than 10 ° by weight relative to the total weight of the silica.
De façon préférée, le sol de silice ne comprend aucun agent dopant .Preferably, the silica sol does not comprise any doping agent.
Le sol selon l'invention permet d'empêcher et/ou d'inhiber tout type de corrosion métallique. Il est rappelé que la corrosion d'un métal est une processus complexe qui met en j eu plusieurs reactions électrochimiques et chimiques.The soil according to the invention makes it possible to prevent and / or inhibit any type of metallic corrosion. It is recalled that corrosion of a metal is a complex process which involves several electrochemical and chemical reactions.
Quatre opérations bien distinctes permettent d'expliquer ce processus.Four distinct operations explain this process.
Il y a tout d'abord la dissolution du métal par son oxydation au niveau d'un site anionique, suivi de la réduction d'une espèce oxydante en solution au voisinage d'un site cathodique sur le métal, puis la migration des ions en solution de façon a assurer la neutralité électrique du système, et enfin le transfert d'électrons au sein du métal entre les sites anodiques et cathodiques. Pou inhiber la corrosion, il suffit de bloquer une de ces quatre étapes, ce que réalise le sol
de l'invention en agissant sur au moins l'une d'entre elles. En s ' adsorbant sur les sites actifs du métal, siège des réactions de corrosion, le sol inhibe ou ralentit le démarrage du processus αe corrosion. Au cours d'une des étapes de corrosion, le sol de l'invention peut stopper la corrosion en jouant le rôle d'anode soluble (dans le cas du traitement du sol par le zinc) , ou apporter des cations, tels que des ions calcium, magnésium, aluminium pour former une couche passivante ou encore bloquer les étapes de la corrosion du fait de la présence d'inhibiteurs de la corrosion qui ont été adsorbés sur le sol, tels que des phosphates, des aminés, des silanes.First there is the dissolution of the metal by its oxidation at an anionic site, followed by the reduction of an oxidizing species in solution in the vicinity of a cathodic site on the metal, then the migration of ions into solution in order to ensure the electrical neutrality of the system, and finally the transfer of electrons within the metal between the anodic and cathodic sites. To inhibit corrosion, just block one of these four steps, what the soil does of the invention by acting on at least one of them. By adsorbing on the active sites of the metal, seat of corrosion reactions, the soil inhibits or slows the start of the corrosion process. During one of the corrosion steps, the soil of the invention can stop corrosion by playing the role of soluble anode (in the case of treatment of the soil with zinc), or provide cations, such as ions calcium, magnesium, aluminum to form a passivating layer or even block the stages of corrosion due to the presence of corrosion inhibitors which have been adsorbed on the soil, such as phosphates, amines, silanes.
L'échange d'ion avec le calcium est le processus le plus couramment utilisé pour inhiber la corrosion. Le sol de l'invention permet également de fournir de très bons résultats lorsqu'il est traité en surface avec un silane fonctionnalisé, avec au moins un dérivé d'aminé ou avec un phosphate. La qualité du résultat obtenu est fonction à la fois de la nature du support métallique sur lequel le sol est applique, ainsi que de la nature de la corrosion.Ion exchange with calcium is the most commonly used process to inhibit corrosion. The sol of the invention also makes it possible to provide very good results when it is treated at the surface with a functionalized silane, with at least one amine derivative or with a phosphate. The quality of the result obtained depends both on the nature of the metallic support on which the soil is applied, as well as on the nature of the corrosion.
La phase liquide du sol de l'invention peut comprendre des anions et des cations libres en une concentration inférieure à ou égale à 0, 05mol/l et de préférence inférieure ou égale à 0,005mol/l. De préférence, le pH du sol de l'invention est compris entre 3 et 11.The liquid phase of the soil of the invention may comprise anions and free cations in a concentration less than or equal to 0.05 mol / l and preferably less than or equal to 0.005 mol / l. Preferably, the pH of the soil of the invention is between 3 and 11.
Le sol peut se définir au moyen de caractéristiques qui sont la translucidité, la conductivité, et la concentration en silice.Soil can be defined by characteristics which are translucency, conductivity, and silica concentration.
La translucidité du sol est de préférence supérieure ou égale à 95% et plus préférentiellement
supérieure ou égale à 98%, avec une transmission de lumière comprise entre 400 et 650nm.The translucency of the soil is preferably greater than or equal to 95% and more preferably greater than or equal to 98%, with light transmission between 400 and 650nm.
La conductivité du sol peut être comprise entre 100 et 500μS/cm, lorsqu'il comprend une concentration en silice de 10%.The conductivity of the soil can be between 100 and 500μS / cm, when it includes a silica concentration of 10%.
Le sol de l'invention peut avoir une concentration en silice comprise entre 1 et 300g/l.The sol of the invention can have a silica concentration of between 1 and 300 g / l.
Le sol de l'invention présente une dispersion de silice nanométrique de polydispersité réduite. Deux autres objets de l'invention sont un pigment anticorrosion et, une composition comprenant chacun au moins un sol de silice selon l'invention tel que défini précédemment .The sol of the invention has a nanometric silica dispersion of reduced polydispersity. Two other objects of the invention are an anticorrosion pigment and, a composition each comprising at least one silica sol according to the invention as defined above.
La composition peut, en outre, comprendre au moins un additif choisi parmi les latex tels que les styrènes acrylates, les styrènes butadiènes, les acétates de vmyle, les acétates de vmyle modifiés ester maleique ou alcool polyv ylique commercialisé sous la marque RHODOPAS par la Société RHODIA, les alkylsiliconates tels que le méthylpropylsiliconate de potassium commercialisé par la Société Wacker, les copolymères poly (oxyéthylène) polyoxypropylène vendu sous la marque SYNPERONIC PE 135 par la Société ICI, les tensioactifs cationiques (vendu sous la marque ARQUAD par la Société AKZO NOBEL) , les tensioactifs anioniquesThe composition may, in addition, comprise at least one additive chosen from latexes such as styrenes acrylates, styrenes butadienes, vinyl acetates, vinyl acetate modified maleic acetates or polyvinyl alcohol marketed under the brand RHODOPAS by the Company RHODIA, alkylsiliconates such as potassium methylpropylsiliconate marketed by the company Wacker, poly (oxyethylene) polyoxypropylene copolymers sold under the brand SYNPERONIC PE 135 by the company ICI, cationic surfactants (sold under the brand ARQUAD by the company AKZO NOBEL) , anionic surfactants
(laurylsulfate) , les tensioactifs non ioniques (Triton(laurylsulfate), nonionic surfactants (Triton
X100) , les amphotères (Reweteric AMB 13 de itco) , les émulsions polyéthylène, le PTFEX100), amphoterics (Reweteric AMB 13 from itco), polyethylene emulsions, PTFE
(polytétrafluoroéthylène) , les silicones, les polymères hydrosolubles tels que les gommes xanthan (Rhodopol de Rhodia) , les hydroxy- et carboxy- methylcelluloses (Natrosol de Hercules), les résines silicones (Rhodorsil de Rhodia) , les résines époxyesters (Résidorl de V E37L de Hoechst) , les polyesters, les
alkydes, les polyurethanes, les polyols (alcools polyv yliques, polyethyleneglycol, polypyrolidone) . Cet additif peut être présente en une quantité allant de 0,01 a 10% en poids par rapport au poids total de la composition.(polytetrafluoroethylene), silicones, water-soluble polymers such as xanthan gums (Rhodopol from Rhodia), hydroxy- and carboxy-methylcelluloses (Natrosol from Hercules), silicone resins (Rhodorsil from Rhodia), epoxy ester resins (Residorl from V E37L from Hoechst), polyesters, alkyds, polyurethanes, polyols (polyvinyl alcohols, polyethylene glycol, polypyrolidone). This additive can be present in an amount ranging from 0.01 to 10% by weight relative to the total weight of the composition.
Le sol peut être présent dans la composition en une quantité allant de 0,1 a 5% en poids par rapport au poids total de la composition.The sol may be present in the composition in an amount ranging from 0.1 to 5% by weight relative to the total weight of the composition.
Le sol tel que défini précédemment peut être prépare selon le mode opératoire suivant classique connu qui comprend quatre étapes .The soil as defined above can be prepared according to the following known conventional operating method which comprises four stages.
Ce mode opératoire permet de réaliser la synthèse de silice selon la reaction chimique connue suivantes :This procedure makes it possible to carry out the synthesis of silica according to the following known chemical reaction:
xSι02;Na20 + H S04 > XS1O2 + Na2Sθ4 + H20xSι0 2 ; Na 2 0 + H S0 4 > XS1O2 + Na 2 Sθ4 + H 2 0
Dans une première étape, on fabrique tout d'abord un pied de cuve par ajout de silicate, d'eau deionisee et d'acide pour obtenir des particules de silice. La quantité en silicate dans le pied de cuve peut soit, être égale a la quantité totale engagée dans la reaction soit, n'en représenter qu'une partie. La concentration en silice dans le pied de cuve initial peut être inférieure a 100g/l, de façon préférée inférieure a 20g/l lorsqu'on utilise comme agent acidifiant une résine cationique seule, et de préférence inférieure a 2g/l lorsqu'on utilise comme agent acidifiant un acide minerai.In a first step, we first make a base stock by adding silicate, deionized water and acid to obtain silica particles. The amount of silicate in the base stock can either be equal to the total amount used in the reaction or represent only a part of it. The concentration of silica in the initial base stock can be less than 100 g / l, preferably less than 20 g / l when using a cationic resin alone as an acidifying agent, and preferably less than 2 g / l when using as an acidifying agent an ore acid.
Lors de cette étape, on contrôle régulièrement différents paramètres, tels que la température, la concentration en silice, le pH, le taux de neutralisation. La température peut varier de 20° a 95°C. Le contrôle de la concentration en nombre de
particules permet par conséquent le contrôle de la taille finale des particules en silice.During this step, various parameters are regularly checked, such as the temperature, the silica concentration, the pH, the neutralization rate. The temperature can vary from 20 ° to 95 ° C. Control of the number concentration of particles therefore allows control of the final size of the silica particles.
Dans une seconde étape, on ajoute sur les particules de silice un agent acidifiant de façon a augmenter la concentration en silice et la taille des particules de silice. L'ajout de l'agent acidifiant entraînant une baisse du pH, se fait jusqu'à ce qu'on atteigne un pH égale a au moins 8, mais généralement compris entre 9 et 11. Une fois que cette valeur de pH est atteinte, et lorsque le pied de cuve ne comprend qu'une partie de la quantité totale de silice engagée dans la reaction chimique, on effectue un ajout complémentaire et simultanée d'agent acidifiant et de la quantité de silicate restante.In a second step, an acidifying agent is added to the silica particles so as to increase the concentration of silica and the size of the silica particles. The addition of the acidifying agent causing a drop in pH, is done until a pH equal to at least 8, but generally between 9 and 11 is reached. Once this pH value is reached, and when the base stock comprises only part of the total amount of silica involved in the chemical reaction, a complementary and simultaneous addition of acidifying agent and the amount of remaining silicate are carried out.
Le choix du silicate se fait d'une manière bien connue en soi. On peut utiliser toutes les formules courantes de silicates, tels que les metasilicates, les disilicates, et plus avantageusement les silicates de métal alcalin tels que le silicate de sodium, le silicate de potassium. Dans le cas ou on utilise, le silicate de sodium, ce dernier présente un rapport pondéral Sιθ2/ a2θ compris entre 2 et 4, et plus particulièrement entre 3 et 3,8. Le choix de l'agent acidifiant est choisi de façon à éviter une augmentation trop importante de la concentration en sel dans le milieu reactionnel, au cours de l'acidification ou en fin d'acidification. L'agent acidifiant peut être au choix une résine cationique echangeuse de cation sous sa forme protonee, ou un système acidifiant plus complexe constitue d'un acide minerai ou organique associe a une résine cationique et a une résine anionique. On peut utiliser comme acide minerai, l'acide sulfurique, l'acide
chlorhydrique, l'acide nitrique, l'acide phosphorique et leur mélange. Comme acide organique, on peut utiliser l'acide acétique, l'acide formique, l'acide carbonique et leur mélange. On peut encore utiliser comme acide des résines telles que des résines de type acide faible sous forme protonee tels que des résines polystyrènes, polyacrylates ou polyméthacrylates contenant des groupements carboxyliques (vendu sous la marque IMAC HP 336 par Rohm et Haas ou DOWEC CCR3 par Dow Chemical) . On peut encore utiliser des résines de type acide fort, telles que les résines polystyrènes contenant des groupements sulfonates (vendu sous laThe choice of silicate is made in a manner well known per se. One can use all the common formulas of silicates, such as metasilicates, disilicates, and more advantageously alkali metal silicates such as sodium silicate, potassium silicate. In the case where sodium silicate is used, the latter has a weight ratio Sιθ2 / a2θ of between 2 and 4, and more particularly between 3 and 3.8. The choice of acidifying agent is chosen so as to avoid an excessive increase in the salt concentration in the reaction medium, during acidification or at the end of acidification. The acidifying agent may optionally be a cationic cation exchange resin in its protonated form, or a more complex acidifying system consisting of a mineral or organic acid combined with a cationic resin and an anionic resin. As the mineral acid, sulfuric acid, acid can be used. hydrochloric acid, nitric acid, phosphoric acid and their mixture. As the organic acid, acetic acid, formic acid, carbonic acid and their mixture can be used. Resins such as weak acid type resins in protonated form such as polystyrene, polyacrylate or polymethacrylate resins containing carboxylic groups (sold under the brand IMAC HP 336 by Rohm and Haas or DOWEC CCR3 by Dow Chemical can also be used as the acid). ). Resins of the strong acid type can also be used, such as polystyrene resins containing sulfonate groups (sold under the name
"marque DOWEC Marathon ou sous la marque AMBERLITE IR " DOWEC Marathon brand or under the AMBERLITE IR brand
120H)ou contenant des groupements phosphates (vendu sous la marque DUOLITE ES) .120H) or containing phosphate groups (sold under the brand DUOLITE ES).
La concentration en silice dans le mélange reactionnel final peut être inférieure à 50 g/1, de préférence inférieure à 20g/l et encore plus préférentiellement inférieure à 10g/l. La concentration en sel formé dans le mélange reactionnel final, à la fin de cette seconde étape, est de préférence inférieure à 0, 1 mol/1 lorsqu'on utilise un acide minéral, et peut être inférieure à 0,01mol/l lorsqu'on utilise une résine cationique. La réaction de synthèse, proprement dite est terminée, lorsqu'on a ajouté la totalité de silicate et l'agent acidifiant en une quantité suffisante pour atteindre une valeur de pH maximum égale à 11.The concentration of silica in the final reaction mixture can be less than 50 g / l, preferably less than 20g / l and even more preferably less than 10g / l. The salt concentration formed in the final reaction mixture, at the end of this second step, is preferably less than 0.1 mol / l when using a mineral acid, and can be less than 0.01 mol / l when a cationic resin is used. The synthesis reaction, properly speaking, is complete, when all of the silicate and the acidifying agent have been added in an amount sufficient to reach a maximum pH value equal to 11.
Dans une troisième et avant dernière étape, le sol de silice obtenu à l'issu de l'étape précédente est tout d'abord filtré sur un tamis ayant des mailles d'environ lOOμm pour enlever par exemple la résine, puis lavé pour enlever tous les sels solubles éventuellement formés lors de la synthèse qui peuvent
être par exemple du sulfate de sodium lorsqu'on utilise de l'acide sulfurique comme acidifiant. Lorsque l'agent acidifiant est une résine, il n'y a aucune formation de sel . Le lavage du sol peut s'effectuer en mettant en contact le sol de silice, d'une part avec une résine cationique sous forme protonee qui permet alors de retirer les espèces cationiques solubles dans la phase aqueuse, et, d'autre part avec une résine anionique sous forme hydroxyde qui permet de retirer les espèces anioniques solubles.In a third and penultimate step, the silica sol obtained at the end of the previous step is firstly filtered through a sieve having meshes of about 100 μm to remove for example the resin, then washed to remove all the soluble salts possibly formed during the synthesis which can be for example sodium sulphate when sulfuric acid is used as acidifier. When the acidifying agent is a resin, there is no salt formation. The washing of the soil can be carried out by bringing the silica sol into contact, on the one hand with a cationic resin in protonated form which then makes it possible to remove the cationic species soluble in the aqueous phase, and, on the other hand with a anionic resin in hydroxide form which makes it possible to remove the soluble anionic species.
Pendant tout le processus de lavage, le pH est de "pré é ènce^ à htenu- constant entre 8" et 10" "de façon à" éviter l'agglomération des particules. Le pH peut être maintenu constant par l'addition simultanée des deux types de résines. Le pH peut également être ajusté par l'ajout supplémentaire d'une des deux résines utilisée pour le lavage. La détection de la fin du lavage peut être réalisée par la mesure de la conductivité du sol. Lorsque celle-ci atteint une valeur d'environ lmS/cm on arrête le lavage.During the whole washing process, the pH is from " pre een to htenu constant between 8 " and 10 "" so as to " avoid agglomeration of the particles. The pH can be kept constant by the simultaneous addition of two types of resins. The pH can also be adjusted by the additional addition of one of the two resins used for washing. Detection of the end of washing can be carried out by measuring the conductivity of the soil. reaches a value of about lmS / cm, the washing is stopped.
Le lavage peut être réalisé - lorsque la concentration en silice est au maximum de 100g/l, et de préférence inférieure à 50 g/1. Le sol de silice est lavé jusqu'à ce que la concentration molaire en espèces ioniques libres est au maximum de 0, 01mol/l et, de préférence inférieure à 0,005 mol/1.Washing can be carried out - when the silica concentration is at most 100g / l, and preferably less than 50 g / 1. The silica sol is washed until the molar concentration of free ionic species is at most 0.01 mol / l and preferably less than 0.005 mol / l.
Selon une variante de cette étape, le lavage est réalisé par dialyse ou par filtration tangentielle en maintenant le volume du sol de silice constant par l'ajout d'eau déionisée.According to a variant of this step, the washing is carried out by dialysis or by tangential filtration while keeping the volume of the silica sol constant by the addition of deionized water.
A la fin du lavage, il est avantageux d'ajuster le pH du sol de silice à une valeur comprise entre 2 et 11. Cet ajustement peut s'effectuer classiquement par
l'ajout de résine cationique pour diminuer le pH, ou par l'ajout d' hydroxyde alcalin (hydroxyde de sodium, hydroxyde de potassium) pour augmenter le pH .At the end of the washing, it is advantageous to adjust the pH of the silica sol to a value between 2 and 11. This adjustment can be carried out conventionally by adding cationic resin to lower the pH, or adding alkaline hydroxide (sodium hydroxide, potassium hydroxide) to increase the pH.
Enfin dans la dernière et quatrième étape, le sol de silice est concentré sous vide, par ultrafiltration ou par filtration tangentielle de façon à libérer l'eau. Cette concentration peut s'effectuer sous pression réduite, à une température inférieure à 80°, et de préférence inférieure à 60°C. Cette évaporation peut s'effectuer à une vitesse d'au moins 100g d'eau par litre de sol et par heure. Selon une caractéristique essentielle du procédé de l'invention, le sol de silice, obtenu à l'issu des quatre étapes précédentes connues, est traité en surface par greffage et/ou par adsorption d'au moins une molécule organique ou encore par dépôt de particules de sels métalliques.Finally in the last and fourth step, the silica sol is concentrated under vacuum, by ultrafiltration or by tangential filtration so as to release the water. This concentration can be carried out under reduced pressure, at a temperature below 80 °, and preferably below 60 ° C. This evaporation can be carried out at a speed of at least 100 g of water per liter of soil and per hour. According to an essential characteristic of the process of the invention, the silica sol, obtained at the end of the four known previous stages, is treated on the surface by grafting and / or by adsorption of at least one organic molecule or also by deposition of metal salt particles.
Le traitement par greffage est donc effectué lorsque les résines et les sels ont tous été enlevés. On effectue alors une fixation, par greffage et/ou par adsorption, de molécules organiques à l'aide d'une réaction chimique avec les sites silanols présents à la surface du sol de silice. Les liaisons formées sont de nature covalente et, sont par conséquent identifiables par des techniques spectroscopiques classiques tels que 1 ' infra-rouge, la résonance magnétique nucléaire.The grafting treatment is therefore carried out when the resins and the salts have all been removed. An attachment is then carried out, by grafting and / or by adsorption, of organic molecules by means of a chemical reaction with the silanol sites present on the surface of the silica sol. The bonds formed are covalent in nature and are therefore identifiable by conventional spectroscopic techniques such as infrared, nuclear magnetic resonance.
La molécule organique est de préférence choisie parmi les aminés, les amino silanes, les silanes, les phosphonates, les diam es, les polyamines, les polyacrylates, les hydroxy-acides organiques, les polyvinylalcools, les polyoxyéhylènes, les polymères conducteurs .
La molécule organique peut encore être choisie parmi des dérivés de silanes de formules générales suivantes :The organic molecule is preferably chosen from amines, amino silanes, silanes, phosphonates, diam es, polyamines, polyacrylates, organic hydroxy acids, polyvinyl alcohols, polyoxyéhylènes, conductive polymers. The organic molecule can also be chosen from silane derivatives of the following general formulas:
(I) X-R-Si (Y)3, (II) X-R-Si (Y) 2 R' , ou (III) X-R-Si (R'R") Y OÙ X est un groupement choisi parmi les groupements aminé, hydroxyde, époxy, vinyl, polysulfure, méthacrylate, méthyl, fluorure, mercapto, phosphate, proton, Y est un groupement choisi parmi les groupements éthoxy, méthoxy, chloro,(I) XR-Si (Y) 3 , (II) XR-Si (Y) 2 R ', or (III) XR-Si (R'R ") Y WHERE X is a group chosen from amine and hydroxide groups , epoxy, vinyl, polysulfide, methacrylate, methyl, fluoride, mercapto, phosphate, proton, Y is a group chosen from the groups ethoxy, methoxy, chloro,
R est une chaîne carbonée du type -(-CH2~)n- où n est un entier compris entre 1 et 20, R' et R" sont indépendamment l'un de l'autre choisis parmi un proton, un hydroxyde, un ester, un éther ou une chaîne hydrocarbonée du type -(-CH2)n- où n est un entier compris entre 1 et 20. La molécule organique peut aussi être choisie parmi les mélanges de tous ces constituants. Le dépôt de particules peut s'effectuer à l'issu de la dernière étape, mais avant le retrait des résines. On procède éventuellement à l'ajout supplémentaire de résine cationique de façon à diminuer le pH à une valeur comprise entre 8 et 2. Les particules d'oxyde métalliques se fixent alors à la surface des particules de silice par un phénomène de co-aggréga ion.R is a carbon chain of the type - (- CH2 ~) n- where n is an integer between 1 and 20, R 'and R "are independently of each other chosen from a proton, a hydroxide, an ester , an ether or a hydrocarbon chain of the type - (- CH2) n- where n is an integer between 1 and 20. The organic molecule can also be chosen from mixtures of all these constituents. at the end of the last step, but before the resins are removed. Optionally, additional cationic resin is added so as to reduce the pH to a value between 8 and 2. The metal oxide particles become fixed then on the surface of the silica particles by a phenomenon of co-aggregation.
Selon la présente invention, le sol de silice peut éventuellement être dopé à l'aide d'au moins un agent dopant sous forme d'inclusion ou de solution solide.
Ce traitement avec un agent dopant consiste a réaliser une co-addition de silicates, d'un acide avec l'agent dopant. L'agent dopant est incorpore dans les dernières couches de silice sous forme d'inclusion ou de solution solide. L'agent dopant peut être ajoute avant la fin de la seconde étape, et peut être choisi parmi les sels de cations monovalents, de cations divalents, de cations tπvalents, de cations quadrivalents, les sels pouvant être sous leur forme chlorure, nitrate, sulfate, phosphate, phosphonate, silicate, hydroxyde, oxyde, acétate ou gluconate ou leurs mélanges.According to the present invention, the silica sol can optionally be doped using at least one doping agent in the form of an inclusion or a solid solution. This treatment with a doping agent consists in carrying out a co-addition of silicates, of an acid with the doping agent. The doping agent is incorporated into the last layers of silica in the form of an inclusion or a solid solution. The doping agent can be added before the end of the second step, and can be chosen from the salts of monovalent cations, divalent cations, tπvalent cations, quadrivalent cations, the salts possibly being in their chloride, nitrate, sulfate form , phosphate, phosphonate, silicate, hydroxide, oxide, acetate or gluconate or mixtures thereof.
L'agent dopant peut être choisi parmi 1 ' hydroxyde de calcium, l' hydroxyde de magnésium, le sulfate d'aluminium, le sulfate de zinc, le sulfate de calcium, le nitrate de cérium, l'oxyde de cerium, 1 ' alum ate de sodium, le zmcate de sodium, le phosphate de sodium, le phosphonate de sodium, et leurs mélanges.The doping agent can be chosen from calcium hydroxide, magnesium hydroxide, aluminum sulphate, zinc sulphate, calcium sulphate, cerium nitrate, cerium oxide, alum sodium ate, sodium zmcate, sodium phosphate, sodium phosphonate, and mixtures thereof.
De préférence, l'agent dopant est introduit dans la dernière phase d'addition de l'acide. La concentration en poids en agent dopant est de préférence inférieure a 10% par rapport au poids de silice. L'agent dopant est de préférence introduit a un pH supérieur a 8 et de façon encore plus préférée supérieure a 10.Preferably, the doping agent is introduced in the last phase of addition of the acid. The concentration by weight of doping agent is preferably less than 10% relative to the weight of silica. The doping agent is preferably introduced at a pH greater than 8 and even more preferably greater than 10.
De façon préférée, le sol de silice ne comprend aucun agent dopant .Preferably, the silica sol does not comprise any doping agent.
L'agent dopant peut être présent en une quantité inférieure a 10% en poids par rapport au poids total de la silice.The doping agent may be present in an amount less than 10% by weight relative to the total weight of the silica.
Le sol traite obtenu selon le procède tel que défini précédemment, peut présenter un taux de traitement chimique compris entre 0,1 et 50%, et plus particulièrement entre 0,1 et 5%.
Les derniers objets de l'invention sont différentes utilisations de ce sol.The treated soil obtained according to the process as defined above, may have a chemical treatment rate of between 0.1 and 50%, and more particularly between 0.1 and 5%. The last objects of the invention are different uses of this soil.
L'une d'elles est une utilisation du sol comme agent anticorrosion du métal. Une autre est une utilisation du sol comme initiateur d'adhésion destiné à faciliter l'adhésion d'une couche de polymère ou minérale sur un support. Une autre encore est une utilisation du sol comme matière première pour obtenir des membranes minérales de tailles de pores inférieure à 20nm. Dans ce cas, l'utilisation d'un tel sol traité selon l'invention permet d'obtenir une meilleure sélectivité des molécules à séparer, telles que des polluants, des gaz. Les membranes obtenues ainsi présentent l'avantage d'être biocompatibles et de permettre ainsi la séparation d'espèces biologiques.One is the use of soil as an anticorrosive agent for metal. Another is the use of the soil as an adhesion initiator intended to facilitate the adhesion of a layer of polymer or mineral to a support. Yet another is the use of soil as a raw material to obtain mineral membranes with pore sizes less than 20nm. In this case, the use of such a treated soil according to the invention makes it possible to obtain better selectivity of the molecules to be separated, such as pollutants, gases. The membranes thus obtained have the advantage of being biocompatible and thus allowing the separation of biological species.
L'invention a encore pour objet une utilisation du sol comme additif rhéologique dans la composition d'émulsions, telles que des suspensions, des peintures, des vernis, des enduits ou des céramiques. Le sol est également utilisé comme charge renforçante dans les matières plastiques, telles que les élastomères, les caoutchoucs ou les silicones.The invention also relates to a use of the soil as a rheological additive in the composition of emulsions, such as suspensions, paints, varnishes, coatings or ceramics. Soil is also used as a reinforcing filler in plastics, such as elastomers, rubbers or silicones.
Une autre utilisation du sol de l'invention est une utilisation comme additif dans des compositions agrochimiques redispersables .Another use of the soil of the invention is a use as an additive in redispersible agrochemical compositions.
Enfin une dernière utilisation du sol de l'invention l'est comme ingrédient dans des matériaux céramiques destinés au domaine de l'optique et/ou de 1 ' électronique . L'invention va maintenant être décrite à l'aide des exemples qui suivent et qui sont donnés uniquement à titre illustratif.Finally, a final use of the soil of the invention is as an ingredient in ceramic materials intended for the field of optics and / or electronics. The invention will now be described with the aid of the examples which follow and which are given solely by way of illustration.
Dans les exemples 1 à 7, l'agent acidifiant est une résine cationique.
EXEMPLE 1 : Sol de silice traité par l'acide 1- hydroxyéthylène 1, 1-dιphosphonιque (OH) cjPpCpH^O? In Examples 1 to 7, the acidifying agent is a cationic resin. EXAMPLE 1: Silica sol treated with 1-hydroxyethylene acid 1, 1-phosphide (OH) cjPpCpH ^ O ?
Dans une première étape on constitue un pied de cuve en introduisant dans un réacteur en acier inoxydable muni d'un système d'agitation par turbine, d'un chauffage par éléments électriques, et d'un système de régulation de température et de pH, 10400g d'eau épurée de conductivité inférieure a 5μS/cm et ayant une température égale à 25°C, et 5600g de silicate de sodium de rapport pondéral Sιθ2/Na2θ égale à 3,25 et de concentration massique en silice de 260g/kg.In a first step, a base is formed by introducing into a stainless steel reactor fitted with a turbine stirring system, heating by electrical elements, and a temperature and pH regulation system, 10400g of purified water with conductivity less than 5μS / cm and having a temperature equal to 25 ° C, and 5600g of sodium silicate with a weight ratio Sιθ2 / Na2θ equal to 3.25 and a mass concentration of silica of 260g / kg.
Dans une seconde étape, après un temps d'attente de 10 minutes, on introduit dans le milieu de reaction 6000g de suspension de résine cationique sous forme protonee à 28% d'extrait sec (de type IMAC HP 336 de ROHM ET HAAS) pour amener le pH du milieu reactionnel à un pH final de 10,8 +/-0,2. La durée de cette introduction simultanée est fixée à 30 minutes. On obtient ainsi un sol de silice de concentration en silice d'environ 60g/kg et ayant un pH de 10,8.In a second step, after a waiting time of 10 minutes, 6000 g of cationic resin suspension in protonated form containing 28% dry extract (of IMAC HP 336 type from ROHM AND HAAS) are introduced into the reaction medium. bring the pH of the reaction medium to a final pH of 10.8 +/- 0.2. The duration of this simultaneous introduction is fixed at 30 minutes. A silica sol is thus obtained with a silica concentration of approximately 60 g / kg and having a pH of 10.8.
On procède ensuite a une filtration du sol de silice sur une toile de nylon ayant des pores d'environ lOOμm pour retirer la résine. Dans une troisième étape, la température de réaction est portée de 25° a 70°C en 15 minutes environ. On introduit ensuite 5,1g d' acιde-1-hydroxy éthylène 1,1 diphosphonique a 60O en acide (DEQUEST 2010 DE MONSATO) . Le milieu reactionnel est laissé à cette température pendant 20 minutes.Then proceed to a filtration of the silica sol on a nylon fabric having pores of about 100 μm to remove the resin. In a third step, the reaction temperature is raised from 25 ° to 70 ° C in about 15 minutes. Then introduced 5.1 g of acιde-1-hydroxy ethylene 1.1 diphosphonic acid 60O acid (DEQUEST 2010 MONSATO). The reaction medium is left at this temperature for 20 minutes.
Dans une quatrième étape, on refroidit le milieu a 25°C, et on introduit ensuite environ 800g de résine de type décrit précédemment. Cette addition se fait jusqu'à l'obtention d'une valeur de pH du milieu
reactionnel égale à 10,00 +/-0,1. La durée de cette introduction est fixée à environ 10 minutes. A l'issu de cette étape, on laisse le mélange reactionnel mûrir à 25°C et a un pH égale à 10 pendant 30 minutes. On procède ensuite à une seconde filtration du sol de silice sur une toile de nylon ayant des pores d'environ lOOμm pour éliminer la résine. On obtient alors un sol de silice transparent ayant un pH de 10 et une concentration en silice de 15g/kg. A la fin de cette étape, le sol est concentré à une concentration en silice de 95g/kg par evaporation sous vide à 60°C. La durée de l'opération est de 6 heures.In a fourth step, the medium is cooled to 25 ° C., and then approximately 800 g of resin of the type described above is introduced. This addition is done until a pH value of the medium is obtained reactional equal to 10.00 +/- 0.1. The duration of this introduction is fixed at approximately 10 minutes. At the end of this step, the reaction mixture is allowed to mature at 25 ° C and at a pH equal to 10 for 30 minutes. We then proceed to a second filtration of the silica sol on a nylon fabric having pores of about 100 μm to remove the resin. This gives a transparent silica sol having a pH of 10 and a silica concentration of 15 g / kg. At the end of this step, the sol is concentrated to a silica concentration of 95 g / kg by evaporation under vacuum at 60 ° C. The duration of the operation is 6 hours.
EXEMPLE 2 : Sol de silice traite par l'acide amino- tris- méthylene-phosphonique C^H-| 2NQ9P3EXAMPLE 2 Silica Sol Treated with Amino-Tris-methylene-Phosphonic Acid C ^ H- | 2NQ9P3
On reprend le mode opératoire de l'exemple 1, dans lequel on ajoute dans la troisième étape 11,2g d'une solution aqueuse à 50% d'acide ammo-tris-méthylène- phosphonique (DEQUEST 2000 de MONSATO) pour obtenir un taux de greffage de 3840ppm.The procedure of Example 1 is repeated, in which 11.2 g of a 50% aqueous solution of ammo-tris-methylenephosphonic acid (DEQUEST 2000 from MONSATO) are added in the third step to obtain a rate grafting of 3840ppm.
EXEMPLE 3 : Sol de silice traité par le dihydrogénophosphate dihydrate de sodiumEXAMPLE 3 Silica Sol Treated with Sodium Dihydrogen Phosphate Dihydrate
On reprend le mode opératoire de l'exemple 1, dans lequel on ajoute dans la troisième étape, 50, 5g de solution aqueuse à 15 % de dihydrogénophosphate dihydrate de sodium pour obtenir un taux de greffage de 5200ppm.The procedure of example 1 is repeated, in which, in the third step, 50.5 g of 15% aqueous solution of sodium dihydrogen phosphate dihydrate are added to obtain a grafting rate of 5200 ppm.
EXEMPLE 4 : Sol de silice traite par l'acide polyphosphate (Hn+?Pnθ3n+ ]__)_ On reprend le mode opératoire de l'exemple 1, dans lequel on ajoute dans la troisième étape, 46,6g d'une solution aqueuse à 10% d'acide polyphosphorique pour obtenir un taux de greffage de 3200ppm.
EXEMPLE 5 : Sol de silice traite par le sol de potassium de 1 ' ester phosphoriqueEXAMPLE 4 Silica Sol Treated with Polyphosphate Acid (H n +? P n θ 3n +] __) _ The procedure of Example 1 is repeated, in which 46.6 g of a 10% aqueous polyphosphoric acid solution to obtain a grafting rate of 3200ppm. EXAMPLE 5 Silica Sol Treated with the Potassium Sol of the Phosphoric Ester
On reprend le mode opératoire de l'exemple 1, dans lequel on ajoute a la fin de l'étape 4, 3,2g de sel de potassium d'un ester phosphorique (Atlas G2203 de ICI Surfactants) pour obtenir un taux de greffage de 3840ppm. Le sol est ensuite concentré a une concentration en silice de 95g/kg par evaporation sous vide à 60°C. EXEMPLE 6 : Sol de silice traité par le tétraméthylammonium hydroxydeThe procedure of example 1 is repeated, in which 3.2 g of potassium salt of a phosphoric ester (Atlas G2203 from ICI Surfactants) is added at the end of step 4 to obtain a grafting rate of 3840ppm. The sol is then concentrated to a silica concentration of 95 g / kg by evaporation under vacuum at 60 ° C. EXAMPLE 6 Silica Sol Treated with Tetramethylammonium Hydroxide
On reprend le mode opératoire de l'exemple 1, dans lequel on ajoute à la fin de l'étape 4, 8,7g de solution aqueuse à 25% de tétraméthylammonium hydroxyde pour obtenir un taux de greffage de 1500ppm. Le sol est ensuite concentré à une concentration en silice de 95g/kg par evaporation sous vide à 60°C.The procedure of example 1 is repeated, in which 8.7 g of 25% aqueous tetramethylammonium hydroxide solution is added at the end of step 4 to obtain a grafting rate of 1500 ppm. The sol is then concentrated to a silica concentration of 95 g / kg by evaporation under vacuum at 60 ° C.
EXEMPLE 7 : Sol de silice traite par le 3- aminopropyl-trléthoxysliane On reprend le mode opératoire de l'exemple 1, dans lequel le sol de silice, obtenu à l'issu de l'étape 4, ayant un pH égale à 10 et une concentration en silice de 15g/kg, est transfère dans un réacteur muni d'un système de dispersion à grande vitesse (lOOOOt/mm) excentré (pales défloculeuse à dents), ayant quatre pales et une hélice centrée tournant à 300t/mm. On ajout à 20°C et en 10 minutes, 223g d'une solution aqueuse contenant 11,65g de 3-ammopropyl- triéthoxysilane (A1100 de WITCO) et 9,71 g d'acide acétique pure. On laisse vieillir le mélange pendant 30 minutes. Après un temps de mûrissement de 15 minutes, le sol est ensuite concentre a une concentration en silice de 95g/kg par evaporation sous vide a 60°C.
Dans les exemples 8 a 11, l'agent acidifiant est l'acide sulfurique.EXAMPLE 7 Silica Sol Treated with 3-aminopropyl-trlethoxysliane The procedure of Example 1 is repeated, in which the silica sol, obtained at the end of step 4, having a pH equal to 10 and a silica concentration of 15g / kg is transferred to a reactor fitted with an eccentric high speed dispersion system (10000t / mm) (deflocculating toothed blades), having four blades and a centered propeller rotating at 300t / mm. 223 g of an aqueous solution containing 11.65 g of 3-ammopropyl-triethoxysilane (A1100 from WITCO) and 9.71 g of pure acetic acid are added at 20 ° C. and over 10 minutes. The mixture is left to age for 30 minutes. After a maturing time of 15 minutes, the sol is then concentrated to a silica concentration of 95 g / kg by evaporation under vacuum at 60 ° C. In Examples 8 to 11, the acidifying agent is sulfuric acid.
EXEMPLE 8 : Synthèse du sol de silice Dans une première étape, on introduit 8137g d'eau épurée de conductivité inférieure à 5μS/cm dans un réacteur en acier inoxydable muni d'un système d'agitation par turbine, d'un chauffage par éléments électriques, et d'un système de régulation de température et de pH. On chauffe l'ensemble à une température égale à 60°C. On introduit ensuite en 15 minutes, à une température constante de 60°C et sous agitation constante 220t/mm, 902g de silicate de sodium ayant un rapport pondéral Sιθ2/Na2θ égale à 3,25 et ayant une concentration massique en silice de 50g/kg.EXAMPLE 8 Synthesis of the silica sol In a first step, 8137 g of purified water with a conductivity of less than 5 μS / cm are introduced into a stainless steel reactor equipped with a turbine stirring system, with element heating. electrical, and a temperature and pH control system. The whole is heated to a temperature equal to 60 ° C. Then introduced in 15 minutes, at a constant temperature of 60 ° C and with constant stirring 220t / mm, 902g of sodium silicate having a weight ratio Sιθ2 / Na2θ equal to 3.25 and having a mass concentration of silica of 50g / kg.
Dans une seconde étape, la température de reaction est portée de 60°C à 90°C en 15 minutes environ, puis maintenue à 90°C jusqu'à la fin de la réaction. On introduit ensuite conjointement dans le milieu de réaction 7648g de silicate du type décrit précédemment et environ 6170g d'acide sulfurique dilué de concentration en acide égale à 29g/kg. Cette introduction simultanée d'acide et de silicate est réalisée de manière telle que le pH du milieu de réaction soit constamment égale à 9 +/-0,1, et la température égale à 90°C. La durée de cette introduction simultanée est fixée à 90 minutes. Après introduction de la totalité du silicate, on laisse le mélange reactionnel mûrir à 90°c, à un pH de 9, pendant 30 minutes. Le milieu reactionnel est refroidi à 25°C. On obtient alors un sol de silice de concentration en silice de 18,71g/kg et de pH de 10,5.In a second step, the reaction temperature is raised from 60 ° C to 90 ° C in about 15 minutes, then maintained at 90 ° C until the end of the reaction. 7648 g of silicate of the type described above and approximately 6170 g of dilute sulfuric acid with an acid concentration equal to 29 g / kg are then introduced jointly into the reaction medium. This simultaneous introduction of acid and silicate is carried out in such a way that the pH of the reaction medium is constantly equal to 9 +/- 0.1, and the temperature equal to 90 ° C. The duration of this simultaneous introduction is fixed at 90 minutes. After introduction of all of the silicate, the reaction mixture is left to mature at 90 ° C., at a pH of 9, for 30 minutes. The reaction medium is cooled to 25 ° C. This gives a silica sol with a silica concentration of 18.71 g / kg and a pH of 10.5.
Dans une troisième étape, le sol de silice est ensuite lavé à pH constant de 10,5 par ajout simultané
de suspension de résines cationiques sous forme protonee et de résines anioniques sous forme hydroxyde ayant une concentration respective de 50% dans le milieu reactionnel et, sous une agitation de 200t/mιn. Cette introduction simultanée de dispersion de résines actioniques et de résines anioniques est réalisée de manière telle que le pH du milieu de réaction soit constamment égale à 10,00 +/-0,1. Cette addition simultanée se fait jusqu'à l'obtention d'une valeur de conductivite du sol inférieure à lμS/c . La durée de l'opération de lavage est de 30 minutes. On procède par la suite à une introduction complémentaire de résines cationiques pour amener le pH du sol de silice a une valeur de 8, 5, et on laisse le mélange ainsi obtenu au repos pendant 60 minutes. Le mélange constitué de la résine et du sol de silice ainsi formé est ensuite filtré une première fois sur filtre ayant une porosité égale à lOOμm. On réalise ensuite une seconde filtration du sol sur un filtre de porosité inférieure à lOμ . On obtient alors un sol de silice transparent ayant un pH de 8,5 et une concentration en silice de 15g/kg.In a third step, the silica sol is then washed at a constant pH of 10.5 by simultaneous addition suspension of cationic resins in protonated form and anionic resins in hydroxide form having a respective concentration of 50% in the reaction medium and, with stirring of 200 t / min. This simultaneous introduction of dispersion of action resins and anion resins is carried out in such a way that the pH of the reaction medium is constantly equal to 10.00 +/- 0.1. This simultaneous addition is done until a ground conductivity value less than 1 μS / c is obtained. The duration of the washing operation is 30 minutes. Thereafter, a complementary introduction of cationic resins is carried out to bring the pH of the silica sol to a value of 8.5, and the mixture thus obtained is left to stand for 60 minutes. The mixture consisting of the resin and the silica sol thus formed is then filtered a first time on a filter having a porosity equal to 100 μm. A second filtration of the soil is then carried out on a filter with a porosity of less than 10 μm. This gives a transparent silica sol having a pH of 8.5 and a silica concentration of 15 g / kg.
Dans une quatrième étape, le sol est enfin concentré en silice à 150g/kg par evaporation sous vide à 60°C. La durée de l'opération dure environ 6 heures. EXEMPLE 9 : Sol de silice traite par dopage au calciumIn a fourth step, the soil is finally concentrated in silica at 150 g / kg by evaporation under vacuum at 60 ° C. The duration of the operation lasts approximately 6 hours. EXAMPLE 9 Silica Sol Treated by Calcium Doping
On reprend le mode opératoire de l'exemple 8 en modifiant la seconde étape selon les termes suivants. La température de réaction est ensuite portée de 60° à 90°C en 15 minutes environ, puis maintenue a 90°C jusqu'à la fin de la reaction. On introduit ensuite conjointement dans le milieu reactionnel 6900g de silicate de sodium et environ 5629g d'acide sulfurique
dilué de concentration en acide égale à 29g/kg. Cette introduction simultanée d'acide et de silicate est réalisée de manière telle que le pH du milieu de réaction soit constamment égale à 9, 00 +/-0, 1 et la température égale à 90°C. La durée de cette introduction simultanée est fixée à 75 minutes.The procedure of Example 8 is repeated, modifying the second step according to the following terms. The reaction temperature is then brought from 60 ° to 90 ° C in about 15 minutes, then maintained at 90 ° C until the end of the reaction. 6900 g of sodium silicate and approximately 5629 g of sulfuric acid are then introduced jointly into the reaction medium. diluted acid concentration equal to 29g / kg. This simultaneous introduction of acid and silicate is carried out in such a way that the pH of the reaction medium is constantly equal to 9.00 ± 0.1 and the temperature equal to 90 ° C. The duration of this simultaneous introduction is fixed at 75 minutes.
On introduit ensuite conjointement dans le milieu reactionnel 750g de silicate de sodium, 276g de lait de chaux de concentration en Ca(OH)2 de 20, 12g/kg et, environ 685g d'acide sulfurique.750 g of sodium silicate, 276 g of lime milk with a Ca (OH) 2 concentration of 20, 12 g / kg and, approximately 685 g of sulfuric acid are then introduced jointly into the reaction medium.
Cette opération est réalisée de manière telle que le pH du milieu de réaction soit constamment égale à 9,00 +/-0,1. La durée de cette introduction simultanée est fixée à 10 minutes. Après la réalisation du dopage, on laisse mûrir le mélange reactionnel à 90°C et à un pH égale à 9 pendant 30 minutes. Après refroidissement à 25°C, on obtient ainsi un sol de silice de concentration en silice de 18,21g/kg et ayant un pH de 10,5. On reprend ensuite les étapes 3 et 4 de l'exemple 8 pour obtenir un sol de silice traité au calcium.This operation is carried out in such a way that the pH of the reaction medium is constantly equal to 9.00 +/- 0.1. The duration of this simultaneous introduction is fixed at 10 minutes. After carrying out the doping, the reaction mixture is left to mature at 90 ° C. and at a pH equal to 9 for 30 minutes. After cooling to 25 ° C., a silica sol with a silica concentration of 18.21 g / kg and having a pH of 10.5 is thus obtained. We then repeat steps 3 and 4 of Example 8 to obtain a calcium-treated silica sol.
EXEMPLE 10: Soi de silice traité par dopage au zincEXAMPLE 10 Silica self treated with zinc doping
Dans un réacteur en acier inoxydable muni d'un système d'agitation par turbine, d'un chauffage par éléments électriques, et d'un système de régulation de température et de pH, on introduit 8200g d'eau épurée ayant une conductivité inférieure à 5μS/cm et ayant une température égale à 60°C. On introduit ensuite en 15 minutes à une température constante de 60°C et sous agitation constante de 220t/min, 900g de silicate de sodium ayant un rapport pondéral Siθ2/ a2θ égale à 3,25 et une concentration massique en silice de 50g/kg. La température de réaction est ensuite portée de 60°C à
90°C en 15 minutes environ, puis maintenue a 90°C jusqu'à la fin de la réaction.In a stainless steel reactor equipped with a turbine stirring system, heating by electrical elements, and a temperature and pH regulation system, 8200 g of purified water having a conductivity lower than 5μS / cm and having a temperature equal to 60 ° C. Then introduced in 15 minutes at a constant temperature of 60 ° C and with constant stirring of 220 rpm, 900 g of sodium silicate having a Siθ2 / a2θ weight ratio equal to 3.25 and a mass concentration of silica of 50 g / kg . The reaction temperature is then brought from 60 ° C. to 90 ° C in about 15 minutes, then maintained at 90 ° C until the end of the reaction.
On introduit ensuite conjointement dans le milieu reactionnel 6500g de silicate de sodium et environ 5358g d'acide sulfurique dilué de concentration en acide égale à 29g/kg. Cette introduction simultanée d'acide et de silicate est réalisée de manière telle que le pH du milieu de réaction simultanée est fixée à6500 g of sodium silicate and approximately 5358 g of dilute sulfuric acid with an acid concentration equal to 29 g / kg are then introduced jointly into the reaction medium. This simultaneous introduction of acid and silicate is carried out in such a way that the pH of the simultaneous reaction medium is fixed at
70 minutes. On introduit ensuite conjointement dans le milieu reactionnel 3253g de silicate de sodium, 1164g d'une solution de sulfate de zinc de concentration en70 minutes. 3253 g of sodium silicate, 1164 g of a zinc sulphate solution with a concentration of
ZnSÛ4, égale a 20g/kg et environ 2462g d'acide sulfurique. Le débit d'acide sulfurique est ajuste de manière telle que le pH du milieu reactionnel soit constamment égale à 9 +/-0,1. La durée de cette introduction simultanée des 3 réactifs est fixée à 35 minutes. Après la fin de l'opération de dosage, on laisse le mélange reactionnel mûrir à 90°C et a un pH de 9 pendant 30 minutes. Après refroidissement à 25°C, on obtient ainsi un sol de silice de concentration en silice de 19,14g/kg et ayant un pH de 10,5.ZnSO4, equal to 20g / kg and approximately 2462g of sulfuric acid. The sulfuric acid flow is adjusted so that the pH of the reaction medium is constantly equal to 9 +/- 0.1. The duration of this simultaneous introduction of the 3 reagents is fixed at 35 minutes. After the end of the dosing operation, the reaction mixture is allowed to mature at 90 ° C and at a pH of 9 for 30 minutes. After cooling to 25 ° C., a silica sol with a silica concentration of 19.14 g / kg and having a pH of 10.5 is thus obtained.
On reprend ensuite les étapes 3 et 4 de l'exemple 8 pour obtenir un sol de silice traité au zinc.We then repeat steps 3 and 4 of Example 8 to obtain a zinc-treated silica sol.
EXEMPLE 11 : Sol de silice traite par dopage au céπumEXAMPLE 11 Silica Sol Treated by Céπum Doping
Dans un réacteur en acier inoxydable muni d'un système d'agitation par turbine, d'un chauffage par éléments électriques, et d'un système de régulation de température et de pH, on introduit 10000g d'eau épurée de conductivité inférieure a 5μS/cm et ayant une température égale a 90°C.In a stainless steel reactor equipped with a turbine stirring system, heating by electrical elements, and a temperature and pH regulation system, 10000 g of purified water with conductivity less than 5 μS are introduced. / cm and having a temperature equal to 90 ° C.
On introduit ensuite en 15 minutes a une température constante de 90°C et sous agitation constante à 220t/mm, 600g de silicate de sodium ayant
un rapport pondérale Sιθ2/ a2θ égale a 3, 34 et ayant une concentration massique en silice de 35g/kg.Then introduced in 15 minutes at a constant temperature of 90 ° C and with constant stirring at 220 rpm, 600 g of sodium silicate having a weight ratio Sιθ2 / a2θ equal to 3.34 and having a mass concentration of silica of 35 g / kg.
La température de reaction est maintenue a 90°C jusqu'à la fin de la reaction. On introduit ensuite conjointement dans le milieu reactionnel 6500g de silicate de sodium et environ 6523g d'acide sulfurique dilue ayant une concentration en acide égale a 16g/kg. Cette introduction simultanée de l'acide et du silicate de sodium est réalisée de manière telle que le pH du milieu reactionnel soit constamment égale a 9,1+/-0,1. La durée de cette introduction simultanée est fixée a 70 minutes.The reaction temperature is maintained at 90 ° C until the end of the reaction. 6500 g of sodium silicate and approximately 6523 g of dilute sulfuric acid having an acid concentration equal to 16 g / kg are then introduced jointly into the reaction medium. This simultaneous introduction of the acid and of the sodium silicate is carried out in such a way that the pH of the reaction medium is constantly equal to 9.1 +/- 0.1. The duration of this simultaneous introduction is fixed at 70 minutes.
On introduit ensuite conjointement dans le milieu reactionnel 163g de silicate de sodium et 228g de sol de cérium de concentration exprimée en Ceθ2 de 80g/kg et ayant un rapport massique Nθ3/Ceθ2- La durée de cette introduction simultanée est fixée a 10 minutes.Then 163g of sodium silicate and 228g of cerium sol with a concentration expressed in Ceθ2 of 80g / kg and having a N rapport3 / Ceθ2 mass ratio are then introduced jointly into the reaction medium. The duration of this simultaneous introduction is fixed at 10 minutes.
A l'issu de l'opération de dopage, on laisse le mélange reactionnel mûrir a 90°C après ajustement du pH à 9 pendant 30 minutes. Apres refroidissement a 25°C, on obtient ainsi un sol de silice ayant une concentration en silice de 105g/kg.At the end of the doping operation, the reaction mixture is left to mature at 90 ° C. after adjusting the pH to 9 for 30 minutes. After cooling to 25 ° C., a silica sol is thus obtained having a silica concentration of 105 g / kg.
On reprend ensuite les étapes 3 et 4 de l'exemple 8 pour obtenir un sol de silice concentre traite au cérium.We then repeat steps 3 and 4 of Example 8 to obtain a concentrated silica sol treated with cerium.
EXEMPLE 12 : Sol de silice traite par dopage a 1 ' aluminiumEXAMPLE 12 Silica Sol Treated by Doping with Aluminum
On reprend l'exemple 8 en modifiant la quatrième étape. Le sol de silice transparent et ayant un pH de 8,5 et une concentration en silice de 15g/kg obtenu a l'issu de l'étape 3, est chauffe a 60°C. On y ajoute ensuite 50g d'une solution aqueuse d'alummate de sodium de concentration en AI2O3 égale a 7% et de
rapport molaire Al/Na égale à 0,304. Le mélange est chauffé a 60°C pendant 12 minutes. Le sol est ensuite concentré à une concentration en silice de 160g/kg par evaporation sous vide a 60°C. La durée de l'opération est de 6 heures.Example 8 is repeated by modifying the fourth step. The transparent silica sol having a pH of 8.5 and a silica concentration of 15 g / kg obtained at the end of step 3, is heated to 60 ° C. 50 g of an aqueous solution of sodium alummate with an Al 2 O 3 concentration equal to 7% and of Al / Na molar ratio equal to 0.304. The mixture is heated at 60 ° C for 12 minutes. The sol is then concentrated to a silica concentration of 160 g / kg by evaporation under vacuum at 60 ° C. The duration of the operation is 6 hours.
EXEMPLE 13 : Sol de silice traité par dopage avec un polymère conducteur : la polyanil eEXAMPLE 13 Silica Sol Treated by Doping with a Conductive Polymer: Polyanil
On reprend l'exemple 8 par modification de la troisième étape en amenant le pH final à 3 par l'ajout de résine cationique au lieu de 8,5. Le sol final ayant un pH égale à 3 et une concentration en silice de 15g/kg, est refroidi a 5°C. On y ajoute 3g de polyanilme sous une forte agitation. On ajoute ensuite 10g de persulfate d'ammonium et on laisse le mélange mûrir pendant 5 heures. Le sol est ensuite concentré à 150g/kg par evaporation sous vide à 50°C.Example 8 is repeated by modifying the third step, bringing the final pH to 3 by adding cationic resin instead of 8.5. The final sol having a pH equal to 3 and a silica concentration of 15 g / kg, is cooled to 5 ° C. 3 g of polyanilme are added thereto under vigorous stirring. 10 g of ammonium persulfate are then added and the mixture is left to mature for 5 hours. The soil is then concentrated to 150 g / kg by evaporation under vacuum at 50 ° C.
EXEMPLE COMPARATIFCOMPARATIVE EXAMPLE
Le tableau (I) ci-après montre les différences existant entre un sol de l'état de la technique et le sol selon l'invention. Ces différences sont caractérisées par la mesure de la conductivité, de la transmission de lumière, la viscosité et le diamètre des particules pour chacun des sols.Table (I) below shows the differences between a soil of the state of the art and the soil according to the invention. These differences are characterized by the measurement of conductivity, light transmission, viscosity and particle diameter for each of the soils.
TableauBoard
Les sols de l'état de la technique sont vendus sous les marques Ludox et Klebosol respectivement par les sociétés DU PONT et CLARIAN.The state of the art floors are sold under the Ludox and Klebosol brands respectively by the companies DU PONT and CLARIAN.
Comme on peut facilement le constater, le sol selon l'invention présente une très faible conductivité, une transmission de lumière maximale, et une viscosité nettement plus faible que les sols de l'état de la technique.As can easily be seen, the soil according to the invention has a very low conductivity, maximum light transmission, and a viscosity significantly lower than the soils of the prior art.
Par ailleurs, le diamètre moyen des particules du sol de 1 ' invention est nettement inférieur à celui des particules des sols connus.Furthermore, the average diameter of the soil particles of the invention is much smaller than that of the particles of known soils.
Test anticorrosion accéléré: Ce test consiste à immerger à une température d'environ 25°C, une plaque d'acier ordinaire de surface de 20cπ.2 et d'épaisseur 2mm dans 100ml d'eau de pluie ayant une composition constante. On mesure la transmission de l'eau à l'aide d'un photocolorimètre Metrom à 550nm de longueur d'onde et pour un trajet optique de 10cm en fonction du temps.Accelerated anticorrosion test: This test consists in immersing, at a temperature of around 25 ° C, an ordinary steel plate with a surface of 20cπ.2 and a thickness of 2mm in 100ml of rainwater with a constant composition. Water transmission is measured using a Metrom photocolorimeter at 550nm wavelength and for an optical path of 10cm as a function of time.
Les plaques d'acier sont au préalable dégraissées par lavage à l'acétone suivie d'un lavage à l'éthanol et d'un lavage à l'eau. Les plaques sont ensuite immergées dans une solution d' hydroxyde de sodium 1M, puis rincées a l'eau déionisée et enfin immergées pendant 30 minutes dans le
sol selon l'invention dilue 1% en silice par ajout d'eau et chauffé a 80°C.The steel plates are degreased beforehand by washing with acetone followed by washing with ethanol and washing with water. The plates are then immersed in a 1M sodium hydroxide solution, then rinsed with deionized water and finally immersed for 30 minutes in the sol according to the invention dilutes 1% silica by adding water and heated to 80 ° C.
Les résultats sont rassembles dans le tableau (II ci-après .The results are collated in the table (II below.
Tableau (II) On s'aperçoit qu'une plaque d'acier traitée avec le sol selon l'invention donne une valeur de transmission moyenne à la lumière d'environ 96,67%. Les valeurs de transmission montrent bien que la plaque d'acier traitée ne présente aucune trace de rouille.Table (II) It can be seen that a steel plate treated with the soil according to the invention gives an average light transmission value of approximately 96.67%. The transmission values clearly show that the treated steel plate shows no signs of rust.
En effet, la présence de rouille trouble l'eau et ne permet donc pas d'obtenir une transmission de lumière d'aussi bonne qualité. Par contre les très faibles valeurs de transmission de lumière de la plaque d'acier traitée avec le sol de l'état de la technique montrent bien que la plaque comprend de la rouille qui peut se présenter simplement sous forme de traces. Bien entendu, l'invention n'est nullement limitée aux modes d'exécution décrits, qui n'ont été donnés qu'à titre d'exemple. En particulier, elle comprend tous les moyens constituant des équivalents techniques des moyens décrits ainsi que leurs combinaisons, si celles-ci sont exécutées selon l'esprit de l'invention.
Indeed, the presence of rust disturbs the water and therefore does not make it possible to obtain a transmission of light of such good quality. On the other hand, the very low light transmission values of the steel plate treated with the soil of the state of the art clearly show that the plate comprises rust which can appear simply in the form of traces. Of course, the invention is in no way limited to the embodiments described, which have been given only by way of example. In particular, it includes all the means constituting technical equivalents of the means described as well as their combinations, if these are carried out according to the spirit of the invention.
Claims
1. Sol de silice, comprenant des nanoparticules de silice d'une taille moyenne comprise entre 3 et 50 nm, traite en surface par greffage et/ou par adsorption d'au moins une molécule organique, et/ou par dopage avec au moins un agent dopant, caractérise en ce que la molécule organique est choisie parmi les ammes, les polyamines, les ammes quaternaires, les ammo silanes, les silanes, les phosphonates, les diammes, les polyamines, les polyacrylates, les acides, les diacides, les triacides, les polyacides, les hydroxy- acides organiques, les polyvinylalcools, le polyoxyethylene, les polymères conducteurs, les dérives de silanes de formules générales suivantes :1. Silica sol, comprising silica nanoparticles with an average size of between 3 and 50 nm, surface treatment by grafting and / or by adsorption of at least one organic molecule, and / or by doping with at least one doping agent, characterized in that the organic molecule is chosen from ammes, polyamines, quaternary ammes, ammo silanes, silanes, phosphonates, diamonds, polyamines, polyacrylates, acids, diacids, triacids , polyacids, organic hydroxy acids, polyvinyl alcohols, polyoxyethylene, conductive polymers, silane derivatives of the following general formulas:
(I) X-R-Si (Y) 3 , (II) X-R-Si (Y) 2 R ' ou (III) X-R-Si (R 'R ") Y Où,(I) XR-Si (Y) 3 , (II) XR-Si (Y) 2 R 'or (III) XR-Si (R' R ") Y Where,
- X est un groupement choisi parmi les groupements vmyl, méthacrylate, méthyl, phosphate, proton, quand R est une chaîne carbonée du type - (CH2~) n - ou n est un entier compris entre 1 et 20,- X is a group chosen from the groups vmyl, methacrylate, methyl, phosphate, proton, when R is a carbon chain of the type - (CH2 ~ ) n - or n is an integer between 1 and 20,
- X est un groupement choisi par les groupements ammes, epoxy, polysulfure, mercapto quand R est une chaîne carbonée du type - (CH2~) n - ou n est égale a 19 ou 20,- X is a group chosen by the ammes, epoxy, polysulphide, mercapto groups when R is a carbon chain of the type - (CH2 ~) n - or n is equal to 19 or 20,
- R 'R " sont indépendamment l'un de l'autre choisis parmi un proton, un hydroxyde, un ester, un ether ou une chaîne hydrocarbonee du type - (CH2~) n - ou n est un entier compris entre 1 et 20, et les mélanges de tous ces constituants, les dites nanoparticules étant présentes en une concentration supérieure ou égale a 5 et de préférence supérieure ou égale à 10%.- R 'R "are independently of each other chosen from a proton, a hydroxide, an ester, an ether or a hydrocarbon chain of the type - (CH2 ~ ) n - or n is an integer between 1 and 20 , and mixtures of all these constituents, said nanoparticles being present in a concentration greater than or equal to 5 and preferably greater than or equal to 10%.
2. Sol selon la revendication 1, caractérise en ce que 1 ' agent dopant se présente sous forme d'inclusion ou de solution solide, et est choisi parmi les sels de cations monovalents, de cations divalents, de cations tπvalents, de cations quadπvalents sous leur forme chlorure, nitrate, sulfate, phosphate, phosphonate, silicate, hydroxyde, oxyde, acétate ou gluconate, et leurs mélanges.2. Sol according to claim 1, characterized in that the doping agent is in the form of an inclusion or a solid solution, and is chosen from the salts of monovalent cations, divalent cations, tπvalent cations, quadπvalent cations under their chloride, nitrate, sulfate, phosphate, phosphonate, silicate, hydroxide, oxide, acetate or gluconate form, and mixtures thereof.
3. Sol selon la revendication 1, caractérise en ce que la phase liquide comprend des anions et des cations libres en une concentration inférieure ou égale à 0,05 mol/1, et de préférence inférieure ou égale a 0, 005 mol/1.3. Soil according to claim 1, characterized in that the liquid phase comprises anions and free cations in a concentration less than or equal to 0.05 mol / 1, and preferably less than or equal to 0.005 mol / 1.
4. Sol selon l'une des revendications précédentes, caractérisée en ce que le pH est compris entre 3 et 11.4. Soil according to one of the preceding claims, characterized in that the pH is between 3 and 11.
5. Sol selon l'une des revendications précédentes, caractérisé en ce qu'il possède une translucidite définie par une transmission de lumière comprise entre 400 a 650 nm, supérieure ou égale a 95%, et de préférence supérieure ou égale a 98%.5. Floor according to one of the preceding claims, characterized in that it has a translucency defined by a light transmission between 400 to 650 nm, greater than or equal to 95%, and preferably greater than or equal to 98%.
6. Sol selon l'une des revendications précédentes, caractérisé en ce qu'il possède une conductivité, mesurée a une concentration de 10% de silice, allant de 100 a 500μS/cm.6. Soil according to one of the preceding claims, characterized in that it has a conductivity, measured at a concentration of 10% of silica, ranging from 100 to 500 μS / cm.
7. Sol selon l'une des revendications précédentes, caractérise en ce que la concentration en silice est comprise entre 1 et 300 g/1.7. Soil according to one of the preceding claims, characterized in that the silica concentration is between 1 and 300 g / 1.
8. Pigment anticorrosion comprenant au moins un sol de silice tel que défini selon l'une des revendications 1 a 7. 8. Anti-corrosion pigment comprising at least one silica sol as defined according to one of claims 1 to 7.
9. Composition comprenant au moins un sol de silice tel que défini selon l'une des revendications 1 à 7 et au moins un additif choisi parmi les latex, les alkylsiliconates, les polymères hydrosolubles, les tensioactifs, les émulsions de polymères, les résines polymériques, les polyols et les copolymères.9. Composition comprising at least one silica sol as defined according to one of claims 1 to 7 and at least one additive chosen from latexes, alkylsiliconates, water-soluble polymers, surfactants, polymer emulsions, polymeric resins , polyols and copolymers.
10. Composition selon la revendication 9, caractérisée en ce que le sol est présent en une quantité allant de 0,01 à 5% en poids par rapport au poids total de la composition.10. Composition according to claim 9, characterized in that the sol is present in an amount ranging from 0.01 to 5% by weight relative to the total weight of the composition.
11. Composition selon la revendication 9, caractérisée en ce que l'additif est présent en une quantité allant de 0,01 à 10% en poids par rapport au poids total de la composition. 11. Composition according to claim 9, characterized in that the additive is present in an amount ranging from 0.01 to 10% by weight relative to the total weight of the composition.
12. Procédé de traitement de surface du sol tel que défini selon l'une des revendications 1 à 7 consistant : à fabriquer un pied de cuve par l'ajout de silicates, d'eau et d'acide a une température allant de 20° à 95°C pour obtenir des particules de silice,12. A method of treating the surface of the soil as defined according to one of claims 1 to 7, consisting in: manufacturing a base stock by adding silicates, water and acid at a temperature ranging from 20 ° at 95 ° C to obtain silica particles,
- à ajouter, sur lesdites particules de silices, de la silice sous forme de silicate, et au moins un agent acidifiant pour augmenter la concentration en silice et la taille des particules de silice, - à filtrer puis à laver les particules de silice obtenues en maintenant le pH constant entre 8 et 10, par l'ajout simultané d'une résine cationique et d'une résine anionique ;- adding, on said silica particles, silica in the form of silicate, and at least one acidifying agent to increase the concentration of silica and the size of the silica particles, - filtering and then washing the silica particles obtained in keeping the pH constant between 8 and 10, by the simultaneous addition of a cationic resin and an anionic resin;
- à concentrer le sol obtenu par evaporation sous vide ou par ultrafîltration, puis a effectuer le traitement de surface du sol par greffage et/ou par adsorption d'au moins une molécule organique, ou encore par dépôt de particules de sels métalliques. - Concentrating the soil obtained by evaporation under vacuum or by ultrafiltration, then performing the surface treatment of the soil by grafting and / or by adsorption of at least one organic molecule, or by depositing particles of metal salts.
13. Procédé selon la revendication 12, caractérisé en ce qu'on ajoute, avant la fin de la seconde étape, au moins un agent dopant, sous forme d'inclusion ou de solution solide, choisi parmi les sels de cations monovalents, de cations divalents, de cations tπvalents, de cations quadπvalents sous leur forme chlorure, nitrate, sulfate, phosphate, phosphonate, silicate, hydroxyde, oxyde, acétate ou gluconate, et leurs mélanges. 13. Method according to claim 12, characterized in that one adds, before the end of the second step, at least one doping agent, in the form of inclusion or solid solution, chosen from the salts of monovalent cations, cations divalent, tπvalent cations, quadπvalent cations in their chloride, nitrate, sulfate, phosphate, phosphonate, silicate, hydroxide, oxide, acetate or gluconate form, and mixtures thereof.
14. Procédé selon la revendication 13, caractérisé en ce que l'agent dopant est choisi parmi les hydroxydes de calcium, l' hydroxyde de magnésium, le sulfate d'aluminium, le sulfate de zinc, le sulfate de calcium, le nitrate de cérium, l'oxyde de cérium, 1 ' alummate de sodium, le zmcate de sodium, le phosphate de sodium, le phosphonate, et leurs mélanges. 14. Method according to claim 13, characterized in that the doping agent is chosen from calcium hydroxides, magnesium hydroxide, aluminum sulfate, zinc sulfate, calcium sulfate, cerium nitrate , cerium oxide, sodium alummate, sodium zmcate, sodium phosphate, phosphonate, and mixtures thereof.
15. Procédé selon l'une des revendications 13 ou15. Method according to one of claims 13 or
14, caractérisé en ce que l'agent dopant est introduit dans la dernière phase d'addition de l'acide. 14, characterized in that the doping agent is introduced in the last phase of addition of the acid.
16. Procédé selon l'une des revendications 13 à16. Method according to one of claims 13 to
15, caractérisé en ce que l'agent dopant est introduit à un pH supérieur a 8 et de préférence a un pH supérieur à 10.15, characterized in that the doping agent is introduced at a pH greater than 8 and preferably at a pH greater than 10.
17. Procède selon l'une des revendications 13 a 16, caractérisé en ce que l'agent dopant est présent en une quantité inférieure a 10% en poids par rapport au poids total de la silice.17. Method according to one of claims 13 to 16, characterized in that the doping agent is present in an amount less than 10% by weight relative to the total weight of the silica.
18. Procédé selon la revendication 12, caractérisé en ce que la molécule organique est choisie parmi les ammes, les polyamines, les ammes quaternaires, les amino silanes, les silanes, les phosphonates, les diam es, les polyamines, les polyacrylates, les acides, les diacides, les triacides, les polyacides, les hydroxy-acides organiques, les polyvmylalcools, les polyoxyethylenes, les polymères conducteurs et les mélanges de ces constituants.18. The method of claim 12, characterized in that the organic molecule is chosen from ammes, polyamines, quaternary ammes, amino silanes, silanes, phosphonates, diam es, polyamines, polyacrylates, acids , diacids, triacids, polyacids, organic hydroxy acids, polyvinyl alcohols, polyoxyethylenes, conductive polymers and mixtures of these constituents.
19. Procède selon la revendication 12, caractérisé en ce que le traitement de surface du sol de silice, par greffage ou par adsorption, est compris entre 0,1 et 50%, et de préférence entre 0,1 et 5%.19. Method according to claim 12, characterized in that the surface treatment of the silica sol, by grafting or by adsorption, is between 0.1 and 50%, and preferably between 0.1 and 5%.
20. Procédé selon la revendication 12, caractérisé en ce que la molécule organique est choisie parmi les dérives de silanes de formules générales.20. The method of claim 12, characterized in that the organic molecule is chosen from silane derivatives of general formulas.
(I) X-R-Si (Y) 3 , (II) X-R-Si (Y) 2 R ' , ou (III) X-R-Si (R ' R ") Y Où, X est un groupement choisi parmi les groupements aminé, hydroxyde, epoxy, vmyl, polysulfure, méthacrylate, méthyl, fluorure, mercapto, phosphate, proton,(I) XR-Si (Y) 3 , (II) XR-Si (Y) 2 R ', or (III) XR-Si (R' R ") Y Where, X is a group chosen from amino groups, hydroxide, epoxy, vmyl, polysulfide, methacrylate, methyl, fluoride, mercapto, phosphate, proton,
Y est un groupement choisi parmi les groupements éthoxy, méthoxy, chloro ;Y is a group chosen from ethoxy, methoxy, chloro groups;
R est une chaîne carbonée du type - (CH2 ~) n - où n est un entier compris entre 1 et 20,R is a carbon chain of the type - (CH2 ~) n - where n is an integer between 1 and 20,
R ' et R" sont indépendamment l'un de l'autre choisis parmi un proton, un hydroxyde, un ester, un éther ou une chaîne hydrocarbonee du type - (CH2 -) n - où n est un entier compris entre 1 et 20,R 'and R "are independently of each other chosen from a proton, a hydroxide, an ester, an ether or a hydrocarbon chain of the type - (CH2 -) n - where n is an integer between 1 and 20 ,
21. Utilisation du sol tel que défini selon l'une des revendications 1 à 7 comme agent anticorrosion.21. Use of the soil as defined according to one of claims 1 to 7 as an anticorrosion agent.
22. Utilisation selon la revendication 21, caractérisée en ce que le sol est un agent anticorrosion du métal.22. Use according to claim 21, characterized in that the soil is an anticorrosion agent for the metal.
23. Utilisation du sol tel que défini selon l'une des revendications 1 a 7 comme initiateur d'adhésion destiné à faciliter l'adhésion d'une couche de polymère ou minérale sur un support. 23. Use of the soil as defined according to one of claims 1 to 7 as an adhesion initiator intended to facilitate the adhesion of a layer of polymer or mineral to a support.
24. Utilisation du sol tel que défini selon l'une des revendications 1 a 7 comme matière première pour obtenir des membranes minérales.24. Use of the soil as defined according to one of claims 1 to 7 as a raw material for obtaining mineral membranes.
25. Utilisation du sol tel que défini selon l'une des revendications 1 à 7 comme additif rheologique dans les émulsions.25. Use of the soil as defined according to one of claims 1 to 7 as a rheological additive in emulsions.
26. Utilisation du sol tel que défini selon l'une des revendications 1 à 7 comme charge renforçante dans les matières plastiques. 26. Use of the soil as defined according to one of claims 1 to 7 as a reinforcing filler in plastics.
27. Utilisation du sol tel que défini selon l'une des revendications 1 a 7 comme additif présent dans des compositions agrochimiques redispersables .27. Use of the soil as defined according to one of claims 1 to 7 as an additive present in redispersible agrochemical compositions.
28. Utilisation du sol tel que défini selon l'une des revendications 1 à 7 comme ingrédient dans des matériaux céramiques destiné au domaine de l'optique et/ou de l'électronique. 28. Use of the soil as defined according to one of claims 1 to 7 as an ingredient in ceramic materials intended for the field of optics and / or electronics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU47630/00A AU4763000A (en) | 1999-05-12 | 2000-05-12 | Silica sol, composition containing the same, method for treating said silica soland uses thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9906110A FR2794115A1 (en) | 1999-05-12 | 1999-05-12 | SILICA SOL, COMPOSITION COMPRISING SAME, TREATMENT METHOD AND USES THEREOF |
FR99/06110 | 1999-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000069976A1 true WO2000069976A1 (en) | 2000-11-23 |
Family
ID=9545553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2000/001286 WO2000069976A1 (en) | 1999-05-12 | 2000-05-12 | Silica sol, composition containing the same, method for treating said silica sol and uses thereof |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU4763000A (en) |
FR (1) | FR2794115A1 (en) |
WO (1) | WO2000069976A1 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002051750A1 (en) * | 2000-12-27 | 2002-07-04 | Rhodia Chimie | Doped precipitate silica suspensions with low-particle-size distribution and their use a paper filler |
FR2831179A1 (en) * | 2001-10-22 | 2003-04-25 | Rhodia Chimie Sa | Production of a pigment composition, useful as a coloring filler, comprises contacting silica particles with a coupling agent in an aqueous medium and reacting a dye with the coupling agent |
FR2831178A1 (en) * | 2001-10-22 | 2003-04-25 | Rhodia Chimie Sa | Pigment composition useful as a coloring filler in polymeric or elastomeric materials comprises a dye immobilized on silica particles |
WO2003037593A1 (en) * | 2001-10-29 | 2003-05-08 | Ge Bayer Silicones Gmbh & Co. Kg | Anti-adhesively coated forming tools |
WO2005003455A1 (en) * | 2003-07-04 | 2005-01-13 | H.C. Starck Gmbh | Paper production with modified silica gels as microparticles |
EP1506982A2 (en) * | 2003-08-15 | 2005-02-16 | Hoden Seimitsu Kako Kenkyusho Co., Ltd. | Chromium-free metal surface treatment agent |
EP1529807A2 (en) * | 2003-10-16 | 2005-05-11 | Nitto Denko Corporation | Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same |
EP1645544A1 (en) * | 2004-10-05 | 2006-04-12 | Lanxess Deutschland GmbH | Paper production comprising modified layered silicate as a microparticle |
FR2891836A1 (en) * | 2005-10-06 | 2007-04-13 | Rhodia Recherches & Tech | SURFACE SILICATES MODIFIED BY PHOSPHONIC ACIDS. |
US7226962B2 (en) | 2001-06-07 | 2007-06-05 | Exxonmobil Chemical Patents Inc. | Halogenated isobutylene-based copolymers having enhanced viscosity and thermoplastic compositions thereof |
WO2008090191A2 (en) * | 2007-01-26 | 2008-07-31 | Basf Se | Particles, method for the production and use thereof |
EP1961862A1 (en) | 2003-07-04 | 2008-08-27 | Kemira Agro Oy | Paper production with modified solids as microparticles |
DE102007039164A1 (en) * | 2007-08-20 | 2009-02-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Substrates provided with a dust and aerosol repellent coating, process for making the same and materials therefor |
WO2009073112A1 (en) * | 2007-12-04 | 2009-06-11 | W. R. Grace & Co.-Conn. | Anticorrosion material |
US7745010B2 (en) | 2005-08-26 | 2010-06-29 | Prc Desoto International, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
WO2010080465A1 (en) * | 2008-12-18 | 2010-07-15 | Ppg Industries Ohio, Inc. | Multi-phase particulates, method of making, and composition containing same |
WO2011060050A1 (en) * | 2009-11-11 | 2011-05-19 | Byk-Chemie Gmbh | Coating composition |
GB2477117A (en) * | 2010-01-22 | 2011-07-27 | Univ Sheffield Hallam | Polyaniline sol-gel anticorrosion coating |
WO2011127230A2 (en) | 2010-04-08 | 2011-10-13 | Nalco Company | Sulfur containing silica particle |
US8231970B2 (en) | 2005-08-26 | 2012-07-31 | Ppg Industries Ohio, Inc | Coating compositions exhibiting corrosion resistance properties and related coated substrates |
CN110591416A (en) * | 2019-08-23 | 2019-12-20 | 广州凌玮科技股份有限公司 | Preparation method of amorphous silicon dioxide antirust pigment |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115637073B (en) * | 2022-11-08 | 2023-06-23 | 河南兴安新型建筑材料有限公司 | Nano-coated aerated concrete reinforcing steel bar preservative and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3689300A (en) * | 1971-01-26 | 1972-09-05 | Du Pont | Coupling agent formulations |
US4410405A (en) * | 1979-12-10 | 1983-10-18 | E. I. Du Pont De Nemours And Co. | Silica sol process |
EP0306862A2 (en) * | 1987-09-10 | 1989-03-15 | Dow Corning Corporation | Method of hydrophobing silica |
WO1991007350A1 (en) * | 1989-11-09 | 1991-05-30 | Eka Nobel Ab | Silica sols, a process for the production of silica sols and use of the sols |
US5376172A (en) * | 1992-12-23 | 1994-12-27 | Xerox Corporation | Metal oxide processes and toners thereof |
US5888290A (en) * | 1996-05-24 | 1999-03-30 | Minnesota Mining And Manufacturing Company | Composition and process for imparting durable repellency to substrates |
-
1999
- 1999-05-12 FR FR9906110A patent/FR2794115A1/en not_active Withdrawn
-
2000
- 2000-05-12 WO PCT/FR2000/001286 patent/WO2000069976A1/en active Application Filing
- 2000-05-12 AU AU47630/00A patent/AU4763000A/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3689300A (en) * | 1971-01-26 | 1972-09-05 | Du Pont | Coupling agent formulations |
US4410405A (en) * | 1979-12-10 | 1983-10-18 | E. I. Du Pont De Nemours And Co. | Silica sol process |
EP0306862A2 (en) * | 1987-09-10 | 1989-03-15 | Dow Corning Corporation | Method of hydrophobing silica |
WO1991007350A1 (en) * | 1989-11-09 | 1991-05-30 | Eka Nobel Ab | Silica sols, a process for the production of silica sols and use of the sols |
US5376172A (en) * | 1992-12-23 | 1994-12-27 | Xerox Corporation | Metal oxide processes and toners thereof |
US5888290A (en) * | 1996-05-24 | 1999-03-30 | Minnesota Mining And Manufacturing Company | Composition and process for imparting durable repellency to substrates |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2819246A1 (en) * | 2000-12-27 | 2002-07-12 | Rhodia Chimie Sa | SUSPENSIONS OF PRECIPITED, DOPED AND LOW GRANULOMETRY SILICA AND THEIR APPLICATION AS A LOAD FOR PAPER |
WO2002051750A1 (en) * | 2000-12-27 | 2002-07-04 | Rhodia Chimie | Doped precipitate silica suspensions with low-particle-size distribution and their use a paper filler |
US7226962B2 (en) | 2001-06-07 | 2007-06-05 | Exxonmobil Chemical Patents Inc. | Halogenated isobutylene-based copolymers having enhanced viscosity and thermoplastic compositions thereof |
FR2831179A1 (en) * | 2001-10-22 | 2003-04-25 | Rhodia Chimie Sa | Production of a pigment composition, useful as a coloring filler, comprises contacting silica particles with a coupling agent in an aqueous medium and reacting a dye with the coupling agent |
FR2831178A1 (en) * | 2001-10-22 | 2003-04-25 | Rhodia Chimie Sa | Pigment composition useful as a coloring filler in polymeric or elastomeric materials comprises a dye immobilized on silica particles |
WO2003035771A1 (en) * | 2001-10-22 | 2003-05-01 | Rhodia Chimie | Method for preparing silica-based pigment compositions in aqueous medium |
WO2003035772A1 (en) * | 2001-10-22 | 2003-05-01 | Rhodia Chimie | Pigment compositions based on silica |
US6887420B2 (en) | 2001-10-29 | 2005-05-03 | Ge Bayer Silicones Gmbh & Co. Kg | Non-stick coated molds |
WO2003037593A1 (en) * | 2001-10-29 | 2003-05-08 | Ge Bayer Silicones Gmbh & Co. Kg | Anti-adhesively coated forming tools |
EP1961862A1 (en) | 2003-07-04 | 2008-08-27 | Kemira Agro Oy | Paper production with modified solids as microparticles |
US8088830B2 (en) | 2003-07-04 | 2012-01-03 | Kemira Oyj | Paper production with modified silica gels as microparticles |
US7708862B2 (en) | 2003-07-04 | 2010-05-04 | Kemira Oyj | Paper production with modified silica gels as microparticles |
WO2005003455A1 (en) * | 2003-07-04 | 2005-01-13 | H.C. Starck Gmbh | Paper production with modified silica gels as microparticles |
US7189465B2 (en) | 2003-08-15 | 2007-03-13 | Hoden Seimitsu Kako Kenkyusho Co., Ltd. | Chromium-free metal surface treatment agent |
EP1506982A3 (en) * | 2003-08-15 | 2005-03-16 | Hoden Seimitsu Kako Kenkyusho Co., Ltd. | Chromium-free metal surface treatment agent |
US7918931B2 (en) | 2003-08-15 | 2011-04-05 | Hoden Meimitsu Kako Kenkyusho Co., Ltd. | Chromium-free metal surface treatment agent |
EP1506982A2 (en) * | 2003-08-15 | 2005-02-16 | Hoden Seimitsu Kako Kenkyusho Co., Ltd. | Chromium-free metal surface treatment agent |
CN1324100C (en) * | 2003-08-15 | 2007-07-04 | 株式会社放电精密加工研究所 | Chromium-free metal surface treatment agent |
EP1529807A3 (en) * | 2003-10-16 | 2006-01-25 | Nitto Denko Corporation | Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same |
US7307286B2 (en) | 2003-10-16 | 2007-12-11 | Nitto Denko Corporation | Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same |
EP1529807A2 (en) * | 2003-10-16 | 2005-05-11 | Nitto Denko Corporation | Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same |
EP1645544A1 (en) * | 2004-10-05 | 2006-04-12 | Lanxess Deutschland GmbH | Paper production comprising modified layered silicate as a microparticle |
US8231970B2 (en) | 2005-08-26 | 2012-07-31 | Ppg Industries Ohio, Inc | Coating compositions exhibiting corrosion resistance properties and related coated substrates |
US8288000B2 (en) | 2005-08-26 | 2012-10-16 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US7811670B2 (en) | 2005-08-26 | 2010-10-12 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US8283042B2 (en) | 2005-08-26 | 2012-10-09 | Ppg Industries Ohio, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
US7745010B2 (en) | 2005-08-26 | 2010-06-29 | Prc Desoto International, Inc. | Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods |
FR2891836A1 (en) * | 2005-10-06 | 2007-04-13 | Rhodia Recherches & Tech | SURFACE SILICATES MODIFIED BY PHOSPHONIC ACIDS. |
WO2007042640A1 (en) * | 2005-10-06 | 2007-04-19 | Rhodia Recherches Et Technologies | Silicas comprising phosphonic-acid-modified surfaces |
WO2008090191A3 (en) * | 2007-01-26 | 2010-01-07 | Basf Se | Particles, method for the production and use thereof |
WO2008090191A2 (en) * | 2007-01-26 | 2008-07-31 | Basf Se | Particles, method for the production and use thereof |
DE102007039164A1 (en) * | 2007-08-20 | 2009-02-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Substrates provided with a dust and aerosol repellent coating, process for making the same and materials therefor |
US8354165B2 (en) | 2007-08-20 | 2013-01-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Substrates supplied with a dust and aerosol-repellent coating, method for the production thereof and materials for this purpose |
WO2009073112A1 (en) * | 2007-12-04 | 2009-06-11 | W. R. Grace & Co.-Conn. | Anticorrosion material |
US20130071682A1 (en) * | 2008-12-18 | 2013-03-21 | Mykola Vasyl'ovych Borysenko | Multi-phase particulates, method of making, and composition containing same |
US20100261029A1 (en) * | 2008-12-18 | 2010-10-14 | Ppg Industries Ohio, Inc. | Multi-phase particulates, method of making, and composition containing same |
WO2010080465A1 (en) * | 2008-12-18 | 2010-07-15 | Ppg Industries Ohio, Inc. | Multi-phase particulates, method of making, and composition containing same |
WO2011060050A1 (en) * | 2009-11-11 | 2011-05-19 | Byk-Chemie Gmbh | Coating composition |
EP2526219A1 (en) * | 2010-01-22 | 2012-11-28 | Sheffield Hallam University | Anticorrosion sol-gel coating for metal substrate |
GB2477117A (en) * | 2010-01-22 | 2011-07-27 | Univ Sheffield Hallam | Polyaniline sol-gel anticorrosion coating |
GB2477117B (en) * | 2010-01-22 | 2014-11-26 | Univ Sheffield Hallam | Anticorrosion sol-gel coating for metal substrate |
EP2526219B1 (en) * | 2010-01-22 | 2017-03-29 | Sheffield Hallam University | Anticorrosion sol-gel coating for metal substrate |
WO2011127230A2 (en) | 2010-04-08 | 2011-10-13 | Nalco Company | Sulfur containing silica particle |
EP2556022A2 (en) * | 2010-04-08 | 2013-02-13 | Nalco Company | Sulfur containing silica particle |
EP2556022A4 (en) * | 2010-04-08 | 2014-07-23 | Nalco Co | Sulfur containing silica particle |
CN110591416A (en) * | 2019-08-23 | 2019-12-20 | 广州凌玮科技股份有限公司 | Preparation method of amorphous silicon dioxide antirust pigment |
Also Published As
Publication number | Publication date |
---|---|
AU4763000A (en) | 2000-12-05 |
FR2794115A1 (en) | 2000-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2000069976A1 (en) | Silica sol, composition containing the same, method for treating said silica sol and uses thereof | |
EP1202930B1 (en) | Cerium phosphate and/or lanthanum sol, preparation method and use for polishing | |
CN102803141A (en) | Method For Producing Silica-based Fine Particle-dispersed Sol, Silica-based Fine Particle-dispersed Sol, Coating Composition Containing The Silica-based Fine Particle-dispersed Sol, Curable Coating Film, And Base With Curable Coating Film | |
WO2007119023A2 (en) | Use of a nanostructured material, as protective coating of metal surfaces | |
WO2008043703A2 (en) | Liquid suspension and powder of cerium oxide particles, methods for making the same and uses thereof in polishing | |
CN1735713A (en) | A coating composition | |
WO2010020466A1 (en) | Liquid suspension and powder of cerium oxide particles, methods for making the same and uses thereof in polishing | |
WO2006117476A1 (en) | Organosol stabilized by amphiphilic block polymers | |
WO2015121332A1 (en) | Novel method of preparing precipitated silicas, novel precipitated silicas, and their uses, in particular for reinforcing polymers | |
EP2208809B1 (en) | Coating composition for a metallic substrate | |
WO2006010851A2 (en) | Method for preparing aluminium particles coated with a polymer film | |
EP0700870B1 (en) | Colloidal dispersions of a cerium compound with high pH, and processes for their preparation | |
JP2021054684A (en) | Silica particle dispersion and its production method | |
EP2237875A2 (en) | Coated and functionalized particles, polymer containing same, method for preparing same and uses thereof | |
WO2013190063A1 (en) | Process for preparing a silica-covered carbon-based species | |
WO2000011070A1 (en) | Use of titanium dioxide as anti-uv agent in a rubber composition | |
CN116891722A (en) | Sulfonic acid modified colloidal silica | |
EP2499281A1 (en) | Selective nanoparticle deposition | |
EP1945721B1 (en) | Silicas comprising phosphonic-acid-modified surfaces | |
TW202242013A (en) | Composition for forming gas barrier film, gas barrier film and method for producing same | |
EP2567940B1 (en) | Method for preparing clays having novel physico-chemical properties | |
WO2007068809A1 (en) | Redispersible powder of mineral particle dispersion stabilized with a polymer | |
FR3056574A1 (en) | PROCESS FOR PREPARING FUNCTIONALIZED SILICON PARTICLES | |
JPH0834611A (en) | Transformation of aluminum oxide and its preparation | |
KR20130069776A (en) | Method for producing hydrophilized microparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR CA IL JP NO US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |