JP5840930B2 - Method for producing modified metal oxide sol - Google Patents

Method for producing modified metal oxide sol Download PDF

Info

Publication number
JP5840930B2
JP5840930B2 JP2011247114A JP2011247114A JP5840930B2 JP 5840930 B2 JP5840930 B2 JP 5840930B2 JP 2011247114 A JP2011247114 A JP 2011247114A JP 2011247114 A JP2011247114 A JP 2011247114A JP 5840930 B2 JP5840930 B2 JP 5840930B2
Authority
JP
Japan
Prior art keywords
metal oxide
group
parts
oxide sol
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011247114A
Other languages
Japanese (ja)
Other versions
JP2013103889A (en
Inventor
佐藤 正洋
正洋 佐藤
さつき 北島
さつき 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2011247114A priority Critical patent/JP5840930B2/en
Publication of JP2013103889A publication Critical patent/JP2013103889A/en
Application granted granted Critical
Publication of JP5840930B2 publication Critical patent/JP5840930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、親水化効果及び帯電防止効果が大きくて耐久性に優れ、低コストで製造できるコーティング可能な修飾金属酸化物ゾルの製造方法に関する。さらに詳しくは親水化剤、帯電防止剤、親水性コーティング組成物、抗菌剤、導電剤、イオン(プロトン)伝導性コーティング剤として好適な修飾金属酸化物ゾルの製造方法に関する。 The present invention relates to a process for producing a coatable modified metal oxide sol that has a large hydrophilization effect and antistatic effect and is excellent in durability and can be produced at low cost. More specifically, the present invention relates to a method for producing a modified metal oxide sol suitable as a hydrophilizing agent, an antistatic agent, a hydrophilic coating composition, an antibacterial agent, a conductive agent, and an ion (proton) conductive coating agent.

表面親水化剤として、スルホン酸基を持つビニル化合物とチオール基を持つ化合物のエン−チオール反応により得られる化合物が知られている。(特許文献1)
また、CMP研磨剤用途としてスルホン酸基修飾水性アニオンシリカゾルが知られている。(特許文献2)
As a surface hydrophilizing agent, a compound obtained by an ene-thiol reaction of a vinyl compound having a sulfonic acid group and a compound having a thiol group is known. (Patent Document 1)
A sulfonic acid group-modified aqueous anionic silica sol is also known as a CMP abrasive. (Patent Document 2)

特開2009−203185号公報JP 2009-203185 A 特開2010−269985号公報JP 2010-269985 A

しかし、従来の、スルホン酸基を持つビニル化合物とチオール基を持つ化合物のエン−チオール反応により得られる化合物から調整される表面親水化剤は原料であるビニル化合物のコストが高い為、結果としてコストが高いという問題がある。また、CMP研磨剤用途としてスルホン酸基修飾水性アニオンシリカゾルはスルホン酸基の含有量が少量のため、帯電防止性能は不十分であり、コーティング膜としての強度(耐久性)が不十分である。また未中和のスルホン酸であるため、酸性で腐食性があり皮膚に有害である。本発明の目的は、親水化剤、帯電防止剤、親水性コーティング組成物、抗菌剤、導電性、イオン(プロトン)伝導性コーティング剤として好適で安全で腐食性がなくて人体に無害な修飾金属酸化物ゾルの製造方法を提供することである。 However, the conventional surface hydrophilizing agent prepared from a compound obtained by ene-thiol reaction of a vinyl compound having a sulfonic acid group and a compound having a thiol group has a high cost of the vinyl compound as a raw material. There is a problem that is high. In addition, since the sulfonic acid group-modified aqueous anionic silica sol has a small amount of sulfonic acid group for CMP abrasive use, the antistatic performance is insufficient, and the strength (durability) as a coating film is insufficient. In addition, since it is an unneutralized sulfonic acid, it is acidic, corrosive and harmful to the skin. The object of the present invention is a modified metal that is suitable as a hydrophilizing agent, antistatic agent, hydrophilic coating composition, antibacterial agent, conductive, ion (proton) conductive coating, safe, non-corrosive and harmless to the human body. It is to provide a method for producing an oxide sol.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、本発明に至った。
即ち、本発明は、金属酸化物ゾルに、化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤を反応させ、その後、酸化して得られる下記式(1)で表される官能基を有する修飾金属酸化物ゾルを塩基で中和することを特徴とし、金属酸化物ゾルがオルガノシリカゾルである、下記式(2)で表される官能基を有する修飾金属酸化物ゾルの製造方法である。
HOS(=O)−R−Si(CH(−O−)3−n (1)
{式中、Rは炭素数1〜10のアルキレン基(本アルキレン鎖中に、ウレタン結合又はウレア結合を含有していても良い)であり、nは0又は1を表す。}
MOS(=O)−R−Si(CH(−O−)3−n (2)
{式中、Mは金属イオン又はアンモニウム(NR )基、Rは炭素数1〜10のアルキレン基(本アルキレン鎖中に、ウレタン結合又はウレア結合を含有していても良い)であり、Rは同一或いは異なってもよい炭素数1〜5のアルキル基、アルカノール基又は水素原子であり、nは0又は1を表す。}
As a result of intensive studies to solve the above problems, the present inventors have reached the present invention.
That is, in the present invention, a metal oxide sol is reacted with a silane coupling agent having a functional group that can be chemically converted to a sulfonic acid group, and then oxidized to obtain a functional group represented by the following formula (1). Production of a modified metal oxide sol having a functional group represented by the following formula (2), wherein the modified metal oxide sol having a group is neutralized with a base, and the metal oxide sol is an organosilica sol Is the method.
HOS (═O) 2 —R 1 —Si (CH 3 ) n (—O—) 3-n (1)
{In the formula, R 1 represents an alkylene group having 1 to 10 carbon atoms (this alkylene chain may contain a urethane bond or a urea bond), and n represents 0 or 1. }
MOS (= O) 2 -R 1 -Si (CH 3) n (-O-) 3-n (2)
{In the formula, M is a metal ion or an ammonium (NR 2 4 ) group, and R 1 is an alkylene group having 1 to 10 carbon atoms (this alkylene chain may contain a urethane bond or a urea bond). , R 2 may be the same or different and each represents an alkyl group having 1 to 5 carbon atoms, an alkanol group, or a hydrogen atom, and n represents 0 or 1. }

本発明によれば、親水化効果及び帯電防止効果が大きくて耐久性に優れ、低コストでコーティング可能な修飾金属酸化物ゾルの製造方法を提供することが出来る。 According to the present invention, it is possible to provide a method for producing a modified metal oxide sol that has a large hydrophilization effect and antistatic effect, is excellent in durability, and can be coated at low cost.

下記式(1)で表される官能基を有する修飾金属酸化物ゾルは、金属酸化物ゾルに、化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤を反応させ、その後、酸化して得られる。
HOS(=O)−R−Si(CH(−O−)3−n (1)
{式中、Rは炭素数1〜10のアルキレン基(本アルキレン鎖中に、ウレタン結合又はウレア結合を含有していても良い)であり、nは0又は1を表す。}
The modified metal oxide sol having a functional group represented by the following formula (1) is reacted with a silane coupling agent having a functional group that can be chemically converted to a sulfonic acid group, and then oxidized. Is obtained.
HOS (═O) 2 —R 1 —Si (CH 3 ) n (—O—) 3-n (1)
{In the formula, R 1 represents an alkylene group having 1 to 10 carbon atoms (this alkylene chain may contain a urethane bond or a urea bond), and n represents 0 or 1. }

上記式(1)において、Rの炭素数1〜10のアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基等が挙げられる。これらのうちコスト及び原料入手の点を考慮すると、好ましくはプロピレン基である。 In the above formula (1), examples of the alkylene group having 1 to 10 carbon atoms of R 1 include a methylene group, an ethylene group, a propylene group, a butylene group, and a pentylene group. Of these, a propylene group is preferred in consideration of cost and raw material availability.

式(1)で表される官能基の具体例としては、以下のものが挙げられる。   Specific examples of the functional group represented by the formula (1) include the following.

HOSO−CHCHCHSi(−O-)
HOSO−CHCHNHCONHCHCHCHSi(−O-)
HOSO−CNHCONHCHCHCHSi(−O-)
HOSO−CHCHCHSiCH(−O-)
HOSO−CHCHOCONHCHCHCHSiCH(−O-)
HOSO−CHCHNHCONHCHCHCHSiCH(−O-)
HOSO−CNHCONHCHCHCHSiCH(−O-)
HOSO 2 —CH 2 CH 2 CH 2 Si (—O—) 3
HOSO 2 —CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 Si (—O—) 3
HOSO 2 -C 6 H 4 NHCONHCH 2 CH 2 CH 2 Si (-O-) 3
HOSO 2 -CH 2 CH 2 CH 2 SiCH 3 (-O-) 2
HOSO 2 —CH 2 CH 2 OCONHCH 2 CH 2 CH 2 SiCH 3 (—O—) 2
HOSO 2 —CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 SiCH 3 (—O—) 2
HOSO 2 -C 6 H 4 NHCONHCH 2 CH 2 CH 2 SiCH 3 (-O-) 2

金属酸化物ゾルとしては、シリカゾル、アルミナゾル及びジルコニアゾルが挙げられる。
これらのうち、シリカゾルが好ましく、オルガノシリカゾルが特に好ましい。
なお、オルガノゾルとは、
有機溶媒にナノレベルの、表面改質をしたコロイダルシリカを安定的に分散させたコロイド溶液であり、アルコール、ケトン、エーテル、トルエン等の各種有機溶媒に分散可能である。
具体的には日産化学社製のオルガノシリカゾル(メタノールシリカゾル、IPA−ST、IPA−ST、IPA−ST−UP、IPA−ST−ZL、EG−ST、NPC−ST−30、DMAC−ST、MEK−ST、MIBK−ST、PMA−ST及びPGM−ST)や扶桑化学社製の高純度オルガノシリカゾル(PL−1−IPA、PL−2L−PGME及びPL−2L−MEK)等が挙げられる。
これらは単独のみならず、複数で用いても良い。
Examples of the metal oxide sol include silica sol, alumina sol, and zirconia sol.
Of these, silica sol is preferred, and organosilica sol is particularly preferred.
The organosol is
A colloidal solution in which nano-level, surface-modified colloidal silica is stably dispersed in an organic solvent, and can be dispersed in various organic solvents such as alcohol, ketone, ether, and toluene.
Specifically, organosilica sol (methanol silica sol, IPA-ST, IPA-ST, IPA-ST-UP, IPA-ST-ZL, EG-ST, NPC-ST-30, DMAC-ST, MEK manufactured by Nissan Chemical Co., Ltd. -ST, MIBK-ST, PMA-ST and PGM-ST) and high-purity organosilica sol (PL-1-IPA, PL-2L-PGME and PL-2L-MEK) manufactured by Fuso Chemical.
These may be used not only alone but also plurally.

化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤としては下記式(3)又は(4)で表されるものが好ましい。
HS−R−Si(CH(−Y)3−n (3)
(Y−)3−n(CH Si−R−S−S−R−Si(CH(−Y)3−n (4)
{式中、Rは炭素数1〜10のアルキレン基(本アルキレン鎖中に、ウレタン結合又はウレア結合を含有していても良い)であり、Yは同一或いは異なってもよい炭素数1〜4のアルコキシ基又は水酸基、nは0又は1を表す。}
As the silane coupling agent having a functional group that can be chemically converted to a sulfonic acid group, those represented by the following formula (3) or (4) are preferable.
HS-R-Si (CH 3 ) n (-Y) 3-n (3)
(Y-) 3-n (CH 3 ) n Si—R—S—S—R—Si (CH 3 ) n (—Y) 3-n (4)
{In the formula, R is an alkylene group having 1 to 10 carbon atoms (this alkylene chain may contain a urethane bond or a urea bond), and Y may be the same or different. An alkoxy group or a hydroxyl group, and n represents 0 or 1. }

式(3)又は(4)で表されるシランカップリング剤の具体例としては、以下のものが挙げられる。   Specific examples of the silane coupling agent represented by the formula (3) or (4) include the following.

HSCHCHCHSi(OCH
CHCH(HS)CHSi(OC
HSCHCHSi(OCH
HSCHCHSi(OC
HSCHCHOCONHCHCHCHSi(OC
HSCHCHNHCONHCHCHCHSi(OC
HSCNHCONHCHCHCHSi(OC
(OCSiCHCHCH−S−S−CHCHCHSi(OC
HSCH 2 CH 2 CH 2 Si (OCH 3 ) 3
CH 3 CH (HS) CH 2 Si (OC 2 H 5) 3,
HSCH 2 CH 2 Si (OCH 3 ) 3
HSCH 2 CH 2 Si (OC 2 H 5 ) 3
HSCH 2 CH 2 OCONHCH 2 CH 2 CH 2 Si (OC 2 H 5 ) 3
HSCH 2 CH 2 NHCONHCH 2 CH 2 CH 2 Si (OC 2 H 5 ) 3
HSC 6 H 4 NHCONHCH 2 CH 2 CH 2 Si (OC 2 H 5 ) 3
(OC 2 H 5) 3 SiCH 2 CH 2 CH 2 -S-S-CH 2 CH 2 CH 2 Si (OC 2 H 5) 3

これらのうち、ウレタン結合やウレア結合を持つ化合物はイソシアネート基を有するシランカップリング剤に、2−メルカプトエタノール、2−メルカプトエチルアミン及び4−メルカプトアニリンを反応させることにより得ることが出来る。   Among these, a compound having a urethane bond or urea bond can be obtained by reacting a silane coupling agent having an isocyanate group with 2-mercaptoethanol, 2-mercaptoethylamine, and 4-mercaptoaniline.

金属酸化物ゾルにシランカップリング剤を反応させる場合の溶媒としては、アルコール系溶媒:メタノール、エタノール、イソプロパンール、n−ブタノール、t−ブタノール、ペンタノール、エチレングリコール、プロピレングリコール及び1,4−ブタンジオール等、エーテル系溶媒:ジエチルエーテル、テトラハイドロフラン及びジオキサン等、ケトン系溶媒:アセトン及びメチルエチルケトン等、非プロトン溶媒:ジメチルスルホキサイド、N,N−ジメチルホルムアミド等及びこれらの混合溶媒等が挙げられる。
これらのうち好ましいのは、アルコール系溶媒であり、これらの溶媒は1種又は2種以上で使用できる。
Solvents for reacting a metal oxide sol with a silane coupling agent include alcohol solvents: methanol, ethanol, isopropanol, n-butanol, t-butanol, pentanol, ethylene glycol, propylene glycol and 1,4-butane. Diols, ether solvents: diethyl ether, tetrahydrofuran and dioxane, ketone solvents: acetone and methyl ethyl ketone, aprotic solvents: dimethyl sulfoxide, N, N-dimethylformamide and mixed solvents thereof It is done.
Among these, alcohol solvents are preferable, and these solvents can be used alone or in combination of two or more.

溶媒に対する原料の金属酸化物ゾルの濃度は1〜50重量%であり、好ましくは1〜30重量%である。 The concentration of the raw metal oxide sol with respect to the solvent is 1 to 50% by weight, preferably 1 to 30% by weight.

カップリング剤を反応させる際の温度は限定されないが、常温(約20℃)から沸点が好ましい。
反応温度も限定されないが、常温(約20℃)から沸点が好ましい。
反応時間も限定されないが、10分から48時間が好ましく、6時間から24時間が特に好ましい。
Although the temperature at the time of making a coupling agent react is not limited, The boiling point is preferable from normal temperature (about 20 degreeC).
Although the reaction temperature is not limited, the boiling point is preferably from room temperature (about 20 ° C.).
Although the reaction time is not limited, it is preferably 10 minutes to 48 hours, particularly preferably 6 hours to 24 hours.

金属酸化物ゾルとシランカップリング剤との反応物を酸化するに際し、過酸化物としては、有機過酸化物(過酢酸、m−クロロ過安息香酸、過酸化ベンゾイル等)、無機過酸化物(オゾン、過酸化水素、過酸化カルシウム等)が挙げられる。これらのうち、好ましいのは過酸化水素と過酢酸であり、特に好ましいのは過酸化水素である。 When oxidizing the reaction product of the metal oxide sol and the silane coupling agent, examples of the peroxide include organic peroxides (peracetic acid, m-chloroperbenzoic acid, benzoyl peroxide, etc.), inorganic peroxides ( Ozone, hydrogen peroxide, calcium peroxide, etc.). Of these, hydrogen peroxide and peracetic acid are preferred, and hydrogen peroxide is particularly preferred.

用いる過酸化物の量は、スルホン酸基に変換できる官能基を有するシランカップリング剤に対して、200〜5000モル%、好ましくは300〜5000モル%、さらに好ましくは500〜5000モル%である。   The amount of the peroxide used is 200 to 5000 mol%, preferably 300 to 5000 mol%, more preferably 500 to 5000 mol%, based on the silane coupling agent having a functional group that can be converted into a sulfonic acid group. .

過酸化物による酸化の際の温度は限定されないが、常温(約20℃)が好ましい。
酸化温度も限定されないが、常温(約20℃)から沸点が好ましい。
酸化時間も限定されないが、10分から48時間が好ましく、6時間から24時間が特に好ましい。
The temperature during oxidation with peroxide is not limited, but normal temperature (about 20 ° C.) is preferable.
Although the oxidation temperature is not limited, the boiling point is preferably from room temperature (about 20 ° C.).
The oxidation time is not limited, but is preferably 10 minutes to 48 hours, particularly preferably 6 hours to 24 hours.

下記式(2)で表される官能基を有する修飾金属酸化物ゾルは上記式(1)で表される官能基を有する修飾金属酸化物ゾルを塩基で中和することにより得られる。
MOS(=O)−R−Si(CH(−O−)3−n (2)
{式中、Mは金属イオン又はアンモニウム(NR )基、Rは炭素数1〜10のアルキレン基(本アルキレン鎖中に、ウレタン結合又はウレア結合を含有していても良い)であり、Rは同一或いは異なってもよい炭素数1〜5のアルキル基、アルカノール基又は水素原子であり、nは0又は1を表す。}
The modified metal oxide sol having a functional group represented by the following formula (2) can be obtained by neutralizing the modified metal oxide sol having a functional group represented by the above formula (1) with a base.
MOS (= O) 2 -R 1 -Si (CH 3) n (-O-) 3-n (2)
{In the formula, M is a metal ion or an ammonium (NR 2 4 ) group, and R 1 is an alkylene group having 1 to 10 carbon atoms (this alkylene chain may contain a urethane bond or a urea bond). , R 2 may be the same or different and each represents an alkyl group having 1 to 5 carbon atoms, an alkanol group, or a hydrogen atom, and n represents 0 or 1. }

塩基としては、水酸化物(水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム等)、酢酸塩(酢酸リチウム、酢酸ナトリウム、酢酸カリウム及び酢酸銀等)、金属酸化物(酸化銀等)、アンモニア、トリメチルアミン、トリエチルアミン、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド、テトラエチルアンモニウムハイドロオキサイド等が挙げられる。 Bases include hydroxides (lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide, etc.), acetates (lithium acetate, sodium acetate, potassium acetate, silver acetate, etc.) , Metal oxides (such as silver oxide), ammonia, trimethylamine, triethylamine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, and the like.

中和するときの温度は特に制限はなく、通常室温で行えばよい。 The temperature for neutralization is not particularly limited, and may be usually performed at room temperature.

加える塩基はそのまま加えても、溶媒(例えば、水等)で希釈してから加えても良い。 The base to be added may be added as it is, or may be added after dilution with a solvent (for example, water).

式(2)において、Rの炭素数1〜10のアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基等が挙げられる。これらのうちコスト及び原料入手の点を考慮すると、好ましくはプロピレン基である。 In the formula (2), examples of the alkylene group having 1 to 10 carbon atoms of R 1 include a methylene group, an ethylene group, a propylene group, a butylene group, and a pentylene group. Of these, a propylene group is preferred in consideration of cost and raw material availability.

Mとしては、金属イオン(アルカリ金属イオン、アルカリ土類金属イオン、銀イオン、銅イオン及びニッケルイオン等)又はアンモニウム(NR )イオンが挙げられ、親水性、抗菌性などの点を考慮すると、好ましくは、アルカリ金属イオン、アルカリ土類金属イオン、銀イオンおよびアンモニウムイオンである。 Examples of M include metal ions (alkali metal ions, alkaline earth metal ions, silver ions, copper ions, nickel ions, etc.) or ammonium (NR 2 4 ) ions, and in consideration of hydrophilicity and antibacterial properties. Preferred are alkali metal ions, alkaline earth metal ions, silver ions and ammonium ions.

アンモニウムイオンのRとしては水素原子、炭素数1〜5のアルキル基およびアルカノール基が挙げられ、好ましくは、水素原子、炭素数1〜3のアルキル基(メチル基、エチル基及びプロピル基など)および炭素数1〜3のアルカノール基(ヒドロキシメチル基、ヒドロキシエチル基および3−ヒドロキシ−n−プロピル基など)である。Rは同一であっても異なっていてもよい。 R 2 of the ammonium ion includes a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, and an alkanol group, preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms (such as a methyl group, an ethyl group, and a propyl group). And an alkanol group having 1 to 3 carbon atoms (such as a hydroxymethyl group, a hydroxyethyl group, and a 3-hydroxy-n-propyl group). R 2 may be the same or different.

アルカリ金属イオン、アルカリ土類金属イオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン、セシウムイオン、マグネシウムイオン及びカルシウムイオンなどが挙げられる。
これらのうち好ましくは、アルカリ金属イオンであり、特に好ましいのはリチウムイオン、ナトリウムイオンである。
Examples of alkali metal ions and alkaline earth metal ions include lithium ions, sodium ions, potassium ions, cesium ions, magnesium ions, and calcium ions.
Of these, alkali metal ions are preferable, and lithium ions and sodium ions are particularly preferable.

これらのアンモニウムイオン、アルカリ金属イオン、銀イオンの加える量はスルホン酸基に対して通常0.1〜1.3モル倍、好ましくは0.5〜1.1モル倍、特に好ましくは0.7〜1.05モル倍である。   The amount of these ammonium ions, alkali metal ions and silver ions to be added is usually 0.1 to 1.3 mol times, preferably 0.5 to 1.1 mol times, particularly preferably 0.7 times the sulfonic acid group. -1.05 mole times.

またこれらのイオンは同一或いは異なっていてもよい。     These ions may be the same or different.

式(2)で表される官能基の具体例としては、以下のものが挙げられる。     Specific examples of the functional group represented by the formula (2) include the following.

LiOSO−CHCHCHSi(−O-)
NaOSO−CHCHCHSi(−O-)
KOSO−CHCHCHSi(−O-)
NHOSO−CHCHCHSi(−O-)
N(CHOSO−CHCHCHSi(−O-)
NH(COSO−CHCHCHSi(−O-)
NH(COH)OSO−CHCHCHSi(−O-)
AgOSO−CHCHCHSi(−O-)
LiOSO−CHCHOCONHCHCHCHSi(−O-)
NaOSO−CHCHOCONHCHCHCHSi(−O-)
KOSO−CHCHOCONHCHCHCHSi(−O-)
NHOSO−CHCHOCONHCHCHCHSi(−O-)
N(CHOSO−CHCHOCONHCHCHCHSi(−O-)
NH(COSO−CHCHOCONHCHCHCHSi(−O-)
AgOSO−CHCHOCONHCHCHCHSi(−O-)
LiOSO−CHCHNHCONHCHCHCHSi(−O-)
NaOSO−CHCHNHCONHCHCHCHSi(−O-)
KOSO−CHCHNHCONHCHCHCHSi(−O-)
NHOSO−CHCHNHCONHCHCHCHSi(−O-)
N(CHOSO−CHCHNHCONHCHCHCHSi(−O-)
NH(COSO−CHCHNHCONHCHCHCHSi(−O-)
AgOSO−CHCHNHCONHCHCHCHSi(−O-)
LiOSO−CNHCONHCHCHCHSi(−O-)
NaOSO−CNHCONHCHCHCHSi(−O-)
KOSO−CNHCONHCHCHCHSi(−O-)
NHOSO−CNHCONHCHCHCHSi(−O-)
N(CHOSO−CNHCONHCHCHCHSi(−O-)
NH(COSO−CNHCONHCHCHCHSi(−O-)
AgOSO−CNHCONHCHCHCHSi(−O-)
LiOSO 2 —CH 2 CH 2 CH 2 Si (—O—) 3
NaOSO 2 —CH 2 CH 2 CH 2 Si (—O—) 3
KOSO 2 —CH 2 CH 2 CH 2 Si (—O—) 3
NH 4 OSO 2 —CH 2 CH 2 CH 2 Si (—O—) 3
N (CH 3 ) 4 OSO 2 —CH 2 CH 2 CH 2 Si (—O—) 3
NH (C 2 H 5) 3 OSO 2 -CH 2 CH 2 CH 2 Si (-O-) 3
NH (C 2 H 4 OH) 3 OSO 2 -CH 2 CH 2 CH 2 Si (-O-) 3
AgOSO 2 —CH 2 CH 2 CH 2 Si (—O—) 3
LiOSO 2 —CH 2 CH 2 OCONHCH 2 CH 2 CH 2 Si (—O—) 3
NaOSO 2 —CH 2 CH 2 OCONHCH 2 CH 2 CH 2 Si (—O—) 3
KOSO 2 —CH 2 CH 2 OCONHCH 2 CH 2 CH 2 Si (—O—) 3
NH 4 OSO 2 —CH 2 CH 2 OCONHCH 2 CH 2 CH 2 Si (—O—) 3
N (CH 3 ) 4 OSO 2 —CH 2 CH 2 OCONHCH 2 CH 2 CH 2 Si (—O—) 3
NH (C 2 H 5) 3 OSO 2 -CH 2 CH 2 OCONHCH 2 CH 2 CH 2 Si (-O-) 3
AgOSO 2 —CH 2 CH 2 OCONHCH 2 CH 2 CH 2 Si (—O—) 3
LiOSO 2 —CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 Si (—O—) 3
NaOSO 2 —CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 Si (—O—) 3
KOSO 2 —CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 Si (—O—) 3
NH 4 OSO 2 —CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 Si (—O—) 3
N (CH 3 ) 4 OSO 2 —CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 Si (—O—) 3
NH (C 2 H 5) 3 OSO 2 -CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 Si (-O-) 3
AgOSO 2 —CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 Si (—O—)
LiOSO 2 -C 6 H 4 NHCONHCH 2 CH 2 CH 2 Si (-O-) 3
NaOSO 2 -C 6 H 4 NHCONHCH 2 CH 2 CH 2 Si (-O-) 3
KOSO 2 -C 6 H 4 NHCONHCH 2 CH 2 CH 2 Si (-O-) 3
NH 4 OSO 2 —C 6 H 4 NHCONHCH 2 CH 2 CH 2 Si (—O—) 3
N (CH 3) 4 OSO 2 -C 6 H 4 NHCONHCH 2 CH 2 CH 2 Si (-O-) 3
NH (C 2 H 5) 3 OSO 2 -C 6 H 4 NHCONHCH 2 CH 2 CH 2 Si (-O-) 3
AgOSO 2 —C 6 H 4 NHCONHCH 2 CH 2 CH 2 Si (—O—) 3

LiOSO−CHCHCHSiCH(−O-)
NaOSO−CHCHCHSiCH(−O-)
KOSO−CHCHCHSiCH(−O-)
NHOSO−CHCHCHSiCH(−O-)
NH(CHOSO−CHCHCHSiCH(−O-)
NH(COSO−CHCHCHSiCH(−O-)
AgOSO−CHCHCHSiCH(−O-)
LiOSO−CHCHOCONHCHCHCHSiCH(−O-)
NaOSO−CHCHOCONHCHCHCHSiCH(−O-)
KOSO−CHCHOCONHCHCHCHSiCH(−O-)
NHOSO−CHCHOCONHCHCHCHSiCH(−O-)
NH(CHOSO−CHCHOCONHCHCHCHSiCH(−O-)
NH(COSO−CHCHOCONHCHCHCHSiCH(−O-)
AgOSO−CHCHOCONHCHCHCHSiCH(−O-)
LiOSO−CHCHNHCONHCHCHCHSiCH(−O-)
NaOSO−CHCHNHCONHCHCHCHSiCH(−O-)
KOSO−CHCHNHCONHCHCHCHSiCH(−O-)
NHOSO−CHCHNHCONHCHCHCHSiCH(−O-)
NH(CHOSO−CHCHNHCONHCHCHCHSiCH(−O-)
NH(COSO−CHCHNHCONHCHCHCHSiCH(−O-)
AgOSO−CHCHNHCONHCHCHCHSiCH(−O-)
LiOSO−CNHCONHCHCHCHSiCH(−O-)
NaOSO−CNHCONHCHCHCHSiCH(−O-)
KOSO−CNHCONHCHCHCHSiCH(−O-)
NHOSO−CNHCONHCHCHCHSiCH(−O-)
NH(CHOSO−CNHCONHCHCHCHSiCH(−O-)
NH(COSO−CNHCONHCHCHCHSiCH(−O-)
AgOSO−CNHCONHCHCHCHSiCH(−O-)
LiOSO 2 -CH 2 CH 2 CH 2 SiCH 3 (-O-) 2
NaOSO 2 -CH 2 CH 2 CH 2 SiCH 3 (-O-) 2
KOSO 2 -CH 2 CH 2 CH 2 SiCH 3 (-O-) 2
NH 4 OSO 2 —CH 2 CH 2 CH 2 SiCH 3 (—O—) 2
NH (CH 3 ) 3 OSO 2 —CH 2 CH 2 CH 2 SiCH 3 (—O—) 2
NH (C 2 H 5) 3 OSO 2 -CH 2 CH 2 CH 2 SiCH 3 (-O-) 2
AgOSO 2 -CH 2 CH 2 CH 2 SiCH 3 (-O-) 2
LiOSO 2 —CH 2 CH 2 OCONHCH 2 CH 2 CH 2 SiCH 3 (—O—) 2
NaOSO 2 —CH 2 CH 2 OCONHCH 2 CH 2 CH 2 SiCH 3 (—O—) 2
KOSO 2 -CH 2 CH 2 OCONHCH 2 CH 2 CH 2 SiCH 3 (-O-) 2
NH 4 OSO 2 —CH 2 CH 2 OCONHCH 2 CH 2 CH 2 SiCH 3 (—O—) 2
NH (CH 3) 3 OSO 2 -CH 2 CH 2 OCONHCH 2 CH 2 CH 2 SiCH 3 (-O-) 2
NH (C 2 H 5) 3 OSO 2 -CH 2 CH 2 OCONHCH 2 CH 2 CH 2 SiCH 3 (-O-) 2
AgOSO 2 -CH 2 CH 2 OCONHCH 2 CH 2 CH 2 SiCH 3 (-O-) 2
LiOSO 2 —CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 SiCH 3 (—O—) 2
NaOSO 2 —CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 SiCH 3 (—O—) 2
KOSO 2 -CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 SiCH 3 (-O-) 2
NH 4 OSO 2 —CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 SiCH 3 (—O—) 2
NH (CH 3 ) 3 OSO 2 —CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 SiCH 3 (—O—) 2
NH (C 2 H 5) 3 OSO 2 -CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 SiCH 3 (-O-) 2
AgOSO 2 —CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 SiCH 3 (—O—) 2
LiOSO 2 -C 6 H 4 NHCONHCH 2 CH 2 CH 2 SiCH 3 (-O-) 2
NaOSO 2 -C 6 H 4 NHCONHCH 2 CH 2 CH 2 SiCH 3 (-O-) 2
KOSO 2 -C 6 H 4 NHCONHCH 2 CH 2 CH 2 SiCH 3 (-O-) 2
NH 4 OSO 2 —C 6 H 4 NHCONHCH 2 CH 2 CH 2 SiCH 3 (—O—) 2
NH (CH 3) 3 OSO 2 -C 6 H 4 NHCONHCH 2 CH 2 CH 2 SiCH 3 (-O-) 2
NH (C 2 H 5) 3 OSO 2 -C 6 H 4 NHCONHCH 2 CH 2 CH 2 SiCH 3 (-O-) 2
AgOSO 2 -C 6 H 4 NHCONHCH 2 CH 2 CH 2 SiCH 3 (-O-) 2

式(2)で表される官能基は、金属酸化物ゾル1gあたり0.55〜6mmolであることが好ましく、1〜6mmolであることがより好ましい。上記範囲内とすることにより、親水性と成膜性がより好ましいものとなる。 The functional group represented by the formula (2) is preferably 0.55 to 6 mmol, more preferably 1 to 6 mmol, per 1 g of the metal oxide sol. By setting it within the above range, the hydrophilicity and the film formability are more preferable.

本発明の製造方法で得られる修飾金属酸化物ゾルは親水化剤、親水性コーティング組成物、帯電防止剤として有用である。 The modified metal oxide sol obtained by the production method of the present invention is useful as a hydrophilizing agent, a hydrophilic coating composition, and an antistatic agent.

以下に実施例を示し、本発明を具体的に説明する。実施例は、本発明を説明するものであり、制限を加えるものではない。以下特記しない限り、部は重量部を意味する。 Hereinafter, the present invention will be specifically described with reference to examples. The examples are illustrative of the invention and are not limiting. Unless otherwise specified, parts mean parts by weight.

実施例1
3−(トリメトキシシリル)プロパン−1−チオール(チッソ株式会社)1.0部(5.1モル部)をエタノール36部に溶解させた後、オルガノシリカゾル(日産化学製、30%メタノール溶液)3.0部、水10.0部を加え24時間加熱還流した。冷却後過酸化水素水(三徳化学工業株式会社製、30%水溶液)3.5部(30.8モル部)を加え24時間加熱還流した。反応終了後室温まで冷却後、水酸化リチウム1水和物0.214部(5.1モル部)を少量の水に溶かして加え中和することにより、本発明の化合物、LiOSO−CHCHCHSi(−O−)基で修飾されたメタノールシリカゾル(式(2)で表される官能基は、金属酸化物ゾル1gあたり5.7mmol)を含むエタノール溶液を得た。
Example 1
After dissolving 1.0 part (5.1 mole part) of 3- (trimethoxysilyl) propane-1-thiol (Chisso Corporation) in 36 parts of ethanol, organosilica sol (Nissan Chemical Co., Ltd., 30% methanol solution) 3.0 parts and 10.0 parts of water were added and heated to reflux for 24 hours. After cooling, 3.5 parts (30.8 moles) of hydrogen peroxide (Santoku Chemical Co., Ltd., 30% aqueous solution) was added and heated to reflux for 24 hours. After completion of the reaction and cooling to room temperature, 0.214 parts (5.1 mole parts) of lithium hydroxide monohydrate was dissolved in a small amount of water and neutralized to thereby neutralize the compound of the present invention, LiOSO 2 —CH 2. An ethanol solution containing methanol silica sol modified with CH 2 CH 2 Si (—O—) 3 groups (the functional group represented by the formula (2) is 5.7 mmol per 1 g of metal oxide sol) was obtained.

実施例2
エタノールを36部から34部に、オルガノシリカゾル(日産化学製、30%メタノール溶液)を3.0部から5.0部に変更した以外は、実施例1と同様に行い、本発明の化合物、LiOSO−CHCHCHSi(−O−)基で修飾されたメタノールシリカゾル(式(2)で表される官能基は、金属酸化物ゾル1gあたり3.4mmol)を含むエタノール溶液を得た。
Example 2
Except that ethanol was changed from 36 parts to 34 parts and organosilica sol (manufactured by Nissan Chemical Co., Ltd., 30% methanol solution) was changed from 3.0 parts to 5.0 parts, the same procedure as in Example 1 was carried out. Ethanol solution containing methanol silica sol modified with 3 groups of LiOSO 2 —CH 2 CH 2 CH 2 Si (—O—) (the functional group represented by the formula (2) is 3.4 mmol per 1 g of metal oxide sol) Got.

実施例3
エタノールを36部から32部に、オルガノシリカゾル(日産化学製、30%メタノール溶液)を3.0部から7.0部に変更した以外は、実施例1と同様に行い、本発明の化合物、LiOSO−CHCHCHSi(−O−)基で修飾されたメタノールシリカゾル(式(2)で表される官能基は、金属酸化物ゾル1gあたり2.4mmol)を含むエタノール溶液を得た。
Example 3
Except that ethanol was changed from 36 parts to 32 parts and organosilica sol (manufactured by Nissan Chemical Co., Ltd., 30% methanol solution) was changed from 3.0 parts to 7.0 parts, the same procedure as in Example 1 was carried out. Ethanol solution containing methanol silica sol modified with LiOSO 2 —CH 2 CH 2 CH 2 Si (—O—) 3 group (the functional group represented by the formula (2) is 2.4 mmol per 1 g of metal oxide sol) Got.

実施例4
エタノールを36部から32部に、オルガノシリカゾル(日産化学製、30%メタノール溶液)を3.0部から10.0部に変更した以外は、実施例1と同様に行い、本発明の化合物、LiOSO−CHCHCHSi(−O−)基で修飾されたメタノールシリカゾル(式(2)で表される官能基は、金属酸化物ゾル1gあたり1.7mmol)を含むエタノール溶液を得た。
Example 4
Except that ethanol was changed from 36 parts to 32 parts and organosilica sol (manufactured by Nissan Chemical Co., Ltd., 30% methanol solution) was changed from 3.0 parts to 10.0 parts, the same procedure as in Example 1 was carried out. Ethanol solution containing methanol silica sol modified with 3 groups of LiOSO 2 —CH 2 CH 2 CH 2 Si (—O—) (the functional group represented by the formula (2) is 1.7 mmol per 1 g of metal oxide sol) Got.

実施例5
エタノールを36部から34部に、オルガノシリカゾル(日産化学製、30%メタノール溶液)を3.0部から5.0部に変更し、水酸化リチウム1水和物0.214部(5.1モル部)を1N水酸化ナトリウム水(ナカライテスク社製)5.1容量部(5.1モル部)に変更した以外は、実施例1と同様に行い、本発明の化合物、NaOSO−CHCHCHSi(−O−)基で修飾されたメタノールシリカゾル(式(2)で表される官能基は、金属酸化物ゾル1gあたり3.4mmol)を含むエタノール溶液を得た。
Example 5
Ethanol was changed from 36 parts to 34 parts, and organosilica sol (manufactured by Nissan Chemical Co., Ltd., 30% methanol solution) was changed from 3.0 parts to 5.0 parts to give 0.214 parts (5.1) of lithium hydroxide monohydrate. Mol part) was changed to 5.1 volume part (5.1 mol part) of 1N sodium hydroxide water (manufactured by Nacalai Tesque), and the same procedure as in Example 1 was carried out, and the compound of the present invention, NaOSO 2 —CH An ethanol solution containing methanol silica sol modified with 2 CH 2 CH 2 Si (—O—) 3 groups (the functional group represented by formula (2) was 3.4 mmol per 1 g of metal oxide sol) was obtained.

実施例6
エタノールを36部から34部に、オルガノシリカゾル(日産化学製、30%メタノール溶液)を3.0部から5.0部に変更し、水酸化リチウム1水和物0.214部(5.1モル部)を1N水酸化カリウム水(ナカライテスク社製)5.1容量部(5.1モル部)に変更した以外は、実施例1と同様に行い、本発明の化合物、KOSO−CHCHCHSi(−O−)基で修飾されたメタノールシリカゾル(式(2)で表される官能基は、金属酸化物ゾル1gあたり3.4mmol)を含むエタノール溶液を得た。
Example 6
Ethanol was changed from 36 parts to 34 parts, and organosilica sol (manufactured by Nissan Chemical Co., Ltd., 30% methanol solution) was changed from 3.0 parts to 5.0 parts to give 0.214 parts (5.1) of lithium hydroxide monohydrate. Mol part) was changed to 5.1 parts by volume (5.1 mol parts) of 1N potassium hydroxide water (Nacalai Tesque), and the compound of the present invention, KOSO 2 —CH, was used in the same manner as in Example 1. An ethanol solution containing methanol silica sol modified with 2 CH 2 CH 2 Si (—O—) 3 groups (the functional group represented by formula (2) was 3.4 mmol per 1 g of metal oxide sol) was obtained.

実施例7
エタノールを36部から34部に、オルガノシリカゾル(日産化学製、30%メタノール溶液)を3.0部から5.0部に変更し、水酸化リチウム1水和物0.214部(5.1モル部)をアンモニア(ナカライテスク社製、30%水溶液)0.289部(5.1モル部)に変更した以外は、実施例1と同様に行い、本発明の化合物、NHOSO−CHCHCHSi(−O−)基で修飾されたメタノールシリカゾル(式(2)で表される官能基は、金属酸化物ゾル1gあたり3.4mmol)を含むエタノール溶液を得た。
Example 7
Ethanol was changed from 36 parts to 34 parts, and organosilica sol (manufactured by Nissan Chemical Co., Ltd., 30% methanol solution) was changed from 3.0 parts to 5.0 parts to give 0.214 parts (5.1) of lithium hydroxide monohydrate. Mol part) was changed to 0.289 part (5.1 mole part) of ammonia (manufactured by Nacalai Tesque, 30% aqueous solution) in the same manner as in Example 1, except that the compound of the present invention, NH 4 OSO 2 — An ethanol solution containing methanol silica sol modified with CH 2 CH 2 CH 2 Si (—O—) 3 groups (the functional group represented by the formula (2) is 3.4 mmol per 1 g of metal oxide sol) was obtained. .

実施例8
エタノールを36部から34部に、オルガノシリカゾル(日産化学製、30%メタノール溶液)を3.0部から5.0部に変更し、水酸化リチウム1水和物0.214部(5.1モル部)をテトラエチルアンモニウムハイドロオキサイド(ナカライテスク社製)0.515部(5.1モル部)に変更した以外は、実施例1と同様に行い、本発明の化合物、N(COSO−CHCHCHSi(−O−)基で修飾されたメタノールシリカゾル(式(2)で表される官能基は、金属酸化物ゾル1gあたり3.4mmol)を含むエタノール溶液を得た。
Example 8
Ethanol was changed from 36 parts to 34 parts, and organosilica sol (manufactured by Nissan Chemical Co., Ltd., 30% methanol solution) was changed from 3.0 parts to 5.0 parts to give 0.214 parts (5.1) of lithium hydroxide monohydrate. Mol part) was changed to tetraethylammonium hydroxide (manufactured by Nacalai Tesque) 0.515 part (5.1 mole part), and the same procedure as in Example 1 was carried out, and the compound of the present invention, N (C 2 H 5 ) 4 OSO 2 —CH 2 CH 2 CH 2 Si (—O—) Methanol silica sol modified with 3 groups (the functional group represented by the formula (2) includes 3.4 mmol per 1 g of metal oxide sol) An ethanol solution was obtained.

実施例9
エタノールを36部から34部に、オルガノシリカゾル(日産化学製、30%メタノール溶液)を3.0部から5.0部に変更し、水酸化リチウム1水和物0.214部(5.1モル部)をトリエタノールアミン(ナカライテスク社製)0.790部(5.3モル部)に変更した以外は、実施例1と同様に行い、本発明の化合物、N(COH)・HOSO−CHCHCHSi(−O−)基で修飾されたメタノールシリカゾル(式(2)で表される官能基は、金属酸化物ゾル1gあたり3.4mmol)を含むエタノール溶液を得た。
Example 9
Ethanol was changed from 36 parts to 34 parts, and organosilica sol (manufactured by Nissan Chemical Co., Ltd., 30% methanol solution) was changed from 3.0 parts to 5.0 parts to give 0.214 parts (5.1) of lithium hydroxide monohydrate. Mol part) was changed to 0.790 parts (5.3 mole parts) of triethanolamine (manufactured by Nacalai Tesque), in the same manner as in Example 1, except that the compound of the present invention, N (C 2 H 4 OH) 3 ) HOSO 2 —CH 2 CH 2 CH 2 Si (—O—) Methanol silica sol modified with 3 groups (the functional group represented by the formula (2) is 3.4 mmol per 1 g of metal oxide sol) An ethanol solution containing was obtained.

実施例10
エタノールを36部から24部に、オルガノシリカゾル(日産化学製、30%メタノール溶液)を3.0部から15.0部に変更した以外は、実施例1と同様に行い、本発明の化合物、LiOSO−CHCHCHSi(−O−)基で修飾されたメタノールシリカゾル(式(2)で表される官能基は、金属酸化物ゾル1gあたり1.1mmol)を含むエタノール溶液を得た。
Example 10
Except that ethanol was changed from 36 parts to 24 parts and organosilica sol (manufactured by Nissan Chemical Co., Ltd., 30% methanol solution) was changed from 3.0 parts to 15.0 parts, the same procedure as in Example 1 was carried out. Ethanol solution containing methanol silica sol modified with 3 groups of LiOSO 2 —CH 2 CH 2 CH 2 Si (—O—) (the functional group represented by formula (2) is 1.1 mmol per 1 g of metal oxide sol) Got.

実施例11
エタノールをメタノールに変更した以外は、実施例2と同様に行い、本発明の化合物、LiOSO−CHCHCHSi(−O−)基で修飾されたメタノールシリカゾル(式(2)で表される官能基は、金属酸化物ゾル1gあたり3.4mmol)を含むメタノール溶液を得た。
Example 11
Methanol silica sol modified with the compound of the present invention, LiOSO 2 —CH 2 CH 2 CH 2 Si (—O—) 3 group, except that ethanol was changed to methanol (formula (2) A methanol solution containing 3.4 mmol / g of metal oxide sol was obtained.

実施例12
エタノールをメタノールに変更した以外は、実施例10と同様に行い、本発明の化合物、LiOSO−CHCHCHSi(−O−)基で修飾されたメタノールシリカゾル(式(2)で表される官能基は、金属酸化物ゾル1gあたり1.1mmol)を含むメタノール溶液を得た。
Example 12
Methanol silica sol modified with the compound of the present invention, LiOSO 2 —CH 2 CH 2 CH 2 Si (—O—) 3 group, except that ethanol was changed to methanol (formula (2) A methanol solution containing 1.1 mmol / g of metal oxide sol was obtained.

実施例13
エタノールを36部から24部に、オルガノシリカゾル(日産化学製、30%メタノール溶液)3.0部をオルガノシリカゾル(日産化学製、30%イソプロパノールSTゾル)5.0部に、水酸化リチウム1水和物0.214部(5.1モル部)を酸化銀0.591部(25.5モル部)に変更した以外は、実施例1と同様に行い、本発明の化合物、AgOSO−CHCHCHSi(−O−)基で修飾されたイソプロパノールシリカゾル(式(2)で表される官能基は、金属酸化物ゾル1gあたり3.4mmol)を含むエタノール溶液を得た。
Example 13
36 parts to 24 parts of ethanol, 3.0 parts of organosilica sol (Nissan Chemical, 30% methanol solution) to 5.0 parts of organosilica sol (Nissan Chemical, 30% isopropanol ST sol), The compound of the present invention, AgOSO 2 —CH, was prepared in the same manner as in Example 1 except that 0.214 parts (5.1 mole parts) of the Japanese product was changed to 0.591 parts (25.5 mole parts) of silver oxide. An ethanol solution containing isopropanol silica sol modified with 2 CH 2 CH 2 Si (—O—) 3 groups (the functional group represented by the formula (2) was 3.4 mmol per 1 g of the metal oxide sol) was obtained.

比較例1
3−(トリメトキシシリル)プロパン−1−チオール(チッソ株式会社)1.0部(5.1モル部)をエタノール36部に溶解させた後、水10.0部を加え24時間加熱還流した。冷却後過酸化水素水(三徳化学工業株式会社製、30%水溶液)3.5部(30.8モル部)を加え24時間加熱還流した。反応終了後室温まで冷却後、水酸化リチウム1水和物0.214部(5.1モル部)を少量の水に溶かして加え中和することにより、LiOSO−CHCHCHSi(OH)を調整した。これに、オルガノシリカゾル(日産化学製、30%メタノール溶液)3.0部を加え、室温で6時間攪拌することにより、LiOSO−CHCHCHSi(OH)とオルガノシリカゾルとの混合物を含むエタノール溶液を得た。
Comparative Example 1
After dissolving 1.0 part (5.1 mole part) of 3- (trimethoxysilyl) propane-1-thiol (Chisso Corporation) in 36 parts of ethanol, 10.0 parts of water was added and heated to reflux for 24 hours. . After cooling, 3.5 parts (30.8 moles) of hydrogen peroxide (Santoku Chemical Co., Ltd., 30% aqueous solution) was added and heated to reflux for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, and 0.214 part (5.1 mole part) of lithium hydroxide monohydrate was dissolved in a small amount of water and neutralized to obtain LiOSO 2 —CH 2 CH 2 CH 2 Si. (OH) 3 was adjusted. To this, 3.0 parts of organosilica sol (manufactured by Nissan Chemical Co., Ltd., 30% methanol solution) was added and stirred at room temperature for 6 hours, whereby LiOSO 2 —CH 2 CH 2 CH 2 Si (OH) 3 and organosilica sol An ethanol solution containing the mixture was obtained.

親水性評価および耐久性結果
実施例1〜13及び比較例1で得た修飾金属酸化物ゾルをエタノール(必要に応じて水との混合液)で25倍に希釈して処理液(表面親水化剤)とし、以下の様に所定の基板の表面を改質し、接触角を測定した。
また、ラビングテスター(大平理科工業社製)を用いて、表面改質した基板を水湿フェルト(荷重:500g)で100回擦った(ラビング試験)。ラビング試験後の基板を蒸留水で洗浄し、乾燥させた後、接触角を測定した。
Hydrophilic evaluation and durability results The modified metal oxide sol obtained in Examples 1 to 13 and Comparative Example 1 was diluted 25 times with ethanol (mixed solution with water if necessary) to obtain a treatment liquid (surface hydrophilization). The surface of a predetermined substrate was modified as described below, and the contact angle was measured.
Further, using a rubbing tester (manufactured by Ohira Science & Technology Co., Ltd.), the surface-modified substrate was rubbed 100 times with a wet and wet felt (load: 500 g) (rubbing test). The substrate after the rubbing test was washed with distilled water and dried, and then the contact angle was measured.

<基板(1)>
スライドガラス{76mm、26mm、1.2mm;水酸化ナトリウムの2−プロパノール飽和溶液に24時間浸漬した後、水洗し、乾燥(60℃、2時間)したもの}を処理液(表面親水化剤)に浸漬し、スライドガラスを取り出した後、液切りをし、120℃、24間加熱処理することにより、基板(1)を得た。
<基板(2)>
スライドガラス{76mm、26mm、1.2mm;水酸化ナトリウムの2−プロパノール飽和溶液に24時間浸漬した後、水洗し、乾燥(60℃、2時間)したもの}を処理液(表面親水化剤)に浸漬し、スライドガラスを取り出した後、液切りをし、室温で10分間アンモニアガス処理することにより、基板(2)を得た。
<Board (1)>
Slide glass {76 mm, 26 mm, 1.2 mm; immersed in 2-propanol saturated solution of sodium hydroxide for 24 hours, then washed with water and dried (60 ° C., 2 hours)} treatment liquid (surface hydrophilizing agent) Then, after removing the slide glass, the liquid was drained, and the substrate (1) was obtained by heat treatment at 120 ° C. for 24 hours.
<Substrate (2)>
Slide glass {76 mm, 26 mm, 1.2 mm; immersed in 2-propanol saturated solution of sodium hydroxide for 24 hours, then washed with water and dried (60 ° C., 2 hours)} treatment liquid (surface hydrophilizing agent) Then, the slide glass was taken out, drained, and treated with ammonia gas at room temperature for 10 minutes to obtain a substrate (2).

接触角測定装置{協和界面化学株式会社、DROP MASTER 500、液適量2μL、測定間隔1000ms、測定回数30回}で、表面改質スライドガラスの表面の任意の5箇所について、接触角(度)を測定し、平均値を算出した。 Contact angle measuring device {Kyowa Interface Chemical Co., Ltd., DROP MASTER 500, liquid suitable amount 2μL, measuring interval 1000ms, number of measurements 30 times}, contact angles (degrees) for any five points on the surface of the surface-modified glass slide. The average value was calculated.

Figure 0005840930
Figure 0005840930

表1から明らかなように、本発明の製造方法で得られた修飾金属酸化物ゾルを用いた親水化剤は未処理品に比べ、接触角が顕著に小さく、(表面)親水化の効果が優れることが判る。また親水化処理した基板を純水に1分間浸してのち乾燥させて接触角を測定したがほとんど変化は無かった。
また比較例1との比較から明らかなように、本発明の製造方法で得られた修飾金属酸化物ゾルを用いた親水化剤は、スルホン酸塩を有するシランカップリング材で作製した親水化剤に比べて耐久性に優れている。
As is apparent from Table 1, the hydrophilizing agent using the modified metal oxide sol obtained by the production method of the present invention has a significantly smaller contact angle than the untreated product and has the effect of (surface) hydrophilization. It turns out that it is excellent. The contact angle was measured by immersing the hydrophilized substrate in pure water for 1 minute and then drying it, but there was almost no change.
Further, as is clear from the comparison with Comparative Example 1, the hydrophilizing agent using the modified metal oxide sol obtained by the production method of the present invention is a hydrophilizing agent prepared with a silane coupling material having a sulfonate. Excellent durability compared to.

本発明の製造方法で得られる修飾金属酸化物ゾルは親水化効果及び帯電防止効果が大きく、コーティング可能で安価に製造出来るため、親水化剤、帯電防止剤、親水性コーティング組成物、抗菌剤、導電剤、イオン(プロトン)伝導性コーティング剤として好適である。 The modified metal oxide sol obtained by the production method of the present invention has a large hydrophilizing effect and antistatic effect, and can be coated and manufactured at low cost. Therefore, a hydrophilizing agent, an antistatic agent, a hydrophilic coating composition, an antibacterial agent, It is suitable as a conductive agent and an ion (proton) conductive coating agent.

Claims (3)

金属酸化物ゾルに、化学的にスルホン酸基に変換できる官能基を有するシランカップリング剤を反応させ、その後、酸化して得られる下記式(1)で表される官能基を有する修飾金属酸化物ゾルを塩基で中和することを特徴とし、金属酸化物ゾルがオルガノシリカゾルである、下記式(2)で表される官能基を有する修飾金属酸化物ゾルの製造方法。
HOS(=O)−R−Si(CH(−O−)3−n (1)
{式中、Rは炭素数1〜10のアルキレン基(本アルキレン鎖中に、ウレタン結合又はウレア結合を含有していても良い)であり、nは0又は1を表す。}
MOS(=O)−R−Si(CH(−O−)3−n (2)
{式中、Mは金属イオン又はアンモニウム(NR )基、Rは炭素数1〜10のアルキレン基(本アルキレン鎖中に、ウレタン結合又はウレア結合を含有していても良い)であり、Rは同一或いは異なってもよい炭素数1〜5のアルキル基、アルカノール基又は水素原子であり、nは0又は1を表す。}
A modified metal oxide having a functional group represented by the following formula (1) obtained by reacting a metal oxide sol with a silane coupling agent having a functional group that can be chemically converted to a sulfonic acid group, and then oxidizing the silane coupling agent. A method for producing a modified metal oxide sol having a functional group represented by the following formula (2), wherein the product sol is neutralized with a base, and the metal oxide sol is an organosilica sol .
HOS (═O) 2 —R 1 —Si (CH 3 ) n (—O—) 3-n (1)
{In the formula, R 1 represents an alkylene group having 1 to 10 carbon atoms (this alkylene chain may contain a urethane bond or a urea bond), and n represents 0 or 1. }
MOS (= O) 2 -R 1 -Si (CH 3) n (-O-) 3-n (2)
{In the formula, M is a metal ion or an ammonium (NR 2 4 ) group, and R 1 is an alkylene group having 1 to 10 carbon atoms (this alkylene chain may contain a urethane bond or a urea bond). , R 2 may be the same or different and each represents an alkyl group having 1 to 5 carbon atoms, an alkanol group, or a hydrogen atom, and n represents 0 or 1. }
シランカップリング剤が下記式(3)又は(4)で表される請求項1に記載の修飾金属酸化物ゾルの製造方法。
HS−R−Si(CH(−Y)3−n (3)
(Y−)3−n(CH Si−R−S−S−R−Si(CH(−Y)3−n (4)
{式中、Rは炭素数1〜10のアルキレン基(本アルキレン鎖中に、ウレタン結合又はウレア結合を含有していても良い)であり、Yは同一或いは異なってもよい炭素数1〜4のアルコキシ基又は水酸基、nは0又は1を表す。}
The method for producing a modified metal oxide sol according to claim 1, wherein the silane coupling agent is represented by the following formula (3) or (4).
HS-R-Si (CH 3 ) n (-Y) 3-n (3)
(Y-) 3-n (CH 3 ) n Si—R—S—S—R—Si (CH 3 ) n (—Y) 3-n (4)
{In the formula, R is an alkylene group having 1 to 10 carbon atoms (this alkylene chain may contain a urethane bond or a urea bond), and Y may be the same or different. An alkoxy group or a hydroxyl group, and n represents 0 or 1. }
式(2)で表される官能基が、金属酸化物ゾル1gあたり0.55〜6mmolである請求項1又は2に記載の修飾金属酸化物ゾルの製造方法。
The method for producing a modified metal oxide sol according to claim 1 or 2 , wherein the functional group represented by the formula (2) is 0.55 to 6 mmol per 1 g of the metal oxide sol.
JP2011247114A 2011-11-11 2011-11-11 Method for producing modified metal oxide sol Expired - Fee Related JP5840930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247114A JP5840930B2 (en) 2011-11-11 2011-11-11 Method for producing modified metal oxide sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247114A JP5840930B2 (en) 2011-11-11 2011-11-11 Method for producing modified metal oxide sol

Publications (2)

Publication Number Publication Date
JP2013103889A JP2013103889A (en) 2013-05-30
JP5840930B2 true JP5840930B2 (en) 2016-01-06

Family

ID=48623714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247114A Expired - Fee Related JP5840930B2 (en) 2011-11-11 2011-11-11 Method for producing modified metal oxide sol

Country Status (1)

Country Link
JP (1) JP5840930B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7022749B2 (en) * 2017-06-28 2022-02-18 クラレノリタケデンタル株式会社 2 Paste type dental curable composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004020112A1 (en) * 2003-07-04 2005-01-20 Bayer Chemicals Ag Paper production with modified silica sols as microparticles
JP2009203185A (en) * 2008-02-27 2009-09-10 Kri Inc Silicon compound and production method thereof
JP2010269985A (en) * 2009-05-22 2010-12-02 Fuso Chemical Co Ltd Sulfonic acid-modified aqueous anionic silica sol and method for producing the same

Also Published As

Publication number Publication date
JP2013103889A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
TWI831741B (en) Fluorine-containing ether compositions, coating fluids and articles
JP5750436B2 (en) Modified metal oxide sol
CN111051383B (en) Fluorine-containing ether compound, composition, and article
JP5308436B2 (en) Hydrophilic membrane
JPWO2019039226A1 (en) Fluorine-containing ether compound, fluorine-containing ether composition, coating liquid, article and its manufacturing method
JP5909604B1 (en) Surface coating material, coating film and hydrophilic oil-repellent material
WO2006073868A1 (en) Compositions of monomeric fluoro-surfactants
WO2020162371A1 (en) Fluorine-containing ether compound, fluorine-containing ether composition, coating liquid, article, method for producing article, and method for producing fluorine-containing compound
JP5879014B1 (en) Hydrophilic oil repellent and production method thereof, surface coating material, coating film, resin composition, oil-water separation filter medium, porous body
CN113454163B (en) Fluoroether composition, coating liquid, article, and method for producing same
JPWO2019039341A1 (en) Fluorine-containing ether compound, fluorine-containing ether composition, coating liquid, article and its manufacturing method
JP5299627B2 (en) Fluorine-containing nanocomposite particles and method for producing the same
JP2017528558A (en) Fluorinated surfactant
JP2020109187A (en) Compound, composition, surface treatment agent, article and manufacturing method of compound
TWI805569B (en) Water-repellent structure and manufacturing method thereof
Bouvet-Marchand et al. Distribution of fluoroalkylsilanes in hydrophobic hybrid sol–gel coatings obtained by co-condensation
EP3197903B1 (en) Isocyanate derived organosilanes
CA1133500A (en) Sulfonato-organosilanol compounds and aqueous solutions thereof
JP5840930B2 (en) Method for producing modified metal oxide sol
JP2014162742A (en) Fluorine-containing alkoxysilane compound, coating agent and water-repellent film
JP2009203185A (en) Silicon compound and production method thereof
CN115210295B (en) Fluorine-containing alcohol complex
JP7411757B2 (en) Betaine group-containing organosilicon compound, its molded product, and manufacturing method
CN113045970A (en) Coating composition and article provided with coating
US20220213345A1 (en) Fluorine-containing ether compound, surface treatment agent, fluorine-containing ether composition, coating liquid, article, and compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151112

R150 Certificate of patent or registration of utility model

Ref document number: 5840930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees