US7771598B2 - Apparatus, methods and systems for handling and processing waste material - Google Patents

Apparatus, methods and systems for handling and processing waste material Download PDF

Info

Publication number
US7771598B2
US7771598B2 US12/004,686 US468607A US7771598B2 US 7771598 B2 US7771598 B2 US 7771598B2 US 468607 A US468607 A US 468607A US 7771598 B2 US7771598 B2 US 7771598B2
Authority
US
United States
Prior art keywords
waste
hard particulates
released
particulates
disruptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/004,686
Other languages
English (en)
Other versions
US20090159529A1 (en
Inventor
Mike Kotelko
Peter Kotelko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Highmark Renewables Research LP
Original Assignee
Highmark Renewables Research LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40787347&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US7771598(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US12/004,686 priority Critical patent/US7771598B2/en
Application filed by Highmark Renewables Research LP filed Critical Highmark Renewables Research LP
Priority to CA2710200A priority patent/CA2710200C/fr
Priority to PCT/IB2008/003526 priority patent/WO2009090475A2/fr
Priority to CN200880125503.4A priority patent/CN101925418B/zh
Priority to MX2010006913A priority patent/MX2010006913A/es
Publication of US20090159529A1 publication Critical patent/US20090159529A1/en
Priority to US12/820,595 priority patent/US8017013B2/en
Priority to ZA2010/04619A priority patent/ZA201004619B/en
Publication of US7771598B2 publication Critical patent/US7771598B2/en
Application granted granted Critical
Assigned to HIGHMARK RENEWABLES RESEARCH LIMITED PARTNERSHIP reassignment HIGHMARK RENEWABLES RESEARCH LIMITED PARTNERSHIP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOTELKO, MIKE, KOTELKO, PETER
Priority to ZA2011/00112A priority patent/ZA201100112B/en
Priority to US13/197,088 priority patent/US20120024800A1/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S209/00Classifying, separating, and assorting solids
    • Y10S209/93Municipal solid waste sorting

Definitions

  • the present invention relates to apparatus, methods and systems for handling and processing waste material.
  • Organic waste material such as municipal wastewater or livestock manure, can present problems when generated on a large scale. For example, organic waste material can pose both a health risk and a nuisance. Decomposing organic waste can also release greenhouse gases, such as methane and carbon dioxide. Organic waste material can also be a potential source of air and water contamination. Thus, strategies for dealing with organic waste in such quantities are needed.
  • organic waste can be a difficult material to handle and work with during such processes.
  • waste can be highly heterogeneous in its composition.
  • livestock manure can include significant quantities of indigestible non-cellulosic plant matter (e.g. straw, wood) and hard particulates (e.g. sand, rocks and metal), all of which can be agglomerated with the manure.
  • indigestible non-cellulosic plant matter e.g. straw, wood
  • hard particulates e.g. sand, rocks and metal
  • Organic waste can also have very high solid content, thereby making it more difficult to handle and convey compared to more liquefied materials.
  • the present invention includes apparatus, methods, and systems for processing waste, in which at least a portion of the waste is disrupted to release embedded hard particulates, and the released hard particulates are segregated therefrom. The processed waste can then be diluted to decrease the solid content. Also provided are apparatus, methods, and systems that break up bulky structures contained in the waste, such as lignin, prior to dilution.
  • a system, method, or apparatus for processing waste wherein the waste contains hard particulates embedded therein.
  • the system, method, or apparatus can include or use a waste disruptor, wherein the waste disrupter disrupts at least a portion of the waste and thereby releases at least one of the embedded hard particulates from the disrupted waste; a segregator, wherein the segregator segregates at least one of the released hard particulates from the waste; and a dilution unit, wherein the dilution unit dilutes the waste with a liquid diluent.
  • the system, method, or apparatus can include or use a waste loader that provides waste continuously to the waste disrupter, which is configured to disrupt at least a portion of the continuously provided waste.
  • the segregator is configured to segregate at least one of the released hard particulates based upon a predetermined minimum size of the released hard particulate.
  • the segregating can be performed by size exclusion between the disrupted waste and the hard particulates.
  • a suitably-sized sieve can be used to retain released hard particulates of a given size, while allowing smaller disrupted waste to pass therethrough.
  • segregation by size exclusion can occur by subjecting waste with embedded hard particulates to a size-limited aperture or entrance, such that only the smaller-sized waste are able to pass through. Larger, released hard particulates are not able to pass through, and thus can be deflected or diverted from the waste to another location, thereby segregating the particulates from the waste.
  • waste can be impelled or otherwise urged towards to the size exclusion structure so that the waste is also disrupted. In this manner, disruption and segregation can occur using the same component structure.
  • the waste disrupter can disrupt the waste by impacting the waste with another object.
  • the organic waste further comprises metal contaminants, and the system, method, or apparatus can remove at least one of the metal contaminants from the waste. In certain embodiments, at least one of the metal contaminants can be magnetically removed.
  • the waste disrupter includes a disrupter bar, wherein the disrupter bar is positioned above an open auger conveying the waste. Waste being conveyed by the auger can be disrupted upon impact with the disrupter bar, thereby releasing at least one of the embedded hard particulates.
  • the disrupter entails depositing the waste on a mechanical rotary screener or like apparatus, thereby releasing at least one of the embedded hard particulates.
  • the rotary screener can also be configured to segregate disrupted waste from larger hard particulates, in which the rotary screener is sized to permit the smaller-sized waste to pass through, and larger particulates are conveyed off of the rotary screener.
  • the dilution unit may convey the waste after dilution to an anaerobic bio digester.
  • the liquid diluent can be liquified biodigestate, such as that produced by an anaerobic bio-digester.
  • the dilution step can involve diluting the waste until the solid content of the waste is about 12-13%.
  • the waste may in some embodiments also be heated.
  • the waste may in some embodiments be mixed. Heating the waste may in some embodiments be performed by diluting the waste with a liquid diluent having a higher temperature than the waste.
  • the diluting waste step can further comprise paddle mixing the diluted waste.
  • FIG. 1 is a flow chart illustrating an exemplary process for processing waste in accordance with an embodiment of the present invention
  • FIG. 2 is a flow chart illustrating an exemplary process for processing waste in accordance with an embodiment of the present invention
  • FIG. 3 illustrates a simplified bloc % diagram illustrating an exemplary system for processing waste in accordance with an embodiment of the present invention
  • FIG. 4 illustrates a simplified block diagram of an exemplary system for processing waste in accordance with an embodiment of the present invention.
  • FIGS. 5A-5B illustrate a side view and a top view, respectively, of an exemplary system for processing waste in accordance with an embodiment of the present invention.
  • FIGS. 1-5 Apparatus, methods and systems for processing waste are provided and described with reference to FIGS. 1-5 .
  • Waste may be any suitable material that includes organic and organically-derived matter.
  • waste can include by-products from industries such as agriculture, food processing, animal and plant processing, and livestock.
  • the waste produced by these and other industries include, but are not limited to: livestock manure, animal carcasses and offal, plant material, wastewater, sewage, food processing waste, and any combination thereof.
  • Waste can also include human-derived waste, such as sewage and wastewater, discarded food, plant or animal matter, and the like.
  • waste used in the present invention can be, and typically is, a mixture of normally-discarded organic matter.
  • the waste may be provided from any suitable source, including those described hereinabove.
  • the waste source is proximate to the processing location.
  • the present invention may process waste generated by a nearby feedlot or wastewater treatment plant. Such proximity may allow efficient and rapid processing at the waste. This proximity may also advantageously reduce the amount of time the waste is idle prior to processing, thereby reducing its potential to act as an environmental nuisance or hazard.
  • waste to be processed may be provided from a location or source more distant from the processing location. The latter positioning may be suitable in cases where the processing location is positioned in a central location to process waste from multiple sources that are situated in the local neighborhood or region.
  • Waste that is processed in accordance with the present invention may be a complex, heterogeneous mixture that can be difficult to handle.
  • livestock manure can be collected in large quantities from feedlots or other large populations of animals.
  • manure being an animal waste product, is already a complex mixture of substances.
  • manure may also acquire additional contaminants prior to and during its collection. These contaminant can include, for example, bedding straw, rocks and dirt from the ground, garbage, and other debris. Other non-manure contaminants are possible.
  • other types of organic waste including those described herein, each have their own risks of collecting heterogeneous contaminating material, or already include such material due to their origin or any preliminary processing.
  • contaminants can be either organic or is inorganic in nature.
  • certain contaminants such as rocks and metal
  • metal and rocks unlike organic waste, will not undergo biological digestion or decomposition, and thus will end up as inert remnants of such processes.
  • these contaminants such as rocks and metals which are generally more resistant to physical forces, may present physical hazards or impediments to subsequent processes, or pose a potential to damage equipment used in such further processing.
  • rock and metal contaminants are also generally insoluble, and thus will impede handling of the waste in liquid form. Therefore, the present invention may provide a solution to reduce, if not minimize, the problems caused by such contaminants. Contaminants of this type are referred to herein as “hard particulates.”
  • hard particulates can be embedded into the organic waste. As a result, merely handling the waste does not necessarily dislodge the particulates sufficiently to allow their removal. Further, organic waste typically has a water content that results in adhesion to the embedded hard particulates, thereby making their removal more difficult.
  • the embedded hard particulates may be released from the waste solids and allowed to settle out. Furthermore, dilution can facilitate, and may even be required for, subsequent processing of the waste.
  • FIG. 1 This figure shows a flow chart illustrating an exemplary process for processing waste in accordance with the present invention.
  • the present invention includes releasing embedded hard particulates from waste by disrupting the waste.
  • this disruption occurs prior to substantial dilution of the waste.
  • the waste may remain in a low-moisture/high-solid form.
  • the present invention can improve on dilution by reducing the need for pre-processing prior to disruption.
  • Other improvements can include: preventing the increase of the total volume of the waste to an impractical amount (which can increase the costs and burden of conveying the diluted waste), reducing the potential need for additional processes to retrieve and remove the released particulates, such as by settling (which can be time-consuming), and allowing continuous processing to be done, instead of relying solely upon batch processing. Continuous processing can reduce idle time, where waste is not processed, and can thereby avoid further decomposition of the organic material within the waste, which can lead to reduced yield of useful products recovered from the waste.
  • pre-processing of the is waste may be performed, such as the addition of supplements to the waste.
  • supplements can be useful in processes that are subsequent to the disruption and segregation processes supplements, can include, for example, glycerol and liquid biodigestate from an anaerobic bio-digester.
  • the present invention can be advantageous because it can enable continuous processing of waste. Continuous processing can reduce or eliminate down time and increase throughput. Also, such increased efficiency may also reduce decomposition of the organic prior to biodigestion.
  • At step 104 of process 100 at least a portion of the waste is disrupted, thereby releasing at least one of the embedded hard particulates from the disrupted waste.
  • Disruption of the waste in this context means mixing, breaking up, fracturing, fragmenting, crushing, impacting, tumbling, flattening, or any other like processes. By these processes, embedded hard particulates are increasingly released, and separated from the bulk of the waste until released, and the smaller, disrupted waste is less capable of re-embedding or retaining the hard particulates.
  • Waste disruption at step 104 can be performed by any suitable apparatus, device, or process.
  • devices that physically interact with the waste are used.
  • Such devices can include, for example, devices that implement actions such as mixing, breaking-up, crushing, fracturing, impacting, fragmenting, tumbling, flattening, and the like. These actions may involve direct physical intervention in the waste (e.g. is mixing), or manipulating the waste in a manner that results in its disruption (e.g. tumbling).
  • Other suitable devices may implement more than one of these actions, either simultaneously or sequentially.
  • a suitable device for performing step 104 may also disrupt the waste in a processive manner, in which the initial waste provided is disrupted to a given degree, and then, as it proceeds through the device, undergoes increasing degrees of disruption. In this manner, waste may be processed in a more continuous fashion, and the extent of desired waste disruption can result from the configuration of the device used.
  • waste-disrupting apparatus can include devices generally used to fragment large material into smaller material, such as an impact crusher, a gyratory crusher, a jaw crusher, or a cone crusher, as are known in the art.
  • devices generally used to fragment large material into smaller material such as an impact crusher, a gyratory crusher, a jaw crusher, or a cone crusher, as are known in the art.
  • waste may contain other materials which, although they may be different than the hard particulates, may still disrupt subsequent processes performed on the waste.
  • livestock manure may contain a significant amount of bedding straw. Straw, like wood, is composed of a non-cellulosic material (lignin) that is more resistant to digestion or decomposition. Furthermore, due to its relatively large size, straw is conducive to forming larger mats and plugs that can interfere with subsequent processes. Breaking up the straw into smaller fragments may reduce or limit this problem.
  • lignin non-cellulosic material
  • a further advantage of the present invention is that the disruption step may also break up other matter in the waste, such as straw and other amenable materials.
  • the break-up or disruption of such structures may reduce or preclude their interference with later waste processing steps, and may obviate the need for additional processes to specifically perform this break-up.
  • co-substrates and/or supplements can be added to the waste.
  • These co-substrates and/or supplements can comprise organic material, and other supplemental compounds that can facilitate either the handling of the waste or downstream processing of the waste. Addition of co-substrates and/or supplements prior to or concurrent with disruption step 104 may be desirable in some embodiments, as the disruption step may also act to mix the co-substrates and/or supplements with the waste.
  • hard particulates released from the disrupted waste at step 104 are segregated from the waste.
  • any suitable device that can distinguish and separate the released hard particulates from the disrupted waste may be suitable.
  • the segregation step may rely on differences in size, diameter, hardness, specific gravity, solubility, mobility, frictional coefficient, and any other suitable property or combination thereof.
  • a suitable device may distinguish the disrupted waste from the released hard particulates based on multiple criteria, either concurrently or serially.
  • the released hard particulates may be segregated from the disrupted waste based upon their respective sizes.
  • An exemplary suitable device for such a segregation can use a sieve, or any other structure having one or more size-excluding openings or gaps.
  • Such a structure may have openings chat are sized to retain hard particulates having a minimum mean diameter.
  • a suitable mean diameter of the retained particulates can be, for example, greater than 1, 2, 4, 8, 12, 16, or 20 centimeters.
  • a preferred mean diameter is about 8 centimeters.
  • the desired gap or opening size is also configured not to retain the disrupted waste, thereby allowing the disrupted waste to be passed through the size-excluding structure.
  • the segregation of the waste may be performed in a processive manner, in which the disrupted waste proceeds through the suitable device, and is subsequently subjected to different segregation criteria.
  • steps 104 and 106 are performed concurrently or substantially concurrently.
  • the devices used in steps 104 and 106 may be integrated, or may even be the same device.
  • the disrupted waste is diluted with a liquid diluent.
  • this step follows the segregation of the disrupted waste from the released hard particulates.
  • This step can prepare the waste for further, subsequent processing steps.
  • the waste may become easier to handle and transport. Decreasing the solid content of the waste also may be required for processes such as anaerobic biodigestion of the waste, as is known in the art (examples of which are described in U.S. Pat. No. 7,014,768, the contents of which are incorporated herein by reference in its entirety).
  • the waste can be diluted to a solid content of about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, 12% about 13%, about 15%, about 17%, about 20%, about 25%, about 50%, or any other suitable amount.
  • a preferred solid content is about 12% to 13%.
  • the liquid diluent may be any suitable liquid, such as water.
  • other liquids such as complex liquids derived from other processes may be used, or fed back, to act as a diluent. Use of such complex liquids may act as a source of supplemental components or co-substrates to be mixed with the waste.
  • liquid biodigestate (or any suitable component thereof) from an anaerobic biodigester is preferred as the diluent, or the diluent may be composed in part of biodigestate.
  • biodigestate-derived liquid may enhance the subsequent bio-digestion of the waste, and may also improve the mixing characteristics of the waste.
  • FIG. 2 is a flow chart illustrating an exemplary embodiment of a process for processing waste in accordance with an embodiment of the present invention.
  • waste comprising hard particulates embedded therein
  • the loading step is performed by a suitable device or apparatus that conveys waste to the device or apparatus performing step 204 , the disruption step.
  • the device performing the loading step can regulate the amount of waste so as to supply a suitable amount oat waste at a suitable rate.
  • the loading of waste can be provided continuously or in batches.
  • Exemplary devices for loading and providing waste include, without limitation, a hopper, a conveyor belt, and the like.
  • Steps 204 , 206 , and 208 generally may be similar to steps 104 , 106 , and 108 from FIG. 1 , as described hereinabove.
  • the diluted waste may be heated within the dilution unit.
  • Heat can be provided by heating a vessel in which the diluted waste is being held.
  • heat can be provided by heating at least some of the diluents used during the dilution step, wherein the liquid diluent has a higher temperature than the waste. In this manner, heating of the waste can occur essentially concurrently with its dilution (i.e. steps 208 and 210 ).
  • the liquid can be heated by an external heating apparatus or can be heated as part of, or derived from, an exothermic biological or chemical process.
  • metal contaminants may be removed from the diluted waste. It is understood that some or all of the metal contaminants may have already been removed during the segregation step, as metal contaminants may share certain properties with hard particulates that would permit their selection and segregation from the disrupted waste.
  • a magnet may be used to extract ferromagnetic metal contaminants.
  • the magnet may guide or deflect the metal, so that the metal is retained when the diluted waste is conveyed out or removed from this step, thereby segregating them from the diluted waste.
  • the diluted waste is mixed within a dilution unit.
  • the mixing at step 214 can take place for a predetermined amount of time, or until a desired consistency or state of the diluted waste is achieved, in some embodiments. In other embodiments, this mixing can be done concurrently with the diluting step 208 .
  • any two or more of steps 208 , 210 , 212 and 214 may be performed essentially concurrently.
  • the disrupted waste may be diluted and mixed, while heat is introduced and metal contaminants are removed.
  • any two or more of these steps may be performed in overlapping phases.
  • a single integrated device may perform any two or more of these steps, either sequentially or essentially concurrently.
  • a single device may perform two or more of these steps, but where the steps are performed serially or in overlapping steps.
  • steps 208 , 210 , 212 and 214 need not be performed in the order shown, and thus may be performed in any suitable order.
  • the diluted waste may be mixed (step 214 ) prior to removing the metal contaminants (step 212 ).
  • these steps may be performed sequentially, or the subsequent step may overlap with the prior step.
  • any suitable combination of steps can be performed simultaneously, which can yield greater efficiency.
  • step 212 and step 214 can be performed simultaneously, which can yield greater efficiency both with respect to time and device utilization.
  • the diluted waste can be conveyed or removed from the dilution unit.
  • This step can be performed by any device that is configured or suitable for conveying liquefied or semi-solid material.
  • the device or apparatus may rely on passive conveyance (e.g. gravity-driven flow) or active conveyance (e.g. pumps, conveyer belts, etc.), or any suitable combination thereof.
  • the device or apparatus may be configured so that smaller or otherwise minor particulates, such as sand or sawdust, can be conveyed without causing significant impedance, damage or disruption.
  • segregation step 106 or 206 may be configured such that minor particulates that will not result in such impedance, damage or disruption need not be segregated. Such coordination between these, as well as other steps, may improve the efficiency and/or the throughput of the overall process.
  • FIG. 3 illustrates a schematic block diagram illustrating an exemplary embodiment of a system for processing waste in accordance with the present invention.
  • Exemplary system 300 includes waste disruptor 304 , segregator 306 , and dilution unit 308 .
  • Waste disruptor 304 may be any suitable apparatus or device that performs steps 104 or 204 , as described herein. Waste disruptor 304 receives waste 320 , examples of which are described herein. Waste 320 can be provided continuously, in batches, or any suitable combination thereof.
  • Disruptor 304 is configured to disrupt waste is in the manner described herein, generating disrupted waste 322 from at least a portion of waste 320 .
  • Disrupted waste 322 can be generated continuously, in batches, or any suitable combination thereof.
  • disrupted waste 322 can be generated processively, in which the degree and/or extent of disruption waste 320 increases as the waste proceeds through the disrupter.
  • Segregator 306 may be any suitable apparatus or device that performs steps 106 or 206 , as described herein. At least a portion of disrupted waste 322 is subjected to segregator 306 . Disrupted waste 322 can be subjected to the segregator continuously, in batches, or any suitable combination thereof. As described herein, segregator 306 may be configured as to the criteria and magnitude of separation between the hard particulates and the disrupted waste. Released hard particulates 324 , following segregation from disrupted waste 322 , may be removed from segregator 306 . This removal may be continuous (e.g. during segregation) or in one or more batches (e.g. following at least a substantial amount of segregation). In some embodiments, released hard particulates 324 may be retained in segregator 306 , while segregated disrupted waste 326 is conveyed or removed. In such embodiments, the retained hard particulates may be removed later.
  • Dilution unit 308 may be any suitable apparatus or device that performs steps 108 or 208 , as described herein. Dilution unit 308 can dilute disrupted waste 326 continuously, in batches, or any suitable combination thereof. At least a portion of segregated waste 326 is subjected to dilution by dilution unit 308 . Diluent 328 may provided to dilution unit 308 prior to, following, essentially concurrently with, or any suitable combination thereof to receiving disrupted waste 326 . Diluted waste 330 can be generated continuously, in batches, or any suitable combination thereof.
  • disruptor 304 may be combined or integrated as a single device.
  • segregator 306 may be combined or integrated as a single device.
  • dilution unit 308 may be combined or integrated as a single device.
  • FIG. 4 illustrates a schematic block diagram of an exemplary system 400 for processing waste in accordance with an embodiment of the present invention.
  • System 400 can include waste loader 403 , waste disruptor/segregator 405 , dilution unit 408 and anaerobic bio-digester 418 .
  • Waste loader 403 is a suitable device that can perform loading waste step 203 described herein.
  • waste loader 403 can be a hopper, conveyer, or any other suitable device or apparatus that can provide waste 420 .
  • Waste loader can provide waste 420 continuously, in batches, or any suitable combination thereof.
  • Waste disruptor/segregator 405 receives the waste from waste loader 403 and performs steps 104 and 106 , or steps 204 and 206 . These two steps may be performed essentially concurrently, serially, overlapping, or any suitable combination thereof. As in system 300 , disruptor/segregator 405 may also be separated components, in which the disruption and segregation steps are performed by separate components.
  • particulates 424 segregated from disrupted waste 426 may be removed from disruptor/segregator 405 , or may be retained therein for later removal.
  • Dilution unit 408 may be any suitable apparatus or device that performs steps 108 or 208 , as described herein. Dilution unit 408 can dilute segregated disrupted waste 426 continuously, in batches, or any suitable combination thereof. At least a portion of segregated waste 426 is subjected to dilution by dilution unit 408 . Diluent 436 may be provided to dilution unit 408 prior to, following, essentially concurrently with, or in any suitable combination thereof to disrupted waste 426 . Diluted waste 430 can be generated continuously, in batches, or in any suitable combination thereof.
  • dilution unit 408 may include a mixing means, such as described in step 214 herein.
  • heat 432 may be provided to dilution unit 408 , such as described herein regarding step 210 of FIG. 2 . Heat may be provided directly to the unit, or may be introduced via heating of diluent 436 .
  • system 400 may include anaerobic bio-digester 418 .
  • anaerobic bio-digester 418 certain species of micro-organisms, such as methanogenic bacteria, can grow and metabolize in a substantially anaerobic environment. Further, such species produce methane and other gases as by-products.
  • exemplary anaerobic bio-digesters of the present invention are configured to allow anaerobic growth, and may be further configured to capture or collect methane and other volatile/gaseous products produced by bacterial metabolism, also known as biogas.
  • diluted waste 430 may be provided to anaerobic bio-digester 418 as a nutrient source for anaerobic bacteria.
  • waste 430 comprises livestock manure
  • the waste itself may already contain suitable anaerobic bacterial species to allow digestion under anaerobic conditions.
  • Biodigestate Upon anaerobic digestion of at least a portion of the waste, biodigestate is also produced.
  • Biodigestate includes at least partially nutrient-depleted media resulting from anaerobic bacterial growth, as well as the bacteria. Biodigestate may include other volatile and non-volatile metabolites from bacteria growth.
  • the solid content of biodigestate may also vary, depending on the extent of digestion, the initial moisture/solid content of the waste, and the amount of water added to or removed from the bio-digester during the digestion.
  • biodigestate 428 from bio-digester 418 may be conveyed to dilution unit 408 as diluent 436 , and used in the manner described herein.
  • returned biodigestate 428 may be heated, thereby introducing heat to diluted waste 430 .
  • Using liquid biodigestate can be advantageous compared to using other liquid diluents, such as water, because compounds in the liquid biodigestate can accelerate the dilution of the waste, and make diluted waste 430 more suitable and amenable for anaerobic biodigestion.
  • FIGS. 5A-5B illustrate a side view and a top view, respectively, of exemplary system 500 for processing waste in accordance with an embodiment of the present invention.
  • Waste processing system 500 can include container 502 , conveying system 504 , open auger 506 , disrupter bar 508 , rotary screener 510 , disrupted waste container 612 , conveying system 614 , auger 616 , container 519 , paddles 520 , pump 522 , and macerator 524 .
  • System 500 illustrates a preferred exemplary embodiment of the present invention, wherein waste disruption, release of hard particulates from the disrupted waste, and segregation of released hard particulates from the disrupted waste can take place at substantially the same time (e.g., upon impact with a disrupter bar or other structure).
  • waste can be deposited into system 500 through the open top of container 502 .
  • Conveying system 504 is configured to convey the waste within container 502 towards the proximal end of open auger 506 .
  • Conveying system 504 can be any known device that can transport solid or semi-solid material, such as a walking floor, a conveyer belt, a slatted chain floor, or the like.
  • Open auger 506 similar to augers known in the art, is configured to convey waste from its proximal end to its distal end upon appropriate rotation of the auger along its longitudinal axis. As a result, waste is generally conveyed out of container 502 . Open auger 506 is further configured to allow waste material that is being conveyed therein to prematurely exit the auger, such as by falling out from the top or sides of the auger. Open auger 506 can be angled upwards in some embodiments, such that at least some of the waste material that exits open auger 506 falls back into container 502 . In certain preferred embodiments, open auger 506 can be positioned at an approximate 45 degree angle, wherein the distal end is elevated with respect to the proximal end.
  • Open auger 606 can also be positioned to be angled downwards, or can be positioned to be substantially level. While one open auger is shown in system 500 , the present invention is not limited in this regard, such that multiple open augers, operating substantially in parallel, can be used to transport waste from container 602 . In certain preferred embodiments, three open augers can be used in this manner.
  • Disruptor bar 508 is positioned at a pre-determined proximity with respect to open auger 506 such that the disrupter bar and the auger acts as a size exclusion device on material being conveyed by the auger. This proximity is configured such that material being conveyed by open auger 506 must be less than a pre-determined size parameter (e.g., average diameter) in order to continue conveyance by the auger.
  • a pre-determined size parameter e.g., average diameter
  • Objects within the material such as hard particulates embedded within the waste, that are larger than the pre-determined size parameter (e.g., having an average diameter less than about 6, 8, 10, or 12 centimeters) will collide with disrupter bar 508 and thus be dislodged from the waste. Smaller particulates can continue to be conveyed by the auger. Likewise, disrupted waste, which can be fractured or broken upon impacting disrupter bar 508 , can also continued to be conveyed.
  • the pre-determined size parameter e.g., having an average diameter less than about 6, 8, 10, or 12 centimeters
  • such larger hard particulates When such larger hard particulates are dislodged and released by disrupter bar 508 , they can also be segregated from the waste. In some embodiments, the released hard particulates can then fall down the length or over the sides of open auger 606 back into container 502 . In this manner, such released hard particulates are segregated from the disrupted waste.
  • Disruptor bar 508 can be positioned at any suitable location along the length of open auger 506 .
  • disruptor bar 508 can be positioned proximate to the underside of open auger 506 . It is preferred to position disrupter bar 508 at a position along the auger such that hard particulates released upon impact with the disruptor bar fall back into container 502 .
  • Disruptor bar 508 can be composed of any suitable material, and is preferably composed of a material having sufficient hardness and durability to withstand repeated collisions with hard particulates.
  • Rotary screener 510 is configured to disrupt the waste further, thereby releasing additional hard particulates from the waste.
  • Rotary screener 510 can include a plurality of rotating cylindrical flights, such as flight 513 , which can be mechanically powered. In some embodiments, the flights are configured to rotate in the same direction, such as shown by directional arrow 511 .
  • Rotary screener 510 contains flights chat are substantially at the same height as the other flights; however, in some embodiments, the flights can be at different heights (e.g., rotary screener sib can be angled), which can assist in directing segregated hard particulates in one direction.
  • Flight 513 includes a plurality of grooves, and a plurality of protuberances, such as protuberance 515 , which can enhance disruption of waste when waste comes into contact with flight 513 .
  • Waste disrupted by rotary screener 510 can fall between the flights into container 512 , positioned therebelow. Hard particulates that are released from the disrupted waste, due to their size and/or hardness, will not pass between the flights. Instead, such hard particulates are segregated from the waste by being conveyed across the rotary screener by the flights, typically in the direction of flight rotation 511 .
  • rotary screener 510 can be configured to segregate hard particulates of any pre-determined size, with the disrupted waste passing between the flights.
  • Rotary screener 510 in some embodiments, is configured to segregate smaller hard particulates than disrupter bar 508 (e.g. 2 cm in average diameter or less).
  • a conveying system (not shown) can be installed to receive segregated hard particulates are expelled from rotary screener 510 .
  • This conveying system is configured to remove the segregated hard particulates from the rotary screener.
  • a container (not shown) can be placed can be positioned to collect segregated hard particulates that are expelled from rotary screener 510 . This container can be emptied periodically to prevent excessive buildup or cluttering caused by the segregated hard particulates.
  • Waste that passes through rotary screener 510 can fall into container 512 positioned therebelow, where it can be conveyed by conveying system 514 towards the proximal end of auger 516 .
  • Auger 516 in a manner similar to that of auger 506 , can convey waste from its proximal end to its distal end, thereby removing the conveyed waste from container 512 .
  • Auger 516 can be angled upwards in some embodiments, as shown in system 500 .
  • Auger 516 can also be positioned to be angled downwards or substantially level. While a single auger is shown in system 500 , the present invention is not limited in this regard, such multiple augers operating substantially in parallel can be used to remove waste from container 512 .
  • auger 516 can be optionally substituted with one or more conveying systems, such as rotary paddles (not shown), that are positioned to urge material from container 512 to be deposited on a rotary screener (not shown), similar to rotary screener 510 .
  • conveying systems such as rotary paddles (not shown)
  • rotary screener such as rotary screener 510
  • the foregoing rotary screener can further disrupt and segregate waste from container 512 .
  • segregated waste can then be conveyed to or deposited in container 518 .
  • Waste can be conveyed by auger 516 into container 518 .
  • waste can be diluted with one or more liquid diluents.
  • Container 518 is preferably enclosed. Such an enclosure can be advantageous in embodiments where container 518 shares an atmosphere with an anaerobic bio-digester because it can prevent oxygen or other contaminating material from entering the anaerobic bio-digester.
  • container 518 can be sealed to prevent or minimize exposure to air.
  • Water can be used as a diluent for the waste in container 518 . Water can be added to the waste using any known method of conveying a liquid (not shown). The water can be pre-heated in some embodiments.
  • Biodigestate can include lignin-containing materials (e.g., straw), as described hereinabove.
  • the biodigestate can be removed directly from an anaerobic bio-digester.
  • the biodigestate is removed from the anaerobic bio-digester at the depth where the density corresponds to that of the most digested material. Removing biodigestate at this depth can be advantageous, as it removes the more digested waste, thereby enriching the remaining bio-digester contents with the leas digested waste for further digestion.
  • biodigestate can enter container 518 through pipe 526 , and can be macerated by macerator 524 .
  • Macerator 524 breaks up the biodigestate, particularly the lignin-containing materials contained therein, so as to facilitate dilution, pumping of the diluted waste, and to prevent interference with subsequent biodigestion processes.
  • Macerator 524 can be any commercially available macerator.
  • macerator 524 may use counter-rotating blades that can grind the biodigestate.
  • Macerating the biodigestate can also be advantageous because breaking up the lignin-containing materials can promote anaerobic biodigestion of these lignin-containing materials which, prior to maceration, are substantially undigested. Maceration can thereby increase overall biogas output.
  • the waste can be mixed by agitators, such as paddle 520 .
  • Paddle 520 can rotate about its axis and thereby mix the waste.
  • Diluted waste can be removed from container 518 through pipe 528 using pump 522 .
  • Diluted waste can be removed from container 518 continuously in some embodiments, which can reduce down time.
  • diluted waste can be removed from container 518 in batches, which can allow for more thorough dilution of the waste and/or more complete mixing.
  • grit, sand, and other denser particulates can be allowed to settle out from the diluted waste to the bottom of the container. Such settled material can be removed by conveying system 530 . In this manner, the diluted waste can be advantageously depleted of such particulates, which may interfere with later processes, such as biodigestion.
  • an in-line macerator can be configured to macerate the diluted waste passing through pipe 528 .
  • Such embodiments can be advantageous because the waste may contain lignin-containing materials, which can interfere with pumping and subsequent anaerobic biodigestion processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Sewage (AREA)
US12/004,686 2007-12-21 2007-12-21 Apparatus, methods and systems for handling and processing waste material Expired - Fee Related US7771598B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US12/004,686 US7771598B2 (en) 2007-12-21 2007-12-21 Apparatus, methods and systems for handling and processing waste material
CA2710200A CA2710200C (fr) 2007-12-21 2008-12-15 Appareil, procedes et systemes pour manipuler et traiter des dechets
PCT/IB2008/003526 WO2009090475A2 (fr) 2007-12-21 2008-12-15 Appareil, procédés et systèmes pour manipuler et traiter des déchets
CN200880125503.4A CN101925418B (zh) 2007-12-21 2008-12-15 用于处理和加工废料的装置、方法和系统
MX2010006913A MX2010006913A (es) 2007-12-21 2008-12-15 Aparatos, metodos y sistemas para manejar y procesar material de desperdicio.
US12/820,595 US8017013B2 (en) 2007-12-21 2010-06-22 Apparatus, methods and systems for handling and processing waste material
ZA2010/04619A ZA201004619B (en) 2007-12-21 2010-06-30 Removal of hard particles embedded in waste
ZA2011/00112A ZA201100112B (en) 2007-12-21 2011-01-04 Removal of hard particles embedded in waste
US13/197,088 US20120024800A1 (en) 2007-12-21 2011-08-03 Apparatus, methods and systems for handling and processing waste material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/004,686 US7771598B2 (en) 2007-12-21 2007-12-21 Apparatus, methods and systems for handling and processing waste material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/820,595 Continuation US8017013B2 (en) 2007-12-21 2010-06-22 Apparatus, methods and systems for handling and processing waste material

Publications (2)

Publication Number Publication Date
US20090159529A1 US20090159529A1 (en) 2009-06-25
US7771598B2 true US7771598B2 (en) 2010-08-10

Family

ID=40787347

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/004,686 Expired - Fee Related US7771598B2 (en) 2007-12-21 2007-12-21 Apparatus, methods and systems for handling and processing waste material
US12/820,595 Expired - Fee Related US8017013B2 (en) 2007-12-21 2010-06-22 Apparatus, methods and systems for handling and processing waste material
US13/197,088 Abandoned US20120024800A1 (en) 2007-12-21 2011-08-03 Apparatus, methods and systems for handling and processing waste material

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/820,595 Expired - Fee Related US8017013B2 (en) 2007-12-21 2010-06-22 Apparatus, methods and systems for handling and processing waste material
US13/197,088 Abandoned US20120024800A1 (en) 2007-12-21 2011-08-03 Apparatus, methods and systems for handling and processing waste material

Country Status (6)

Country Link
US (3) US7771598B2 (fr)
CN (1) CN101925418B (fr)
CA (1) CA2710200C (fr)
MX (1) MX2010006913A (fr)
WO (1) WO2009090475A2 (fr)
ZA (2) ZA201004619B (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI433735B (zh) * 2011-11-07 2014-04-11 Processing waste, oil mist recovery methods and devices
US20140367332A1 (en) * 2013-06-12 2014-12-18 Hadi Hillo Septic system and method of treating sewage and grease
US11180391B2 (en) 2013-10-02 2021-11-23 Anaergia B.V. Method and device for processing solid waste
US11033940B2 (en) 2015-11-02 2021-06-15 Anaergia B.V. Method and device for processing solid waste
WO2020163584A1 (fr) 2019-02-07 2020-08-13 California Bioenergy Llc Systèmes d'agrégation et de traitement de biogaz en biométhane

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2188847A (en) * 1936-03-12 1940-01-30 Municipal Sanitary Service Cor Apparatus for and method of treating sewage sludge and the like
US2903131A (en) * 1955-10-19 1959-09-08 Virginia Carolina Chem Corp Process for the benefication of phosphate ores
US4303412A (en) 1979-03-27 1981-12-01 Baikoff Eugene M A Method and apparatus for compressively separating waste material
US4577996A (en) * 1984-07-10 1986-03-25 Dow Corning Corporation Method of controlling aquatic plant growth and silicone rubber benthic barriers
WO1993023170A1 (fr) 1992-05-15 1993-11-25 Rolf Braach Dispositif pour le broyage selectif et le nettoyage de tubes cathodiques
US5297741A (en) 1992-05-20 1994-03-29 Daimler-Benz Ag Process for disintegration and pure-sorted separation of recyclable different plastics of composite structural parts
US5337965A (en) 1992-10-09 1994-08-16 Finoll Recycling Ltd. Method and apparatus for recycling asphalt based roofing material
US5476994A (en) * 1994-05-06 1995-12-19 Greenfield Environmental Method for extracting metals from sediment
US5478473A (en) * 1993-04-09 1995-12-26 Zaidan Hojin Nanyo Kyokai Method and device for purifying water
GB2301112A (en) 1995-05-24 1996-11-27 California Engineering Consult Recovering useful products from waste material
US5607060A (en) * 1993-08-11 1997-03-04 Henkel Corporation Method and apparatus for removing metal contamination from soil
US5762449A (en) * 1994-07-22 1998-06-09 Hey; Donald L. River or lake bottom apparatus for scavenger fish control
US6136590A (en) * 1998-02-24 2000-10-24 Kruse; Robert A. Waste materials recycling method and apparatus
US6403364B1 (en) * 2000-01-28 2002-06-11 Geovation Consultants Inc. Method for the enhanced anaerobic bioremediation of contaminants in aqueous sediments and other difficult environments
US20020092799A1 (en) * 2001-01-16 2002-07-18 Steinar Storruste Reclaimer
US6423532B1 (en) * 1997-02-24 2002-07-23 Linde Brv Biowaste Technologies Ag Refuse-treatment method and apparatus
US20040164021A1 (en) * 2003-01-20 2004-08-26 Xiaomei Li Process for removal and recovery of nutrients from digested manure or other organic wastes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427947A (en) * 1993-03-25 1995-06-27 Dalos; David E. Environmental chamber and method for composting solid waste
CN1321552A (zh) * 2000-04-29 2001-11-14 杨俊山 垃圾处理资源再生方法及装置
US6773612B2 (en) * 2001-03-30 2004-08-10 Richard A. Dias Sloped screen separator that removes solids from a manure slurry
CN1155535C (zh) * 2003-03-14 2004-06-30 夏鹏飞 一种以垃圾为原料的制砖方法
KR100592492B1 (ko) * 2004-03-30 2006-06-23 한국과학기술원 연속회분식 고온/중온 이단 혐기소화 공정을 이용한유기성 폐기물의 처리방법
US7410583B2 (en) * 2006-08-10 2008-08-12 East Bay Municipal Utility District Process of treating organic waste for anaerobic digestion

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2188847A (en) * 1936-03-12 1940-01-30 Municipal Sanitary Service Cor Apparatus for and method of treating sewage sludge and the like
US2903131A (en) * 1955-10-19 1959-09-08 Virginia Carolina Chem Corp Process for the benefication of phosphate ores
US4303412A (en) 1979-03-27 1981-12-01 Baikoff Eugene M A Method and apparatus for compressively separating waste material
US4577996A (en) * 1984-07-10 1986-03-25 Dow Corning Corporation Method of controlling aquatic plant growth and silicone rubber benthic barriers
WO1993023170A1 (fr) 1992-05-15 1993-11-25 Rolf Braach Dispositif pour le broyage selectif et le nettoyage de tubes cathodiques
US5297741A (en) 1992-05-20 1994-03-29 Daimler-Benz Ag Process for disintegration and pure-sorted separation of recyclable different plastics of composite structural parts
US5337965A (en) 1992-10-09 1994-08-16 Finoll Recycling Ltd. Method and apparatus for recycling asphalt based roofing material
US5478473A (en) * 1993-04-09 1995-12-26 Zaidan Hojin Nanyo Kyokai Method and device for purifying water
US5607060A (en) * 1993-08-11 1997-03-04 Henkel Corporation Method and apparatus for removing metal contamination from soil
US5476994A (en) * 1994-05-06 1995-12-19 Greenfield Environmental Method for extracting metals from sediment
US5762449A (en) * 1994-07-22 1998-06-09 Hey; Donald L. River or lake bottom apparatus for scavenger fish control
GB2301112A (en) 1995-05-24 1996-11-27 California Engineering Consult Recovering useful products from waste material
US6423532B1 (en) * 1997-02-24 2002-07-23 Linde Brv Biowaste Technologies Ag Refuse-treatment method and apparatus
US6136590A (en) * 1998-02-24 2000-10-24 Kruse; Robert A. Waste materials recycling method and apparatus
US6403364B1 (en) * 2000-01-28 2002-06-11 Geovation Consultants Inc. Method for the enhanced anaerobic bioremediation of contaminants in aqueous sediments and other difficult environments
US20020092799A1 (en) * 2001-01-16 2002-07-18 Steinar Storruste Reclaimer
US20040164021A1 (en) * 2003-01-20 2004-08-26 Xiaomei Li Process for removal and recovery of nutrients from digested manure or other organic wastes
US7014768B2 (en) 2003-01-20 2006-03-21 Alberta Research Council Inc. Process for removal and recovery of nutrients from digested manure or other organic wastes

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
International Search Report of PCT/IB2008/003526 mailed Apr. 21, 2009. *
Pratt, Shelia, "Good, old-fashioned manure is province's new black gold. Breakthrough biorefinery near Vegreville, a working carbon market set new standards", The Edmonton Journal, www.edmontonjournal.com/story-print.html?id=1266220&sponsor=, Feb. 8, 2009.
Pratt, Shelia, "Good, old-fashioned manure is province's new black gold. Breakthrough biorefinery near Vegreville, a working carbon market set new standards", The Edmonton Journal, www.edmontonjournal.com/story—print.html?id=1266220&sponsor=, Feb. 8, 2009.
Pratt, Shelia, "Virtuous' power. Cattle manure and Alberta ingenuity are combining to produce a fledgling alternative energy economy", The Edmonton Journal, www.edmontonjournal.com/story-print.html?id=1266353&sponsor=, Feb. 9, 2009.
Pratt, Shelia, "Virtuous' power. Cattle manure and Alberta ingenuity are combining to produce a fledgling alternative energy economy", The Edmonton Journal, www.edmontonjournal.com/story—print.html?id=1266353&sponsor=, Feb. 9, 2009.
The Edmonton Journal, "Use of manure power improves ethanol plant's carbon footprint", www.edmontonjournal.com/story-print.html?id=1266359&sponsor=; Feb. 8, 2009.
The Edmonton Journal, "Use of manure power improves ethanol plant's carbon footprint", www.edmontonjournal.com/story—print.html?id=1266359&sponsor=; Feb. 8, 2009.

Also Published As

Publication number Publication date
US8017013B2 (en) 2011-09-13
WO2009090475A8 (fr) 2010-07-15
US20090159529A1 (en) 2009-06-25
WO2009090475A3 (fr) 2009-09-03
WO2009090475A2 (fr) 2009-07-23
CN101925418A (zh) 2010-12-22
US20120024800A1 (en) 2012-02-02
CA2710200C (fr) 2014-09-30
ZA201004619B (en) 2014-12-23
US20100311148A1 (en) 2010-12-09
CN101925418B (zh) 2014-03-12
CA2710200A1 (fr) 2009-07-23
ZA201100112B (en) 2011-10-26
MX2010006913A (es) 2010-11-10

Similar Documents

Publication Publication Date Title
JP3226514B2 (ja) 廃棄物の処理方法及び粥状化装置
US8017013B2 (en) Apparatus, methods and systems for handling and processing waste material
CN106077022B (zh) 厨余、农贸市场垃圾资源化处理系统及其工艺流程
CN111318552A (zh) 一种厨余垃圾预处理装置及预处理方法
US7597280B2 (en) Apparatus for separating the organic membrane portion and the mineral portion of broken egg shells
KR101501223B1 (ko) 음식물 쓰레기 처리장치
CN108246762A (zh) 一种餐厨垃圾处理转化系统
JP2009148234A (ja) サトウキビ積込装置
KR102263675B1 (ko) 음식물류 폐기물 복합처리 시스템
CN206607173U (zh) 一体化有机肥加工系统
JP2008114126A (ja) 廃棄物処理装置
KR100729956B1 (ko) 음식쓰레기 일괄 처리장치
CN112139215A (zh) 一种餐厨垃圾与厨余垃圾协同预处理方法
KR20030013889A (ko) 음식물 쓰레기 자동 선별기
JP6173000B2 (ja) 廃棄物処理装置及び処理方法
JP2010234222A (ja) 廃棄物処理設備
KR101663082B1 (ko) 음식물 쓰레기와 하수 슬러지를 이용한 유기질 비료 및 발효 액상 비료 제조 장치 및 이를 이용한 유기질 비료 및 발효 액상 비료 제조 방법
KR200255183Y1 (ko) 음식물 쓰레기 자동 선별기
CN210787794U (zh) 一种餐厨垃圾除砂装置
CN221115636U (zh) 一种具有预处理功能的上料装置
WO2007083379A1 (fr) Équipement de production de combustible brut servant a la production de ciment, usine de production de ciment et procédé de conversion de déchets en combustible brut de ciment
JP5745120B1 (ja) メタン発酵方法及びメタン発酵システム
EP4105315A1 (fr) Système de prétraitement de déchets organiques pour une digestion anaérobie successive et procédé de prétraitement associé
CN201618716U (zh) 无公害处理装置
CN213997172U (zh) 一种无排水餐厨垃圾处理设备

Legal Events

Date Code Title Description
AS Assignment

Owner name: HIGHMARK RENEWABLES RESEARCH LIMITED PARTNERSHIP,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOTELKO, MIKE;KOTELKO, PETER;REEL/FRAME:024945/0286

Effective date: 20100707

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20180810