US7768139B2 - Power semiconductor module - Google Patents
Power semiconductor module Download PDFInfo
- Publication number
- US7768139B2 US7768139B2 US10/535,622 US53562206A US7768139B2 US 7768139 B2 US7768139 B2 US 7768139B2 US 53562206 A US53562206 A US 53562206A US 7768139 B2 US7768139 B2 US 7768139B2
- Authority
- US
- United States
- Prior art keywords
- power semiconductor
- housing
- semiconductor module
- electric power
- module according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3142—Sealing arrangements between parts, e.g. adhesion promotors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/162—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits the devices being mounted on two or more different substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01067—Holmium [Ho]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19041—Component type being a capacitor
Definitions
- the invention pertains to the field of power semiconductor engineering and is based on a power semiconductor module.
- the power semiconductor module contains a housing that consists, for example, of plastic.
- the plastic consists of a hardenable casting compound in the form of a resin, for example, epoxy resin. This means that a thermosetting plastic is chosen for this purpose.
- a base plate is also provided, wherein the aforementioned electric semiconductor components are arranged on the surface of the base plate that faces the housing.
- the electric power semiconductor components are usually arranged on the surface of the base plate by means of an insulating layer.
- the electric power semiconductor components, the insulating layer and the section of the base plate surface that faces the housing are encapsulated in the housing of the epoxy resin.
- power link elements that are coupled to at least one of the electric power semiconductor components are encapsulated in the housing, wherein the terminal ends of the power link elements lead out of the housing.
- Epoxy resins containing fillers usually have a coefficient of linear expansion (CTE( ⁇ 1)) between 10 and 25 ppm/° K and a flexural modulus in excess of 5 GPa.
- CTE( ⁇ 1) coefficient of linear expansion
- the heating of the housing by the encapsulated electric power semiconductor components can lead to undesirable tensions that may result in cracks in the housing. This means that the insulating effect of the housing between the electric power semiconductor components is no longer ensured such that the power semiconductor module may become damaged or destroyed, in particular, due to a short-circuit.
- the brittleness of the housing results in an increased susceptibility of the semiconductor module to shocks and impacts.
- the power semiconductor module is used in a harsh environment, i.e., if it is subjected to high acceleration forces in the form of shaking movements, the aforementioned cracks may form and have correspondingly severe consequences.
- Such high acceleration forces also promote the formation of cracks in the housing in the region, in which the power link elements lead out of the housing. This means that the housing no longer holds the power link elements and the link elements may tear off.
- the power semiconductor module can no longer operate or at least no longer a operate sensibly in this state.
- significant tensions that can also lead to cracks in the housing occur very frequently during the hardening process due to the coefficient of linear expansion (CTE( ⁇ 1)) between 10 and 25 ppm/° K and the flexural modulus in excess of 5 GPa.
- CTE( ⁇ 1) coefficient of linear expansion
- the invention is based on the objective of disclosing a power semiconductor module, the housing of which has a significant elastic deformability and can be very easily manufactured with respect to the process technology.
- the power semiconductor module comprises a housing that consists of a hardenable plastic casting compound and a base plate, wherein electric power semiconductor components are arranged on a section of the base plate surface that faces the housing by means of an insulating layer. At least the section of the base plate surface that faces the housing and contains the electric power semiconductor components is encapsulated in the housing.
- the hardenable plastic casting compound has a hardness between 30 and 95 ShoreA. This advantageously provides the housing of the power semiconductor module with a particularly high elastic deformability relative to a high coefficient of thermal expansion in the hardened state. Consequently, hardly any undesirable tensions occur when the housing is heated by the encapsulated electric power semiconductor components such that no cracks are formed in the housing.
- the elastic deformability of the housing renders the power semiconductor module according to the invention largely insensitive to shocks and impacts such that the power semiconductor module is also quite suitable for use in harsh environments, i.e., applications in which the power semiconductor module is subjected to high acceleration forces in the form of shaking movements.
- harsh environments i.e., applications in which the power semiconductor module is subjected to high acceleration forces in the form of shaking movements.
- the desired insulating effect of the housing between the encapsulated electric power semiconductor components and between the electric power semiconductor components and the surroundings of the housing is practically provided at all times due to the above-described low probability of cracks forming in the housing.
- the housing of the power semiconductor module according to the invention is not only elastically deformable as described above, but also has an excellent stability. This means that the housing, for example, may be easily mounted by means of clamps without running the risk of cracking or rupturing of the housing.
- FIG. 1 a sectional representation of a first embodiment of the semiconductor module according to the invention.
- FIG. 2 a sectional representation of a second embodiment of the semiconductor module according to the invention.
- FIG. 1 shows a sectional representation of a first embodiment of a semiconductor module according to the invention.
- the semiconductor module comprises a housing 1 that consists of a hardenable plastic casting compound and a base plate 2 , wherein the electric power semiconductor components 4 are arranged on the surface of the base plate 2 that faces the housing 1 by means of an insulating layer 5 . Only one of these electric power semiconductor components 4 is illustrated in FIG. 1 in order to provide a better overview. However, it would also be conceivable, particularly for special applications, to arrange the electric power semiconductor components 4 directly on the surface of the base plate 2 that faces the housing 1 , i.e., without an insulating layer 5 . This advantageously makes it possible to eliminate the insulating layer 5 .
- FIG. 1 shows a sectional representation of a first embodiment of a semiconductor module according to the invention.
- the semiconductor module comprises a housing 1 that consists of a hardenable plastic casting compound and a base plate 2 , wherein the electric power semiconductor components 4 are arranged on the surface of
- the hardenable plastic casting compound has a hardness between 30 and 95 ShoreA. Due to the utilization of such a plastic casting compound, the housing 1 of the power semiconductor module has a particularly high elastic deformability relative to a high coefficient of thermal expansion in the hardened state. If the housing 1 is heated by the electric power semiconductor components 4 encapsulated therein, it is advantageous that undesirable tensions and cracks in the housing 1 resulting thereof are largely prevented. In addition, the elastic deformability of the housing 1 renders the power semiconductor module according to the invention largely insensitive to shocks and impacts.
- the power semiconductor module is also suitable for use in harsh environments, i.e., in applications in which it is subjected to high acceleration forces in the form of shaking movements. Due to the above-described low probability of cracks forming in the housing 1 , the desired insulation effect of the housing 1 between the encapsulated electric power semiconductor components 4 and between the electric power semiconductor components and the surroundings of the housing 1 is practically provided at all times in such a harsh environment.
- the housing 1 of the power semiconductor module according to the invention has an excellent stability.
- the housing 1 can be easily clamped onto a body without risking that cracks are formed in the housing 1 or that the housing 1 bursts.
- the hardenable plastic casting compound preferably has a coefficient of linear expansion (CTE( ⁇ 1)) between 40 and 300 ppm/° K and a flexural modulus between 100 kPa and 2 GPa.
- the hardenable plastic casting compound consists of a thermoplastic hot-melt adhesive.
- the thermoplastic hot-melt adhesive preferably contains a dimeric fatty acid polyamide. This ensures a particularly effective insulation of the housing 1 between the encapsulated electric power semiconductor components 4 and between the electric power semiconductor components and the surroundings of the housing 1 .
- the hot-melt adhesive has a casting temperature between 150° C. and 220° C. such that the hot-melt adhesive can be cast within this temperature range.
- the hot-melt adhesive can be advantageously cast with a very low casting pressure between 0.1 MPa and 0.5 MPA.
- the liquid phase of the hot-melt adhesive makes it possible to degas the adhesive. Consequently, the formation of bubbles can be largely prevented during the casting process such that the probability of partial discharges occurring during the operation of the power semiconductor module due to air or gas inclusions in the housing 1 is reduced to a minimum.
- the housing 1 is preferably cast in an aluminum mould.
- the hot-melt adhesive first hardens at the contact surfaces with the mould while the remainder of the adhesive fills out the mould until it completely hardens.
- the flow properties of the hot-melt adhesive and the low casting temperature in connection with the low casting pressure make it possible to achieve a highly impervious and very stable housing 1 .
- the electric power semiconductor components 4 and the extremely delicate accessories mounted thereon can be completely and carefully encapsulated, sealed, protected and electrically insulated relative to one another in the desired fashion.
- the power semiconductor module according to the invention Due to the low casting temperature and the low casting pressure, as well as the simple casting and the previously described flowability of the hot-melt adhesive during the casting process, it is possible to very easily manufacture the power semiconductor module according to the invention, particularly the housing 1 , by means of simple casting methods or, for example, injection-moulding methods.
- thermoplastic hot-melt adhesive instead of utilizing a hardenable plastic casting compound in the form of a thermoplastic hot-melt adhesive, it would also be conceivable to utilize a hardenable plastic casting compound in the form of polyurethane or silicone. It goes without saying that the above-described advantages of a hardenable plastic casting compound in the form of a thermoplastic hot-melt adhesive can also be achieved with a hardenable plastic casting compound in the form of polyurethane or silicone.
- the power semiconductor module according to the invention comprises such a control device 6 that is connected to at least one of the electric power semiconductor components 4 and at least partially encapsulated in the housing 1 .
- the control device 6 is completely encapsulated in the housing 1 shown in FIG. 1 .
- the control device 6 is integrated into the power semiconductor module in this fashion and protected from mechanical influences due to the elastic deformability of the housing 1 .
- the space requirement of the power semiconductor module and the control device 6 can be significantly reduced if the control device 6 is integrated into the housing 1 as described above.
- the integration of the control device 6 into the housing 1 also makes it possible to realize the connection between the control device 6 and at least one of the electric power semiconductor components 4 very short. In this respect, it is not only possible to reduce the material requirement, but also to lower the interference liability of the power semiconductor module, namely because electromagnetic waves are largely prevented from causing any such interference.
- the low casting pressure also makes it possible to encapsulate components that are not intended for pressure casting, e.g. can-type electrolytic capacitors.
- FIG. 2 shows a sectional representation of a second embodiment of the power semiconductor module according to the invention.
- the control device 6 contains a printed circuit board 7 with a first circuit board side 8 that faces the electric power semiconductor components 4 and a second circuit board side 9 that faces away from the electric power semiconductor components 4 .
- the control device 6 shown in FIG. 2 is only partially encapsulated in the housing, i.e., the first circuit board side 8 is encapsulated in the housing 1 and the second circuit board side 9 lies outside the housing 1 .
- excess heat loss energy of the electric power semiconductor components 4 can be carried away from the interior of the housing 1 via the second circuit board side 9 .
- the aforementioned heat loss energy can be carried away even better if the second circuit board side 9 shown in FIG. 2 is thermally coupled with a cooling element 10 .
- control link elements 11 are connected to the control device 6 and encapsulated in the housing 1 , wherein the terminal ends of the control link elements 11 lead out of the housing 1 .
- the control link elements 11 serve for exchanging signals, for example, with an electronics control unit of higher order.
- the control link elements 11 are advantageously realized in the form of cables. Such cables are realized flexibly in order to largely prevent the formation of cracks in the housing 1 in the region, in which the control link elements 11 lead out of the housing, under the influence of high acceleration forces, for example, in a harsh environment. Cables with electric conductors as well as optical waveguides may be considered as cables for the control link elements 11 .
- the hardenable plastic casting compound particularly the hot-melt adhesive or the aforementioned polyurethane or silicone compounds, are essentially transparent or opaque in the hardened state. This allows an optical communication with optical receiving elements of the control device 6 that are not illustrated in FIG. 1 and FIG. 2 through the housing 1 and/or an optical communication with optical transmitting elements of the control device 6 that are not illustrated in FIG. 1 and FIG. 2 through the housing 1 .
- the aforementioned optical communication elements may be provided instead of the control link elements 11 or in addition to the control link elements 11 .
- a power link element 3 is connected to one of the electric power semiconductor components 4 and encapsulated in the housing 1 .
- the power link element 3 serves for the transmission of electric energy or power via the electric power semiconductor components 4 .
- At least one power link element 3 is usually connected to at least one of the electric power semiconductor components 4 and encapsulated in the housing 1 , wherein the terminal end of the at least one power link element 3 leads out of the housing 1 .
- the at least one power link element 3 is preferably realized in the form of a cable. Such cables are realized flexibly in order to largely prevent the formation of cracks in the housing 1 in the region, in which the power link elements 3 lead out of the housing, under the influence of high acceleration forces, for example, in a harsh environment.
- the hardenable plastic casting compound used for the housing 1 is discussed in greater detail below.
- the hardenable plastic casting compound used, particularly the thermoplastic hot-melt adhesive has the advantageous property of causing a mechanical engagement or mechanical anchoring between the thermoplastic hot-melt adhesive and a substrate, i.e., all encapsulated and partially encapsulated components.
- the control link elements 11 in the form of cables and the at least one power link element 3 are very solidly connected to the housing 1 due to the adhesive effect of the hardened plastic casting compound, particularly the thermoplastic hot-melt adhesive, on the corresponding cable insulation.
- the surface section of the base plate 2 that contains the electric power semiconductor components 4 and faces the housing, as well as the control device 6 that is at least partially encapsulated in the housing 1 are also solidly connected to the housing 1 due to the excellent adhesive effect of the hardenable plastic casting compound, particularly the thermoplastic hot-melt adhesive.
- the control link elements 11 and the at least one power link element 3 the formation of cracks in the housing 1 at the outlet regions of the aforementioned elements 3 , 11 is almost impossible and the retention of these elements 3 , 11 by the housing 1 is practically ensured that all times.
- the operational availability of the power semiconductor module according to the invention is altogether increased significantly due to these measures.
- the adhesive effect can be additionally improved with suitable adhesion promoters (primers) or coatings.
- the coatings may also be applied onto the hardened housing after the casting process, for example, in the form of a diffusion barrier for moisture, a total or partial shading or even for labeling purposes.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Casings For Electric Apparatus (AREA)
Abstract
Description
- 1 Housing
- 2 Base plate
- 3 Power link element
- 4 Electric power semiconductor component
- 5 Insulating layer
- 6 Control device
- 7 Printed circuit board
- 8 First side of printed circuit board
- 9 Second side of printed circuit board
- 10 Cooling element
- 11 Control link element
- 12 Electronic component
Claims (16)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02406028.7 | 2002-11-27 | ||
EP02406028A EP1424728A1 (en) | 2002-11-27 | 2002-11-27 | Power semiconductor module |
EP02406028 | 2002-11-27 | ||
PCT/CH2003/000700 WO2004049433A1 (en) | 2002-11-27 | 2003-10-27 | Power semiconductor module |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060238983A1 US20060238983A1 (en) | 2006-10-26 |
US7768139B2 true US7768139B2 (en) | 2010-08-03 |
Family
ID=32241373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/535,622 Active 2026-08-31 US7768139B2 (en) | 2002-11-27 | 2003-10-27 | Power semiconductor module |
Country Status (6)
Country | Link |
---|---|
US (1) | US7768139B2 (en) |
EP (2) | EP1424728A1 (en) |
CN (1) | CN1324699C (en) |
AU (1) | AU2003271495A1 (en) |
DE (1) | DE50307101D1 (en) |
WO (1) | WO2004049433A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11166364B2 (en) | 2019-01-11 | 2021-11-02 | Tactotek Oy | Electrical node, method for manufacturing electrical node and multilayer structure comprising electrical node |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007235004A (en) * | 2006-03-03 | 2007-09-13 | Mitsubishi Electric Corp | Semiconductor device |
DE102006033175A1 (en) * | 2006-07-18 | 2008-01-24 | Robert Bosch Gmbh | electronics assembly |
DE102007014789B3 (en) * | 2007-03-28 | 2008-11-06 | Ixys Ch Gmbh | Arrangement of at least one power semiconductor module and a printed circuit board and power semiconductor module |
DE102008031297A1 (en) | 2008-07-02 | 2010-01-14 | Siemens Aktiengesellschaft | Semiconductor module i.e. power semiconductor module, has filling compound provided in part of housing, and containing non-hardening, thermoplastic polymer with reversible phase change characteristics |
DE102010040782A1 (en) * | 2010-09-15 | 2012-03-15 | Robert Bosch Gmbh | Electronics arrangement for use in e.g. anti-lock braking system-module, for motor car, has power and logic parts connected with each other by reusable contact connection part, where power and logic parts are designed as interchange part |
JP5518000B2 (en) * | 2011-06-10 | 2014-06-11 | 三菱電機株式会社 | Power module and manufacturing method thereof |
CN103035587A (en) * | 2012-12-11 | 2013-04-10 | 国网智能电网研究院 | High power insulated gate bipolar transistor (IGBT) module encapsulation structure |
US20150262814A1 (en) * | 2014-03-13 | 2015-09-17 | Infineon Technologies Ag | Power semiconductor device,power electronic module, and method for processing a power semiconductor device |
CN108010904B (en) * | 2016-11-02 | 2020-04-24 | 株洲中车时代电气股份有限公司 | Power semiconductor module |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0637839A2 (en) | 1993-08-03 | 1995-02-08 | International Business Machines Corporation | Chip carrier with protective coating for circuitized surface |
US5398160A (en) * | 1992-10-20 | 1995-03-14 | Fujitsu General Limited | Compact power module with a heat spreader |
US5521437A (en) * | 1993-07-05 | 1996-05-28 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor power module having an improved composite board and method of fabricating the same |
DE19625240A1 (en) | 1995-10-26 | 1997-04-30 | Mitsubishi Electric Corp | Semiconductor intelligent power module device for e.g. IGBT |
US5659203A (en) * | 1995-06-07 | 1997-08-19 | International Business Machines Corporation | Reworkable polymer chip encapsulant |
US5730922A (en) * | 1990-12-10 | 1998-03-24 | The Dow Chemical Company | Resin transfer molding process for composites |
EP0903790A2 (en) | 1997-08-27 | 1999-03-24 | Canon Kabushiki Kaisha | Solar cell module and reinforcing member for solar cell module |
EP0921565A2 (en) | 1997-12-08 | 1999-06-09 | Kabushiki Kaisha Toshiba | Package for semiconductor power device and method for assembling the same |
WO1999038196A2 (en) | 1998-01-27 | 1999-07-29 | Jacobs Richard L | Electronic devices having thermodynamic encapsulant portions predominating over thermostatic encapsulant portions |
EP0936671A1 (en) | 1998-02-12 | 1999-08-18 | Hitachi, Ltd. | Resin-moulded semiconductor hybrid module and manufacturing method thereof |
US6103803A (en) * | 1997-06-26 | 2000-08-15 | The Dow Chemical Company | Filled polymer compositions |
EP1032042A2 (en) | 1999-02-22 | 2000-08-30 | Hitachi, Ltd. | Semiconductor module, power converter using the same and manufacturing method thereof |
DE10006211A1 (en) | 2000-02-11 | 2001-08-30 | Vip Virant D O O | Encapsulated electrical components embedded in hot-melt polyamide, e.g. filter circuits for rear-window antenna systems in cars, have snap-in fixing devices made of another high-strength thermoplastic material |
US6346325B1 (en) * | 1999-07-01 | 2002-02-12 | The Dow Chemical Company | Fiber-reinforced composite encased in a thermoplastic and method of making same |
US6393130B1 (en) | 1998-10-26 | 2002-05-21 | Beltone Electronics Corporation | Deformable, multi-material hearing aid housing |
US20020151609A1 (en) * | 1999-12-03 | 2002-10-17 | Chaudhary Bharat I. | Grafted thermoplastic compositions and fabricated articles therefrom |
US20030057573A1 (en) * | 2001-09-26 | 2003-03-27 | Kabushiki Kaisha Toshiba | Semiconductor device |
US6958535B2 (en) * | 2000-09-22 | 2005-10-25 | Matsushita Electric Industrial Co., Ltd. | Thermal conductive substrate and semiconductor module using the same |
US7145254B2 (en) * | 2001-07-26 | 2006-12-05 | Denso Corporation | Transfer-molded power device and method for manufacturing transfer-molded power device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4446027A1 (en) * | 1994-12-23 | 1996-07-04 | Henkel Kgaa | Molded parts made of PU hot melt adhesives |
-
2002
- 2002-11-27 EP EP02406028A patent/EP1424728A1/en not_active Withdrawn
-
2003
- 2003-10-27 DE DE50307101T patent/DE50307101D1/en not_active Expired - Lifetime
- 2003-10-27 US US10/535,622 patent/US7768139B2/en active Active
- 2003-10-27 WO PCT/CH2003/000700 patent/WO2004049433A1/en active IP Right Grant
- 2003-10-27 AU AU2003271495A patent/AU2003271495A1/en not_active Abandoned
- 2003-10-27 CN CNB200380104204XA patent/CN1324699C/en not_active Expired - Lifetime
- 2003-10-27 EP EP03753204A patent/EP1565937B1/en not_active Expired - Lifetime
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5730922A (en) * | 1990-12-10 | 1998-03-24 | The Dow Chemical Company | Resin transfer molding process for composites |
US5398160A (en) * | 1992-10-20 | 1995-03-14 | Fujitsu General Limited | Compact power module with a heat spreader |
US5521437A (en) * | 1993-07-05 | 1996-05-28 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor power module having an improved composite board and method of fabricating the same |
EP0637839A2 (en) | 1993-08-03 | 1995-02-08 | International Business Machines Corporation | Chip carrier with protective coating for circuitized surface |
US5659203A (en) * | 1995-06-07 | 1997-08-19 | International Business Machines Corporation | Reworkable polymer chip encapsulant |
DE19625240A1 (en) | 1995-10-26 | 1997-04-30 | Mitsubishi Electric Corp | Semiconductor intelligent power module device for e.g. IGBT |
US6103803A (en) * | 1997-06-26 | 2000-08-15 | The Dow Chemical Company | Filled polymer compositions |
EP0903790A2 (en) | 1997-08-27 | 1999-03-24 | Canon Kabushiki Kaisha | Solar cell module and reinforcing member for solar cell module |
US6201696B1 (en) | 1997-12-08 | 2001-03-13 | Kabushiki Kaisha Toshiba | Package for semiconductor power device and method for assembling the same |
EP0921565A2 (en) | 1997-12-08 | 1999-06-09 | Kabushiki Kaisha Toshiba | Package for semiconductor power device and method for assembling the same |
WO1999038196A2 (en) | 1998-01-27 | 1999-07-29 | Jacobs Richard L | Electronic devices having thermodynamic encapsulant portions predominating over thermostatic encapsulant portions |
EP0936671A1 (en) | 1998-02-12 | 1999-08-18 | Hitachi, Ltd. | Resin-moulded semiconductor hybrid module and manufacturing method thereof |
US6393130B1 (en) | 1998-10-26 | 2002-05-21 | Beltone Electronics Corporation | Deformable, multi-material hearing aid housing |
EP1032042A2 (en) | 1999-02-22 | 2000-08-30 | Hitachi, Ltd. | Semiconductor module, power converter using the same and manufacturing method thereof |
US6346325B1 (en) * | 1999-07-01 | 2002-02-12 | The Dow Chemical Company | Fiber-reinforced composite encased in a thermoplastic and method of making same |
US20020151609A1 (en) * | 1999-12-03 | 2002-10-17 | Chaudhary Bharat I. | Grafted thermoplastic compositions and fabricated articles therefrom |
DE10006211A1 (en) | 2000-02-11 | 2001-08-30 | Vip Virant D O O | Encapsulated electrical components embedded in hot-melt polyamide, e.g. filter circuits for rear-window antenna systems in cars, have snap-in fixing devices made of another high-strength thermoplastic material |
US6958535B2 (en) * | 2000-09-22 | 2005-10-25 | Matsushita Electric Industrial Co., Ltd. | Thermal conductive substrate and semiconductor module using the same |
US7145254B2 (en) * | 2001-07-26 | 2006-12-05 | Denso Corporation | Transfer-molded power device and method for manufacturing transfer-molded power device |
US20030057573A1 (en) * | 2001-09-26 | 2003-03-27 | Kabushiki Kaisha Toshiba | Semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11166364B2 (en) | 2019-01-11 | 2021-11-02 | Tactotek Oy | Electrical node, method for manufacturing electrical node and multilayer structure comprising electrical node |
US11166363B2 (en) * | 2019-01-11 | 2021-11-02 | Tactotek Oy | Electrical node, method for manufacturing electrical node and multilayer structure comprising electrical node |
Also Published As
Publication number | Publication date |
---|---|
US20060238983A1 (en) | 2006-10-26 |
WO2004049433A1 (en) | 2004-06-10 |
EP1565937B1 (en) | 2007-04-18 |
CN1324699C (en) | 2007-07-04 |
DE50307101D1 (en) | 2007-05-31 |
EP1424728A1 (en) | 2004-06-02 |
EP1565937A1 (en) | 2005-08-24 |
CN1717800A (en) | 2006-01-04 |
AU2003271495A1 (en) | 2004-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10349540B2 (en) | Mechatronic component and method for the production thereof | |
US11978700B2 (en) | Power semiconductor module arrangement | |
US6511866B1 (en) | Use of diverse materials in air-cavity packaging of electronic devices | |
US8995142B2 (en) | Power module and method for manufacturing the same | |
US20120092842A1 (en) | Encapsulated circuit device for substrates having an absorption layer, and method for the manufacture thereof | |
US6797880B2 (en) | Plastic frame for the mounting of an electronic heavy-current control unit | |
US7768139B2 (en) | Power semiconductor module | |
AU2002310466A1 (en) | Use of diverse materials in air-cavity packaging of electronic devices | |
US10109557B2 (en) | Electronic device having sealed heat-generation element | |
US10964623B2 (en) | Electronic module and method for encapsulation thereof | |
US20190214340A1 (en) | Power module | |
JP3521785B2 (en) | Semiconductor device sealed with resin | |
US8053884B2 (en) | Power semiconductor module with sealing device for sealing to a substrate carrier and method for manufacturing it | |
US6758200B2 (en) | Ignition coil driver chip on printed circuit board for plughole coil housing | |
CN107851620B (en) | Power semiconductor module | |
JPH0317220B2 (en) | ||
EP4276888A1 (en) | Method for producing a power semiconductor module | |
EP4148789A1 (en) | Power semiconductor modules | |
JP6314416B2 (en) | Semiconductor device | |
JPH0346389A (en) | Hybrid integrated circuit device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABB RESEARCH LTD., SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KNAPP, WOLFGANG;KESER, HELMUT;REEL/FRAME:017218/0798 Effective date: 20050519 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
AS | Assignment |
Owner name: ABB SCHWEIZ AG, SWITZERLAND Free format text: MERGER;ASSIGNOR:ABB RESEARCH LTD.;REEL/FRAME:051419/0309 Effective date: 20190416 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |