US7145254B2 - Transfer-molded power device and method for manufacturing transfer-molded power device - Google Patents

Transfer-molded power device and method for manufacturing transfer-molded power device Download PDF

Info

Publication number
US7145254B2
US7145254B2 US10201556 US20155602A US7145254B2 US 7145254 B2 US7145254 B2 US 7145254B2 US 10201556 US10201556 US 10201556 US 20155602 A US20155602 A US 20155602A US 7145254 B2 US7145254 B2 US 7145254B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
semiconductor chip
chip
semiconductor
thickness
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10201556
Other versions
US20030022464A1 (en )
Inventor
Naohiko Hirano
Takanori Teshima
Yoshimi Nakase
Kenji Yagi
Yasushi Ookura
Kuniaki Mamitsu
Kazuhito Nomura
Yutaka Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32014Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01088Radium [Ra]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15717Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400 C and less than 950 C
    • H01L2924/15724Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/183Connection portion, e.g. seal
    • H01L2924/18301Connection portion, e.g. seal being an anchoring portion, i.e. mechanical interlocking between the encapsulation resin and another package part
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

A semiconductor device includes a semiconductor chip that generates heat in operation, a pair of heat sinks for cooling the chip, and a mold resin, in which the chip and the heat sinks are embedded. The thickness t1 of the chip and the thickness t2 of one of heat sinks that is joined to the chip using a solder satisfy the equation of t2/t1≧5. Furthermore, the thermal expansion coefficient α1 of the heat sinks and the thermal expansion coefficient α2 of the mold resin satisfy the equation of 0.5≦α2/α1≦1.5. In addition, the surface of the chip that faces the solder has a roughness Ra that satisfies the equation of Ra≦500 nm. Moreover, the solder is a Sn-based solder to suppress relaxation of a compressive stress in the chip, which is caused by the creeping of the solder.

Description

CROSS REFERENCE TO RELATED APPLICATION

This application is based on and incorporates herein by reference Japanese Patent Applications No. 2002-196140 filed on Jul. 4, 2002, No. 2001-225963 filed on Jul. 26, 2001, and No. 2002-86408 filed on Mar. 26, 2001.

BACKGROUND OF THE INVENTION

The present invention relates to a transfer molded power device, which includes a semiconductor chip that generates heat in operation and a heat sink for cooling the semiconductor chip.

A power device, which includes a semiconductor chip and only one heat sink, which is a copper plate for heat release and also functions as an electrode, is proposed. In the power device, power and ground lines are provided as bonding wires. However, this type of power device has the following problems when the semiconductor chip is downsized for reducing the manufacturing costs. For the downsizing, it becomes necessary to reduce the number of bonding wires, so it becomes impossible to supply a predetermined rated current. Furthermore, although the semiconductor chip operates at a higher speed as the device downsized, the downsizing leads to a larger inductance and increased surge. In addition, the semiconductor chip generates more heat per volume when drawing the predetermined rated current. Therefore, the otherwise lower temperature of the semiconductor chip becomes higher in operation unless the heat is released more efficiently.

In order to address the problem described above, a semiconductor device that includes two heat sinks is proposed. Because heat is released from two sides of the semiconductor chip to the two heat sinks respectively, the later proposed semiconductor device offers improved heat release efficiency compared with the former proposed power device that has only one heat sink. Although the later proposed semiconductor device is molded with a mold resin, the surfaces of the two heat sinks that are opposite from the surfaces facing respectively the semiconductor chip are exposed for improving heat release efficiency.

However, in the later proposed semiconductor device, the semiconductor chip and the heat sinks are relatively very different in thermal expansion coefficient from each other. Therefore, a relatively large stress can be generated in the semiconductor chip under thermal cycling while the later semiconductor device is in operation, and the semiconductor chip is destroyed in the worst case. Specifically, when the later proposed semiconductor device is manufactured, the heat sinks are soldered to the semiconductor chip in a reflow process, in which solders are heated to a predetermined temperature at a heating step to melt the solders and cooled to harden the solders at a subsequent cooling step. To be specific, the semiconductor chip and the heat sinks in the later proposed semiconductor device are substantially made of a single-crystal silicon and copper, respectively. Therefore, due to the difference in thermal expansion coefficient between single-crystal silicon and copper, 3.0 ppm and 17 ppm respectively as shown in FIG. 29, the semiconductor chip and the heat sinks respectively have a compressive stress and a tensile stress directly after the cooling step in the reflow process, as shown in FIG. 30.

When the later proposed semiconductor device is placed at room temperature after the cooling step, the stresses gradually relaxes due to the creeping of the solder connecting the semiconductor chip and the heat sinks. If the stress relaxes sufficiently, a tensile stress is generated in the semiconductor chip due to the difference in thermal expansion coefficient between single-crystal silicon and copper when the semiconductor device is heated again by the heat generated in the semiconductor chip during operation or by the heat from the surrounding environment. While the single crystal silicon that makes up the semiconductor chip remains intact even under more than 600 MPa of compressive stress, the single crystal silicon can be destroyed under a tensile stress of 100 MPa. Therefore, it is the tensile stress that destroys the semiconductor chip in the later semiconductor device.

The semiconductor chip includes p-type base regions and n+-type source regions, which are located in a front surface of an n-type silicon substrate, and a drain electrode, which is located on a back surface of the n-type silicon substrate. The front surface and the back surface face in the opposite direction. In a proposed method for manufacturing the semiconductor chip, a semiconductor wafer of n-type silicon, from which a plurality of the semiconductor chips are made, is thinned in order to reduce the thickness of the semiconductor chip because the ON resistance of the semiconductor chip is lowered by shortening a current path.

Specifically, in a proposed method, the base and source regions, a metallization layer, and a passivation film (SiN film or PIQ film) are formed on a front surface of the wafer, and then the wafer is thinned. Next, a back side electrode layer is formed on a back surface of the wafer. The front surface and the back surface of the wafer face in the opposite direction. In the proposed method, the wafer is thinned entirely before the back side electrode layer is formed, so the wafer is susceptible to warping and becomes fragile in later manufacturing steps.

In the proposed method for manufacturing the semiconductor chip, an n+ region is formed in the back surface of the wafer as an impurity diffusion region for the electric contact between the wafer and the back side electrode layer. Then, the back side electrode layer is formed in contact with the n+ region.

To form the n+ region, either an ion implanting method or a thermal diffusion method is used. The ion implanting method requires an annealing at 500° C. to 700° C. for activating implanted ions close to 100%. In addition, a relatively heavy dose is needed for achieving a relatively high impurity concentration. On the other hand, the thermal diffusion method requires a higher temperature and longer time period than the ion implanting method. However, in both methods, because the n+ region is formed after the metallization layer is formed on the front surface of the wafer, the annealing must be conducted at a temperature lower than the temperature at which the metallization layer softens. For example, when aluminum film is used, the anneal temperature needs to be lower than 450° C. Therefore, in the proposed method, the annealing effect is not sufficient.

SUMMARY OF THE INVENTION

The present invention has been made in view of the above aspects with an object to provide a semiconductor device that includes a semiconductor chip that stays intact even under a large thermal stress while preventing a mold resin from delaminating and preventing a solder from breaking, so that a long term reliability of the semiconductor device is assured. Another object of the present invention is to provide a method for manufacturing the semiconductor chip. With the method, a fragility of a semiconductor wafer in the manufacturing process of the semiconductor device is improved, and at the same, an electric contact between the wafer and a back surface electrode is achieved at a relatively low temperature.

To achieve the former object, a semiconductor chip has a thickness t1 and one of heat sinks has a thickness t2 such that the thickness t1 and the thickness t2 satisfy the following equation.
t2/t1≧5

By setting the thicknesses this way, the otherwise insufficient compressive stress, which is generated in the semiconductor chip right after a cooling step in a reflow process, is increased. Therefore, the otherwise insufficient tensile stress, which is generated in the semiconductor chip during thermal cycling in the operating environment of the semiconductor device, is reduced. Furthermore, each heat sink has a thermal expansion coefficient α1 and a mold resin has a thermal expansion coefficient α2 such that the thermal expansion coefficients α1 and α2 satisfy the following equation.
0.5≦α2/α1≦1.5

In addition, the semiconductor chip is has a surface roughness Ra at the surface that joins the heat sink satisfies the following equation.
Ra≦500 nm

Moreover, the solder is a Sn-based solder to suppress the relaxation of the compressive stress in the semiconductor chip.

To achieve the later object, an impurity diffusion region is formed in a front surface of the wafer, and then a back surface of the wafer is polished to a first predetermined thickness. The front and back surfaces face in the opposite direction. Then, the wafer is etched from the back surface, except at the periphery of the wafer, to a second predetermined thickness. Then, an impurity-doped polysilicon film is formed on the back surface, and an impurity diffusion region is formed for achieving an electric contact between the wafer and the back surface electrode by diffusing impurities from the polysilicon film into the back surface at a relatively low temperature.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description made with reference to the accompanying drawings. In the drawings:

FIG. 1 is a schematic cross sectional view of the semiconductor device according to the first through fifth embodiments of the present invention;

FIGS. 2A to 2E are views showing manufacturing steps for the semiconductor device according to the first through fifth embodiments;

FIG. 3 is a graph showing the correlation between the normalized compressive stress and the thickness ratios;

FIG. 4 is a graph showing the correlation between the shear stress ratios and the thickness ratios;

FIG. 5 is a graph showing the correlation between the stress in the semiconductor chip along the Z-axis and the thermal expansion coefficient of the resin;

FIG. 6 is a graph showing the correlation between the shear stress of the semiconductor chip and the thermal expansion coefficient of the resin;

FIG. 7 is a graph showing the correlation between the stress in the solder along the Z-axis and the thermal expansion coefficient of the resin and the correlation between the absolute values for the sheer stress and the thermal expansion coefficient of the resin;

FIG. 8 is a graph showing the correlation between the cracking percentage of the semiconductor chip and the surface roughness of the semiconductor chip;

FIG. 9 is a partial cross-sectional view of the semiconductor device in FIG. 1;

FIG. 10 is a graph showing the correlation between the normalized sheer stress and the thickness of the semiconductor chip;

FIG. 11 is a table showing the relative breaking strength and the relative yield stress of typical solders;

FIG. 12 is a table showing the relative strain rate of typical solders;

FIG. 13 is a graph showing the correlation between the residual stress in the semiconductor chip in lateral direction and the delay time;

FIG. 14 is a schematic cross sectional view of the semiconductor device according to the sixth embodiment of the present invention;

FIG. 15 is a cross-sectional view of the semiconductor chip in the semiconductor device according to the sixth embodiment.

FIGS. 16A to 16D are cross-sectional views showing the manufacturing steps of the semiconductor device according to the sixth embodiment;

FIG. 17 is a cross-sectional view of the etching pot according to the sixth embodiment;

FIG. 18 is a cross-sectional view showing the entire structure of the pot etching system according to the sixth embodiment;

FIG. 19 is a cross-sectional view showing a manufacturing step of the semiconductor device according to the sixth embodiment;

FIG. 20 is a plan view showing the same manufacturing step as in FIG. 19 where a copper plate is soldered to a wafer;

FIG. 21 is a plan view showing a manufacturing step of the semiconductor device according to the sixth embodiment;

FIG. 22 is a cross sectional view taken along the line XXII—XXII in FIG. 21;

FIG. 23 is a plan view showing a variation in structure of the bridging chip according to the sixth embodiment;

FIG. 24 is a cross sectional view taken along the line XXIV—XXIV in FIG. 23;

FIG. 25 is a schematic cross sectional view of a semiconductor device including a bridging chip shown in FIGS. 23 and 24;

FIG. 26 is a cross sectional view showing a manufacturing process of a semiconductor device including another bridging chip;

FIG. 27 is a plan view showing the same manufacturing step as in FIG. 26 where two copper plates are soldered to a wafer;

FIG. 28 is a schematic cross sectional view of a semiconductor device including two bridging chips shown in FIGS. 26 and 27;

FIG. 29 is a table showing the thermal expansion coefficient of materials;

FIG. 30 is a schematic time chart showing the variations in temperature and internal stress of the semiconductor chip;

FIGS. 31A and 31B are graphs showing the distribution of internal stress of the semiconductor chip;

FIG. 32 is a graph showing the correlation between the shear plastic strain and the thickness of the semiconductor chip;

FIG. 33 is a graph showing the correlation between the stress along the Z-axis and the thermal expansion coefficient of the resin; and

FIG. 34 is a graph showing the correlation between the thickness of the heat sinks, the thickness of the semiconductor chip, and the durability evaluation results.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention will be described in detail with reference to various embodiments.

First Embodiment

As shown in FIG. 1, a semiconductor device 1 according to the first embodiment has a similar configuration to the proposed semiconductor device 1A in FIG. 29. The semiconductor device 1 includes a semiconductor chip 2, a lower heat sink 3 (first metal plate), an upper heat sink 4 (second metal plate), and a bridging chip 5 (third metal plate). As viewed in FIG. 1, a lower surface (first surface) of the semiconductor chip 2 and an upper surface of the lower heat sink 3 are joined by a solder 6 (bonding layer). Furthermore, an upper surface (second surface) of the semiconductor chip 2 and a lower surface of the bridging chip 5 are also joined by another solder 6. An upper surface of the bridging chip 5 and a lower surface of the upper heat sink 4 are also joined by other solder 6. The semiconductor chip 2 in FIG. 1 releases heat from both sides of the semiconductor chip 2 through the heat sinks 3, 4.

The semiconductor chip 2 in FIG. 1 is a vertical power MOS transistor. However the semiconductor chip 2 may be other power devices such as an IGBT and a thyristor. The shape of the semiconductor chip 2 in FIG. 1 is substantially in the shape of a rectangular thin plate, as shown in FIG. 2A. The lower heat sink 3, the upper heat sink 4, and the bridging chip 5 are made of a metal with a relatively high thermal conductance and a relatively high electrical conductance such as copper and aluminum. The lower heat sink 3 and the upper heat sink 4 are connected electrically to main electrodes such as a collector electrode and an emitter electrode of the semiconductor chip 2 through the solders 6 and the bridging chip 5.

As shown in FIG. 2A, the lower heat sink 3 is substantially in the shape of a rectangular plate and has a lead 3 a protruding backward. The bridging chip 5, also shown in FIG. 2A, is substantially in the shape of a rectangular plate and is slightly smaller than the semiconductor chip 2. The upper heat sink 4, as shown in FIG. 2D, is substantially in the shape of a rectangular plate and has a lead 4 a protruding backward. The position of the lead 3 a of the lower heat sink 3 and the position of the lead 4 a of the upper heat sink 4 are offset from each other, so that the leads 3 a, 4 a avoid facing each other. In the semiconductor device 1 in FIG. 1, in which proportions in size are exaggerated, a distance between the upper surface of the lower heat sink 3 and the lower surface of the upper heat sink 4 are 1 mm to 2 mm.

As shown in FIG. 1, the semiconductor chip 2, the bridging chip 5, and the heat sinks 3, 4 are embedded in an epoxy resin 7 by transfer molding. For the transfer molding, a mold consisting of a top part and a bottom part, which are not illustrated, is used. In order to enhance the adhesion between the resin 7 and the heat sinks 3, 4, the adhesion between the resin 7 and the semiconductor chip 2, and the adhesion between the resin 7 and the bridging chip 5, it is preferred that a coating resin, which is not illustrated, such as a polyamide resin is located between the resin 7 and each of the heat sinks 3, 4, the bridging chip 5, and the chip 2.

The semiconductor device 1 in FIG. 1 is manufactured as follows. Firstly, as shown in FIG. 2A, a solder foil 8 and the chip 2 are stacked in this order on the upper surface of the lower heat sink 3, while another solder foil 8 and the bridging chip 5 are stacked in this order on top of the chip 2. Then, the solder foils 8 are melted in a reflow system, which is a heating system, and hardened to solder the semiconductor chip 2 and the bridging chip 5 onto the upper surface of the lower heat sink 3 and the upper surface of the semiconductor chip 2, respectively.

Then, as shown in FIG. 2C, control electrodes such as gate pads on the chip 2 are wire bonded to lead frames 9 a and 9 b with bonding wires 10, which are made of aluminum or gold. The bonding wires 10 electrically connect the control electrodes on the chip 2 and the lead frames 9 a and 9 b. Then, as shown in FIG. 2D, a solder foil 8 and the upper heat sink 4 are stacked in this order on top of the bridging chip 5. The solder foil 8 is melted in the reflow system and hardened to solder the upper heat sink 4 on top of the bridging chip 5. As shown in FIG. 2E, a weight 11 is placed on top of the upper heat sink 4 to press the upper heat sink 4 downward during the soldering. At the same time, a spacer jig, which is not illustrated, is placed between the upper heat sink 4 and the lower heat sink 3 in order to maintain a predetermined distance between the upper heat sink 4 and the lower heat sink 3.

The distance between the upper heat sink 4 and the lower heat sink 3 is set to be larger than the predetermined distance set by the spacer jig, before the solder foil 8 between the upper heat sink 4 and the bridging chip 5 is melted. As the solder foil 8 melts, the pressure from the weight 11 makes the melting solder layer thinner and makes the distance between the upper heat sink 4 and the lower heat sink 3 the same as the distance set by the spacer jigs. The solders 6, which are formed from the solder foils 8, are designed to achieve an appropriate thickness. Once the melted solder layer hardens, the chip 2, the heat sinks 3, 4, and the bridging chip 5 are soldered and electrically connected by the solders 6. Subsequently, a polyamide resin is coated on the surfaces of the heat sinks 3, 4, the bridging chip 5, and the chip 2. The coating may be implemented by, for example, immersing in a solution containing the polyamide resin or by dripping or spraying the solution containing the polyamide resin from a dispensing nozzle. The polyamide resin should be coated as needed, so polyamide resin coating may not be necessary.

After the polyamide resin is coated, the resin 7 is filled around and between the heat sinks 3 and 4 by transfer molding, which is not illustrated. Once the resin 7 is hardened, the semiconductor device 1 is taken out of the mold. In the transfer molding, the molding is implemented such that the lower surface of the lower heat sink 3 and the upper surface of the upper heat sink 4 are exposed in order to improve the heat release efficiency of the heat sinks 3, 4.

In the semiconductor device 1 shown in FIG. 1, the thickness t1 of the semiconductor chip 2 and the thickness t2 of the lower heat sink 3 satisfy the following equation.
t2/t1≧5

In the semiconductor device 1 shown in FIG. 1, the thickness of the upper heat sink 4 is also t2. However, the thickness of the upper heat sink 4 does not need to be t2. By setting the thicknesses t1 and t2 to satisfy the above equation, it is possible to increase the compressive stress generated in the semiconductor chip 2 and reduce the shear stress at the surface of the semiconductor chip 2, as described below.

The graph in FIG. 3 plots the thickness ratio on the X-axis and the normalized compressive stress on the Y-axis for a plurality of semiconductor devices 1 that have actually been prototyped. The compressive stress values in the prototypes are normalized by the compressive stress value of the semiconductor 1 having a thickness ratio of 3.75. When the prototyped semiconductor devices 1 that had a thickness ratio of 3.75 and a normalized compressive stress of 1.00 was exposed to thermal cycles with relatively large temperature differences, the semiconductor chip 2 in the prototyped semiconductor device 1 cracked. When the prototyped semiconductor device 1 that had a thickness ratio of 2.5 and a normalized compressive stress of 0.98 was exposed to the thermal cycles, the semiconductor chip 2 in the prototyped semiconductor device 1 also cracked.

On the other hand, when the prototyped semiconductor device 1 that had a thickness ratio of 7.00 and a normalized compressive stress of 1.09 and the prototyped semiconductor device 1 that had a thickness ratio of 15.00 and a normalized compressive stress of 1.13 were exposed to the thermal cycles, the semiconductor chips 2 in the prototyped semiconductor devices 1 were intact. In other words, the larger the thickness ratio or the larger the compressive stress in the device 1, the less likely the semiconductor chip 2 is to crack. Therefore, by setting the thickness ratio t2/t1 to be greater than 5.00, the compressive stress in the device 1 remains high enough, and the device 1 is not destroyed even when the semiconductor device 1 is exposed to a relatively large thermal stress. As a result, a long term reliability of the semiconductor device 1 is improved.

The shear stresses at the surface of the semiconductor chip 2 in the various prototypes of the semiconductor devices 1 have been calculated by simulation. A graph in FIG. 4 plots the thickness ratio t2/t1 on the X-axis and the normalized shear stress on the Y-axis for the plurality of semiconductor devices 1. The sheer stress values in the prototypes are normalized by the sheer stress in the semiconductor 1 having a thickness ratio of 3.75. When the prototyped semiconductor devices 1 that had a thickness ratio of 3.75 and a normalized shear stress of 1.00 was exposed to the thermal cycles, the resin 7 in contact with the surface of the semiconductor chip 2 delaminated. When the prototyped semiconductor device 1 that had a thickness ratio of 2.5 and a normalized shear stress of 1.02 was exposed to the thermal cycles, the resin 7 in contact with the surface of the semiconductor chip 2 also delaminated.

On the other hand, when the prototyped semiconductor device 1 that had a thickness ratio of 7.00 and a normalized shear stress of 0.6 and the prototyped semiconductor device 1 that had a thickness ratio of 15.00 and a normalized shear stress of 0.15 were exposed to the thermal cycles, the resin 7 in contact with the surfaces of the semiconductor chips 2 did not delaminate. In other words, the larger the thickness ratio t2/t1 or the smaller the shear stress of the semiconductor chips 2, the less likely the semiconductor chip 2 is to delaminate at the surface of the semiconductor chip 2. Therefore, the resin 7 in contact with the chip 2 is prevented from delaminating by setting the thickness ratio t2/t1 to be greater than 5.00 even when the semiconductor device 1 is exposed to a relatively large thermal stress. As a result, the long term reliability of the semiconductor device 1 is further improved.

As described above, a higher thickness ratio is preferred in the semiconductor device in FIG. 1. The thickness ratio is increased by reducing the thickness t1 of the semiconductor chip 2. There is another advantage in reducing the thickness t1. That is, the device's ON resistance can be simultaneously reduced, because a resistance in the chip 2 is lowered for a vertical current path in the vertical direction of FIG. 1. The thickness ratio is also increased by increasing the thickness t2 of the lower heat sink 3. There is another advantage in increasing the thickness t2. That is, the heat release efficiency of the lower heat sink 3 can be simultaneously improved.

However, it is impossible to make the thickness t1 of the semiconductor chip 2 smaller than 0.1 mm due to practical limitation in manufacturing. On the other hand, when the lower heat sink 3 is thickened, the entire semiconductor device 1 becomes thicker. Therefore, the practical maximum thickness t2 of the lower heat sink 3 is approximately 2.5 mm. Thus, the largest possible thickness ratio is practically about 25. Considering the manufacturability of the chip 2 and the restrictions imposed by device applications, the optimal thickness ratio is approximately 7 to 8.

The compressive stress distribution in the semiconductor chip 2 in the semiconductor device 1 has been calculated by simulation. FIG. 31A shows the distribution in the case that the semiconductor chip 2 has a thickness of 0.4 mm. FIG. 31B shows the distribution in the case that the semiconductor chip 2 has a thickness of 0.2 mm. As shown in FIGS. 31A and 31B, the compressive stress increases as the thickness t1 is reduced. The reason for this is that the rigidity of the semiconductor chip 2 decreases and the semiconductor chip 2 becomes readily compressed as the thickness t1 is reduced. Therefore, by reducing the thickness t1, the shear stresses at the upper and lower surfaces of the semiconductor chip 2 decreases.

Moreover, as shown in FIG. 32, the strain component in the solders 6, which are in contact with the semiconductor chip 2, decreases as the thickness t1 is reduced. Especially, when the semiconductor chip 2 is thinner than 250 μm, the shear plastic strain is smaller than approximately 1% and the durability of the semiconductor device 1 in heat cycles is improved, as shown in FIG. 34.

In FIG. 34, the results in durability evaluation are shown as a matrix using three symbols, that is, a circle, a triangle, and a cross, for a plurality of semiconductor devices 1 that have actually been prototyped. The circle means that none of the semiconductor chips 2 in the prototyped semiconductor devices 1 has broken. The triangle means that some of the semiconductor chips 2 have broken. The cross means that all of the semiconductor chips 2 have broken. As shown in FIG. 34, the semiconductor chips 2 in the prototyped semiconductor devices 1, in which the thickness t1 of the semiconductor chip 2 and the thickness t2 of the lower heat sink 3 satisfy the equation of t2/t1≧5, provide a preferable durability.

It is preferred that a relatively rigid material be used for the lower heat sink 3 because the more rigid the material, the greater is the compressive stress generated in the semiconductor chip 2. Specifically, it is desirable to use a metal or an alloy having a Young's modulus greater than 100 GPa at room temperature for the lower heat sink 3. A material having a Young's module greater than 100 GPa is rigid enough to provide the semiconductor chip 2 with a large enough compressive stress. Examples of metals and alloys that meet the above requirement for the Young's modulus for the lower heat sink 3 are copper, copper alloys, aluminum, aluminum alloys, and so on.

The solder 6 that joins the semiconductor chip 2 and the lower heat sink 3 in the semiconductor device 1 in FIG. 1 may be made of two-component solders such as Sn—Pb, Sn—Ag, Sn—Sb, and Sn—Cu, or multi-component solders. Furthermore, the resin 7 for molding may be made of an epoxy-type resin and so on. The thicknesses of the lower heat sink 3 and the upper heat sink 4 in the semiconductor device 1 in FIG. 1 are not necessarily equal. It is possible that only the thickness of the lower heat sink 3 is set at t2, while the upper heat sink 4 has a different thickness. In addition, the upper heat sink 4 and the bridging chip 5 may be integrated as a single component as long as the alignment between the component and the semiconductor chip 2 is possible and the control electrodes on the chip 2 can be wire bonded to the lead frames 9 a and 9 b with the bonding wires 10 in the manufacturing process of the semiconductor device 1.

Second Embodiment

In the semiconductor device 1, which is shown in FIG. 1, according to the second embodiment, the thermal expansion coefficient α1 of the heat sinks 3, 4 and the thermal expansion coefficient α2 of the resin 7 are set to satisfy the following equation.
0.5≦α2/α1≦1.5

By setting the thermal expansion coefficients α1 and α2 this way, it is possible to balance the tensile stress in the semiconductor chip 2 and the shear stress at the surface of the semiconductor chip 2, as described below.

As shown in FIGS. 5 and 33, the tensile stress in the semiconductor chip 2 at an end of the chip 2 decreases as the coefficient α2 of the resin 7 is increased. The tensile stress is the stress along the Z-axis, which is in the vertical direction of FIG. 1, and has been calculated by simulation for various semiconductor devices 1 having a different thermal expansion coefficient α2 for the resin 7. In the graph in FIGS. 5 and 33, the X-axis represents the thermal expansion coefficient α2 for the resin 7, and the Y-axis represents the stress along the Z-axis. In the simulation, the heat sinks 3, 4 of the semiconductor device 1 are presumed to be made of copper, which has a thermal expansion coefficient α1 of 17 ppm. As shown in FIGS. 5 and 33, the larger the thermal expansion coefficient α2 of the resin 7, the smaller the tensile stress along the Z-axis. That is, the larger the thermal expansion coefficient α2 of the resin 7, the smaller the tensile stress in the semiconductor chip 2 in thermal cycles with relatively large temperature differences.

However, as shown in FIG. 6, the shear stress at the surface of the semiconductor chip 2 decreases as the coefficient α2 is increased. The shear stress has been calculated by simulation for various semiconductor devices 1 having a different thermal expansion coefficient α2 for the resin 7. The sheer stress needs to be small to prevent the resin 7 from delaminating from the surface of the semiconductor chip 2 under a relatively large thermal stress. However, according to experimental results using five semiconductor devices 1, which have actually been prototyped to have the five coefficients α2 in FIG. 6, as long as the thermal expansion coefficient α2 is smaller than 25 ppm, where α21 is approximately 1.5, the resin 7 does not delaminate under the relatively large thermal stress, and the semiconductor chips 2 in the prototyped semiconductor devices 1 are intact.

In FIG. 7, the X-axis represents the thermal expansion coefficient ratio α21, and the left Y-axis represents the stress in the solder 6 along the Z-axis, and the right Y-axis represents the absolute values of the sheer stress at the surface of the semiconductor chip 2. The two curves, AA and BB, in FIG. 7 show the correlation between the stress along the Z-axis and the thermal expansion coefficient ratio α21 and the correlation between the shear stress and the thermal expansion coefficient ratio α21, respectively.

In FIG. 7, the upper limit value for the stress along the Z-axis is 35 to 40 MPa, because the solder 6 that joins the semiconductor chip 2 and the heat sinks 3, 4 has a practical maximum tensile strength of 35–40 MPa and the solder 6 can be broken with a tensile stress larger than 40 MPa. Therefore, the thermal expansion coefficient ratio α21 must be greater than 0.5. On the other hand, the upper limit value for the shear stress is approximately 50 MPa to prevent the resin 7 from delaminating not only from the surface of the semiconductor chip 2 but from the surfaces of the heat sinks 3, 4. Therefore, the thermal expansion coefficient ratio α21 must be smaller than 1.5. Thus, the thermal expansion coefficients α1 and α2 need to satisfy the equation, 0.5≦α21≦1.5. As long as the structure of the semiconductor device 1 meets this condition, the semiconductor chip 2 is prevented from cracking even under a relatively large thermal stress and long term reliability is enhanced.

According to experiment results, when the heat sinks 3 4 are made of copper or a copper alloy, both of which have a thermal expansion coefficient α1 approximately 17 ppm, it is preferred that the thermal expansion coefficient α2 of the resin 7 be greater than 10 ppm. Moreover, when the heat sinks 3 4 are made of a copper sintered alloy or a compound material that includes copper, both of which have a thermal expansion coefficient α1 of approximately 8 ppm, it is preferred that the thermal expansion coefficient α2 of the resin 7 be greater than 6 ppm.

In the semiconductor device 1 in FIG. 1, the resin 7 has a Young's modulus of greater than 10 GPa. In consideration of the overall balance of the stress in the semiconductor device 1, it is desirable that the Young's modulus in the resin 7, which is used for protecting the device 1, be greater than 10 GPa.

In the semiconductor device 1 in FIG. 1, the thermal expansion coefficient α1 of the heat sinks 3, 4 and the thermal expansion coefficient α2 of the resin 7 are set to satisfy the equation, 0.5≦α21≦1.5 while the thickness t1 of the semiconductor chip 2 and the thickness t2 of the lower heat sink 3 are set to satisfy the equation, t2/t1≧5, which is the one according to the first embodiment. However, the condition for the thermal expansion coefficients α1 and α2 and the condition for the thickness ratio t2/t1 may be applied separately. Even in that case, substantially the same effects are provided.

Third Embodiment

In the semiconductor device 1 in FIG. 1, according to the third embodiment of the present invention, the surface roughness Ra of the lower surface of the semiconductor chip 2, which faces the lower heat sink 3 satisfies the following equation.
Ra≦500 nm

As shown in FIG. 8, if the roughness Ra is equal to 500 nm or smaller, it is possible to prevent the semiconductor chip 2 from cracking under a relatively large thermal stress. FIG. 8 shows the percentage of the semiconductor chip 2 that broke when various prototypes of the semiconductor device 1, which have a different surface roughness Ra, are exposed to the thermal stress.

In the semiconductor device 1 in FIG. 1, the roughness Ra of the lower surface of the semiconductor chip 2 satisfies an equation of Ra≦500 nm, while the condition for the thickness ratio t2/t1 according to the first embodiment and the condition for the thermal expansion coefficients α1, α2 according to the second embodiment are satisfied. However, the condition for the roughness Ra according to the third embodiment may be applied singly. Even in that case, substantially the same effects are provided.

Fourth Embodiment

In the semiconductor device 1 in FIG. 1, according to the fourth embodiment of the present invention, the thickness t2 of the heat sinks 3, 4 is approximately 1.5 mm and the thickness t1 of the semiconductor chip 2 is equal to 250 μm or smaller to prevent the resin 7 from delaminating at the edges 2 a of the semiconductor chip 2, which is shown in FIG. 9.

The shear stress at the surface of the semiconductor chip 2 in the semiconductor device 1 has been calculated by simulation, in which the thickness t2 of the heat sinks 3, 4 is approximately 1.5 mm and the thickness t1 of the semiconductor chip 2 is varied as parameter. In the graph in FIG. 10, the X-axis represents the thickness of the semiconductor chip 2, and the Y-axis represents the normalized shear stress at the surface of the chip 2. The sheer stress values are normalized by the shear stress value of the semiconductor chip 2 having a thickness of 400 μm, that is, a thickness ratio t2/t1 of 3.75. As shown by FIG. 10, the thinner the semiconductor chip 2, the smaller the shear stress of the semiconductor chip 2.

On the other hand, according to experimental results, the resin 7 delaminates from the surface edges 2 a of the semiconductor chip 2, when the semiconductor chip 2 having a thickness of 400 μm, where the shear stress ratio is 1.00, is exposed to thermal cycles with relatively large temperature differences. However, when the semiconductor device 1 includes the semiconductor chip 2 having a thickness of 200 μm, that is, when the thickness ratio is 7.00 and the normalized shear stress is 0.6, the resin 7 survives more than ten times longer under the thermal cycles. When the thickness of the semiconductor chip 2 is 100 μm, that is, when the thickness ratio is 15.00 and the normalized shear stress is 0.15, the resin does not delaminate at the edges 2 a of the semiconductor chip 2 in the thermal cycles.

Therefore, the thinner the semiconductor chip 2, that is, the larger the thickness ratio and the smaller the shear stress, the less likely the resin 7 is to delaminate at the edges 2 a of the semiconductor chip 2.

Fifth Embodiment

In the semiconductor device 1 in FIG. 1, according to the fifth embodiment, the solder 6 that joins the semiconductor chip 2 and the heat sink 3 is a Sn-based solder. As shown in FIG. 11, Sn-based solder materials have higher mechanical strengths than Pb-based solders in general. Therefore, by using the Sn-based solder, it is possible to increase the compressive stress in the semiconductor chip 2 after the cooling step in the reflow process. Although there are many possible compositions in Sn-based solders, a composition that results in a higher strength and yield stress than the Pb-based solder is preferably used whether the Sn-based solder includes two or three elements. In FIG. 11, the breaking strengths have been measured under tensile stress tests at 150° C. at a strain rate of 6% per minute, and the yield stresses correspond to 0.2% yield point at 25° C. Furthermore, as shown in FIG. 12, compared to the Pb-based solder, the Sn-based solder has slower strain rates in general, so the compressive stress in the semiconductor chip 2 relaxes at a slower rate when the semiconductor device is placed at room temperature after the cooling step in the reflow process. In FIG. 12, the strain rates have been measured at 50° C. with a stress of 10 MPa. Therefore, as shown as an example in FIG. 13, the Sn-based solders can increase the stress generated in the semiconductor chip 2 and holds preferably the stress, compared to the Pb-based solder. In FIG. 13, the Y-axis represents the magnitude of compressive stress at the center of the semiconductor chip 2.

In above embodiments, the solder foils 8 are used for joining the heat sinks 3 4, the semiconductor chip 2, and the bridging chip 5 to manufacture the semiconductor device 1 in FIG. 1. However, it is also possible to use a solder paste instead of the solder foils 8. In addition, the single semiconductor chip 2 is sandwiched between the heat sinks 3, 4 in the semiconductor device in FIG. 1. However, it is also possible to have two or more chips, or two or more types of chips, sandwiched between the heat sinks 3, 4.

Sixth Embodiment

As shown in FIG. 14, a semiconductor device 100 according to the sixth embodiment includes a semiconductor chip 2, which is a vertical power MOSFET 2 of DMOS type, as shown in FIG. 15. The semiconductor device 100 has a similar structure as the semiconductor device 1 in FIG. 1. A solder 6 is in contact with the chip 2 and a bridging chip 5 to connect them. The bridging chip 5 is a plate made of a material having a high thermal conductance. Another solder 6 is in contact with an upper heat sink 4 and the bridging chip 5 to connect them. Other solder 6 is in contact with the chip 2 and a lower heat sink 3 to connect them. Furthermore, the chip 2 is electrically connected to a lead frame by a bonding wire. The chip 2, the bridging chip 5, and the heat sinks 3, 4 are transfer molded with the resin 7. However, an upper surface of the heat sink 4 and a lower surface of the lower heat sink 3 are exposed and not covered by the mold resin 7, as well as in the semiconductor device 1 in FIG. 1.

As shown in FIG. 15, an n-type silicon substrate 20 has a front surface 20 a and a back surface 20 b, which is opposite from the front surface 20 a. The n-type silicon substrate 20 has a thickness of 25 um to 150 μm, so the resistance in the substrate 20 is relatively low with respect to a current flowing in the vertical direction of FIG. 15 and so is the ON resistance of the vertical power MOSFET 2.

A plurality of p-type base regions 21 are located in the front surface 20 a. Two n+-type source regions 22 are located in each p-type base region 21. The p-type base regions 21 and the n+-type source regions 22 make up a front impurity-doped region 21, 22. On the front surface 20 a, a plurality of polysilicon gate electrodes 24 are located. A gate oxide film 23 is located between each gate electrode 24 and the front surface 20 a. An oxide film 25 is located on each polysilicon gate electrode 24 to cover each electrode 24. A source electrode 26 is located on the oxide films 25. The source electrode 26 is substantially made of aluminum. Although not shown, a passivation film is located on the source electrode 26.

On the other hand, an n+-type drain contact region 27 is located in the substantially entire back surface 20 b. The n+-type drain contact region 27 is a back impurity-doped region 27 An impurity-doped polysilicon film 28 is located on the substantially entire surface of the n+-type drain contact region 27. A drain electrode 29 is located on the substantially entire surface of the impurity-doped polysilicon film 28. The drain electrode 29 includes titanium, nickel, and gold layers. The n+-type drain contact region 27 is formed by diffusing impurities from the impurity-doped polysilicon film 28. As shown in FIG. 14, the bridging chip 5 is connected to the surface of the vertical power MOSFET 2 on which the front impurity-doped region 21, 22 are located. The lower heat sink 3 is connected to the electrode 29.

The vertical power MOSFET 2 is manufactured as follows. Firstly, the gate oxide films 23 and the polysilicon gate electrodes 24 are formed on the front surface 30 a of an n-type silicon wafer 30, which is shown in FIG. 16A. Then, the p-type base regions 21 and the n+-type source regions 22 are formed in the front surface 30 a. The oxide films 25 are formed on the polysilicon gate electrodes 24, and the source electrode 26 are formed to have electrical contact with the n-type silicon substrate 30 through contact holes 25 a in the oxide films 25.

Then, as shown in FIG. 16A, the wafer 30 is thinned to a predetermined thickness by polishing the substantially entire back surface 30 b of the wafer 30, which is opposite from the front surface 30 a as viewed in FIG. 16A. Specifically, the wafer 30 is thinned to a thickness of approximately 250 μm by surface grinding. Next, as shown in FIG. 16B, the back surface 30 b is etched to a predetermined depth, except at the periphery of the wafer 30, by pot etching. By the pot etching, a recess is formed in the wafer 30, as shown in FIG. 16B. Specifically, an etching pot (Pe) shown in FIG. 17 and a pot etching system shown in FIG. 18 are used for the pot etching, and the wafer 30 is etched to have a thickness of approximately 25–150 μm except at the periphery of the wafer. Although the diameter of the wafer 30 is 4 inches to 8 inches, the thicker periphery prevents the wafer 30 from warping.

As shown in FIG. 17, the etching pot includes a plate-shaped pot base 40 and a cylinder-shaped pot ring 41. The silicon wafer 30 is placed on top of the pot base 40, and the pot ring 41 is placed on top of the silicon wafer 30 such that the silicon wafer 30 closes the opening of the pot ring 41. The central are of the pot base 40 is a stage for holding the silicon wafer 30. A ring-shaped recess 42 is located at the periphery of the pot base 40 around the stage. A projection 43 of the pot ring 41 fits into the recess 42. The recess 42 is used for aligning the pot ring 41. A lower seal surface S1, which is flat and in a ring shape, is located on the pot base 40 around the recess 42, as viewed in FIG. 17. A ring-shaped recess 44 is located in the lower seal surface S1 to function as a vacuum pocket.

An inner gasket Ps, which is flattened-ring-shaped, is fixed in the inner surface of the lower part of the pot ring 41, as viewed in FIG. 17. The inner gasket Ps prevents an etching solution, which is filled inside the pot ring 41, from leaking out of an etching bath formed by the pot ring 41 and the silicon wafer 30 mounted on the pot base 40. Furthermore, an upper sealing surface S2, which is flat and in a ring shape, is located on a flange of the lower part of the pot ring 41, as viewed in FIG. 17. A ring shaped recess 45 is located in the upper sealing surface S2 to function as a vacuum pocket. An outer gasket 46, which is ring-shaped and has an X-shaped cross section as shown in FIG. 17, is placed between the lower sealing surface S1 and the upper sealing surface S2. By pumping air out of the recesses 44, 45 using a vacuum pump, the X-shaped gasket 46 is shrunken to fix the pot base 40 and the pot ring 41 while permitting the inner gasket Ps to seal a gap between the pot ring 41 and the wafer 30.

The etching pot with the structure described above is set in a pot etching system, as shown in FIG. 18. Then, an etching solution Le is supplied into the etching pot. The inner gasket Ps does not only seal the gap between the pot ring 41 and the wafer 30 in the etching solution Le, but also masks the periphery of the silicon wafer 30 from the etching solution Le. Therefore, as the inside of the etching pot is filled with the etching solution Le, only the back surface 30 b of the silicon wafer 30, except for the periphery, contacts the etching solution Le.

More specifically, the etching pot is mounted on to a pot stage 47, and the upper opening of the etching pot is plugged with a lid 48. A stirrer 49 is supported by the lid 48 while being sealed with a sealing material 50. The stirrer 49 is driven by a motor 51 to agitate the etching solution Le. A heater 52 for heating the etching solution Le is supported by the lid 48 while being sealed with a sealing material 53. A temperature sensor 54 for measuring the temperature of the etching solution Le is supported by the lid 48 while being sealed with a sealing material 55. During the etching by the pot etching system in FIG. 18, the etching solution Le is continuously agitated by the stirrer 49, while the heater 52 is electrically controlled by a temperature controller 56 to keep the temperature of the etching solution Le at a predetermined temperature, which is sensed by the temperature sensor 54.

Furthermore, the lid 48 includes a path 57 for deionized water (DIW), so deionized water can be supplied into the etching pot falling down along the inner wall of the pot ring 41. The lid 48 also includes a drain opening 58 for draining out waste water by overflowing from the etching pot. The pot base 40 includes a thickness sensor 59, which measures the thickness of the silicon wafer 30 at the recess to monitor the progress of etching and detects the etching end point. When a predetermined thickness is etched and the thickness of the wafer 30 at the recess becomes a predetermined thickness, deionized water is supplied into the etching pot through the path 57 to dilute and cool off the etching solution Le and stop the etching process, overflowing waste water is drained out from the drain opening 58. Then, the vacuum pump stops pumping out air from the recesses 44, 45, and the recesses 44, 45 are brought back to the atmospheric pressure. Then, the lid 48 and the pot ring 41 removed. At this stage, the etched silicon wafer 30 has the cross-sectional structure shown in FIG. 16B.

Next, as shown in FIG. 16 c, an impurity-doped polysilicon film 31 for forming the impurity-doped polysilicon film 28 in FIG. 15 is deposited on the etched back surface 30 b of the wafer 30. Impurities are diffused from the impurity-doped polysilicon film 31 into the wafer 30 for forming the n+-type drain contact region 27 in the back surface 30 b of the wafer 30. More specifically, the impurity-doped polysilicon film 31 is deposited at less than 450° C. by a low pressure CVD or a PVD such as sputtering method. Polysilicon has a diffusion rate that is several times higher than a single crystal and is capable of holding a high concentration of impurities between the crystal grains. As a result, polysilicon is capable of injecting a high concentration of impurities in the back surface 30 b, even after the aluminum source electrode 26 is formed. Thus, by depositing the impurity-doped polysilicon film 31 and by doping the impurities from the impurity-doped polysilicon film 31 by thermal treatment, the n+-type drain contact region 27, which enables a low-resistance ohmic contact between the substrate 20 and the drain electrode 29 in the semiconductor chip 2, is formed at a temperature lower than 450° C.

Next, as shown in FIG. 16 D, a back side electrode 32 for forming the drain electrode 29 is deposited on the impurity-doped polysilicon film 31. Specifically, Ti, Ni, and Au films are deposited in this order. Next, as shown in FIGS. 19 and 20, a copper plate 33, which has relatively high thermal conductance, is soldered onto the front surface 30 a of the wafer 30, on which the source electrode 26 is located. Then, the wafer 30 and the copper plate 33 are simultaneously diced and separated into a plurality of soldered chips, each of which includes a semiconductor chip 2 and a bridging chip 5. There is an advantage in soldering the copper plate 33 and the wafer 30 before dicing the wafer 30. If the wafer 30 were diced into a plurality of semiconductor chips 2 without having been supported by the copper plate 33, the semiconductor chips 2 would be difficult to handle after the dicing because the semiconductor chips 2 are as thin as 25 to 150 μm, as shown in FIG. 16B. On the other hand, the soldered chips are much easier to handle because of bridging chip 5 soldered to the semiconductor chip 2.

As shown in FIGS. 19 and 20, the wafer 30 is disk shaped, and the copper plate 33 is square shaped. A plurality of projections 33 a are formed on the plate 33. Each projection 33 a matches with each source electrode 26 located on each semiconductor chip 2 in the wafer 30. In the copper plate 33 in FIGS. 19 and 20, each projection 33 a is square shaped. The projections 33 a may be formed on the plate 33 by electroless plating a nickel film on a flat copper plate and by pressing the nickel film. When the plate 33 is soldered to the wafer 30, each projection 33 a of the plate 33 is aligned to the corresponding source electrode 26 on each chip 2 of the wafer 30. As shown in FIGS. 21 and 22, in each soldered chip after dicing, the solder 6 is in contact with the bridging chip 5 and the source electrode 26 of the semiconductor chip 2 to connect the semiconductor chip 2 and the bridging chip 5 electrically and mechanically. Next, as shown in FIG. 14, the heat sinks 3, 4 are respectively soldered to the semiconductor chip 2 and the bridging chip 5 of each soldered chip. Then, the heat sinks 3, 4, the semiconductor chip 2, and the bridging chip 5 are transfer molded such that the upper surface of the heat sink 4 and the lower surface of the lower heat sink 3 are exposed, as shown in FIG. 14.

By the pot etching method according to the sixth embodiment, it is possible to thin an active region of the wafer 30, where the semiconductor chips 2 are formed, while keeping the periphery of the wafer 30 thicker. Therefore, it is possible to form the drain contact electrode 29 on the back surface of the wafer 30 without generating a warp in the wafer 30 using, for example, sputtering, and it is also possible to avoid problems related to mechanical-strength issues in the wafer 30. In addition, the manufacturing costs of the semiconductor chips 2 are reduced because there is no need to form an epitaxial layer for making the substrate 20 on a wafer, which has a preferable impurity concentration for making the n+-type drain contact region 27.

In the manufacturing method according to the sixth embodiment, the n+-type drain contact region 27, which is a highly-doped impurity layer 27, is formed using the impurity-doped polysilicon film 31, which makes up the impurity-doped polysilicon film 28, in the back surface 30 b of the wafer 30 after the p-type base regions 21 and the n+-type source regions 22, the aluminum source electrode 26, and the passivation film such as SiN and PIQ are formed on the front surface 30 a of the wafer 30. However, because the highly-doped impurity layer 27, which enables low-resistance ohmic contact to be formed on the backside electrode 32, is formed by diffusing impurities from the impurity-doped polysilicon film 31 at a preferably low process temperature, the back side electrode contact can be established at a preferably low process temperature in the manufacturing process of the semiconductor device 100. Therefore, it is possible to ensure higher device reliability than the proposed methods described below.

Conventionally, the highly-doped impurity layer 27 is formed either by ion implanting or thermal diffusion. The ion implanting needs a post-processing annealing at 500–700° C. for activating close to 100% of the ions implanted at a high dose. On the other hand, the thermal diffusion needs a higher temperature and longer time period than the ion implanting. However, the processing temperature must be kept lower than 450° C., at which aluminum softens, because the process takes place after the aluminum source electrode 26 is formed on the front surface 30 a of the wafer 30. Therefore, in the proposed methods, the annealing effect is insufficient.

In FIGS. 14, 21, and 22, the surface of the bridging chip 5 that faces the semiconductor chip 2 is smaller than the surface of the bridging chip 5 that faces the heat sink 4. However the relation in size may be opposite as a bridging chip 60 in FIGS. 23, 24, and 25.

Furthermore, as shown in FIGS. 26 and 27, another copper plate 70, which has a high thermal conductance, may be soldered onto the back side electrode 32 of the wafer 30. The copper plate 70 can be soldered when the copper plate 33 is soldered onto the source electrode 26 of the wafer 30. Then, the wafer 30 and the copper plates 33, 70 are diced and separated into a plurality of soldered chips. Then, each chip is soldered to the heat sinks 3, 4, and molded with the resin 7 to complete a semiconductor device 300 shown in FIG. 28. In the semiconductor device 300 shown in FIG. 28, the semiconductor chip 2 is positioned substantially at the center of the device 300 in the vertical direction of FIG. 28 by the plate 70, which separates the silicon chip 2 and the lower heat sink 3. As a result, the heat release capability is improved, and the thermal strain in the device 300 becomes more balanced, and the stress in the chip 2 due to the strain decreases. Thus, the device 300 has preferable durability in heat cycling.

In the semiconductor devices 1, 100, 200, 300 according to the above embodiments, the semiconductor chip 2 is a vertical MOSFET. However, the chip 2 may also be a vertical IGBT (insulated gate bipolar transistor). In that case, the back side electrode 29 functions as a collector electrode.

Claims (3)

1. A semiconductor device comprising:
a semiconductor chip that generates heat in operation;
a pair of metal plates for releasing the heat from the semiconductor chip to cool the semiconductor chip, wherein the metal plates are directly joined to end surfaces of the semiconductor chip, respectively, by a solder material; and
a mold resin, in which the semiconductor chip and the metal plates are molded, wherein a thickness t1 of the semiconductor chip and a thickness t2 of at least one of the metal plates satisfy an equation of t2/t1≧5.
2. The semiconductor device in claim 1, wherein the metal plates have a thermal expansion coefficient al and the mold resin has a thermal expansion coefficient α2 such that the thermal expansion coefficient α1 and the thermal expansion coefficient α2 satisfy an equation of 0.5≦α21≦1.5.
3. The semiconductor device in claim 1, wherein the end-surfaces of the semiconductor chip have a surface roughness Ra that satisfies an equation of Ra≦500 nm.
US10201556 2001-07-26 2002-07-24 Transfer-molded power device and method for manufacturing transfer-molded power device Active 2023-05-10 US7145254B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001225963 2001-07-26
JP2001-225963 2001-07-26
JP2002-86408 2002-03-26
JP2002086408A JP3580293B2 (en) 2002-03-26 2002-03-26 A method of manufacturing a semiconductor device

Publications (2)

Publication Number Publication Date
US20030022464A1 true US20030022464A1 (en) 2003-01-30
US7145254B2 true US7145254B2 (en) 2006-12-05

Family

ID=26619318

Family Applications (1)

Application Number Title Priority Date Filing Date
US10201556 Active 2023-05-10 US7145254B2 (en) 2001-07-26 2002-07-24 Transfer-molded power device and method for manufacturing transfer-molded power device

Country Status (4)

Country Link
US (1) US7145254B2 (en)
KR (2) KR100659376B1 (en)
CN (1) CN1267990C (en)
DE (1) DE10234155B4 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050170555A1 (en) * 2004-01-30 2005-08-04 Denso Corporation Method of manufacturing a semiconductor device including electrodes on main and reverse sides of a semiconductor chip
US20050215042A1 (en) * 2004-03-16 2005-09-29 Infineon Technologies Ag Metallization and its use in, in particular, an IGBT or a diode
US20060055056A1 (en) * 2003-11-21 2006-03-16 Denso Corporation Semiconductor equipment having a pair of heat radiation plates
US20060180932A1 (en) * 2005-01-10 2006-08-17 Ralf Otremba Component arrangement for series terminal for high-voltage applications
US20060238983A1 (en) * 2002-11-27 2006-10-26 Abb Research Ltd. Power semiconductor module
US20070158850A1 (en) * 2003-06-23 2007-07-12 Denso Corporation Method for manufacturing mold type semiconductor device
US20070209533A1 (en) * 2003-09-30 2007-09-13 Yasuo Suda Metallic Thin Film Chip Producing Method and Metallic Thin Film Chip Producing Apparatus
US20080006856A1 (en) * 2006-06-22 2008-01-10 Fuji Electric Device Technology Co., Ltd Semiconductor device with back surface electrode including a stress relaxation film
US20080224303A1 (en) * 2006-10-18 2008-09-18 Sunao Funakoshi Power Semiconductor Module
US20090079046A1 (en) * 2007-09-26 2009-03-26 Shimpei Yoshioka Semiconductor package and method for manufacturing the same
US20090108288A1 (en) * 2007-10-24 2009-04-30 Denso Corporation Semiconductor device and method of manufacturing the same
US20090134501A1 (en) * 2007-11-26 2009-05-28 Infineon Technologies Ag Device and method including a soldering process
US20090194862A1 (en) * 2006-06-15 2009-08-06 Toyota Jidosha Kabushiki Kaisha Semiconductor module and method of manufacturing the same
US20090289344A1 (en) * 2008-05-23 2009-11-26 Fuji Electric Device Technology Co., Ltd. Semiconductor device
US20100065950A1 (en) * 2008-09-15 2010-03-18 Lowry Michael J Leaded semiconductor power module with direct bonding and double sided cooling
US20100140658A1 (en) * 2008-12-10 2010-06-10 Denso Corporation Method of manufacturing semiconductor device including insulated gate bipolar transistor and diode
US20100238632A1 (en) * 2006-06-05 2010-09-23 Denso Corporation Load driving device
US20100267206A1 (en) * 2007-08-29 2010-10-21 Gomez Jocel P Semiconductor die package including heat sinks
US20120043662A1 (en) * 2010-02-01 2012-02-23 Toyota Jidosha Kabushiki Kaisha Semiconductor device production method and semiconductor device
US20120229985A1 (en) * 2007-09-26 2012-09-13 Rohm Co., Ltd. Semiconductor device
US20130256964A1 (en) * 2012-03-27 2013-10-03 Mitsubishi Electric Corporation Wafer suction method, wafer suction stage, and wafer suction system

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660664B1 (en) * 2000-03-31 2003-12-09 International Business Machines Corp. Structure and method for formation of a blocked silicide resistor
JP3870896B2 (en) * 2002-12-11 2007-01-24 株式会社デンソー Manufacturing method and a semiconductor device thereby being prepared for a semiconductor device
JP3879688B2 (en) * 2003-03-26 2007-02-14 株式会社デンソー Semiconductor device
US20040212080A1 (en) * 2003-04-22 2004-10-28 Kai-Chi Chen [chip package structure and process for fabricating the same]
JP3661695B2 (en) * 2003-07-11 2005-06-15 株式会社デンソー Semiconductor device
US7180165B2 (en) * 2003-09-05 2007-02-20 Sanmina, Sci Corporation Stackable electronic assembly
US7239016B2 (en) * 2003-10-09 2007-07-03 Denso Corporation Semiconductor device having heat radiation plate and bonding member
JP2005136018A (en) * 2003-10-29 2005-05-26 Denso Corp Semiconductor device
JP2005167075A (en) * 2003-12-04 2005-06-23 Denso Corp Semiconductor device
JP4254527B2 (en) * 2003-12-24 2009-04-15 株式会社デンソー Semiconductor device
JP2005203548A (en) * 2004-01-15 2005-07-28 Honda Motor Co Ltd Module structure of semiconductor device
JP4302607B2 (en) * 2004-01-30 2009-07-29 株式会社デンソー Semiconductor device
DE102005016830A1 (en) * 2004-04-14 2005-11-03 Denso Corp., Kariya Semiconductor device and process for their preparation
JP2005310956A (en) * 2004-04-20 2005-11-04 Denso Corp Method for manufacturing semiconductor device
US20060022263A1 (en) * 2004-07-30 2006-02-02 International Rectifier Corporation Selective substrate thinning for power mosgated devices
JP4604641B2 (en) * 2004-10-18 2011-01-05 株式会社デンソー Semiconductor device
JP2007073743A (en) * 2005-09-07 2007-03-22 Denso Corp Semiconductor device
DE102006046789A1 (en) * 2006-10-02 2008-04-03 Infineon Technologies Ag Electronic component e.g. isolated gate bipolar transistor, has layer region that is electrically conductively arranged at thinned wafers, where layer thickness of layer region is larger than specific micrometers
US7612447B2 (en) * 2007-06-06 2009-11-03 Gm Global Technology Operations, Inc. Semiconductor devices with layers having extended perimeters for improved cooling and methods for cooling semiconductor devices
JP4748173B2 (en) * 2008-03-04 2011-08-17 株式会社デンソー The semiconductor module and the manufacturing method thereof
CN102088008A (en) * 2010-01-28 2011-06-08 江苏长电科技股份有限公司 Inner-pin exposed and chip-inverted packaging structure for heat dissipation block with locking hole
CN102044508A (en) * 2010-01-30 2011-05-04 江苏长电科技股份有限公司 Package structure with resin printed circuit board (PCB), chip, upright locking hole, radiating block, convex column and external radiator
JP5545000B2 (en) 2010-04-14 2014-07-09 富士電機株式会社 A method of manufacturing a semiconductor device
JP5273101B2 (en) * 2010-06-23 2013-08-28 株式会社デンソー The semiconductor module and the manufacturing method thereof
US8513798B2 (en) * 2010-09-09 2013-08-20 Infineon Technologies Ag Power semiconductor chip package
DE102011076662A1 (en) * 2011-05-30 2012-12-06 Robert Bosch Gmbh Semiconductor device and manufacturing method thereof
JP2013021254A (en) * 2011-07-14 2013-01-31 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
JP2013232495A (en) * 2012-04-27 2013-11-14 Mitsubishi Electric Corp Semiconductor device
CN103836191A (en) * 2012-11-27 2014-06-04 北京航天试验技术研究所 Method for sealing low-temperature sensor
US20140151866A1 (en) * 2012-11-30 2014-06-05 Infineon Technologies Ag Packaged Semiconductor Device with Tensile Stress and Method of Making a Packaged Semiconductor Device with Tensile Stress
JP6127847B2 (en) 2013-09-10 2017-05-17 株式会社デンソー Power converter
JP6320239B2 (en) * 2013-09-24 2018-05-09 日東電工株式会社 The method of manufacturing a semiconductor chip sealing thermosetting resin sheet and a semiconductor package
CN105103272B (en) 2013-09-27 2018-10-09 富士电机株式会社 A method of manufacturing a semiconductor device
JP6299441B2 (en) * 2014-06-02 2018-03-28 株式会社デンソー Semiconductor device
JP6384406B2 (en) 2015-06-18 2018-09-05 株式会社デンソー Semiconductor device

Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141030A (en) * 1975-12-17 1979-02-20 Bbc Brown Boveri & Company Limited High-power semiconductor assembly in disk-cell configuration
US4240099A (en) 1978-03-10 1980-12-16 Licentia Patent-Verwaltungs-G.M.B.H. Semiconductor device plastic jacket having first and second annular sheet metal strips with corrugated outer edges embedded in said plastic jacket
JPS5662342A (en) * 1979-10-26 1981-05-28 Hitachi Ltd Semiconductor device
JPS56146261A (en) 1980-04-15 1981-11-13 Hitachi Ltd Semiconductor device
JPS58165348A (en) 1982-03-26 1983-09-30 Hitachi Ltd Wiring board of semiconductor device
US4470063A (en) * 1980-11-19 1984-09-04 Hitachi, Ltd. Copper matrix electrode having carbon fibers therein
JPS61234041A (en) 1985-04-09 1986-10-18 Tdk Corp Semiconductor device and manufacture thereof
JPS63142640A (en) 1986-12-05 1988-06-15 Sumitomo Electric Ind Ltd Manufacture of semiconductor device
US4970579A (en) * 1988-09-21 1990-11-13 International Business Machines Corp. Integrated circuit package with improved cooling means
JPH0411758A (en) * 1990-04-28 1992-01-16 Mitsubishi Electric Corp Semiconductor device
US5157478A (en) * 1989-04-19 1992-10-20 Mitsubishi Denki Kabushiki Kaisha Tape automated bonding packaged semiconductor device incorporating a heat sink
US5164815A (en) * 1989-12-22 1992-11-17 Texas Instruments Incorporated Integrated circuit device and method to prevent cracking during surface mount
JPH0563113A (en) 1991-09-04 1993-03-12 Sony Corp Resin-sealed semiconductor device
US5200809A (en) * 1991-09-27 1993-04-06 Vlsi Technology, Inc. Exposed die-attach heatsink package
US5242862A (en) 1990-02-14 1993-09-07 Nippondenso Co., Ltd. Semiconductor device and method of manufacturing same
US5293301A (en) * 1990-11-30 1994-03-08 Shinko Electric Industries Co., Ltd. Semiconductor device and lead frame used therein
JPH06104353A (en) * 1992-09-18 1994-04-15 Nippondenso Co Ltd Resin sealed type semiconductor device with heat sink
US5311060A (en) * 1989-12-19 1994-05-10 Lsi Logic Corporation Heat sink for semiconductor device assembly
JPH06268114A (en) 1993-03-12 1994-09-22 Nippon Steel Corp Semiconductor device
JPH06334069A (en) 1993-05-24 1994-12-02 Toyota Autom Loom Works Ltd Semiconductor package incorporating heat spreader
JPH0799272A (en) 1993-09-28 1995-04-11 Fuji Xerox Co Ltd Electronic circuit packaging body
JPH07153878A (en) 1993-11-26 1995-06-16 Tokyo Tungsten Co Ltd Manufacture of plastic packaged semiconductor device and heat sink
US5484959A (en) * 1992-12-11 1996-01-16 Staktek Corporation High density lead-on-package fabrication method and apparatus
CN1123515A (en) 1994-11-24 1996-05-29 三菱电机株式会社 Resin-molded electronic circuit device
US5574312A (en) * 1994-06-17 1996-11-12 Abb Management Ag Low-inductance power semiconductor module
US5594282A (en) * 1993-12-16 1997-01-14 Seiko Epson Corporation Resin sealing type semiconductor device and method of making the same
US5600541A (en) * 1993-12-08 1997-02-04 Hughes Aircraft Company Vertical IC chip stack with discrete chip carriers formed from dielectric tape
US5629561A (en) * 1994-12-16 1997-05-13 Anam Industrial Co., Ltd. Semiconductor package with integral heat dissipator
US5703398A (en) * 1993-03-17 1997-12-30 Fujitsu Limited Semiconductor integrated circuit device and method of producing the semiconductor integrated circuit device
US5726466A (en) * 1995-09-11 1998-03-10 Kabushiki Kaisha Toshiba Press pack power semiconductor device incorporating a plurality of semiconductor elements
JPH10116934A (en) 1996-10-09 1998-05-06 Fuji Electric Co Ltd Resin-sealed semiconductor device and manufacturing method thereof
US5828125A (en) * 1993-03-29 1998-10-27 Staktek Corporation Ultra-high density warp-resistant memory module
JP2000031351A (en) 1998-07-09 2000-01-28 Toshiba Corp Semiconductor device
JP2000124166A (en) 1998-10-20 2000-04-28 Denso Corp Thin-wall processing of semiconductor chip and etching device for thin-wall processing
US6069023A (en) * 1996-06-28 2000-05-30 International Business Machines Corporation Attaching heat sinks directly to flip chips and ceramic chip carriers
US6114413A (en) * 1997-07-10 2000-09-05 International Business Machines Corporation Thermally conducting materials and applications for microelectronic packaging
US6246111B1 (en) * 2000-01-25 2001-06-12 Siliconware Precision Industries Co., Ltd. Universal lead frame type of quad flat non-lead package of semiconductor
US6329705B1 (en) * 1998-05-20 2001-12-11 Micron Technology, Inc. Leadframes including offsets extending from a major plane thereof, packaged semiconductor devices including same, and method of designing and fabricating such leadframes
US20020074627A1 (en) * 1993-09-03 2002-06-20 Combs Edward G. Molded plastic package with heat sink and enhanced electrical performance
US6442033B1 (en) * 1999-09-24 2002-08-27 Virginia Tech Intellectual Properties, Inc. Low-cost 3D flip-chip packaging technology for integrated power electronics modules
US6559525B2 (en) * 2000-01-13 2003-05-06 Siliconware Precision Industries Co., Ltd. Semiconductor package having heat sink at the outer surface
US6693350B2 (en) 1999-11-24 2004-02-17 Denso Corporation Semiconductor device having radiation structure and method for manufacturing semiconductor device having radiation structure
US6703707B1 (en) * 1999-11-24 2004-03-09 Denso Corporation Semiconductor device having radiation structure
US6734551B2 (en) * 2001-10-19 2004-05-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US6853070B2 (en) * 2001-02-15 2005-02-08 Broadcom Corporation Die-down ball grid array package with die-attached heat spreader and method for making the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272183A (en) * 1988-04-25 1989-10-31 Toshiba Corp Ceramics circuit board
US5825087A (en) * 1996-12-03 1998-10-20 International Business Machines Corporation Integral mesh flat plate cooling module
EP1128432B1 (en) * 2000-02-24 2016-04-06 Infineon Technologies AG Fixation of semiconductor modules to a heatsink
JP4479121B2 (en) * 2001-04-25 2010-06-09 株式会社デンソー A method of manufacturing a semiconductor device

Patent Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141030A (en) * 1975-12-17 1979-02-20 Bbc Brown Boveri & Company Limited High-power semiconductor assembly in disk-cell configuration
US4240099A (en) 1978-03-10 1980-12-16 Licentia Patent-Verwaltungs-G.M.B.H. Semiconductor device plastic jacket having first and second annular sheet metal strips with corrugated outer edges embedded in said plastic jacket
JPS5662342A (en) * 1979-10-26 1981-05-28 Hitachi Ltd Semiconductor device
JPS56146261A (en) 1980-04-15 1981-11-13 Hitachi Ltd Semiconductor device
US4470063A (en) * 1980-11-19 1984-09-04 Hitachi, Ltd. Copper matrix electrode having carbon fibers therein
JPS58165348A (en) 1982-03-26 1983-09-30 Hitachi Ltd Wiring board of semiconductor device
JPS61234041A (en) 1985-04-09 1986-10-18 Tdk Corp Semiconductor device and manufacture thereof
JPS63142640A (en) 1986-12-05 1988-06-15 Sumitomo Electric Ind Ltd Manufacture of semiconductor device
US4970579A (en) * 1988-09-21 1990-11-13 International Business Machines Corp. Integrated circuit package with improved cooling means
US5157478A (en) * 1989-04-19 1992-10-20 Mitsubishi Denki Kabushiki Kaisha Tape automated bonding packaged semiconductor device incorporating a heat sink
US5311060A (en) * 1989-12-19 1994-05-10 Lsi Logic Corporation Heat sink for semiconductor device assembly
US5164815A (en) * 1989-12-22 1992-11-17 Texas Instruments Incorporated Integrated circuit device and method to prevent cracking during surface mount
US5242862A (en) 1990-02-14 1993-09-07 Nippondenso Co., Ltd. Semiconductor device and method of manufacturing same
JPH0411758A (en) * 1990-04-28 1992-01-16 Mitsubishi Electric Corp Semiconductor device
US5293301A (en) * 1990-11-30 1994-03-08 Shinko Electric Industries Co., Ltd. Semiconductor device and lead frame used therein
JPH0563113A (en) 1991-09-04 1993-03-12 Sony Corp Resin-sealed semiconductor device
US5200809A (en) * 1991-09-27 1993-04-06 Vlsi Technology, Inc. Exposed die-attach heatsink package
JPH06104353A (en) * 1992-09-18 1994-04-15 Nippondenso Co Ltd Resin sealed type semiconductor device with heat sink
US5484959A (en) * 1992-12-11 1996-01-16 Staktek Corporation High density lead-on-package fabrication method and apparatus
JPH06268114A (en) 1993-03-12 1994-09-22 Nippon Steel Corp Semiconductor device
US5703398A (en) * 1993-03-17 1997-12-30 Fujitsu Limited Semiconductor integrated circuit device and method of producing the semiconductor integrated circuit device
US5828125A (en) * 1993-03-29 1998-10-27 Staktek Corporation Ultra-high density warp-resistant memory module
JPH06334069A (en) 1993-05-24 1994-12-02 Toyota Autom Loom Works Ltd Semiconductor package incorporating heat spreader
US20020074627A1 (en) * 1993-09-03 2002-06-20 Combs Edward G. Molded plastic package with heat sink and enhanced electrical performance
JPH0799272A (en) 1993-09-28 1995-04-11 Fuji Xerox Co Ltd Electronic circuit packaging body
JPH07153878A (en) 1993-11-26 1995-06-16 Tokyo Tungsten Co Ltd Manufacture of plastic packaged semiconductor device and heat sink
US5600541A (en) * 1993-12-08 1997-02-04 Hughes Aircraft Company Vertical IC chip stack with discrete chip carriers formed from dielectric tape
US5594282A (en) * 1993-12-16 1997-01-14 Seiko Epson Corporation Resin sealing type semiconductor device and method of making the same
US5574312A (en) * 1994-06-17 1996-11-12 Abb Management Ag Low-inductance power semiconductor module
CN1123515A (en) 1994-11-24 1996-05-29 三菱电机株式会社 Resin-molded electronic circuit device
US5629561A (en) * 1994-12-16 1997-05-13 Anam Industrial Co., Ltd. Semiconductor package with integral heat dissipator
US5726466A (en) * 1995-09-11 1998-03-10 Kabushiki Kaisha Toshiba Press pack power semiconductor device incorporating a plurality of semiconductor elements
US6069023A (en) * 1996-06-28 2000-05-30 International Business Machines Corporation Attaching heat sinks directly to flip chips and ceramic chip carriers
JPH10116934A (en) 1996-10-09 1998-05-06 Fuji Electric Co Ltd Resin-sealed semiconductor device and manufacturing method thereof
US6114413A (en) * 1997-07-10 2000-09-05 International Business Machines Corporation Thermally conducting materials and applications for microelectronic packaging
US6329705B1 (en) * 1998-05-20 2001-12-11 Micron Technology, Inc. Leadframes including offsets extending from a major plane thereof, packaged semiconductor devices including same, and method of designing and fabricating such leadframes
JP2000031351A (en) 1998-07-09 2000-01-28 Toshiba Corp Semiconductor device
JP2000124166A (en) 1998-10-20 2000-04-28 Denso Corp Thin-wall processing of semiconductor chip and etching device for thin-wall processing
US6442033B1 (en) * 1999-09-24 2002-08-27 Virginia Tech Intellectual Properties, Inc. Low-cost 3D flip-chip packaging technology for integrated power electronics modules
US20040089925A1 (en) 1999-11-24 2004-05-13 Yutaka Fukuda Semiconductor device having radiation structure
US20040097082A1 (en) 1999-11-24 2004-05-20 Kuniaki Mamitsu Semiconductor device having radiation structure
US6693350B2 (en) 1999-11-24 2004-02-17 Denso Corporation Semiconductor device having radiation structure and method for manufacturing semiconductor device having radiation structure
US6703707B1 (en) * 1999-11-24 2004-03-09 Denso Corporation Semiconductor device having radiation structure
US20040070072A1 (en) 1999-11-24 2004-04-15 Kuniaki Mamitsu Semiconductor device having radiation structure
US20040089940A1 (en) 1999-11-24 2004-05-13 Kuniaki Mamitsu Semiconductor device having radiation structure
US6798062B2 (en) 1999-11-24 2004-09-28 Denso Corporation Semiconductor device having radiation structure
US20040089942A1 (en) 1999-11-24 2004-05-13 Kuniaki Mamitsu Semiconductor device having radiation structure
US20040089941A1 (en) 1999-11-24 2004-05-13 Kuniaki Mamitsu Semiconductor device having radiation structure
US6559525B2 (en) * 2000-01-13 2003-05-06 Siliconware Precision Industries Co., Ltd. Semiconductor package having heat sink at the outer surface
US6246111B1 (en) * 2000-01-25 2001-06-12 Siliconware Precision Industries Co., Ltd. Universal lead frame type of quad flat non-lead package of semiconductor
US6853070B2 (en) * 2001-02-15 2005-02-08 Broadcom Corporation Die-down ball grid array package with die-attached heat spreader and method for making the same
US6734551B2 (en) * 2001-10-19 2004-05-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor device

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Final Rejection dated Nov. 16, 2004 issued by Japanese Patent Office (Translation attached).
Office Action and its translation from Chinese Patent Office in the corresponding Chinese application dated Sep. 30, 2005.
Office Action and its translation from Korean Patent Office in the corresponding Koran application dated Oct. 10, 2005.
U.S. Appl. No. 09/717,227, filed Nov. 22, 2000, Mamitsu.
U.S. Appl. No. 10/127,613, filed Apr. 23, 2002, Teshima.

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768139B2 (en) * 2002-11-27 2010-08-03 Abb Research Ltd Power semiconductor module
US20060238983A1 (en) * 2002-11-27 2006-10-26 Abb Research Ltd. Power semiconductor module
US7468318B2 (en) 2003-06-23 2008-12-23 Denso Corporation Method for manufacturing mold type semiconductor device
US20070158850A1 (en) * 2003-06-23 2007-07-12 Denso Corporation Method for manufacturing mold type semiconductor device
US20070209533A1 (en) * 2003-09-30 2007-09-13 Yasuo Suda Metallic Thin Film Chip Producing Method and Metallic Thin Film Chip Producing Apparatus
US20060055056A1 (en) * 2003-11-21 2006-03-16 Denso Corporation Semiconductor equipment having a pair of heat radiation plates
US20050170555A1 (en) * 2004-01-30 2005-08-04 Denso Corporation Method of manufacturing a semiconductor device including electrodes on main and reverse sides of a semiconductor chip
US20050215042A1 (en) * 2004-03-16 2005-09-29 Infineon Technologies Ag Metallization and its use in, in particular, an IGBT or a diode
US8008712B2 (en) * 2004-03-16 2011-08-30 Infineon Technologies Ag Metallization and its use in, in particular, an IGBT or a diode
US20060180932A1 (en) * 2005-01-10 2006-08-17 Ralf Otremba Component arrangement for series terminal for high-voltage applications
US8102047B2 (en) * 2006-06-05 2012-01-24 Denso Corporation Load driving device
US20100238632A1 (en) * 2006-06-05 2010-09-23 Denso Corporation Load driving device
US20090194862A1 (en) * 2006-06-15 2009-08-06 Toyota Jidosha Kabushiki Kaisha Semiconductor module and method of manufacturing the same
US20080006856A1 (en) * 2006-06-22 2008-01-10 Fuji Electric Device Technology Co., Ltd Semiconductor device with back surface electrode including a stress relaxation film
US7521757B2 (en) 2006-06-22 2009-04-21 Fuji Electric Device Technology Co., Ltd. Semiconductor device with back surface electrode including a stress relaxation film
US20080224303A1 (en) * 2006-10-18 2008-09-18 Sunao Funakoshi Power Semiconductor Module
US7547966B2 (en) * 2006-10-18 2009-06-16 Hitachi, Ltd. Power semiconductor module
US20100267206A1 (en) * 2007-08-29 2010-10-21 Gomez Jocel P Semiconductor die package including heat sinks
US20090079046A1 (en) * 2007-09-26 2009-03-26 Shimpei Yoshioka Semiconductor package and method for manufacturing the same
US9379634B2 (en) 2007-09-26 2016-06-28 Rohm Co., Ltd. Semiconductor device
US8971044B2 (en) * 2007-09-26 2015-03-03 Rohm Co., Ltd. Semiconductor device
US20120229985A1 (en) * 2007-09-26 2012-09-13 Rohm Co., Ltd. Semiconductor device
US7750448B2 (en) * 2007-09-26 2010-07-06 Kabushiki Kaisha Toshiba Semiconductor package and method for manufacturing the same
US20090108288A1 (en) * 2007-10-24 2009-04-30 Denso Corporation Semiconductor device and method of manufacturing the same
US8710568B2 (en) 2007-10-24 2014-04-29 Denso Corporation Semiconductor device having a plurality of elements on one semiconductor substrate and method of manufacturing the same
US8710678B2 (en) 2007-11-26 2014-04-29 Infineon Technologies Ag Device and method including a soldering process
DE102008057817B4 (en) * 2007-11-26 2017-02-16 Infineon Technologies Ag Apparatus and method using a soldering process
US20090134501A1 (en) * 2007-11-26 2009-05-28 Infineon Technologies Ag Device and method including a soldering process
US8211752B2 (en) * 2007-11-26 2012-07-03 Infineon Technologies Ag Device and method including a soldering process
DE102008057817A1 (en) * 2007-11-26 2009-06-25 Infineon Technologies Ag Apparatus and method using a soldering process
US20090289344A1 (en) * 2008-05-23 2009-11-26 Fuji Electric Device Technology Co., Ltd. Semiconductor device
US20100065950A1 (en) * 2008-09-15 2010-03-18 Lowry Michael J Leaded semiconductor power module with direct bonding and double sided cooling
US7759778B2 (en) * 2008-09-15 2010-07-20 Delphi Technologies, Inc. Leaded semiconductor power module with direct bonding and double sided cooling
US8609502B1 (en) 2008-12-10 2013-12-17 Denso Corporation Method of manufacturing semiconductor device including insulated gate bipolar transistor and diode
US8507352B2 (en) 2008-12-10 2013-08-13 Denso Corporation Method of manufacturing semiconductor device including insulated gate bipolar transistor and diode
US20100140658A1 (en) * 2008-12-10 2010-06-10 Denso Corporation Method of manufacturing semiconductor device including insulated gate bipolar transistor and diode
US8633060B2 (en) * 2010-02-01 2014-01-21 Toyota Jidosha Kabushiki Kaisha Semiconductor device production method and semiconductor device
US20120043662A1 (en) * 2010-02-01 2012-02-23 Toyota Jidosha Kabushiki Kaisha Semiconductor device production method and semiconductor device
US9312160B2 (en) * 2012-03-27 2016-04-12 Mitsubishi Electric Corporation Wafer suction method, wafer suction stage, and wafer suction system
US20130256964A1 (en) * 2012-03-27 2013-10-03 Mitsubishi Electric Corporation Wafer suction method, wafer suction stage, and wafer suction system

Also Published As

Publication number Publication date Type
US20030022464A1 (en) 2003-01-30 application
KR20060109390A (en) 2006-10-20 application
DE10234155A1 (en) 2003-02-13 application
CN1400657A (en) 2003-03-05 application
CN1267990C (en) 2006-08-02 grant
KR100659376B1 (en) 2006-12-18 grant
DE10234155B4 (en) 2009-03-05 grant
KR20030010535A (en) 2003-02-05 application

Similar Documents

Publication Publication Date Title
US7208819B2 (en) Power module package having improved heat dissipating capability
US6849930B2 (en) Semiconductor device with uneven metal plate to improve adhesion to molding compound
US20040051168A1 (en) Semiconductor device and method for manufacturing the same
US5986338A (en) Assembly of semiconductor device
US7256501B2 (en) Semiconductor device and manufacturing method of the same
US20010016369A1 (en) Chip scale surface mount package for semiconductor device and process of fabricating the same
US20010045640A1 (en) Resin-molded semiconductor device and method for manufacturing the same
US20120104580A1 (en) Substrateless power device packages
US20050067719A1 (en) Semiconductor device and method for producing the same
US6943061B1 (en) Method of fabricating semiconductor chip package using screen printing of epoxy on wafer
US20070040254A1 (en) Semiconductor die package
US20090108467A1 (en) Device with a plurality of semiconductor chips
US20120074546A1 (en) Multi-chip Semiconductor Packages and Assembly Thereof
US7408251B2 (en) Semiconductor packaging device comprising a semiconductor chip including a MOSFET
US7439613B2 (en) Substrate based unmolded package
US20070235886A1 (en) Semiconductor die packages using thin dies and metal substrates
US20050230804A1 (en) Manufacturing method for semiconductor device, semiconductor device and semiconductor chip
US20040089941A1 (en) Semiconductor device having radiation structure
US20070259514A1 (en) Interconnection Structure, Electronic Component and Method of Manufacturing the Same
US20090215230A1 (en) Manufacturing method of semiconductor device
US20030025183A1 (en) Packaged semiconductor device and method of manufacture using shaped die
US20060125088A1 (en) Heat dissipating semiconductor package and fabrication method thereof
US20070045785A1 (en) Reversible-multiple footprint package and method of manufacturing
US6140702A (en) Plastic encapsulation for integrated circuits having plated copper top surface level interconnect
US20070266558A1 (en) Electronic Component and Method of Producing the Same

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENSO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIRANO, NAOHIKO;TESHIMA, TAKANORI;NAKASE, YOSHIMI;AND OTHERS;REEL/FRAME:013334/0200;SIGNING DATES FROM 20020711 TO 20020723

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12