US7737012B2 - Manufacturing method of a semiconductor device - Google Patents
Manufacturing method of a semiconductor device Download PDFInfo
- Publication number
- US7737012B2 US7737012B2 US10/557,746 US55774605A US7737012B2 US 7737012 B2 US7737012 B2 US 7737012B2 US 55774605 A US55774605 A US 55774605A US 7737012 B2 US7737012 B2 US 7737012B2
- Authority
- US
- United States
- Prior art keywords
- depth
- amorphous layer
- region
- semiconductor device
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000004065 semiconductor Substances 0.000 title claims description 117
- 238000004519 manufacturing process Methods 0.000 title claims description 60
- 239000013078 crystal Substances 0.000 claims abstract description 71
- 238000010438 heat treatment Methods 0.000 claims abstract description 61
- 239000012535 impurity Substances 0.000 claims description 78
- 238000000034 method Methods 0.000 claims description 31
- 150000002500 ions Chemical class 0.000 claims description 28
- 238000000348 solid-phase epitaxy Methods 0.000 claims description 28
- 230000015572 biosynthetic process Effects 0.000 claims description 21
- 229910052710 silicon Inorganic materials 0.000 abstract description 58
- 239000010703 silicon Substances 0.000 abstract description 58
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 56
- 239000000758 substrate Substances 0.000 abstract description 56
- 230000007547 defect Effects 0.000 abstract description 50
- 238000005468 ion implantation Methods 0.000 abstract description 18
- 238000005516 engineering process Methods 0.000 description 29
- 125000001475 halogen functional group Chemical group 0.000 description 28
- 238000001994 activation Methods 0.000 description 25
- 230000004913 activation Effects 0.000 description 19
- 230000000694 effects Effects 0.000 description 19
- 238000002513 implantation Methods 0.000 description 11
- 229910052796 boron Inorganic materials 0.000 description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 7
- 230000003213 activating effect Effects 0.000 description 7
- 229910052732 germanium Inorganic materials 0.000 description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 7
- -1 silicon ions Chemical class 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 230000005465 channeling Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000005224 laser annealing Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910001439 antimony ion Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
- H01L21/26513—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26586—Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
Definitions
- the invention generally relates to a method for manufacturing a semiconductor device. More particularly, the invention relates to a method for forming a shallow junction with a suppressed leakage current.
- a desirable pn junction depth of a drain extension is about 13 nm.
- Possible technologies for implementing such a pn junction depth are a flash lamp annealing technology and a laser annealing technology in both of which the thermal budget time is suppressed to several milliseconds.
- the heat treatment time is extremely short in such short-time heat treatment technologies. Therefore, the impurity activation ratio varies depending on a pattern on semiconductor devices, and transistor characteristics vary as a result. Such variation in transistor characteristics can be a critical drawback for mass production of system LSIs having various patterns.
- FIGS. 6( a ) through 6 ( c ) and FIGS. 7( a ) and 7 ( b ) are schematic cross-sectional views showing the process of forming a P-channel transistor by using the low temperature SPE technology.
- a gate electrode 12 is first formed on a silicon substrate 10 with a gate insulating film 11 interposed therebetween.
- An amorphous layer 13 is then formed by implanting germanium or silicon ions on both sides of the gate electrode 12 in the silicon substrate 10 at implantation energy in the range of several keV to several tens of keV.
- defects 14 are generated near the interface between the amorphous layer 13 and the silicon substrate 10 that is located under the amorphous layer 13 and that has a crystal structure.
- a drain extension 15 is then formed by implanting boron ions into the amorphous layer 13 as a dopant at implantation energy of 1 keV or less.
- a halo region 16 is formed by implanting arsenic or antimony ions on both sides of the gate electrode 12 in the silicon substrate 10 at a tilt angle of, e.g., 25 degrees with respect to the normal to the substrate surface.
- a sidewall 17 is then formed on both sides of the gate electrode 12 .
- a contact drain 18 is formed by implanting boron ions on both sides of the gate electrode 12 and the sidewall 17 in the silicon substrate 10 at implantation energy of several keV.
- boron ions implanted as a dopant to form the drain extension 15 are rapidly activated in the amorphous layer 13 without diffusion during restoration of the crystal structure of the amorphous layer 13 .
- a shallow pn junction is formed.
- the depth of a pn junction that is formed by this technology is substantially determined by an impurity profile that is formed right after ion implantation.
- the amorphous layer 13 extends down to a level that is deeper than the pn junction of the drain extension 15 .
- the implantation energy for implanting germanium or silicon ions into the silicon substrate 10 to form the amorphous layer 13 is determined so that the entire profile of boron that is implanted to form the drain extension 15 is contained in the amorphous layer 13 .
- the drain extension 15 having a pn junction depth of less than 20 nm is thus formed. Since the heat treatment time is as long as several minutes, the resultant drain extension 15 has extremely low pattern dependency.
- the pattern dependency means that factors such as an impurity activation ratio vary depending on a pattern that is formed on the wafer surface (in a single chip). For example, when a polysilicon gate electrode is not uniformly distributed in the whole wafer, the impurity activation ratio varies due to the density difference of the distribution.
- the above low temperature SPE technology has the following problems: the amorphous layer has a depth of about 15 nm to about 30 nm. Therefore, defects that are generated at the interface between the amorphous layer and the crystal (silicon substrate) layer when ions are introduced are located very close to the pn junction of the halo region and the pn junction of the drain extension. As a result, conventional semiconductor integrated circuit devices that are produced by using the low temperature SPE technology have a significantly increased junction leakage current as compared to that of semiconductor integrated circuit devices that are produced by using flash lamp annealing or laser annealing.
- the inventor arrived at a method for suppressing a junction leakage current.
- the position of defects that are generated near the interface between an amorphous layer and a crystal region during formation of the amorphous layer is adjusted according to the depth of each pn junction of a semiconductor device.
- the defects that are generated at the amorphous-crystal interface are thus separated from each pn junction that is required for elements such as a transistor, and a junction leakage current is suppressed.
- a method for manufacturing a semiconductor device includes the steps of: forming an amorphous layer in a region from a surface of a semiconductor region to a first depth; by heat treating the amorphous layer at a prescribed temperature, restoring a crystal structure of the amorphous layer in a region from the first depth to a second depth that is shallower than the first depth so that the amorphous layer shrinks to the second depth; and forming a pn junction at a third depth that is shallower than the second depth by introducing ions into the heat-treated amorphous layer.
- the thickness of the amorphous layer that is formed by introducing ions and the position of the defects that are generated during formation of the amorphous layer can be individually determined so that the amorphous layer is separated from the defects. This will now be described in more detail.
- an amorphous-crystal interface When an amorphous layer is formed in a semiconductor region, crystal defects are generated near the interface between the amorphous layer and a portion of the semiconductor region which has a crystal structure (hereinafter, this interface is referred to as an amorphous-crystal interface).
- the amorphous layer is formed in the region from the surface of the semiconductor region to the first depth. Therefore, the amorphous-crystal interface is present at the first depth and the defects are also present near the first depth.
- the crystal structure of the amorphous layer is restored in the region from the first depth to the second depth that is shallower than the first depth.
- the resultant amorphous layer extends from the surface of the semiconductor region down to the second depth. Therefore, after the heat treatment, the amorphous-crystal interface is present at the second depth.
- the thickness of the amorphous layer (the second depth at which the amorphous-crystal interface is present) and the position where the defects are present (the first depth) can thus be individually determined so that the amorphous layer is separated from the defects.
- a pn junction is then formed at the third depth that is shallower than the second depth by introducing ions into the amorphous layer. In this way, the crystal defects that are generated near the first depth during formation of the amorphous layer can be sufficiently separated from the pn junction that is formed at the third depth.
- the manufacturing method of a semiconductor device according to the first aspect thus enables reduction in a junction leakage current.
- a junction leakage current is caused when a pn junction is close to defects.
- the pn junction can be sufficiently separated from the defects, enabling reduction in a junction leakage current.
- a semiconductor device having a shallow pn junction e.g., a drain extension junction
- a reduced junction leakage current can be manufactured without pattern dependency.
- the prescribed temperature of the heat treatment is preferably in a range of 475° C. to 600° C.
- a method for manufacturing a semiconductor device includes the steps of: forming an amorphous layer in a region from a surface of a semiconductor region of a first conductivity type to a first depth; by heat treating the amorphous layer at a prescribed temperature, restoring a crystal structure of the amorphous layer in a region from the first depth to a second depth that is shallower than the first depth so that the amorphous layer shrinks to the second depth; forming a first impurity layer of a second conductivity type which has a pn junction at a third depth that is shallower than the second depth by introducing ions into the heat-treated amorphous layer; and activating the first impurity layer.
- a semiconductor device having an impurity region with a shallow pn junction can be manufactured with a reduced junction leakage current as in the manufacturing method of a semiconductor device according to the first aspect.
- generation of pattern dependency can be prevented in the step of restoring the crystal structure of the amorphous layer and in the step of activating the impurity layer.
- a method for manufacturing a semiconductor device includes the steps of: forming a gate electrode on a semiconductor region of a first conductivity type; forming an amorphous layer in a region from a surface of the semiconductor region of the first conductivity type to a first depth; by heat treating the amorphous layer at a prescribed temperature, restoring a crystal structure of the amorphous layer in a region from the first depth to a second depth that is shallower than the first depth so that the amorphous layer shrinks to the second depth; forming a first impurity layer of a second conductivity type which has a pn junction at a third depth that is shallower than the second depth by introducing ions into the heat-treated amorphous layer; forming a second impurity layer of a first conductivity type which has a pn junction at a level that is shallower than the first depth and deeper than the third depth by introducing ions into the heat-treated amorphous layer; and activating the first impur
- a MOSFET Metal Oxide Semiconductor Field Effect Transistor
- a MOSFET Metal Oxide Semiconductor Field Effect Transistor
- the like having an impurity layer with a shallow pn junction can be manufactured with a reduced junction leakage current as in the manufacturing method of a semiconductor device according to the first aspect.
- generation of pattern dependency can be prevented in the step of restoring the crystal structure of the amorphous layer and in the step of activating the impurity layers.
- the effect of the invention that is, a reduced leakage current, can be realized when a semiconductor device having, e.g., a halo region as a second impurity layer is manufactured.
- the third depth is preferably in a range of 5 nm to 15 nm.
- the first impurity layer When the first impurity layer is formed at the third depth of the above range, a junction leakage current and pattern dependency can be reduced. Moreover, the first impurity layer can be used as, e.g., a drain extension having a shallow pn junction, which is advantageous for reduction in a short-channel effect.
- the prescribed temperature of the heat treatment is preferably in a range of 475° C. to 600° C.
- the activation of the first impurity layer or the activation of the first impurity layer and the second impurity layer is preferably conducted in a temperature range of 500° C. to 700° C.
- the impurity layer(s) By conducting the heat treatment in this temperature range for a relatively long time, that is, for several minutes, generation of pattern dependency can be prevented during restoration of the crystal structure of the amorphous layer. Moreover, by using a low temperature SPE technology in the activation of the impurity layer(s), the impurity layer(s) can be activated while suppressing generation of pattern dependency and impurity diffusion.
- a pattern of a gate electrode that is formed on the semiconductor region may be non-uniformly distributed on the semiconductor region.
- a pattern of a gate electrode that is formed on the semiconductor region is non-uniformly distributed means, for example, that the gate electrode is densely formed on one part of the semiconductor region and dispersedly formed on another part of the semiconductor region.
- the effect of the invention is remarkably obtained by conducting heat treatment at a low temperature for several minutes.
- a semiconductor device with characteristics having no pattern dependency can be manufactured by conducting such heat treatment.
- the effect of the invention is remarkably obtained even when a pattern other than the gate electrode is non-uniformly distributed.
- a method for manufacturing a semiconductor device includes the steps of: forming a gate electrode on a semiconductor region of a first conductivity type; forming an amorphous layer in a region from a surface of the semiconductor region to a first depth; forming an insulating sidewall on a side surface of the gate electrode while restoring a crystal structure of the amorphous layer in a region from the first depth to a second depth that is shallower than the first depth so that the amorphous layer shrinks to the second depth, the restoration of the crystal structure of the amorphous layer being caused by heat treatment of a prescribed temperature which is conducted during formation of the sidewall; forming a first impurity layer of a second conductivity type which has a pn junction at a third depth that is shallower than the second depth by introducing ions on both sides of the gate electrode in the heat-treated amorphous layer; and activating the first impurity layer.
- a MOSFET and the like having an impurity layer with a shallow pn junction can be manufactured with a reduced junction leakage current as in the manufacturing method of a semiconductor device according to the first aspect.
- generation of pattern dependency can be prevented in the step of restoring the crystal structure of the amorphous layer and in the step of activating the impurity layer.
- the manufacturing process of a semiconductor device can be simplified.
- the manufacturing method of a semiconductor device further includes the step of: after the step of forming the first impurity layer, forming a second impurity layer of a first conductivity type which has a pn junction at a level that is shallower than the first depth and deeper than the third depth by introducing ions on both sides of the gate electrode in the amorphous layer.
- the second impurity layer is simultaneously activated in the step of activating the first impurity layer.
- the effect of the invention that is, a reduced leakage current, can be realized when a semiconductor device having, e.g., a halo region as a second impurity layer is manufactured.
- the third depth is preferably in a range of 5 nm to 15 nm.
- the first impurity layer When the first impurity layer is formed with the third depth of the above range, a junction leakage current and pattern dependency can be reduced. Moreover, the first impurity layer can be used as, e.g., a drain extension having a shallow pn junction, which is advantageous for reduction in a short-channel effect.
- the prescribed temperature of the heat treatment is preferably in a range of 475° C. to 600° C.
- the activation of the first impurity layer or the activation of the first and second impurity layers is preferably conducted in a temperature range of 500° C. to 700° C.
- the first impurity layer or the first and second impurity layers can be activated while suppressing generation of pattern dependency and impurity diffusion.
- a pattern of a gate electrode that is formed on the semiconductor region may be non-uniformly distributed on the semiconductor region.
- the effect of the invention is remarkably obtained by conducting heat treatment at a low temperature for several minutes.
- a semiconductor device with characteristics having no pattern dependency can be manufactured by conducting such heat treatment.
- the effect of the invention is remarkably obtained even when a pattern other than the gate electrode is non-uniformly distributed.
- the thickness of an amorphous layer is changed after the amorphous layer is formed. Therefore, the position of defects that are generated during formation of the amorphous layer and the position of the interface between the amorphous layer and a crystal region of a semiconductor region (that is, the amorphous-crystal interface) can be individually arbitrarily determined so that the defects can be sufficiently separated from the amorphous layer.
- the defects can be sufficiently separated from the pn junction.
- a shallow drain extension junction and the like can be formed while suppressing a junction leakage current resulting from the defects.
- generation of pattern dependency can be prevented by using a low temperature SPE technology.
- FIGS. 1( a ) through 1 ( d ) are schematic cross sectional views showing the steps of a method for manufacturing a semiconductor device according to a first embodiment of the invention
- FIGS. 2( a ) through 2 ( c ) are schematic cross sectional views showing the steps from gate electrode formation to amorphous layer formation in a method for manufacturing a semiconductor device according to a second embodiment of the invention
- FIGS. 3( a ) through 3 ( c ) are schematic cross sectional views showing the steps from halo region formation to impurity layer activation in the method for manufacturing a semiconductor device according to the second embodiment of the invention
- FIGS. 4( a ) through 4 ( c ) are schematic cross sectional views showing the steps from gate electrode formation to amorphous layer formation in a method for manufacturing a semiconductor device according to a third embodiment of the invention
- FIGS. 5( a ) through 5 ( c ) are schematic cross sectional views showing the steps from halo region formation to impurity layer activation in the method for manufacturing a semiconductor device according to the third embodiment of the invention
- FIGS. 6( a ) through 6 ( c ) are schematic cross sectional views showing the steps from gate electrode formation to amorphous layer formation in a conventional method for manufacturing a semiconductor device.
- FIGS. 7( a ) and 7 ( b ) are schematic cross sectional views showing the steps from contact drain formation to impurity layer activation in the conventional method for manufacturing a semiconductor device.
- FIG. 8 shows a gate electrode formed on a semiconductor region that is non-uniformly distributed according to an embodiment of the present disclosure.
- FIGS. 1( a ) through 1 ( d ) are schematic cross-sectional views showing the steps of the method for manufacturing a semiconductor device according to the first embodiment.
- an n-type silicon substrate 100 is first prepared as an example of a semiconductor region.
- ions such as germanium or silicon are implanted into the silicon substrate 100 in order to form an amorphous layer 101 in the region from the surface of the silicon substrate 100 to a first depth A.
- defects 103 are generated near the interface between the silicon substrate 100 and a crystal region of the amorphous layer 101 (hereinafter, this interface is referred to as an amorphous-crystal interface 102 ), that is, near the first depth A.
- the first depth A for the amorphous layer 101 can be arbitrarily determined by adjusting the implantation energy of the ion implantation process. As a result, the depth at which the defects 103 are present can be arbitrarily determined.
- the silicon substrate 100 is then heat treated at a low temperature (e.g., 500° C.).
- a low temperature e.g. 500° C.
- the crystal structure of the amorphous layer 101 is restored from the amorphous-crystal interface 102 toward the surface of the silicon substrate 100 at a prescribed restoration rate.
- the crystal structure can be restored to an arbitrary second depth B that is shallower than the first depth A so that the amorphous layer 101 can shrink into the region from the surface of the silicon substrate 100 to the second depth B.
- the thickness of the amorphous layer 101 is reduced to the thickness from the surface of the silicon substrate 100 to the second depth B.
- the defects 103 that are present at the first depth A corresponding to the pre-heat-treatment amorphous-crystal interface 102 can be sufficiently separated from the post-heat-treatment amorphous-crystal interface 102 located at the second depth B.
- impurity ions are then implanted into the amorphous layer 101 in order to form a pn junction 104 at a third depth C that is shallower than the second depth B.
- the pn junction 104 is formed within the amorphous layer 101 .
- the position of the amorphous-crystal interface and the position of the defects can be controlled to be separated from each other. Since each junction that is required for transistor formation of a semiconductor device is formed by ion implantation into the amorphous layer, the position of each junction can be selected from a wider range. In other words, each junction can be prevented from being formed near defects that are present at the amorphous-crystal interface that is formed when the amorphous layer is initially formed, and the position of each junction can be arbitrarily selected.
- the depth of the amorphous layer 101 (the first depth A) can be arbitrarily controlled by adjusting the conditions of the ion implantation. Therefore, the depth at which the defects 103 are generated can be arbitrarily controlled.
- the depth of the amorphous layer 101 after the heat treatment (the second depth B that is shallower than the first depth A) can be arbitrarily controlled.
- the pn junction 104 is formed within the amorphous layer 101 at the third depth C that is shallower than the second depth B. Since the second depth B is shallower than the first depth A, the pn junction 104 (the third depth C) is located away from the defects 103 that are present at the first depth A.
- a junction leakage current can be reduced in this way.
- a junction leakage current is caused when the pn junction 104 is close to the defects 103 .
- the pn junction 104 can be sufficiently separated from the defects 103 , enabling reduction in a junction leakage current.
- the temperature of the heat treatment (low temperature annealing) for restoring the depth of the amorphous layer 101 is preferably in the range of 475° C. to 600° C.
- the temperature of the heat treatment is 500° C. in the present embodiment.
- the amorphous-crystal interface 102 has roughness (unevenness) right after the amorphous layer 101 is formed. However, such roughness can be substantially eliminated by conducting annealing at such a temperature. More specifically, the roughness of the amorphous-crystal interface 102 can be reduced to 1 nm or less.
- an n-type silicon substrate 100 is used as a semiconductor region.
- a p-type silicon substrate may alternatively be used.
- ions are introduced into the amorphous layer by ion implantation.
- ions may alternatively be introduced by other means such as plasma doping.
- FIGS. 2( a ) through 2 ( c ) and FIGS. 3( a ) through 3 ( c ) are schematic cross-sectional views showing the steps of the method for manufacturing a semiconductor device according to the second embodiment.
- a polysilicon gate electrode 107 is formed on an n-type silicon substrate 100 as a semiconductor region with a gate insulating film 106 interposed therebetween.
- the gate electrode 107 may be formed by using a known lithography technology and a known etching technology.
- the gate length is 70 nm.
- Ions such as germanium or silicon are implanted on both sides of the gate electrode 107 in the silicon substrate 100 in order to form an amorphous layer 101 with a thickness from the surface of the silicon substrate 100 to a first depth.
- the thickness of the amorphous layer 101 herein refers to the thickness from the surface of the silicon substrate 100 to the bottom surface of the amorphous layer 101 .
- the amorphous layer 101 becomes shallower under the gate electrode 107 .
- the thickness of the amorphous layer 101 does not refer to the thickness of this shallower portion but refers to the thickness of the remaining portion.
- the term “thickness” herein refers to the thickness from the surface of the silicon substrate 101 to the bottom surface of that region.
- the depth of a pn junction refers to the level of the bottom surface of that junction.
- the first depth is adjusted to a level that is deeper than various pn junctions that are required for transistor formation.
- the first depth becomes about 80 nm when germanium is implanted at implantation energy of 60 keV and a dose of 3 ⁇ 10 14 /cm 2 .
- This depth is deeper than pn junctions of a drain extension, a halo region and the like that are to be formed later.
- defects 103 are generated near the interface between a crystal region of the silicon substrate 100 and the amorphous layer 101 (this interface is present at the first depth).
- Heat treatment is then conducted for several minutes in the temperature range of 475° C. to 600° C., for example, at 500° C.
- the crystal structure of the amorphous layer 101 can be restored in the region from the first depth to an arbitrary second depth that is shallower than the first depth.
- the amorphous layer 101 thus shrinks into the region from the surface of the silicon substrate 100 to the second depth.
- the second depth is in the range of 15 nm to 30 nm.
- the defects 103 remain at the same position, that is, near the first depth.
- the temperature range of 475° C. to 600° C. that is used in the present invention is preferred, but the invention is not limited to this range.
- impurity ions such as boron are implanted on both sides of the gate electrode 107 in the amorphous layer 101 by using the gate electrode 107 as a mask.
- a p-type drain extension 108 extending under a part of the gate electrode 107 is formed as a first impurity layer.
- the implantation energy is 1 keV or less and the dose is 1 ⁇ 10 14 /cm 2 .
- the drain extension 108 has a depth of 5 nm to 15 nm.
- the drain extension 108 can thus be formed in a region that is sufficiently shallower than the second depth.
- a pn junction is formed at the boundary between the p-type drain extension 108 and the n-type silicon substrate 100 . This pn junction is sufficiently separated from the defects that are present at the first depth. Therefore, a junction leakage current resulting from the defects 103 can be suppressed.
- arsenic ions are implanted on both sides of the gate electrode 107 in the silicon substrate 100 at a dose of 5 ⁇ 10 13 /cm 2 and a tilt angle of 25 degrees with respect to the normal to the substrate surface by using the gate electrode 107 as a mask.
- an n-type halo region 109 that surrounds the drain extension 108 and extends more under the gate electrode 107 than the drain extension 108 does is formed as a second impurity layer.
- Respective pn junctions of the n-type halo region 109 and the p-type drain extension 108 are sufficiently separated from the defects 103 that are present at the first depth. Therefore, a junction leakage current resulting from the defects 103 can be suppressed.
- an insulating sidewall 110 is then formed on both side surfaces of the gate electrode 107 .
- n-type impurity ions are implanted on both sides of the gate electrode 107 and the sidewall 110 in the silicon substrate 100 by using the gate electrode 107 and the sidewall 110 as a mask.
- a contact drain 111 is thus formed.
- the contact drain 111 is formed with a higher impurity concentration than that of the drain extension 108 for reduced contact resistance, and with a depth shallower than the first depth (about 80 nm in the present embodiment), e.g., with a depth of about 60 nm.
- Impurity layers such as the drain extension 108 , the halo region 109 , and the contact drain 111 are then activated.
- This activation process is conducted by using a low temperature SPE technology. More specifically, heat treatment is conducted at a temperature of 500° C. to 800° C. for two to three minutes. The temperature range of 500° C. to 800° C. is preferred, but the invention is not limited to this range. More preferably, the activation process is conducted in the temperature range of 500° C. to 700° C.
- the crystal structure of the amorphous layer 101 is restored and there is no longer an amorphous region in the silicon substrate 100 .
- impurity layers such as the drain extension 108 , the halo region 109 , and the contact drain 111 can be activated without impurity diffusion. This result is shown in FIG. 3( c ).
- this heat treatment is conducted for a relatively long treatment time, that is, several minutes. Therefore, even when a pattern formed on the silicon substrate 100 has non-uniformity such as a density difference of the gate electrode 107 , transistors can be formed with uniform characteristics without any influence of the non-uniformity.
- the amorphous layer 101 is initially formed in the region from the surface of the silicon substrate 100 to the first depth. Thereafter, a part of the crystal structure of the amorphous layer 101 is restored by heat treatment so that the amorphous-crystal interface withdraws to the second depth that is shallower than the first depth. As a result, the defects 103 that are present at the first depth can be separated from the post-heat-treatment amorphous-crystal interface that is located at the second depth. Thereafter, the drain extension 108 and the halo region 109 are formed within the amorphous layer 101 by ion implantation to the amorphous layer 101 . Respective pn junctions of the drain extension 108 and the halo region 109 can thus be sufficiently separated from the defects 103 .
- a junction leakage current that is generated when a pn junction is close to the defects 103 can be suppressed.
- pattern dependency can be suppressed by a low temperature SPE technology.
- a semiconductor device can be manufactured with a suppressed junction leakage current by the effects of the invention.
- a halo region 109 is not an essential element in the present embodiment and may be formed as necessary.
- the first depth is about 80 nm
- the second depth is 15 nm to 30 nm
- the depth of the drain extension 108 is 5 nm to 15 nm.
- Ion implantation for forming the amorphous layer 101 and for forming the drain extension 108 , the halo region 109 , and the contact drain 111 is preferably conducted under the conditions shown in the present embodiment (such as implantation energy, a tilt angle, and a dose). However, the invention is not limited to these conditions.
- ions are introduced into the amorphous layer 101 by ion implantation. However, ions may alternatively be introduced by means other than ion implantation, such as plasma doping.
- n-type is a first conductivity type and p-type is a second conductivity type.
- p-type may be a first conductivity type and n-type may be a second conductivity type.
- the amorphous layer 101 is formed after the gate electrode 107 is formed on the silicon substrate 100 .
- the amorphous layer 101 and the gate electrode 107 may be formed in the opposite order.
- the gate electrode 107 may be formed after the amorphous layer 101 is formed in the silicon substrate 100 .
- FIGS. 4( a ) through 4 ( c ) and FIGS. 5( a ) through 5 ( c ) are schematic cross-sectional views showing the steps of the method for manufacturing a semiconductor device according to the third embodiment.
- a polysilicon gate electrode 107 is formed on an n-type silicon substrate 100 as a semiconductor region with a gate insulating film 106 interposed therebetween.
- the gate electrode 107 may be formed by using a known lithography technology and a known etching technology.
- ions such as germanium or silicon are implanted on both sides of the gate electrode 107 in the silicon substrate 100 in order to form an amorphous layer 101 having a thickness from the surface of the silicon substrate 100 to a first depth.
- the thickness of the amorphous layer 100 herein refers to the thickness from the surface of the silicon substrate 100 to the bottom surface of the amorphous layer 101 .
- the first depth is adjusted to a level that is deeper than various pn junctions that are required for transistor formation.
- the first depth becomes about 80 nm when germanium is implanted at implantation energy of 60 keV and a dose of 3 ⁇ 10 14 /cm 2 .
- This depth is deeper than pn junctions of a drain extension, a halo region and the like that are to be formed later.
- defects 103 are generated near the interface between a crystal region of the silicon substrate 100 and the amorphous layer 101 (this interface is present at the first depth).
- a silicon oxide film is then deposited on both side surfaces of the gate electrode 107 by low pressure CVD in order to from an insulating sidewall 110 .
- This process involves heat treatment of about 550° C. Therefore, during formation of the sidewall 110 , the crystal structure of the amorphous layer 101 is restored in the region from the first depth to an arbitrary second depth that is shallower than the first depth. As a result, the amorphous layer 101 shrinks into the region from the surface of the silicon substrate 100 to the second depth.
- the second depth is in the range of 15 nm to 30 nm.
- the defects 103 remain at the same position, that is, near the first depth.
- impurities such as boron are implanted on both sides of the gate electrode 107 and the sidewall 110 in the amorphous layer 101 by using the gate electrode 107 and the sidewall 110 as a mask.
- a p-type drain extension 108 extending under a part of the gate electrode 107 is formed as a first impurity layer.
- this ion implantation is conducted at a tilt angle of 25 degrees with respect to the normal to the substrate surface, implantation energy of 1 keV or less, and a dose of 1 ⁇ 10 14 /cm 2 .
- the drain extension 108 has a depth of 5 nm to 15 nm.
- the drain extension 108 can be formed in a region that is sufficiently shallower than the second depth.
- a pn junction is thus formed at the boundary between the p-type drain extension 108 and the n-type silicon substrate 100 .
- This pn junction is located at a level that is shallower than the second depth that is shallower than the first depth. Since the pn junction is sufficiently separated from the defects that are present at the first depth, a junction leakage current resulting from the defects 103 can be suppressed.
- arsenic ions are implanted on both sides of the gate electrode 107 and the sidewall 110 in the silicon substrate 100 at a dose of 5 ⁇ 10 13 /cm 2 and a tilt angle of 45 degrees with respect to the normal by using the gate electrode 107 and the sidewall 110 as a mask.
- an n-type halo region 109 that surrounds the drain extension 108 and extends more under the gate electrode 107 than the drain extension 108 does is formed as a second impurity layer.
- the halo region 109 is formed within the region that is shallower than the second depth.
- respective pn junctions of the n-type halo region 109 and the p-type drain extension 108 are also located at a level that is shallower than the second depth that is shallower than the first depth. Since the pn junctions are sufficiently separated from the defects 103 that are present at the first depth, generation of a junction leakage current resulting from the defects 103 can be prevented.
- n-type impurity ions are implanted on both sides of the gate electrode 107 and the sidewall 110 in the silicon substrate 100 by using the gate electrode 107 and the sidewall 110 as a mask.
- a contact drain 111 is thus formed.
- the contact drain 111 is formed with a higher impurity concentration than that of the drain extension 108 for reduced contact resistance, and with a depth shallower than the first depth (about 80 nm in the present embodiment), e.g., with a depth of about 60 nm.
- Impurity layers such as the drain extension 108 , the halo region 109 , and the contact drain 111 are then activated.
- This activation process is conducted by using a low temperature SPE technology. More specifically, heat treatment is conducted at a temperature of 500° C. to 800° C. for two to three minutes. The temperature range of 500° C. to 800° C. is preferred, but the invention is not limited to this range. More preferably, the activation process is conducted in the temperature range of 500° C. to 700° C.
- the amorphous layer 101 is initially formed in the region from the surface of the silicon substrate 100 to the first depth.
- the heat treatment that is conducted in the step of forming the sidewall 110 a part of the crystal structure of the amorphous layer 101 is restored so that the amorphous-crystal interface withdraws to the second depth that is shallower than the first depth.
- the defects 103 that are present at the first depth can be separated from the post-heat-treatment amorphous-crystal interface that is located at the second depth.
- the drain extension 108 and the halo region 109 are then formed within the amorphous layer 101 by ion implantation to the amorphous layer 101 . Respective pn junctions of the drain extension 108 and the halo region 109 can thus be sufficiently separated from the defects 103 .
- a junction leakage current that is generated when a pn junction is close to the defects 103 can be suppressed.
- pattern dependency can be suppressed by a low temperature SPE technology.
- a semiconductor device can be manufactured with a suppressed junction leakage current by the effects of the invention.
- the crystal structure of the amorphous layer 101 is restored in the region from the first depth to the second depth by the heat treatment that is conducted in the step of forming the sidewall 110 . Therefore, the number of steps can be reduced.
- a halo region 109 is not an essential element in the present embodiment and may be formed as necessary.
- Preferable values of the first depth, the second depth, and the depth of the drain extension 108 are shown in the present embodiment. However, the invention is not limited to these values and any values may be used as appropriate.
- Ion implantation for forming the amorphous layer 101 and for forming the drain extension 108 , the halo region 109 , and the contact drain 111 is preferably conducted under the conditions shown in the present embodiment (such as implantation energy, a tilt angle, and a dose). However, the invention is not limited to these conditions.
- n-type is a first conductivity type and p-type is a second conductivity type.
- p-type may be a first conductivity type and n-type may be a second conductivity type.
- the amorphous layer 101 is formed after the gate electrode 107 is formed on the silicon substrate 100 .
- the amorphous layer 101 and the gate electrode 107 may be formed in the opposite order.
- the gate electrode 107 may be formed after the amorphous layer 101 is formed in the silicon substrate 100 .
- ions are introduced into the amorphous layer 101 by ion implantation.
- ions may alternatively be introduced by methods other than ion implantation, such as plasma doping.
- a method for manufacturing a semiconductor device according to the invention enables pn junctions of impurity layers to be sufficiently separated from defects that are generated during formation of an amorphous layer. This effect can be utilized to suppress a junction leakage current resulting from the defects. By using a low temperature SPE technology, this effect can also be utilized to form a uniformly shallow drain extension and the like regardless of patterns that are formed on a semiconductor region.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
- Non-patent reference 1: John O. Borland, Low Temperature Activation of Ion Implanted Dopants, Extended Abstracts of International Workshop on Junction Technology 2002, Japan Society of Applied Physics, December 2002, pp. 85-88.
Claims (20)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004103681A JP3737504B2 (en) | 2004-03-31 | 2004-03-31 | Manufacturing method of semiconductor device |
JP2004-103681 | 2004-03-31 | ||
PCT/JP2005/005947 WO2005096357A1 (en) | 2004-03-31 | 2005-03-29 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070054444A1 US20070054444A1 (en) | 2007-03-08 |
US7737012B2 true US7737012B2 (en) | 2010-06-15 |
Family
ID=35064064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/557,746 Active 2025-08-03 US7737012B2 (en) | 2004-03-31 | 2005-03-29 | Manufacturing method of a semiconductor device |
Country Status (6)
Country | Link |
---|---|
US (1) | US7737012B2 (en) |
EP (1) | EP1732112A4 (en) |
JP (1) | JP3737504B2 (en) |
KR (1) | KR20070000330A (en) |
CN (1) | CN100401476C (en) |
WO (1) | WO2005096357A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130023104A1 (en) * | 2011-07-19 | 2013-01-24 | Tatsunori Isogai | Method for manufacturing semiconductor device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8421130B2 (en) * | 2007-04-04 | 2013-04-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for manufacturing SRAM devices with reduced threshold voltage deviation |
JP5303881B2 (en) | 2007-08-15 | 2013-10-02 | 富士通セミコンダクター株式会社 | Field effect transistor and method of manufacturing field effect transistor |
CN102194868B (en) * | 2010-03-16 | 2013-08-07 | 北京大学 | Anti-irradiation metal oxide semiconductor (MOS) device with Halo structure |
US8884341B2 (en) | 2011-08-16 | 2014-11-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuits |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0458524A (en) | 1990-06-27 | 1992-02-25 | Fujitsu Ltd | Manufacture of semiconductor device |
JPH05190850A (en) | 1991-10-15 | 1993-07-30 | Sony Corp | Manufacture of semiconductor device |
JPH0689869A (en) | 1991-01-10 | 1994-03-29 | Oki Electric Ind Co Ltd | Manufacture of semiconductor element |
JPH08203842A (en) | 1995-01-30 | 1996-08-09 | Sony Corp | Manufacture of semiconductor device |
US6074937A (en) * | 1997-12-18 | 2000-06-13 | Advanced Micro Devices, Inc. | End-of-range damage suppression for ultra-shallow junction formation |
US6180476B1 (en) * | 1998-11-06 | 2001-01-30 | Advanced Micro Devices, Inc. | Dual amorphization implant process for ultra-shallow drain and source extensions |
US6187643B1 (en) * | 1999-06-29 | 2001-02-13 | Varian Semiconductor Equipment Associates, Inc. | Simplified semiconductor device manufacturing using low energy high tilt angle and high energy post-gate ion implantation (PoGI) |
US6251757B1 (en) | 2000-02-24 | 2001-06-26 | Advanced Micro Devices, Inc. | Formation of highly activated shallow abrupt junction by thermal budget engineering |
US6287925B1 (en) | 2000-02-24 | 2001-09-11 | Advanced Micro Devices, Inc. | Formation of highly conductive junctions by rapid thermal anneal and laser thermal process |
US6362063B1 (en) * | 1999-01-06 | 2002-03-26 | Advanced Micro Devices, Inc. | Formation of low thermal budget shallow abrupt junctions for semiconductor devices |
US6391751B1 (en) * | 2000-07-27 | 2002-05-21 | Advanced Micro Devices, Inc. | Method for forming vertical profile of polysilicon gate electrodes |
US20020068407A1 (en) * | 2000-12-06 | 2002-06-06 | Atsuki Ono | MOS transistor fabrication method |
US20020121654A1 (en) * | 2001-03-02 | 2002-09-05 | Tomonari Yamamoto | Semiconductor device and manufacturing method thereof |
US6472282B1 (en) * | 2000-08-15 | 2002-10-29 | Advanced Micro Devices, Inc. | Self-amorphized regions for transistors |
US6521502B1 (en) * | 2000-08-07 | 2003-02-18 | Advanced Micro Devices, Inc. | Solid phase epitaxy activation process for source/drain junction extensions and halo regions |
US6548361B1 (en) * | 2002-05-15 | 2003-04-15 | Advanced Micro Devices, Inc. | SOI MOSFET and method of fabrication |
US6555439B1 (en) * | 2001-12-18 | 2003-04-29 | Advanced Micro Devices, Inc. | Partial recrystallization of source/drain region before laser thermal annealing |
US6624037B2 (en) * | 2001-08-01 | 2003-09-23 | Advanced Micro Devices, Inc. | XE preamorphizing implantation |
US6642122B1 (en) * | 2002-09-26 | 2003-11-04 | Advanced Micro Devices, Inc. | Dual laser anneal for graded halo profile |
US6680250B1 (en) * | 2002-05-16 | 2004-01-20 | Advanced Micro Devices, Inc. | Formation of deep amorphous region to separate junction from end-of-range defects |
US6699771B1 (en) * | 2002-08-06 | 2004-03-02 | Texas Instruments Incorporated | Process for optimizing junctions formed by solid phase epitaxy |
US20040072394A1 (en) * | 2002-10-10 | 2004-04-15 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method for fabricating the same |
US20040235280A1 (en) * | 2003-05-20 | 2004-11-25 | Keys Patrick H. | Method of forming a shallow junction |
US20050003638A1 (en) * | 2001-11-30 | 2005-01-06 | Stolk Peter Adriaan | Method of manufacturing a semiconductor device |
US6893930B1 (en) * | 2002-05-31 | 2005-05-17 | Advanced Micro Devices, Inc. | Fabrication of field effect transistor with shallow junctions using low temperature activation of antimony |
US20050136623A1 (en) * | 2003-12-22 | 2005-06-23 | Tan Chung F. | Shallow amorphizing implant for gettering of deep secondary end of range defects |
US7091097B1 (en) * | 2004-09-03 | 2006-08-15 | Advanced Micro Devices, Inc. | End-of-range defect minimization in semiconductor device |
US7094671B2 (en) * | 2004-03-22 | 2006-08-22 | Infineon Technologies Ag | Transistor with shallow germanium implantation region in channel |
US7247547B2 (en) * | 2005-01-05 | 2007-07-24 | International Business Machines Corporation | Method of fabricating a field effect transistor having improved junctions |
-
2004
- 2004-03-31 JP JP2004103681A patent/JP3737504B2/en not_active Expired - Fee Related
-
2005
- 2005-03-29 EP EP05727888A patent/EP1732112A4/en not_active Withdrawn
- 2005-03-29 WO PCT/JP2005/005947 patent/WO2005096357A1/en not_active Application Discontinuation
- 2005-03-29 KR KR1020057022315A patent/KR20070000330A/en not_active Application Discontinuation
- 2005-03-29 US US10/557,746 patent/US7737012B2/en active Active
- 2005-03-29 CN CNB2005800003028A patent/CN100401476C/en not_active Expired - Fee Related
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0458524A (en) | 1990-06-27 | 1992-02-25 | Fujitsu Ltd | Manufacture of semiconductor device |
JPH0689869A (en) | 1991-01-10 | 1994-03-29 | Oki Electric Ind Co Ltd | Manufacture of semiconductor element |
JPH05190850A (en) | 1991-10-15 | 1993-07-30 | Sony Corp | Manufacture of semiconductor device |
JPH08203842A (en) | 1995-01-30 | 1996-08-09 | Sony Corp | Manufacture of semiconductor device |
US5602045A (en) * | 1995-01-30 | 1997-02-11 | Sony Corporation | Method for making a semiconductor device |
US6074937A (en) * | 1997-12-18 | 2000-06-13 | Advanced Micro Devices, Inc. | End-of-range damage suppression for ultra-shallow junction formation |
US6180476B1 (en) * | 1998-11-06 | 2001-01-30 | Advanced Micro Devices, Inc. | Dual amorphization implant process for ultra-shallow drain and source extensions |
US6362063B1 (en) * | 1999-01-06 | 2002-03-26 | Advanced Micro Devices, Inc. | Formation of low thermal budget shallow abrupt junctions for semiconductor devices |
US6187643B1 (en) * | 1999-06-29 | 2001-02-13 | Varian Semiconductor Equipment Associates, Inc. | Simplified semiconductor device manufacturing using low energy high tilt angle and high energy post-gate ion implantation (PoGI) |
US6251757B1 (en) | 2000-02-24 | 2001-06-26 | Advanced Micro Devices, Inc. | Formation of highly activated shallow abrupt junction by thermal budget engineering |
US6287925B1 (en) | 2000-02-24 | 2001-09-11 | Advanced Micro Devices, Inc. | Formation of highly conductive junctions by rapid thermal anneal and laser thermal process |
US6391751B1 (en) * | 2000-07-27 | 2002-05-21 | Advanced Micro Devices, Inc. | Method for forming vertical profile of polysilicon gate electrodes |
US6521502B1 (en) * | 2000-08-07 | 2003-02-18 | Advanced Micro Devices, Inc. | Solid phase epitaxy activation process for source/drain junction extensions and halo regions |
US6472282B1 (en) * | 2000-08-15 | 2002-10-29 | Advanced Micro Devices, Inc. | Self-amorphized regions for transistors |
US20020068407A1 (en) * | 2000-12-06 | 2002-06-06 | Atsuki Ono | MOS transistor fabrication method |
US20020121654A1 (en) * | 2001-03-02 | 2002-09-05 | Tomonari Yamamoto | Semiconductor device and manufacturing method thereof |
US6624037B2 (en) * | 2001-08-01 | 2003-09-23 | Advanced Micro Devices, Inc. | XE preamorphizing implantation |
US20050003638A1 (en) * | 2001-11-30 | 2005-01-06 | Stolk Peter Adriaan | Method of manufacturing a semiconductor device |
US6555439B1 (en) * | 2001-12-18 | 2003-04-29 | Advanced Micro Devices, Inc. | Partial recrystallization of source/drain region before laser thermal annealing |
US6548361B1 (en) * | 2002-05-15 | 2003-04-15 | Advanced Micro Devices, Inc. | SOI MOSFET and method of fabrication |
US6680250B1 (en) * | 2002-05-16 | 2004-01-20 | Advanced Micro Devices, Inc. | Formation of deep amorphous region to separate junction from end-of-range defects |
US6893930B1 (en) * | 2002-05-31 | 2005-05-17 | Advanced Micro Devices, Inc. | Fabrication of field effect transistor with shallow junctions using low temperature activation of antimony |
US6699771B1 (en) * | 2002-08-06 | 2004-03-02 | Texas Instruments Incorporated | Process for optimizing junctions formed by solid phase epitaxy |
US6642122B1 (en) * | 2002-09-26 | 2003-11-04 | Advanced Micro Devices, Inc. | Dual laser anneal for graded halo profile |
US20040072394A1 (en) * | 2002-10-10 | 2004-04-15 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method for fabricating the same |
US20040235280A1 (en) * | 2003-05-20 | 2004-11-25 | Keys Patrick H. | Method of forming a shallow junction |
US20050136623A1 (en) * | 2003-12-22 | 2005-06-23 | Tan Chung F. | Shallow amorphizing implant for gettering of deep secondary end of range defects |
US7094671B2 (en) * | 2004-03-22 | 2006-08-22 | Infineon Technologies Ag | Transistor with shallow germanium implantation region in channel |
US7091097B1 (en) * | 2004-09-03 | 2006-08-15 | Advanced Micro Devices, Inc. | End-of-range defect minimization in semiconductor device |
US7247547B2 (en) * | 2005-01-05 | 2007-07-24 | International Business Machines Corporation | Method of fabricating a field effect transistor having improved junctions |
Non-Patent Citations (1)
Title |
---|
European Search Report issued in European Patent Application No. EP 05727888.9-2203/1732112 PCT/JP2005005947, dated Sep. 3, 2008. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130023104A1 (en) * | 2011-07-19 | 2013-01-24 | Tatsunori Isogai | Method for manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
EP1732112A4 (en) | 2008-10-01 |
US20070054444A1 (en) | 2007-03-08 |
WO2005096357A1 (en) | 2005-10-13 |
CN100401476C (en) | 2008-07-09 |
JP3737504B2 (en) | 2006-01-18 |
CN1774795A (en) | 2006-05-17 |
JP2005294341A (en) | 2005-10-20 |
KR20070000330A (en) | 2007-01-02 |
EP1732112A1 (en) | 2006-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4597531B2 (en) | Semiconductor device with retrograde dopant distribution in channel region and method for manufacturing such semiconductor device | |
TWI485856B (en) | An soi transistor having an embedded strain layer and a reduced floating body effect and a method for forming the same | |
US7217627B2 (en) | Semiconductor devices having diffusion barrier regions and halo implant regions and methods of fabricating the same | |
TWI436430B (en) | An soi transistor having a reduced body potential and a method of forming the same | |
TWI479604B (en) | Performance enhancement in pmos and nmos transistors on the basis of silicon/carbon material | |
KR100954874B1 (en) | Semiconductor device having a retrograde dopant profile in a channel region and method for fabricating the same | |
US8138050B2 (en) | Transistor device comprising an asymmetric embedded semiconductor alloy | |
US6852610B2 (en) | Semiconductor device and method for manufacturing the same | |
TWI469344B (en) | A transistor having a strained channel region including a performance enhancing material composition | |
US20040104442A1 (en) | Drain/source extension structure of a field effect transistor including doped high-k sidewall spacers | |
US7419867B2 (en) | CMOS gate structure comprising predoped semiconductor gate material with improved uniformity of dopant distribution and method of forming the structure | |
US7737012B2 (en) | Manufacturing method of a semiconductor device | |
US20060275964A1 (en) | Semiconductor device and method for fabricating the same | |
TWI556320B (en) | Low thermal budget schemes in semiconductor device fabrication | |
US6709961B2 (en) | Method for fabricating semiconductor device | |
TWI531005B (en) | Transistor with embedded strain-inducing material formed in cavities based on an amorphization process and a heat treatment | |
KR20060136300A (en) | Method for manufacturing semiconductor device | |
US20050098818A1 (en) | Drain/source extension structure of a field effect transistor including doped high-k sidewall spacers | |
CN107170704B (en) | Semiconductor structure and forming method thereof | |
CN108630535B (en) | Semiconductor structure and forming method thereof | |
KR101068135B1 (en) | Method for fabricating semiconductor device | |
TW201924060A (en) | Transistor element with reduced lateral electrical field | |
KR100519507B1 (en) | Method for Forming Semi-conductor Device | |
KR100881410B1 (en) | Method for fabricating semiconductor device | |
KR100588784B1 (en) | Fabricating method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.,JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHIBATA, SATOSHI;REEL/FRAME:019203/0346 Effective date: 20051012 Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHIBATA, SATOSHI;REEL/FRAME:019203/0346 Effective date: 20051012 |
|
AS | Assignment |
Owner name: PANASONIC CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:021897/0588 Effective date: 20081001 Owner name: PANASONIC CORPORATION,JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:021897/0588 Effective date: 20081001 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: GODO KAISHA IP BRIDGE 1, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION (FORMERLY MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.);REEL/FRAME:032152/0514 Effective date: 20140117 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |