US7663348B2 - Distributed generation system and power system stabilizing method - Google Patents
Distributed generation system and power system stabilizing method Download PDFInfo
- Publication number
- US7663348B2 US7663348B2 US11/586,540 US58654006A US7663348B2 US 7663348 B2 US7663348 B2 US 7663348B2 US 58654006 A US58654006 A US 58654006A US 7663348 B2 US7663348 B2 US 7663348B2
- Authority
- US
- United States
- Prior art keywords
- distributed generation
- power
- voltage
- active power
- distributed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/48—Controlling the sharing of the in-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/50—Controlling the sharing of the out-of-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Definitions
- This invention relates to a distributed generation system for stabilizing a power system by suppressing the voltage fluctuation in the power system and a method of stabilizing the power system.
- JP-A-2000-333373 discloses a method of compensating the fluctuations in the system voltage by a distributed generation connected with the system. Namely, in this patent document, there is disclosed a method wherein the system voltage and the system current are detected; the reactive current command for the distributed generation is generated on the basis of the detected system voltage and current; and the voltage on the distributed line is maintained constant with the aid of the reactive current command.
- JP-A-2002-171667 discloses a system stabilizing technique for suppressing the fluctuations in the voltage of a power distribution system by the use of a static var compensator incorporating IGBTs therein.
- the distributed generation connected via a system interconnection line with a trunk system generates active power P and reactive power Q and feed them to the trunk system.
- a self-commutated static var compensator using, for example, IGBTs Between the trunk system and the distributed generation is connected a self-commutated static var compensator using, for example, IGBTs.
- the current flowing from the distributed generation to the interconnection line is detected and the voltage is detected at the point of connection between the trunk system and the distributed generation.
- the active power P supplied from the distributed generation to the trunk system is detected.
- the IGBTs in the self-commutated static var compensator are controlled in such a manner that the fluctuation in the amplitude of the voltage at the point of connection is suppressed.
- the static var compensator calculates the parameter (R/X) by measuring the interharmonic current resulting from the insertion of an interharmonic voltage.
- the output of a distributed generation using natural energy such as a wind turbine or a photovoltaic system varies with time as natural energy fluctuates depending on natural condition. If the distributed generation is connected at a remote end of the power distribution system, the resistance of the associated system connection line becomes large so that the voltage on the associated interconnection line fluctuates in response to the fluctuation of the active power supplied by the distributed generation. Also, in a wind farm or an offshore wind farm, which has appeared recently and been built with a multitude of wind turbines concentrated in a single site, there may be an adverse possibility that the voltage of the power distribution system fluctuates considerably due to the power output of the wind farm fluctuating to a great extent. In order for the distributed generation to be able to generate reactive power that may suppress the system voltage fluctuation, it must be necessary to measure a parameter that depends on both the system itself and the load connected therewith.
- JP-A-2000-333373 has such problems to be solved as explained below.
- the distributed generation system Since the detected values of the system voltage and current are used, the distributed generation system operates to compensate for even the voltage fluctuation due to the fluctuation in the load connected with the distributed feeder. This intrinsically unnecessary compensation of the voltage fluctuation due to the load fluctuation gives rise to the generation of large reactive power, which in turn results in an increase in loss and a decrease in the power generation efficiency in the distributed generation system.
- the insertion of interharmonic voltage may incur a large disturbance in the power system if there are involved a plurality of distributed generations. There must also be attained a requirement that the system voltage fluctuation be suppressed without more than one distributed generations interfering with one another.
- An object of this invention is to suppress the voltage fluctuation in the power system resulting from the provision of the distributed generation by means of an apparatus or facility of a small power capacity.
- Another object of this invention is to provide a distributed generation system wherein control interference hardly occurs among a plurality of distributed generations.
- Still another object of this invention is to provide a distributed generation which hardly causes disturbance in the power system.
- a control means which detects the output of a distributed generation and controls the distributed generation according to the detected output so as to compensate for the fluctuating component of the voltage at the point of connection attributable to the output of the distributed generation.
- the output of the distributed generation is detected so as to compensate for the fluctuating component of the voltage at the point of connection and a controller is provided which controls the static var compensator (SVC) placed near the distributed generation, on the basis of the detected output.
- SVC static var compensator
- FIG. 1 is a block diagram of a distributed generation provided with a power system stabilizer, as a first embodiment of this invention
- FIG. 2 is a block diagram of a controller 13 as shown in FIG. 1 ;
- FIG. 3 is a block diagram of an active power fluctuation detector which extracts the fluctuating component ⁇ P of the active power
- FIG. 4 is a graph showing a gain characteristic, given by the expression (6), of a filter used to obtain the active power fluctuation
- FIG. 5 is a block diagram of a voltage fluctuation detector 133 which extracts the fluctuating component ⁇ Vp of the voltage amplitude Vp;
- FIG. 6 is a block diagram of a reactive power command calculator 134 as shown in FIG. 2 ;
- FIGS. 7A through 7E are operating waveforms of the reactive power command calculator 134 for smaller values of the control parameter
- FIGS. 8A through 8E are operating waveforms of the reactive power command calculator 134 for larger values of the control parameter
- FIG. 9 is a schematic circuit diagram of a doubly-fed induction generator system (a power generation system with a secondary excitation), as another embodiment of this invention.
- FIG. 10 is a block diagram of a reactive power command calculator 134 a including the calculation of the parameter ⁇ (t), used in a distributed generation system provided with a power system stabilizer, as a second embodiment of this invention;
- FIG. 11 is a block diagram of a reactive power command calculator 134 b including the calculation of the parameter ⁇ (t), used in a distributed generation system provided with a power system stabilizer, as a third embodiment of this invention;
- FIGS. 12A and 12B are graphs showing the results of measurement plotted with the abscissas graduated in ⁇ P and the ordinates in ⁇ Vd and ⁇ Vq, respectively, in the reactive power command calculator 134 b of FIG. 11 ;
- FIG. 13 is a schematic block diagram of a distributed generation provided with a power system stabilizer, including a plurality of distributed generations, as a fourth embodiment of this invention.
- FIG. 14 is a schematic block diagram of a distributed generation provided with a static var compensator, as a fifth embodiment of this invention.
- FIG. 1 schematically shows a block diagram of a distributed generation system provided with a power system stabilizer, as a first embodiment of this invention.
- a distributed generation 1 is connected via a system interconnection line or cable 2 with a trunk system 3 .
- R 1 and X 1 Let the resistance and the reactance of the impedance of the distribution feeder 2 be represented by R 1 and X 1 , respectively.
- a regular load 4 such as any of domestic electric appliances or factory machinery which consumes electric power.
- the regular load consists of its resistance R 2 and reactance X 2 .
- a wind turbine generator system serves as the distributed generator 1 .
- the distributed generator 1 comprises a power generator 11 , a power converter 12 , a controller 13 , a voltage detector 14 and a current detector 15 .
- the wind energy received by the blades 16 of the wind turbine generator system is converted to three-phase alternating electric energy by means of the generator 11 .
- the electric energy is in turn fed to the power converter 12 .
- a permanent-magnet generator is used as the generator 11 .
- a wind turbine controller 17 calculates the power command P* for the maximum power that the wind turbine system can generate.
- the power command P* is then fed to the controller 13 .
- the power converter 12 mainly comprises an AC/DC converter 121 , a DC/AC converter 122 and a DC-link capacitor (smoothing capacitor) 123 .
- the converters 121 and 122 are built with, for example, semiconductor switching elements such as IGBTs.
- the AC/DC converter 121 converts the AC power generated by the generator 11 to corresponding DC power, which is in turn fed to the DC-link capacitor 123 .
- the DC/AC converter 122 converts the DC power stored in the DC-link capacitor 123 to corresponding AC power. Accordingly, the corresponding active power P following the power command P* is then fed to the power system.
- the controller 13 produces a gate pulse signal G* for controlling the power controller 12 on the basis of the voltage value V and the current value I obtained by the voltage detector 14 and the current detector 15 , respectively, and the power command P* produced by the wind turbine controller 17 .
- FIG. 2 concretely shows in block diagram the controller 13 shown in FIG. 1 .
- the controller 13 includes a power/voltage calculator 131 which calculates, from the detected voltage value V and the detected current value I, the active power P to be generated by the distributed generation 1 and the voltage amplitude value Vp at the point 5 of connection.
- the active power P and the voltage amplitude value Vp can be obtained by using the following expressions (1) and (2), respectively.
- P Id ⁇ Vd+Iq ⁇ Vq (1)
- Vp ⁇ square root over ( ) ⁇ ( Vd 2 +Vq 2 ) (2)
- Id and Iq are the d-axis and q-axis components, respectively, obtained through the coordinate transformation of the current value I by using a rotational coordinate system whereas Vd and Vq the d-axis and q-axis components, respectively, obtained through the coordinate transformation of the voltage value V by using the rotational coordinate system.
- the power/voltage calculator 131 includes a phase detector (not shown) which detects the phase signals cos( ⁇ t) and sin( ⁇ t) that follow the U-phase of the system voltage.
- a phase detector (not shown) which detects the phase signals cos( ⁇ t) and sin( ⁇ t) that follow the U-phase of the system voltage.
- the quantities Id, Iq, Vd and Vq are calculated by the following expressions (3) and (4).
- Iu, Iv and Iw are the U-phase, V-phase and W-phase components of the three-phase current detected by the current detector 15 whereas Vu, Vv and Vw are the U-phase, V-phase and W-phase components of the three-phase voltage detected by the voltage detector 14 .
- Fluctuation detectors 132 and 133 respectively receive the active power P and the voltage amplitude value Vp, and correspondingly extract the fluctuating component ⁇ P of the active power P and the fluctuating component ⁇ Vp of the voltage amplitude.
- the extracted fluctuating components ⁇ P and ⁇ Vp, and the calculated active power P are fed to a reactive power command calculator 134 .
- the reactive power command calculator 134 produces a reactive power command Q*.
- a power converter 135 derives a gate pulse signal G* from the active power command P* and the reactive power command Q*.
- the gate pulse signal G* is fed to the power converter 12 which controls the output power of the distributed generation.
- FIG. 3 is a signal flow diagram used for obtaining the fluctuating component ⁇ P of the active power P.
- the active power P is fed to a low-pass filter 1321 , which delivers an output P LF .
- the active power P is also fed to a subtractor 20 a which receives the output P LF Of the low-pass filter 1321 .
- the subtractor 20 a delivers the difference between the active power P and the output P LF of the low-pass filter 1321 , i.e. the fluctuating component ⁇ P.
- This process is given by the following expression (5).
- P ⁇ P LF ⁇ P (5)
- the component ⁇ P contains only high frequency component. That is, the fluctuation detector 132 has the characteristic of a high-pass filter.
- the fluctuation detector 132 is now described in terms of its transfer function. It is assumed that the low-pass filter LPF is represented as a first order lag element and that the cutoff frequency of the low-pass filter LPF is fc [rad/s]. Then, the transfer function of the fluctuation detector 132 is given by the following expression (6).
- FIG. 4 graphically shows the gain characteristic derived from the expression (6).
- the graph depicts the characteristic of a high-pass filter having the cutoff frequency fc determined by the low-pass filter 1321 .
- the fluctuating component ⁇ P having constituent frequencies higher than the cutoff frequency fc can be obtained.
- FIG. 5 is a signal flow diagram for the fluctuation detector 133 which extracts the fluctuating component ⁇ Vp of the voltage amplitude Vp.
- the fluctuation detector 133 also includes a low-pass filter 1331 and a subtractor 20 b , as shown in the diagram of the fluctuation detector 132 in FIG. 3 , and has the characteristic of a high-pass filter similar to that shown in FIG. 4 . Accordingly, the fluctuation detector 133 has a function of extracting that fluctuating component ⁇ Vp of the voltage developed at the point of connection which results from the active power fluctuation ⁇ P generated by the distributed generation 1 .
- the period (the reciprocal of fluctuating frequency f L ) of the voltage fluctuation caused by the regular load 4 is generally long and the fluctuating frequency f L is lower than the cutoff frequency fc of the fluctuation detector 132 or 133 , so that the regular load 4 contributes little to the voltage fluctuation ⁇ Vp.
- the voltage fluctuation representing the fluctuating component ⁇ P of the active power P generated by the distributed generation 1 contributes much to the voltage fluctuation ⁇ Vp.
- R 12 and X 12 are respectively the resistive and reactive components of the composite impedance consisting of the impedance of the interconnection line 2 and that of the regular load 4 , as viewed from the side of the distributed generation 1 .
- the distributed generation 1 In order for the distributed generation 1 to be able to control the voltage fluctuation ⁇ Vp 1 by using its reactive power output, it suffices to produce such reactive power command Q* as given by the following expression (9).
- ⁇ ⁇ ( t ) R 12 / X 12 ⁇ ⁇ or ⁇ ⁇ ⁇ Z 12 ⁇ ⁇ P - R 12 ⁇ Vp 2 ⁇ Z 12 ⁇ ⁇ Q - X 12 ⁇ Vp 2 ( 11 )
- the regular load 4 varies with time and therefore the coefficient ⁇ (t) derived from the composite impedance obtained with respect to the interconnection line 2 and the regular load 4 also varies with time.
- it is necessary to measure the parameter ⁇ (t) and update it continuously.
- FIG. 6 is a signal flow diagram for the reactive power command calculator 134 which includes the calculation of the parameter ⁇ (t), used in the first embodiment of this invention.
- the parameter ⁇ (t) is obtained by integrating by an integrator 1341 the product of the voltage fluctuation ⁇ Vp and the active power fluctuation ⁇ P, the product being obtained by a multiplier 21 a .
- the obtained parameter ⁇ (t) is multiplied by the active power P in a multiplier 21 b and the product as the output of the multiplier 21 b is further fed to a multiplier 21 c , which multiplies the input thereto by ⁇ 1 (minus one).
- the output of the multiplier 21 c is the reactive power command Q* which is required to suppress the system voltage fluctuation. This is mathematically represented by the following expression (12).
- the system voltage fluctuation is suppressed, that is, the system voltage fluctuating component ⁇ Vp approaches zero so that the integrated result converges to an optimal value defined by the expression (11).
- the active power fluctuation ⁇ P gives rise to the corresponding voltage fluctuation ⁇ Vp
- the phase of the active power fluctuation ⁇ P coincides with that of the corresponding voltage fluctuation ⁇ Vp so that the product ⁇ P ⁇ Vp is always greater than zero.
- the parameter ⁇ (t) which is the output of the integrator 1341 that receives the product ⁇ P ⁇ Vp as its input, increases with time while the product ⁇ P ⁇ Vp remains positive. Accordingly, the reactive power command Q* that is the product of the parameter ⁇ (t) and the active power P, also increases with the result that the voltage fluctuation ⁇ Vp converges to zero.
- the phase of the active power fluctuation ⁇ P is reversed with respective to the phase of the voltage fluctuation ⁇ Vp and therefore the product ⁇ P ⁇ Vp always remains negative.
- the parameter ⁇ (t) which is the output of the integrator 1341 that receives the product ⁇ P ⁇ Vp as its input, decreases with time while the product ⁇ P ⁇ Vp remains negative. Consequently, the reactive power Q that is the product of the parameter ⁇ (t) and the active power fluctuation ⁇ P, also decreases with the result that the voltage fluctuation ⁇ Vp converges to zero.
- the above described modes of variation in the parameter ⁇ (t) occur in ideal cases where the system voltage amplitude fluctuation ⁇ Vp is supposed to result only from the active power fluctuation ⁇ P of the distributed generation 1 .
- the voltage fluctuation ⁇ V includes a fluctuating component originating in the load fluctuation. Even in such a case, however, by integrating the product ⁇ P ⁇ Vp by the integrator 1341 , the contribution of that particular voltage fluctuation ⁇ Vp originating in any equipment other than the distributed generation 1 which has no correlation with the active power fluctuation ⁇ P of the distributed generation 1 , is offset. The reason for this is as follows.
- the active power P generated by the distributed generation 1 includes a fluctuating component having a long oscillation period and a fluctuating component having a short oscillation period.
- the fluctuation in the wind velocity is the main contribution to such fluctuations.
- Another such contribution is the short period component resulting from the “tower shadow effect”.
- the tower shadow effect is a phenomenon in which each of the blades 16 of a wind turbine, when it comes to the position parallel to the tower, receives less wind power than it is in the position unparallel to the tower since the wind course is obstructed by the tower. This phenomenon naturally causes a fluctuation in the generated active power.
- the low-pass filters 1321 and 1331 may be so designed as to have a cutoff frequency fc of a few Hz or lower.
- this invention has been described as applied to a power generation system connected with a power system via a power converter but it may also be applied to other distributed generation systems which can generate active reactive powers.
- FIG. 9 schematically shows the overall structure of a doubly-fed induction generator system (secondary excitation type power generation system) according to another embodiment of this invention.
- the rotor winding of the doubly-fed induction generator 18 is connected with an AC/DC converter 121 and the stator winding of the generator 18 is connected with a power system.
- a DC/AC converter 122 in a power converter 12 is connected with the power system.
- the power converter 12 can control the reactive power Q generated by the distributed generation 1 , and hence a controller can be employed which suppresses voltage fluctuation as described in reference to FIG. 1 .
- the control parameter for suppressing the voltage fluctuation caused due to the fluctuation in the system impedance as viewed from the distributed generation 1 can be so corrected as to assume an appropriate value, on the basis of the active power P, its fluctuating component ⁇ P, both generated by the distributed generation 1 , and the voltage fluctuation ⁇ Vp.
- a static var compensator and a special apparatus for obtaining impedance there is no need of a static var compensator and a special apparatus for obtaining impedance.
- the distributed generation generates the reactive power in proportion to the active power which it also generates; the proportional coefficient ⁇ is continuously varied by estimating the system impedance; and only the voltage fluctuation resulting from the active power fluctuation which the distributed generation develops, can be suppressed without being affected by the power fluctuations in other equipment connected with the main system. Further, since the generated reactive power has only to suppress the voltage fluctuation in the distributed generation itself, the generated reactive power may be of relatively small value.
- the influence by any voltage fluctuating component having no correlation with the power generated by a particular one of the distributed generations can be decreased by detecting the active power fluctuation ⁇ P and the voltage fluctuating component ⁇ Vp, both developed in that particular distributed generation. Consequently, interference in control for suppressing voltage fluctuation among the plural distributed generations can be prevented.
- FIG. 10 schematically shows the structure of a reactive power command calculator 134 a which includes the calculation of a parameter ⁇ (t) for a distributed generation system provided with a power system stabilizing apparatus according to the second embodiment of this invention.
- FIG. 10 is used here in place of FIG. 6 .
- This second embodiment differs from the first embodiment in the manner that the reactive power command Q* is generated.
- the voltage amplitude Vp at the point 5 of connection fluctuates in response to the fluctuation ⁇ P of the active power P generated by the distributed generation 1 .
- Apparatuses belonging to the power system such as SVRs (series voltage regulators), transformers, power generators, SVCs (static var compensators), etc. can control the long period component of the voltage amplitude fluctuation in such a manner that the extent of that fluctuation may fall within a predetermined range.
- the distributed generation has only to suppress the short period component of the voltage amplitude fluctuation alone which the voltage regulating apparatuses in the power system cannot follow.
- this second embodiment differs from the first embodiment in that the distributed generation 1 generates only the reactive power in proportion to the short period fluctuating component of the active power.
- the concrete structure of this embodiment is same as the first embodiment as far as FIGS. 1 through 5 are concerned.
- a concrete structure of the reactive power command calculator 134 shown in FIG. 2 is in the form of a reactive power command calculator 134 a shown here in FIG. 10 , rather than that shown in FIG. 6 .
- the reactive power command calculator 134 a calculates the control parameter ⁇ (t) on the basis of the active power fluctuating component ⁇ P and the voltage fluctuating component ⁇ Vp.
- This second embodiment produces such reactive power command Q* that is proportional only to the active power fluctuating component ⁇ P, Q* being calculated in accordance with the following expression (13).
- Q * ⁇ ( t ) ⁇ P (13)
- the distributed generation 1 suppresses only the short period component of the voltage fluctuation.
- the magnitude of needed reactive power may be further reduced.
- the ratio of active power to reactive power to be generated in proportion to active power can be derived from voltage and power and be always maintained at a predetermined value. Since the ratio can be very precisely maintained at such a predetermined value, the magnitude of the reactive power generated by the distributed generation 1 can be reduced with the result that the capacities of apparatuses associated with the distributed generation 1 can also be reduced.
- FIG. 11 schematically shows the structure of a reactive power command calculator 134 b which includes the calculation of a parameter ⁇ (t) for a distributed generation system provided with a power system stabilizing apparatus, according to the third embodiment of this invention.
- FIG. 11 is used here in place of FIG. 6 or FIG. 10 .
- This third embodiment differs from the first and second embodiments in the manner that the reactive power command Q* is generated.
- the distributed generation 1 starts operating with its output reactive power Q equal to 0.
- the system voltage fluctuation ⁇ Vp 1 due to the active power fluctuation ⁇ P is fed to a rotational coordinate transformer 1343 shown in FIG. 11 so as to be subjected to coordinate transformation. Coordinate transformation is performed by using the expression (4) which is used with the first embodiment of the invention.
- the rotational coordinate transformer 1343 calculates the d-axis component ⁇ Vd and the q-axis component ⁇ Vq of the system voltage fluctuation ⁇ Vp 1 and send out the result of calculation to a parameter calculator 1344 .
- the parameter calculator 1344 receives, besides the d-axis component ⁇ Vd and the q-axis component ⁇ Vq of the system voltage fluctuation ⁇ Vp 1 , ⁇ P as its input and then calculates the parameter ⁇ (t) on the basis of ⁇ P, ⁇ Vd and ⁇ Vq.
- the obtained parameter ⁇ (t) is held in a sample & hold circuit 1345 until the time of next calculation is reached.
- the relationships among ⁇ P, ⁇ Vd and ⁇ Vq are represented by the following expressions (14) and (15).
- ⁇ Vd ( R 12 /Vp 0) ⁇ P
- ⁇ Vq ⁇ ( X 12 /Vp 0) ⁇ P , (15) where Vp 0 is the reference voltage of the power system.
- FIGS. 12A and 12B graphically show the results of measurements, with FIG. 12A having its abscissa graduated in ⁇ P and its ordinate graduated in ⁇ Vd, and FIG. 12B having its abscissa and ordinate in ⁇ P and ⁇ Vq, respectively.
- the active power fluctuating component ⁇ P is fed as input to the reactive power command calculator 134 b as in the second embodiment shown in FIG. 10 while the active power P itself is not employed as input unlike the first embodiment shown in FIG. 6 .
- the active power P itself is supplied to the upper input contact of the selector 1342 in place of the active power fluctuating component ⁇ P.
- the parameter ⁇ can be obtained on the basis of the d-axis and the q-axis components of the voltage fluctuation ⁇ V so that almost the same effect can be obtained as obtained with the first and the second embodiment.
- FIG. 13 schematically shows the structure of a power system stabilizing apparatus provided with a plurality of distributed generation, according to the fourth embodiment of this invention.
- This fourth embodiment differs from the first through the third embodiments only in that a plurality of distributed generations are connected with the power system.
- Each of individual distributed generations 101 , 102 , 103 , . . . 10 i , . . . is of the same structure and function as in the first, second or third embodiment. Namely, the i th distributed generation produces its respective control parameter ⁇ i(t) on the basis of the active power fluctuation ⁇ Pi developed by its own and the corresponding system voltage fluctuation ⁇ Vpi.
- the procedure for obtaining the control parameter ⁇ i(t) is similar to that employed in the first through third embodiments. Description is made here in reference to the first embodiment.
- each distributed generation 10 i has only to suppress the voltage fluctuation ⁇ Vp 1 i due to the active power fluctuation ⁇ Pi developed in the distributed generation 10 i itself and therefore the overall system voltage fluctuation can be suppressed without any interference in control among the individual distributed generations.
- FIG. 14 schematically shows the structure of a distributed generation system provided with a power system stabilizing apparatus according to the fifth embodiment of this invention.
- This fifth embodiment differs from the first through fourth embodiments in that this invention is applied to a static var compensator 6 .
- a distributed generation 22 or a largely fluctuating load 22 is connected with the trunk system 3 at a point 5 on the system interconnection line 2 to the trunk system 3 .
- the interconnection line 2 has its own impedance.
- a regular load 4 comprising domestic electric appliances and a static var compensator 6 are also connected at the point 5 of connection.
- the static var compensator 6 detects the voltage and the current by means of the voltage detector 14 a and the current detector 15 a at the point 5 of connection, and further detects and measures the active power fluctuation ⁇ P and the voltage fluctuation ⁇ Vp arising therefrom, developed between the largely fluctuating load 22 and the point 5 of connection. The measured values are sent out to the next stage of calculation.
- the procedures as described with the first through third embodiments for obtaining the control parameter to suppress the system voltage fluctuation are applied to the static var compensator 6 so that the static var compensator 6 can produce the reactive power to suppress the voltage fluctuation originating in the distributed generation 22 or largely fluctuating load 22 .
- the capacity of the static var compensator 6 can be reduced to the minimum one that it requires.
- the quality of power in the main system is by no means degraded.
- the distributed generation itself compensates for the voltage fluctuation it develops at the point of connection, thereby effectively suppressing the system voltage fluctuation with a relatively small power output.
- the voltage fluctuation which the distributed generation itself develops at the point of connection can be compensated by controlling the static var compensator (SVC) placed near the distributed generation, whereby the system voltage fluctuation can be effectively suppressed with a relatively small power output.
- SVC static var compensator
- the output level of the reactive power to suppress the voltage fluctuation can be determined online, whereby the system voltage fluctuation due to the active power fluctuation can be effectively suppressed.
- the required capacity of the distributed generation can still be decreased when it is necessary to generate that reactive power alone which suppresses the voltage fluctuation component having a short period of fluctuation.
- the reactive power is generated in proportion to the active power generated by the distributed generation so that the distributed generation can effectively suppress the voltage fluctuation which it develops, without being affected by the power fluctuation caused by other machinery.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
P=Id×Vd+Iq×Vq (1)
Vp=√{square root over ( )}(Vd 2 +Vq 2) (2)
P−P LF =ΔP (5)
ΔVp1≈(R12/Vp)P (7)
ΔVp2≈(X12/Vp)Q (8)
ΔVp1+ΔVp2=Expression (7)+Expression (8)=0 ∴ Q*=−(R 12 /X 12)P (9)
Q*=−α(t)P=−{∫(ΔVp·ΔP)dt}P (12)
Q*=−α(t)ΔP (13)
Q*=−α(t)ΔP+Qo (13′)
ΔVd=(R 12 /Vp0)ΔP (14)
ΔVq=−(X 12 /Vp0)ΔP, (15)
where Vp0 is the reference voltage of the power system.
α=−β/γ=(R 12 /X 12) (16)
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/691,790 US7948217B2 (en) | 2005-10-27 | 2010-01-22 | Distributed generation system and power system stabilizing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005312548A JP4575272B2 (en) | 2005-10-27 | 2005-10-27 | Distributed power system and system stabilization method |
JP2005-312548 | 2005-10-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/691,790 Division US7948217B2 (en) | 2005-10-27 | 2010-01-22 | Distributed generation system and power system stabilizing method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070097565A1 US20070097565A1 (en) | 2007-05-03 |
US7663348B2 true US7663348B2 (en) | 2010-02-16 |
Family
ID=37995960
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/586,540 Expired - Fee Related US7663348B2 (en) | 2005-10-27 | 2006-10-26 | Distributed generation system and power system stabilizing method |
US12/691,790 Expired - Fee Related US7948217B2 (en) | 2005-10-27 | 2010-01-22 | Distributed generation system and power system stabilizing method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/691,790 Expired - Fee Related US7948217B2 (en) | 2005-10-27 | 2010-01-22 | Distributed generation system and power system stabilizing method |
Country Status (2)
Country | Link |
---|---|
US (2) | US7663348B2 (en) |
JP (1) | JP4575272B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090251111A1 (en) * | 2008-04-07 | 2009-10-08 | Choy Young Do | Static compensator apparatus for hvdc system |
US20110118887A1 (en) * | 2008-05-09 | 2011-05-19 | Meidensha Corporation | System stabilizing device |
US8295063B2 (en) | 2011-04-05 | 2012-10-23 | General Electric Company | System and method for damping LC circuits in power conversion systems |
US20120277919A1 (en) * | 2009-12-02 | 2012-11-01 | Samsung Heavy Ind. Co., Ltd. | Power control method and device |
US8618694B2 (en) | 2010-06-30 | 2013-12-31 | Vestas Wind Systems A/S | System, method, and computer program product for utilizing a wind park as a variable power system stabilizer |
US20150171761A1 (en) * | 2012-07-11 | 2015-06-18 | Bon Hun Ku | Apparatus for increasing transmission efficiency for direct current electric energy |
US20170025978A1 (en) * | 2015-05-07 | 2017-01-26 | State Grid Zhejiang Electric Power Research Institute | Low-Frequency Band Suppression Enhanced Anti-Reversal Power System Stabilizer |
US10007285B2 (en) | 2014-02-12 | 2018-06-26 | International Business Machines Corporation | Injecting electricity into a grid from distributed generation |
US20180191163A1 (en) * | 2015-07-06 | 2018-07-05 | Siemens Aktiengesellschaft | Power generation facility and method for the operation thereof |
US10135247B2 (en) | 2013-10-17 | 2018-11-20 | General Electric Company | Methods and systems for integrated Volt/VAr control in electric network |
US10476259B2 (en) * | 2016-06-09 | 2019-11-12 | Sumitomo Electric Industries, Ltd. | Power conversion device and method for determining operational state of breaking device |
US11585320B2 (en) | 2017-08-29 | 2023-02-21 | Wobben Properties Gmbh | Method for controlling a multiphase separately excited synchronous generator in a wind turbine |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7617741B1 (en) * | 2006-09-19 | 2009-11-17 | Robert Vanderhye | Wind turbine testing |
US7642666B2 (en) * | 2006-11-02 | 2010-01-05 | Hitachi, Ltd. | Wind power generation apparatus, wind power generation system and power system control apparatus |
JP4763676B2 (en) * | 2007-12-27 | 2011-08-31 | 株式会社日立製作所 | Solar power system |
JP5386086B2 (en) * | 2008-01-15 | 2014-01-15 | 株式会社日立製作所 | Wind power generation system |
JP4749433B2 (en) * | 2008-01-22 | 2011-08-17 | 株式会社日立製作所 | Distributed power supply system and control method thereof |
US8076802B2 (en) * | 2008-02-12 | 2011-12-13 | Enphase Energy, Inc. | Method and apparatus for distributed VAr compensation |
JP4719760B2 (en) * | 2008-03-25 | 2011-07-06 | 株式会社日立製作所 | Control method and system for distributed power supply group |
JP5074268B2 (en) * | 2008-04-02 | 2012-11-14 | 株式会社日立製作所 | Distributed power system |
US8283803B2 (en) * | 2009-11-04 | 2012-10-09 | Repower Systems Ag | Wind farm and method for operation of a wind farm |
US9478987B2 (en) * | 2009-11-10 | 2016-10-25 | Siemens Aktiengesellschaft | Power oscillation damping employing a full or partial conversion wind turbine |
CN102822509B (en) * | 2010-02-25 | 2016-01-20 | 维斯塔斯风力系统集团公司 | For controlling method and the control gear in wattless power source |
EP2516164A2 (en) * | 2010-03-11 | 2012-10-31 | Siemens Aktiengesellschaft | Method and system for damping subsynchronous resonant oscillations in a power system using a wind turbine |
ES2613734T3 (en) | 2010-03-31 | 2017-05-25 | Vestas Wind Systems A/S | Operating method of a wind turbine, wind turbine, wind turbine control system and processing system |
JP5571475B2 (en) * | 2010-06-21 | 2014-08-13 | 株式会社日立製作所 | New energy power plant group control system and control method thereof |
JP5501183B2 (en) * | 2010-09-30 | 2014-05-21 | 株式会社日立パワーソリューションズ | Natural energy power plant with power storage device |
KR101243181B1 (en) * | 2010-11-04 | 2013-03-14 | 한국전기연구원 | Control Device for a doubly-fed induction generator in which feedback linearization method is embedded |
CN203670098U (en) | 2011-02-16 | 2014-06-25 | 株式会社安川电机 | Electric power conversion device for wind power generation, wind power generation device and wind field |
US9252596B2 (en) | 2011-11-28 | 2016-02-02 | General Electric Company | System and method for reactive power compensation in power networks |
US9389631B2 (en) | 2012-05-30 | 2016-07-12 | General Electric Company | System and method for reactive power compensation |
EP2858199B1 (en) * | 2012-05-31 | 2020-01-01 | Mitsubishi Heavy Industries, Ltd. | Voltage control device, control method thereof and voltage control program |
US9640997B2 (en) * | 2012-07-30 | 2017-05-02 | Siemens Corporation | Power system stabilization using distributed inverters |
JP2014064411A (en) * | 2012-09-21 | 2014-04-10 | Yanmar Co Ltd | Power supply device |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
DE102013216241A1 (en) * | 2013-08-15 | 2015-02-19 | Wobben Properties Gmbh | Method for feeding electrical power into a supply network |
CN103543331B (en) * | 2013-10-24 | 2016-01-13 | 佟晓白 | A kind of method calculating electric signal harmonic wave and m-Acetyl chlorophosphonazo |
EP3089353A4 (en) * | 2013-12-27 | 2017-12-13 | Hitachi, Ltd. | Rotating electrical machine system |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
JP2016025693A (en) * | 2014-07-17 | 2016-02-08 | 通研電気工業株式会社 | System control system, apparatus and method at dispersed power supply system interconnection |
JP6502787B2 (en) * | 2015-08-20 | 2019-04-17 | 東北電力株式会社 | Distributed power supply device and distributed power interconnection system |
JP6483006B2 (en) | 2015-11-18 | 2019-03-13 | 株式会社日立製作所 | Wind farm and its control method |
CN105262149B (en) * | 2015-11-26 | 2018-04-10 | 阳光电源股份有限公司 | A kind of method and system for suppressing photovoltaic plant voltage pulsation |
CN105262102B (en) * | 2015-11-26 | 2017-12-22 | 阳光电源股份有限公司 | A kind of method and device for suppressing public grid entry point voltage pulsation |
WO2017149762A1 (en) * | 2016-03-04 | 2017-09-08 | 株式会社 東芝 | Voltage reactive power control device and voltage reactive power control program |
JP5979404B1 (en) * | 2016-04-06 | 2016-08-24 | 富士電機株式会社 | Distributed power control method and control apparatus |
JP6925123B2 (en) * | 2016-12-22 | 2021-08-25 | 株式会社日立製作所 | How to control renewable energy power generation system, reactive power controller or renewable energy power generation system |
CN107103433B (en) * | 2017-05-16 | 2020-11-03 | 国家电网公司 | Distributed power supply absorption capacity calculation method based on hierarchical partition idea |
CN107395076B (en) * | 2017-06-21 | 2019-08-09 | 国家电网公司 | A kind of low parameter identification method for encouraging limiter of broken line type |
CN109424502B (en) * | 2017-09-04 | 2022-05-27 | 通用电气公司 | System and method for preventing voltage collapse of wind turbine power system |
CN108494023B (en) * | 2018-04-06 | 2021-05-04 | 冯辉 | Active power output control system and method for photovoltaic power station |
CN108539762B (en) * | 2018-05-11 | 2021-09-14 | 武汉理工大学 | Frequency control system and method of wind driven generator system based on active disturbance rejection |
CN109038664B (en) * | 2018-08-02 | 2020-05-26 | 山东大学 | High-frequency turn setting method considering fan grid-involvement protection |
CN109378824B (en) * | 2018-11-23 | 2021-05-07 | 国网江苏省电力有限公司 | Power system voltage control method for cooperative multiple reactive power devices based on photovoltaic scene |
CN111837327B (en) * | 2019-02-15 | 2023-12-08 | 东芝三菱电机产业系统株式会社 | Power conversion device, motor drive system, and control method |
CN109830987B (en) * | 2019-04-11 | 2021-01-26 | 东南大学 | Active power distribution network probability stability analysis method considering distributed photovoltaic randomness |
JP6873587B1 (en) * | 2019-07-23 | 2021-05-19 | 東芝三菱電機産業システム株式会社 | Power converters and distributed power systems |
AU2019427991B9 (en) * | 2019-07-23 | 2021-12-23 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power conversion device and distributed power source system |
CN113839395A (en) * | 2021-09-18 | 2021-12-24 | 国家电网公司华中分部 | Park voltage control method and device, computer equipment and storage medium |
CN115207924B (en) * | 2022-09-15 | 2022-11-29 | 南京理工大学 | Interval power flow analysis method considering reactive power fluctuation effect of SVG tracking area |
JP2024119450A (en) * | 2023-02-22 | 2024-09-03 | 三菱重工業株式会社 | Power supply control system and power supply control method |
Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4694189A (en) * | 1985-09-25 | 1987-09-15 | Hitachi, Ltd. | Control system for variable speed hydraulic turbine generator apparatus |
US4912618A (en) * | 1988-11-04 | 1990-03-27 | Sundstrand Corporation | Variable speed, constant frequency generating system with input transformer |
US4952852A (en) * | 1987-08-14 | 1990-08-28 | Hitachi, Ltd. | Power system and synchronizing breakers for a variable speed generator motor system |
US5225712A (en) * | 1991-02-01 | 1993-07-06 | U.S. Windpower, Inc. | Variable speed wind turbine with reduced power fluctuation and a static VAR mode of operation |
US5587643A (en) * | 1988-07-12 | 1996-12-24 | Heller Dejulio Corporation | Rotary induction machine having control of secondary winding impedance |
US5798632A (en) * | 1995-07-18 | 1998-08-25 | Midwest Research Institute | Variable speed wind turbine generator with zero-sequence filter |
US5892645A (en) * | 1996-08-01 | 1999-04-06 | Hitachi, Ltd. | Protection system for power receiving station |
US6002260A (en) * | 1997-09-23 | 1999-12-14 | Pacific Gas & Electric Company | Fault sensor suitable for use in heterogenous power distribution systems |
JP2000333373A (en) | 1999-05-20 | 2000-11-30 | Toshiba Corp | Distribution power supply system |
US6172488B1 (en) * | 1998-04-10 | 2001-01-09 | Kabushiki Kaisha Toshiba | AC transmission system with reactance compensation |
US6219623B1 (en) * | 1997-11-24 | 2001-04-17 | Plug Power, Inc. | Anti-islanding method and apparatus for distributed power generation |
US6236949B1 (en) * | 1997-02-12 | 2001-05-22 | Power Measurement Ltd. | Digital sensor apparatus and system for protection, control and management of electricity distribution systems |
US6337561B1 (en) * | 1998-01-13 | 2002-01-08 | Chubu Electric Power Co., Inc. | Apparatus for stabilizing a power system adapted to generating systems |
US20020039299A1 (en) * | 2000-03-13 | 2002-04-04 | Nissin Electric Co., Ltd. | Isolated operation prevention device for distributed power supply and interharmonic detection method |
JP2002171667A (en) | 2000-11-30 | 2002-06-14 | Nissin Electric Co Ltd | Power system stabilizer |
US6493125B1 (en) * | 1998-02-25 | 2002-12-10 | Oki Electric Industry Co., Ltd. | Apparatus for stabilizing light source frequency |
US6566764B2 (en) * | 2000-05-23 | 2003-05-20 | Vestas Wind Systems A/S, R&D | Variable speed wind turbine having a matrix converter |
US20030133238A1 (en) * | 2002-01-15 | 2003-07-17 | Irving Reedy | Utility control and autonomous disconnection of distributed generation from a power distribution system |
US6630816B2 (en) * | 2000-08-28 | 2003-10-07 | Honda Giken Kogyo Kabushiki Kaisha | Grid-type engine generator apparatus for connecting an output of an engine-driven generator to a power network |
US20040113592A1 (en) * | 2002-11-25 | 2004-06-17 | Goodrich Control Systems Limited | Method of and apparatus for detecting sensor loss in a generator control system |
US6879053B1 (en) * | 2002-10-22 | 2005-04-12 | Youtility, Inc. | Transformerless, load adaptive speed controller |
US20050128659A1 (en) * | 2002-02-14 | 2005-06-16 | Shinji Hibi | Power source switching unit and power source management system comprising it |
US6943462B2 (en) * | 2000-03-11 | 2005-09-13 | Aloys Wobben | Ring generator for a wind power installation |
US7016793B2 (en) * | 2003-10-01 | 2006-03-21 | General Electric Company | Method and apparatus for anti-islanding protection of distributed generations |
US7038329B1 (en) * | 2004-11-04 | 2006-05-02 | Utc Power, Llc | Quality power from induction generator feeding variable speed motors |
US7042110B2 (en) * | 2003-05-07 | 2006-05-09 | Clipper Windpower Technology, Inc. | Variable speed distributed drive train wind turbine system |
EP1748549A2 (en) * | 2005-07-27 | 2007-01-31 | Hitachi, Ltd. | Wind turbine generator system |
US7184903B1 (en) * | 2006-03-16 | 2007-02-27 | Vrb Power Systems Inc. | System and method for a self-healing grid using demand side management techniques and energy storage |
US7202638B2 (en) * | 2004-10-15 | 2007-04-10 | General Electric Company | Anti-islanding protection systems for synchronous machine based distributed generators |
US20070086133A1 (en) * | 2005-10-18 | 2007-04-19 | Eaton Corporation | Network system for safe connection of generation into a network power system |
US20070182381A1 (en) * | 2005-08-24 | 2007-08-09 | Honda Motor Co., Ltd. | Output voltage regulator for engine-driven generator |
US20070273342A1 (en) * | 2006-05-25 | 2007-11-29 | Ebara Corporation | Electric power supply apparatus and method of synchronously operating power converter |
US7304403B2 (en) * | 2004-06-09 | 2007-12-04 | Governors Of The University Of Alberta | Power signaling based technique for detecting islanding conditions in electric power distribution systems |
US20080001411A1 (en) * | 2006-06-28 | 2008-01-03 | Masaya Ichinose | Variable speed wind power generation system |
US20080069692A1 (en) * | 2006-09-20 | 2008-03-20 | Shinya Oohara | Wind turbine and operating method thereof |
US7365444B2 (en) * | 2004-03-08 | 2008-04-29 | Southern California Gas Company | Active anti-islanding system and method |
US20080106099A1 (en) * | 2006-11-02 | 2008-05-08 | Masaya Ichinose | Wind Power Generation Apparatus, Wind Power Generation System and Power System Control Apparatus |
US7376491B2 (en) * | 2005-10-26 | 2008-05-20 | General Electric Company | Detection of islanding in power grids |
US20080143111A1 (en) * | 2006-12-14 | 2008-06-19 | Masaya Ichinose | Wind Power Generation System |
US7392114B2 (en) * | 2001-09-28 | 2008-06-24 | Aloys Wobben | Method for operating a wind park |
US20080277938A1 (en) * | 2007-05-09 | 2008-11-13 | Hitachi, Ltd. | Wind Power Generation System and Operating Method Thereof |
US20080296898A1 (en) * | 2007-05-30 | 2008-12-04 | Hitachi, Ltd. | Wind Power Generation System and Method of Controlling Power Converter |
US20080315685A1 (en) * | 2007-06-20 | 2008-12-25 | Mesta Electronics, Inc. | Energy Converter System With Reactive-Power-Management |
US7485980B2 (en) * | 2006-03-10 | 2009-02-03 | Hitachi, Ltd. | Power converter for doubly-fed power generator system |
US7495404B2 (en) * | 2005-08-17 | 2009-02-24 | Honeywell International Inc. | Power factor control for floating frame controller for sensorless control of synchronous machines |
US7508173B2 (en) * | 2005-12-08 | 2009-03-24 | General Electric Company | System and method for providing reactive power support with distributed energy resource inverter |
US7511385B2 (en) * | 2005-11-11 | 2009-03-31 | Converteam Ltd | Power converters |
US20090089030A1 (en) * | 2007-09-28 | 2009-04-02 | Rockwell Automation Technologies, Inc. | Distributed simulation and synchronization |
US20090096211A1 (en) * | 2005-05-13 | 2009-04-16 | Siemens Ag | Wind Farm and Method for Controlling the Same |
US7531911B2 (en) * | 2006-12-22 | 2009-05-12 | Ingeteam Energy, S.A. | Reactive power control for operating a wind farm |
US7554301B2 (en) * | 2006-02-11 | 2009-06-30 | Rolls-Royce Plc | Fault current limiting in an electrical power network |
US20090167095A1 (en) * | 2006-03-17 | 2009-07-02 | Ingeteam S.A. | Connection and disconnection sequence for variable speed wind turbine having an exciter machine and a power converter not connected to the grid |
US20090194995A1 (en) * | 2008-01-31 | 2009-08-06 | General Electric Company | Power generation stabilization control systems and methods |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE774385A (en) * | 1971-10-25 | 1972-04-25 | Acec | INDUCTIVE CIRCUIT DEVICE, IN PARTICULAR TRANSDUCER, AND STATIC REACTIVE ENERGY COMPENSATOR USING SUCH A TRANSDUCER. |
US3936727A (en) * | 1973-10-12 | 1976-02-03 | General Electric Company | High speed control of reactive power for voltage stabilization in electric power systems |
US4028614A (en) * | 1976-05-03 | 1977-06-07 | General Electric Company | High speed control of reactive power for voltage stabilization in electric power systems |
US4234842A (en) * | 1978-04-03 | 1980-11-18 | Westinghouse Electric Corp. | Voltage regulator and flicker compensator |
US4188573A (en) * | 1978-04-03 | 1980-02-12 | Westinghouse Electric Corp. | Static VAR generator with time-related-error minimizer |
US4204151A (en) * | 1978-04-03 | 1980-05-20 | Westinghouse Electric Corp. | Static VAR generator with non-linear frequency dependent dynamic gain adjuster |
US4307331A (en) * | 1978-09-15 | 1981-12-22 | Westinghouse Electric Corp. | Hybrid switched-capacitor controlled-inductor static VAR generator and control apparatus |
US4234843A (en) * | 1978-09-15 | 1980-11-18 | Westinghouse Electric Corp. | Static VAR generator with discrete capacitive current levels |
JPS5833930A (en) * | 1981-08-20 | 1983-02-28 | 三菱電機株式会社 | Stationary reactive power compensating method |
JPS6366617A (en) * | 1986-09-09 | 1988-03-25 | Toshiba Corp | Reactive power compensator |
US4755738A (en) * | 1986-09-11 | 1988-07-05 | Kabushiki Kaisha Toshiba | Reactive power compensation apparatus |
US4811236A (en) * | 1986-11-03 | 1989-03-07 | Westinghouse Electric Corp. | Transmission line voltage detector for static VAR generator |
US4954960A (en) * | 1986-11-07 | 1990-09-04 | Alcon Laboratories | Linear power control for ultrasonic probe with tuned reactance |
US4970656A (en) * | 1986-11-07 | 1990-11-13 | Alcon Laboratories, Inc. | Analog drive for ultrasonic probe with tunable phase angle |
US4891570A (en) * | 1986-12-05 | 1990-01-02 | Hitachi, Ltd. | Static var compensator with thyristor control |
JPS63242135A (en) * | 1987-03-27 | 1988-10-07 | 三菱電機株式会社 | Reactive power compensator |
US5001649A (en) * | 1987-04-06 | 1991-03-19 | Alcon Laboratories, Inc. | Linear power control for ultrasonic probe with tuned reactance |
JPH0779530B2 (en) * | 1988-01-05 | 1995-08-23 | 株式会社日立製作所 | Reactive power compensator for power system |
US4969922A (en) | 1988-03-21 | 1990-11-13 | Ann Arbor International, Inc. | Ribbed bottle with depressed oblong centers |
JPH02272612A (en) * | 1989-04-14 | 1990-11-07 | Toshiba Corp | Method for generating gate pulse in static type reactive power compensator |
JPH0720957A (en) * | 1993-07-01 | 1995-01-24 | Tokyo Electric Power Co Inc:The | Self-excited reactive power compensating device |
US20030052658A1 (en) * | 1995-01-11 | 2003-03-20 | Baretich David F. | Method and apparatus for electronic power control |
US7315151B2 (en) * | 1995-01-11 | 2008-01-01 | Microplanet Inc. | Method and apparatus for electronic power control |
US6366062B2 (en) * | 1997-12-08 | 2002-04-02 | Microplanet, Inc. | Method and apparatus for electronic power control |
KR100299260B1 (en) * | 1996-12-26 | 2001-11-05 | 하시모또 아끼라 | System linkage protection device of self-generating equipment |
US6075350A (en) * | 1998-04-24 | 2000-06-13 | Lockheed Martin Energy Research Corporation | Power line conditioner using cascade multilevel inverters for voltage regulation, reactive power correction, and harmonic filtering |
US6052297A (en) * | 1998-05-06 | 2000-04-18 | Mitsubishi Denki Kabushiki Kaisha | Power conversion apparatus |
JP3755075B2 (en) * | 1999-01-22 | 2006-03-15 | 株式会社日立製作所 | Power fluctuation compensation device |
ES2248113T3 (en) * | 1999-09-13 | 2006-03-16 | Aloys Wobben | PROCEDURE FOR THE REGULATION OF REACTIVE POWER, AS WELL AS DEVICE FOR THE GENERATION OF ELECTRICAL ENERGY IN AN ELECTRICAL NETWORK. |
JP3352662B2 (en) * | 2000-02-03 | 2002-12-03 | 関西電力株式会社 | Power system stabilizing apparatus and power system stabilizing method using secondary battery system |
JP3905692B2 (en) * | 2000-07-10 | 2007-04-18 | 三菱重工業株式会社 | Wind power generation control method |
US6573691B2 (en) * | 2001-10-17 | 2003-06-03 | Hatch Associates Ltd. | Control system and method for voltage stabilization in electric power system |
NO319363B1 (en) * | 2002-12-12 | 2005-07-18 | Magtech As | Voltage stabilization system for power supply lines |
US7233129B2 (en) * | 2003-05-07 | 2007-06-19 | Clipper Windpower Technology, Inc. | Generator with utility fault ride-through capability |
JP4085045B2 (en) * | 2003-11-28 | 2008-04-30 | 三菱電機株式会社 | Distributed power control system |
AT504818A1 (en) * | 2004-07-30 | 2008-08-15 | Windtec Consulting Gmbh | TRANSMISSION TRAIL OF A WIND POWER PLANT |
WO2006024149A1 (en) * | 2004-09-01 | 2006-03-09 | Hatch Ltd. | System and method for minimizing loss of electrical conduction during input of feed material to a furnace |
JP4495001B2 (en) * | 2005-02-17 | 2010-06-30 | 三菱重工業株式会社 | Power generation system |
JP4859657B2 (en) * | 2006-12-25 | 2012-01-25 | 三菱電機株式会社 | Reactive power controller for AC power system |
US7800348B2 (en) * | 2007-11-21 | 2010-09-21 | Rockwell Automation Technologies, Inc. | Motor drive with VAR compensation |
JP5241208B2 (en) * | 2007-11-21 | 2013-07-17 | 三菱電機株式会社 | Power system control apparatus and power system control method |
CA2697236C (en) * | 2007-12-14 | 2013-06-25 | Mitsubishi Heavy Industries, Ltd. | Wind turbine generator |
US8977401B2 (en) * | 2007-12-14 | 2015-03-10 | Vestas Wind Systems A/S | Lifetime optimization of a wind turbine generator by controlling the generator temperature |
JP2009177914A (en) * | 2008-01-23 | 2009-08-06 | Mitsubishi Electric Corp | Flicker improvement effect evaluation system |
US7605499B2 (en) * | 2008-02-25 | 2009-10-20 | General Electric Company | Systems and methods of dynamic reactive support for a power transmission system |
US7944184B2 (en) * | 2008-04-07 | 2011-05-17 | Korea Electric Power Corporation | Static compensator apparatus for HVDC system |
ES2607118T3 (en) * | 2009-02-27 | 2017-03-29 | Acciona Windpower S.A. | Wind turbine control method to dampen vibrations |
JP5409319B2 (en) * | 2009-03-18 | 2014-02-05 | 三菱電機株式会社 | Reactive power compensator |
EP2242159B1 (en) * | 2009-04-17 | 2016-04-13 | Vestas Wind Systems A/S | Wind park, method of correcting voltage imbalances, and wind turbine |
US20100265816A1 (en) * | 2009-04-17 | 2010-10-21 | American Superconductor Corporation | Monitoring switching networks |
-
2005
- 2005-10-27 JP JP2005312548A patent/JP4575272B2/en not_active Expired - Fee Related
-
2006
- 2006-10-26 US US11/586,540 patent/US7663348B2/en not_active Expired - Fee Related
-
2010
- 2010-01-22 US US12/691,790 patent/US7948217B2/en not_active Expired - Fee Related
Patent Citations (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4694189A (en) * | 1985-09-25 | 1987-09-15 | Hitachi, Ltd. | Control system for variable speed hydraulic turbine generator apparatus |
US4952852A (en) * | 1987-08-14 | 1990-08-28 | Hitachi, Ltd. | Power system and synchronizing breakers for a variable speed generator motor system |
US5587643A (en) * | 1988-07-12 | 1996-12-24 | Heller Dejulio Corporation | Rotary induction machine having control of secondary winding impedance |
US4912618A (en) * | 1988-11-04 | 1990-03-27 | Sundstrand Corporation | Variable speed, constant frequency generating system with input transformer |
US5225712A (en) * | 1991-02-01 | 1993-07-06 | U.S. Windpower, Inc. | Variable speed wind turbine with reduced power fluctuation and a static VAR mode of operation |
US5798632A (en) * | 1995-07-18 | 1998-08-25 | Midwest Research Institute | Variable speed wind turbine generator with zero-sequence filter |
US5892645A (en) * | 1996-08-01 | 1999-04-06 | Hitachi, Ltd. | Protection system for power receiving station |
US6236949B1 (en) * | 1997-02-12 | 2001-05-22 | Power Measurement Ltd. | Digital sensor apparatus and system for protection, control and management of electricity distribution systems |
US6002260A (en) * | 1997-09-23 | 1999-12-14 | Pacific Gas & Electric Company | Fault sensor suitable for use in heterogenous power distribution systems |
US6219623B1 (en) * | 1997-11-24 | 2001-04-17 | Plug Power, Inc. | Anti-islanding method and apparatus for distributed power generation |
US6337561B1 (en) * | 1998-01-13 | 2002-01-08 | Chubu Electric Power Co., Inc. | Apparatus for stabilizing a power system adapted to generating systems |
US6493125B1 (en) * | 1998-02-25 | 2002-12-10 | Oki Electric Industry Co., Ltd. | Apparatus for stabilizing light source frequency |
US6172488B1 (en) * | 1998-04-10 | 2001-01-09 | Kabushiki Kaisha Toshiba | AC transmission system with reactance compensation |
JP2000333373A (en) | 1999-05-20 | 2000-11-30 | Toshiba Corp | Distribution power supply system |
US6943462B2 (en) * | 2000-03-11 | 2005-09-13 | Aloys Wobben | Ring generator for a wind power installation |
US20020039299A1 (en) * | 2000-03-13 | 2002-04-04 | Nissin Electric Co., Ltd. | Isolated operation prevention device for distributed power supply and interharmonic detection method |
US6545885B2 (en) * | 2000-03-13 | 2003-04-08 | Nissin Electric Co., Ltd. | Isolated operation prevention device for distributed power supply and interharmonic detection method |
US6566764B2 (en) * | 2000-05-23 | 2003-05-20 | Vestas Wind Systems A/S, R&D | Variable speed wind turbine having a matrix converter |
US6630816B2 (en) * | 2000-08-28 | 2003-10-07 | Honda Giken Kogyo Kabushiki Kaisha | Grid-type engine generator apparatus for connecting an output of an engine-driven generator to a power network |
JP2002171667A (en) | 2000-11-30 | 2002-06-14 | Nissin Electric Co Ltd | Power system stabilizer |
US7392114B2 (en) * | 2001-09-28 | 2008-06-24 | Aloys Wobben | Method for operating a wind park |
US20030133238A1 (en) * | 2002-01-15 | 2003-07-17 | Irving Reedy | Utility control and autonomous disconnection of distributed generation from a power distribution system |
US6914763B2 (en) * | 2002-01-15 | 2005-07-05 | Wellspring Heritage, Llc | Utility control and autonomous disconnection of distributed generation from a power distribution system |
US20050128659A1 (en) * | 2002-02-14 | 2005-06-16 | Shinji Hibi | Power source switching unit and power source management system comprising it |
US6879053B1 (en) * | 2002-10-22 | 2005-04-12 | Youtility, Inc. | Transformerless, load adaptive speed controller |
US6969922B2 (en) * | 2002-10-22 | 2005-11-29 | Youtility, Inc | Transformerless, load adaptive speed controller |
US20040113592A1 (en) * | 2002-11-25 | 2004-06-17 | Goodrich Control Systems Limited | Method of and apparatus for detecting sensor loss in a generator control system |
US7005833B2 (en) * | 2002-11-25 | 2006-02-28 | Goodrich Control Systems Limited | Method of and apparatus for detecting sensor loss in a generator control system |
US7042110B2 (en) * | 2003-05-07 | 2006-05-09 | Clipper Windpower Technology, Inc. | Variable speed distributed drive train wind turbine system |
US7016793B2 (en) * | 2003-10-01 | 2006-03-21 | General Electric Company | Method and apparatus for anti-islanding protection of distributed generations |
US7365444B2 (en) * | 2004-03-08 | 2008-04-29 | Southern California Gas Company | Active anti-islanding system and method |
US7304403B2 (en) * | 2004-06-09 | 2007-12-04 | Governors Of The University Of Alberta | Power signaling based technique for detecting islanding conditions in electric power distribution systems |
US7271571B2 (en) * | 2004-10-15 | 2007-09-18 | General Electric Company | Anti-islanding protection systems for synchronous machine based distributed generators |
US7202638B2 (en) * | 2004-10-15 | 2007-04-10 | General Electric Company | Anti-islanding protection systems for synchronous machine based distributed generators |
US7038329B1 (en) * | 2004-11-04 | 2006-05-02 | Utc Power, Llc | Quality power from induction generator feeding variable speed motors |
US20090096211A1 (en) * | 2005-05-13 | 2009-04-16 | Siemens Ag | Wind Farm and Method for Controlling the Same |
US20070024247A1 (en) * | 2005-07-27 | 2007-02-01 | Masaya Ichinose | Power generation apparatus using AC energization synchronous generator and method of controlling the same |
US20080143113A1 (en) * | 2005-07-27 | 2008-06-19 | Masaya Ichinose | Power Generation Apparatus Using AC Energization Synchronous Generator And Method of Controlling The Same |
EP1748549A2 (en) * | 2005-07-27 | 2007-01-31 | Hitachi, Ltd. | Wind turbine generator system |
US7332894B2 (en) * | 2005-07-27 | 2008-02-19 | Hitachi, Ltd. | Power generation apparatus using AC energization synchronous generator and method of controlling the same |
US7453242B2 (en) * | 2005-07-27 | 2008-11-18 | Hitachi, Ltd. | Power generation apparatus using AC energization synchronous generator and method of controlling the same |
US7495404B2 (en) * | 2005-08-17 | 2009-02-24 | Honeywell International Inc. | Power factor control for floating frame controller for sensorless control of synchronous machines |
US20070182381A1 (en) * | 2005-08-24 | 2007-08-09 | Honda Motor Co., Ltd. | Output voltage regulator for engine-driven generator |
US20070086133A1 (en) * | 2005-10-18 | 2007-04-19 | Eaton Corporation | Network system for safe connection of generation into a network power system |
US7376491B2 (en) * | 2005-10-26 | 2008-05-20 | General Electric Company | Detection of islanding in power grids |
US7511385B2 (en) * | 2005-11-11 | 2009-03-31 | Converteam Ltd | Power converters |
US20090146500A1 (en) * | 2005-11-11 | 2009-06-11 | Rodney Jones | Power converters |
US20090146426A1 (en) * | 2005-11-11 | 2009-06-11 | Rodney Jones | Power converters |
US20090147549A1 (en) * | 2005-11-11 | 2009-06-11 | Rodney Jones | Power converters |
US7508173B2 (en) * | 2005-12-08 | 2009-03-24 | General Electric Company | System and method for providing reactive power support with distributed energy resource inverter |
US7554301B2 (en) * | 2006-02-11 | 2009-06-30 | Rolls-Royce Plc | Fault current limiting in an electrical power network |
US7485980B2 (en) * | 2006-03-10 | 2009-02-03 | Hitachi, Ltd. | Power converter for doubly-fed power generator system |
US7389189B2 (en) * | 2006-03-16 | 2008-06-17 | Vrb Power Systems Inc. | System and method for a self-healing grid using demand side management techniques and energy storage |
US7184903B1 (en) * | 2006-03-16 | 2007-02-27 | Vrb Power Systems Inc. | System and method for a self-healing grid using demand side management techniques and energy storage |
US20090167095A1 (en) * | 2006-03-17 | 2009-07-02 | Ingeteam S.A. | Connection and disconnection sequence for variable speed wind turbine having an exciter machine and a power converter not connected to the grid |
US20070273342A1 (en) * | 2006-05-25 | 2007-11-29 | Ebara Corporation | Electric power supply apparatus and method of synchronously operating power converter |
US20080001411A1 (en) * | 2006-06-28 | 2008-01-03 | Masaya Ichinose | Variable speed wind power generation system |
US20080069692A1 (en) * | 2006-09-20 | 2008-03-20 | Shinya Oohara | Wind turbine and operating method thereof |
US20080106099A1 (en) * | 2006-11-02 | 2008-05-08 | Masaya Ichinose | Wind Power Generation Apparatus, Wind Power Generation System and Power System Control Apparatus |
US20080143111A1 (en) * | 2006-12-14 | 2008-06-19 | Masaya Ichinose | Wind Power Generation System |
US7531911B2 (en) * | 2006-12-22 | 2009-05-12 | Ingeteam Energy, S.A. | Reactive power control for operating a wind farm |
US20080277938A1 (en) * | 2007-05-09 | 2008-11-13 | Hitachi, Ltd. | Wind Power Generation System and Operating Method Thereof |
US7569944B2 (en) * | 2007-05-09 | 2009-08-04 | Hitachi, Ltd. | Wind power generation system and operating method thereof |
US20080296898A1 (en) * | 2007-05-30 | 2008-12-04 | Hitachi, Ltd. | Wind Power Generation System and Method of Controlling Power Converter |
US20080315685A1 (en) * | 2007-06-20 | 2008-12-25 | Mesta Electronics, Inc. | Energy Converter System With Reactive-Power-Management |
US20090089030A1 (en) * | 2007-09-28 | 2009-04-02 | Rockwell Automation Technologies, Inc. | Distributed simulation and synchronization |
US20090194995A1 (en) * | 2008-01-31 | 2009-08-06 | General Electric Company | Power generation stabilization control systems and methods |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090251111A1 (en) * | 2008-04-07 | 2009-10-08 | Choy Young Do | Static compensator apparatus for hvdc system |
US7944184B2 (en) * | 2008-04-07 | 2011-05-17 | Korea Electric Power Corporation | Static compensator apparatus for HVDC system |
US20110118887A1 (en) * | 2008-05-09 | 2011-05-19 | Meidensha Corporation | System stabilizing device |
US8457804B2 (en) * | 2008-05-09 | 2013-06-04 | Meidensha Corporation | System stabilizing device |
US20120277919A1 (en) * | 2009-12-02 | 2012-11-01 | Samsung Heavy Ind. Co., Ltd. | Power control method and device |
US9002529B2 (en) * | 2009-12-02 | 2015-04-07 | Samsung Heavy Ind. Co., Ltd. | Power control method and device |
US8618694B2 (en) | 2010-06-30 | 2013-12-31 | Vestas Wind Systems A/S | System, method, and computer program product for utilizing a wind park as a variable power system stabilizer |
US8295063B2 (en) | 2011-04-05 | 2012-10-23 | General Electric Company | System and method for damping LC circuits in power conversion systems |
US20150171761A1 (en) * | 2012-07-11 | 2015-06-18 | Bon Hun Ku | Apparatus for increasing transmission efficiency for direct current electric energy |
US9641091B2 (en) * | 2012-07-11 | 2017-05-02 | Bon Hun Ku | Apparatus for increasing transmission efficiency for direct current electric energy |
US10135247B2 (en) | 2013-10-17 | 2018-11-20 | General Electric Company | Methods and systems for integrated Volt/VAr control in electric network |
US10007285B2 (en) | 2014-02-12 | 2018-06-26 | International Business Machines Corporation | Injecting electricity into a grid from distributed generation |
US20170025978A1 (en) * | 2015-05-07 | 2017-01-26 | State Grid Zhejiang Electric Power Research Institute | Low-Frequency Band Suppression Enhanced Anti-Reversal Power System Stabilizer |
US9906177B2 (en) * | 2015-05-07 | 2018-02-27 | State Grid Zhejiang Electric Power Research Institute | Low-frequency band suppression enhanced anti-reversal power system stabilizer |
US20180191163A1 (en) * | 2015-07-06 | 2018-07-05 | Siemens Aktiengesellschaft | Power generation facility and method for the operation thereof |
US10476259B2 (en) * | 2016-06-09 | 2019-11-12 | Sumitomo Electric Industries, Ltd. | Power conversion device and method for determining operational state of breaking device |
US11585320B2 (en) | 2017-08-29 | 2023-02-21 | Wobben Properties Gmbh | Method for controlling a multiphase separately excited synchronous generator in a wind turbine |
Also Published As
Publication number | Publication date |
---|---|
US7948217B2 (en) | 2011-05-24 |
US20070097565A1 (en) | 2007-05-03 |
US20100117606A1 (en) | 2010-05-13 |
JP2007124779A (en) | 2007-05-17 |
JP4575272B2 (en) | 2010-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7663348B2 (en) | Distributed generation system and power system stabilizing method | |
EP1508951B1 (en) | Continuous reactive power support for wind turbine generators | |
EP2481139B1 (en) | Method for controlling a power converter in a wind turbine generator | |
US7511385B2 (en) | Power converters | |
EP2429073B1 (en) | Power converters | |
US8400003B2 (en) | Wind energy installation having a double-energized asynchronous generator and converter control | |
US10033293B2 (en) | Control method for self-commutated converter for controlling power exchange | |
EP2621046B1 (en) | System and method for reactive power regulation | |
US8823191B2 (en) | Method and arrangement for controlling a wind turbine using oscillation detection | |
CN109217335A (en) | A kind of low-frequency oscillation damping control method of offshore wind farm VSC-HVDC output system | |
US20110285437A1 (en) | system and a method for controlling at least one voltage converter having a plurality of cells in series | |
US11971437B2 (en) | Grid voltage phase detector | |
CN108199382B (en) | Doubly-fed wind power plant wind speed fluctuation emergency control method based on dynamic reactive power constraint | |
US11199887B2 (en) | Utility power regulation system using local voltage estimation and method for the same | |
WO2020003619A1 (en) | Power conversion system | |
US11916391B2 (en) | Method for controlling a wind power installation | |
Montilla-DJesus et al. | A coordinated system of control in an offshore wind farm | |
Hassan et al. | Combined active and reactive power control with converter interfaced energy sources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HITACHI, LTD.,JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OOHARA, SHINYA;ICHINOSE, MASAYA;FUTAMI, MOTOO;AND OTHERS;SIGNING DATES FROM 20060920 TO 20060926;REEL/FRAME:018472/0134 Owner name: HITACHI, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OOHARA, SHINYA;ICHINOSE, MASAYA;FUTAMI, MOTOO;AND OTHERS;REEL/FRAME:018472/0134;SIGNING DATES FROM 20060920 TO 20060926 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.) |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20180216 |