JP2004320860A - Reactive power compensator - Google Patents

Reactive power compensator Download PDF

Info

Publication number
JP2004320860A
JP2004320860A JP2003108999A JP2003108999A JP2004320860A JP 2004320860 A JP2004320860 A JP 2004320860A JP 2003108999 A JP2003108999 A JP 2003108999A JP 2003108999 A JP2003108999 A JP 2003108999A JP 2004320860 A JP2004320860 A JP 2004320860A
Authority
JP
Japan
Prior art keywords
reactive power
power
voltage
compensator
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003108999A
Other languages
Japanese (ja)
Inventor
Takayuki Onose
貴之 小野瀬
Eiichiro Maeda
栄一郎 前田
Takashi Aihara
孝志 相原
Iwao Madori
岩男 真鳥
Osamu Ishioka
修 石岡
Yoshinori Ichikawa
嘉則 市川
Takashi Fuse
隆志 布施
Satoshi Inamura
聡 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2003108999A priority Critical patent/JP2004320860A/en
Publication of JP2004320860A publication Critical patent/JP2004320860A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize a system voltage by reducing voltage fluctuation in a power system. <P>SOLUTION: A reactive power from a voltage fluctuation suppressing circuit 27 and a reactive power value of the difference between a reactive power detection value and a reactive power command value are inputted in a reactive power compensator 25. A voltage fluctuation of a power grid decreases by such amount as the increase/decrease in the reactive power value outputted from the increase/decrease value of the reactive power of the reactive power compensator 25, and the value from a capacitor element 25C and a reactance element 25L is suppressed in the power system, resulting in a stabilized system voltage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は風力発電所などの電圧変動を抑制するのに好適な無効電力補償装置に関する。
【0002】
【従来の技術】
無効電力補償装置SVCを備えた変電所及び発電所において、送電損失を低減することを目的とした無効電力を一定制御(AQR)に維持しながら、無効電力補償装置SVCを設置する母線等の電圧を許容電圧範囲内に制御する。
【0003】
電力需要の変動のみならず、近年、増加しつつある自然エネルギーを利用した風力発電所は、風の影響により計画的に電力を供給するのが難しく、各地点での有効・無効電力の変動が多くなる傾向にある。
【0004】
また、分散電源など、個々のユーザが個別に電力を供給する傾向にあり、このような需要バランスを計画するのが困難である。特に、無効電力のバランスが代わると、系統電圧が変動し、許容電圧範囲を超えると系統全体が不安定となる。
【0005】
そこで、無効電力を補償する無効電力補償装置SVCが必要となる。この構成は分路リアクトル(SHR)及び並列コンデンサ(SC)で構成される。他励式無効電力補償装の場合、サイリスタバルブを直列に接続し、分路リアクトル(SHR)に流れる電流をサイリスタバルブの制御角を連続制御することで無効電力を制御する。
【0006】
無効電力補償装置の制御方式として、系統電圧の安定を目的とした電圧一定制御(AVR)と、送電損失の低減を目的とした無効電力一定制御(AQR)が広く知られている。
【0007】
電圧一定制御(AVR)は電圧検出点の電圧を一定に保つように無効電力補償装置SVCの出力を制御する方式である。
【0008】
無効電力一定制御(AQR)は無効電力検出点を一定に保つよう、無効電力補償装置SVCの出力を制御する方式である。
【0009】
しかし、無効電力一定制御(AQR)は無効電力検出点を一定に保つが、負荷変動等により有効電力が大きく変動すると、有効電力と無効電力のバランスが崩れる為、系統電圧が変動する。また、電圧による制御をしていない為、無効電力補償装置SVCのL分出力を大きくなる事により系統電圧は下がり、無効電力補償装置SVCのL分出力が小さくなる事により系統電圧は上がってしまう。
【0010】
【発明が解決しようとする課題】
このように、無効電力一定制御(AQR)のみでは、無効電力補償装置SVCの設置母線の電圧が許容電圧範囲を超え、無効電力を一定に保とうとする制御が働き、無効電力補償装置SVCの設置母線の電圧は許容電圧範囲を更に変動していくことがある。尚、この種の技術として特開平10−320063号公報を挙げることができる。
【0011】
本発明の目的は、電力系統での電圧変動を低減する無効電力補償装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明の無効電力補償装置では、電圧変動抑制回路からの有効電力により変動する電圧を抑制する有効電力に対応する無効電力値を出力する電圧変動抑制回路を設け、この電圧変動抑制回路からの無効電力と無効電力検出値と無効電力指令値の差分の無効電力値を無効電力補償装置に入力し、
無効電力補償装置の無効電力の増減値とコンデンサ要素及びリアクタンス要素からの値とから出力された無効電力値の増減を電力系統に供給して、電力系統での電圧変動が少なくなり、系統電圧を安定化させることができる。
【0013】
【発明の実施の形態】
近年、増加しつつある自然エネルギーを利用した風力発電所は、風の影響により計画的に電力を供給するのが難しく、各地点での有効・無効電力変動が多くなる傾向にある。
【0014】
近傍の無効電力補償装置SVCが電圧一定制御(AVR)でない場合。近傍の電圧を制御する機器が設置されていない場合。負荷・電力変動の激しい場合。等に本発明の無効電力補償装置を使用する。
【0015】
本発明の無効電力補償装置(SVC)が接続される系統を図1に示す。
【0016】
送電線1側と電力系統2を介して受電端10に接続され、受電端10の電圧を受電端電圧Vrとする。電力系統2はインピーダンスR及びリアクタンスjXをもつことにより、送電端7の有効電力Ps、無効電力jQs、及び送電端電圧Vsと受電端10の有効電力Pr、無効電力jQr及び受電端電圧Vrが変化する。
【0017】
また、受電端10に風力発電所などの分散電源11がある場合、その有効電力Prは図2のように分散電源11の発電量12が時間の経過と共に変化する。そのため、受電端10の損失等を低減するために、変動の激しい場所に無効電力補償装置13が接続される。無効電力補償装置13により無効電力を所定値に調整し、電力系統2に電力を供給する。
【0018】
本発明の無効電力補償装置13の概略制御ブロックを図3に示し、説明する。
【0019】
無効電力補償装置13は無効電力補償制御回路13Aと他励式無効電力補償装置25とよりなる。無効電力補償制御回路13Aは次のように構成されている。
【0020】
即ち、電力系統2に変流器15と計器用変成器16を接続する。変流器15と計器用変成器16で計測された検出電流及び検出電圧を電流検出器17及び電圧検出器18に入力する。電流検出器17と電圧検出器18から出力した電流検出値と電圧検出値を有効電力検出器19と無効電力検出器20に入力する。有効電力検出器19と無効電力検出器20から有効電力値と無効電力値が出力される。
【0021】
無効電力検出手段である無効電力検出器20から出力された無効電力検出値20Aを減算器21Xに入力する。また、無効電力指令器22からの基準となる無効電力指令値22Aを減算器21Xに入力し、無効電力検出値20Aから無効電力指令値22Aを減算して出力される無効電力出力値20Cを第2の減算器21Yに入力する。尚、減算器21Xと第2の減算器21Yとは1個にして使用してもよい。
【0022】
一方、有効電力検出器19は電圧検出器18及び電流検出器17からの検出電圧及び検出電流により有効電力を演算する。有効電力検出器19の出力側には電圧変動抑制回路27を接続している。電圧変動抑制回路27は有効電力により変動する電圧を抑制する有効電力に対応する抑制無効電力値27Aを減算器21Yに入力し、電力系統2での電圧変動を抑制する。つまり、電圧変動抑制回路27により有効電力の変動による電圧変動を抑制するような無効電力の有効電力変動に対する割合Kを、後述する(数7)式により求める。
【0023】
即ち、第2の減算器21Yでは無効電力出力値20Cと抑制無効電力値27Aとを演算する。無効電力出力値20Cを例えば1とし、抑制無効電力値27Aを5とすれば、無効電力出力値=1−5=−4となり、この−4を無効電力一定制御回路23に入力する。無効電力一定制御回路23から無効電力出力値をパルス位相器24に入力する。
【0024】
パルス位相器24は、無効電力出力値に相当する点弧制御角信号を無効電力補償回路である他励式無効電力補償装置25の半導体制御素子26にゲート信号Gとして入力する。半導体制御素子26はゲート信号Gに伴い点弧する。
【0025】
この場合には、SVC用変圧器28のリアクタンスにより相当する巻線に供給される無効電力たとえば−2とコンデンサ25Cとリアクタンス25Lからの放出される無効電力例えば4とにより4−2=2となる。2だけ無効電力が電力系統2に供給される。
【0026】
風力発電が吸収する無効電力が−4であるとすると、無効電力補償装置13による電力系統における無効電力は2−4=−2となり、電圧変動を抑制することができるので、電圧変動が少なくなり、系統電圧を安定化させることができる。つまり、分散電源である風力発電からの電圧変動は無効電力を減少した分だけ少なくなり、この電力を送電線に供給できる。
【0027】
更に、無効電力出力値20Cと抑制無効電力値27Aとからの無効電力出力値=−1とすれば、SVC用変圧器28のリアクタンスにより相当する巻線に供給される無効電力値−1とコンデンサ25Cとリアクタンス25Lからの放出される無効電力値例えば2とにより2−1=1となる。
【0028】
1だけ無効電力が電力系統2に供給され、無効電力を増加した分だけ、電力系統2での電圧変動を抑制することができるので、電圧変動が少なくなり、系統電圧を安定化させることができる。従って、無効電力を放出した分だけ電力系統2での電圧変動を抑制することができるので、電圧変動が少なくなり、系統電圧を安定化させることができる。
【0029】
このように、他励式無効電力補償装置25において、SVC用変圧器28に入る無効電力の増減値とコンデンサ25C及びリアクタンス25Lからの値とから出力された無効電力値の増減により、この増減された無効電力値を電力系統に供給した分だけ、電力系統での電圧変動が抑制され、系統電圧を安定化させることができる。
【0030】
次に、電圧変動抑制回路27の補償量である抑制無効電力値27Aの算出根拠を図5ないし図6により説明する。
【0031】
図5の系統において、送電端電圧Vsは、受電端電圧Vr、有効電力Pr、無効電力Qr及び系統インピーダンスRとリアクタンスjXより算出される。
【0032】
図5において、送電端電圧Vsは受電端電圧Vrの位相を基準として、次の式が成り立つ。
【0033】
【数1】

Figure 2004320860
【0034】
このベクトル図は図6(A)、(B)のようになり、リアクタンス送電線はR=0、即ち、α=90°の場合に相当する。
【0035】
上記(数1)より下記(数2)式を得る。
【0036】
【数2】
Figure 2004320860
【0037】
このベクトル図は図7のようになり、リアクタンス送電線に比べて、同相分電圧降下R,Pr/Vr、直角同相分電圧降下−R,Qr/Vrが加算されている。
【0038】
【数3】
Figure 2004320860
【0039】
【数4】
Figure 2004320860
【0040】
となる。
【0041】
よって、送受電端の電圧変化を内容にするための受電端の有効電力Prに対する無効電力Qrは、数5により表せる。
【数5】となる。
Figure 2004320860
【0042】
よって、電圧変動抑制回路27の制御ブロックは、有効電力の変動による電圧変動を抑制するような無効電力の有効電力変動に対する割合Kを(数6)式により求めることができる。
【0043】
【数6】
Figure 2004320860
【0044】
この式により、系統インピーダンスRとリアクタンスjXが既知である場合、未知数である有効電力Prを入力することにより、電圧変動のない無効電力値Qrが算出できる。この値を無効電力指令値とすることで、無効電力補償装置(SVC)の出力を制御し、電圧,電流計測点の無効電力を調整する。
【0045】
この実施例では、減算器を2個使用したが、1個にしても同じ効果を得ることができる。また、回路の途中で符号を逆にすることにより、減算器を加算器として使用しても同じ効果を得ることができる。
【0046】
次に、図4により、自励式無効電力補償装置34の場合を説明する。
【0047】
SVC用変圧器28の二次側に変流器29を接続する。無効電力一定制御回路23からの電流指令値を電流制御回路32に入力し、電流制御回路32からゲートパルス発生器33を介して無効電力補償回路25の半導体制御素子35にゲート信号Gとして入力する。半導体制御素子35はゲート信号Gに伴い点弧する。
【0048】
電圧変動抑制回路27は有効電力により変動する電圧を抑制する有効電力に対応する抑制無効電力値27Aを減算器21Yに入力し、電力系統2での電圧変動を抑制する。
【0049】
これにより、無効電力出力値の増減に応じて自励式無効電力補償装置34により、無効電力を吸収したり、或いは放出したりして、電圧変動が少なくなり、系統電圧を安定化させることができる。また前述の実施例のSVC用変圧器28を削除して、半導体制御素子35のみの回路でも実施することができる。
【0050】
この実施例では、減算器を2個使用したが、1個にしても同じ効果を得ることができる。また、回路の途中で符号を逆にすることにより、減算器を加算器として使用しても同じ効果を得ることができる。
【0051】
また、風力発電で発生した電力に本発明の電圧変動抑制回路を使用すれば、電圧変動を抑制した品質を向上した電力を負荷に供給できるので、需要家の電力品質に対する信頼性が向上した。
【0052】
【発明の効果】
以上のように、本発明の無効電力補償装置によれば、電力系統での無効電力を抑制した分だけ、系統電圧の変動を抑制させ系統電圧の安定化を図ると共に、送電損失を低減させることができる。
【図面の簡単な説明】
【図1】本発明の実施例である無効電力補償装置SVCを含む概略制御ブロック図。
【図2】図1の無効電力補償装置SVCによる有効電力と時間との関係を示す電力特性図。
【図3】本発明の実施例である他励式無効電力補償装置の概略制御ブロック図。
【図4】本発明の実施例である自励式無効電力補償装置の概略制御ブロック図。
【図5】図1の短絡距離送電の電圧・潮流を示す等価回路図。
【図6】図5の送電端系統電圧を求めるためのベクトル図。
【図7】図5の送電端系統電圧を求めるためのベクトル図。
【符号の説明】
R…インピーダンス、X…リアクタンス、Ps…送電端有効電力、jQs…送電端無効電力、Vs…送電端系統電圧、Pr…受電端有効電力、jQr…受電端無効電力、Vr…受電端系統電圧、1…電力系統、2…系統母線、7…送電端、10…受電端、11…分散電源、12…分散電源発電量、13…無効電力補償装置、13A…無効電力補償制御回路、15…変流器、16…計器用変圧器、17…電流検出器、18…電圧検出器、19…有効電力検出器、20…無効電力検出器、21X,21Y…減算器、22…無効電力指令値、23…無効電力一定制御回路(AQR)、24…パルス位相器、25…他励式無効電力補償装置、25L…分路リアクトル、25C…コンデンサ、26…半導体制御素子、27…電圧変動抑制回路、28…SVC用変圧器、29…変流器、30…電流検出器、31…減算器、32…電流制限回路、33…ゲートパルス発生器、34…自励式無効電力補償装置、35…半導体制御素子。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reactive power compensator suitable for suppressing voltage fluctuation in a wind power plant or the like.
[0002]
[Prior art]
In a substation and a power plant equipped with the reactive power compensator SVC, the voltage of a bus or the like on which the reactive power compensator SVC is installed while maintaining the reactive power at a constant control (AQR) for the purpose of reducing transmission loss. Is controlled within the allowable voltage range.
[0003]
In addition to fluctuations in power demand, wind power plants that use renewable energy, which has been increasing in recent years, have difficulty supplying power systematically due to the effects of wind, and fluctuations in active and reactive power at each location It tends to increase.
[0004]
Also, individual users such as distributed power sources tend to supply power individually, and it is difficult to plan such a demand balance. In particular, when the balance of the reactive power changes, the system voltage fluctuates, and when the voltage exceeds the allowable voltage range, the entire system becomes unstable.
[0005]
Therefore, a reactive power compensator SVC for compensating the reactive power is required. This configuration includes a shunt reactor (SHR) and a parallel capacitor (SC). In the case of the separately-excited reactive power compensator, the thyristor valves are connected in series, and the current flowing through the shunt reactor (SHR) is controlled by continuously controlling the control angle of the thyristor valves to control the reactive power.
[0006]
As a control method of the reactive power compensator, there are widely known constant voltage control (AVR) for stabilizing system voltage and constant reactive power control (AQR) for reducing transmission loss.
[0007]
The constant voltage control (AVR) is a method of controlling the output of the reactive power compensator SVC so as to keep the voltage at the voltage detection point constant.
[0008]
The constant reactive power control (AQR) is a method of controlling the output of the reactive power compensator SVC so as to keep the reactive power detection point constant.
[0009]
However, the constant reactive power control (AQR) keeps the reactive power detection point constant. However, if the active power fluctuates significantly due to a load change or the like, the system voltage fluctuates because the balance between the active power and the reactive power is lost. In addition, since the voltage is not controlled, the system voltage is reduced by increasing the output of the reactive power compensator SVC by L, and the system voltage is increased by decreasing the output of the reactive power compensator SVC by L. .
[0010]
[Problems to be solved by the invention]
As described above, only by the constant reactive power control (AQR), the voltage of the bus where the reactive power compensator SVC is installed exceeds the allowable voltage range, and the control to keep the reactive power constant works, and the installation of the reactive power compensator SVC is performed. The bus voltage may further vary the allowable voltage range. Incidentally, JP-A-10-320063 can be cited as this kind of technique.
[0011]
An object of the present invention is to provide a reactive power compensator that reduces voltage fluctuations in a power system.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, in the reactive power compensator of the present invention, a voltage fluctuation suppressing circuit that outputs a reactive power value corresponding to the active power that suppresses the voltage that fluctuates due to the active power from the voltage fluctuation suppressing circuit is provided, The reactive power from the voltage fluctuation suppression circuit and the reactive power value of the difference between the reactive power detection value and the reactive power command value are input to the reactive power compensator,
By supplying the power system with the increase or decrease of the reactive power output from the increase or decrease of the reactive power of the reactive power compensator and the values from the capacitor element and the reactance element, the voltage fluctuation in the power system is reduced, and the system voltage is reduced. Can be stabilized.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In recent years, wind power plants that use renewable energy, which is increasing, have difficulty in systematically supplying power due to the influence of wind, and tend to have large fluctuations in active and reactive power at each point.
[0014]
When the nearby reactive power compensator SVC is not the constant voltage control (AVR). When there is no equipment that controls nearby voltages. When load / power fluctuations are severe. For example, the reactive power compensator of the present invention is used.
[0015]
FIG. 1 shows a system to which a reactive power compensator (SVC) of the present invention is connected.
[0016]
It is connected to the power receiving end 10 via the transmission line 1 and the power system 2, and the voltage at the power receiving end 10 is referred to as a power receiving end voltage Vr. Since the power system 2 has the impedance R and the reactance jX, the active power Ps and the reactive power jQs of the transmitting end 7 and the active power Pr, the reactive power jQr and the receiving end voltage Vr of the transmitting end voltage Vs and the receiving end 10 change. I do.
[0017]
Further, when there is a distributed power source 11 such as a wind power station at the power receiving end 10, the active power Pr of the distributed power source 11 changes with time as shown in FIG. Therefore, in order to reduce the loss or the like of the power receiving end 10, the reactive power compensator 13 is connected to a location where the fluctuation is sharp. The reactive power is adjusted to a predetermined value by the reactive power compensator 13 and power is supplied to the power system 2.
[0018]
A schematic control block of the reactive power compensator 13 of the present invention is shown in FIG. 3 and will be described.
[0019]
The reactive power compensator 13 comprises a reactive power compensation control circuit 13A and a separately-excited reactive power compensator 25. The reactive power compensation control circuit 13A is configured as follows.
[0020]
That is, the current transformer 15 and the instrument transformer 16 are connected to the power system 2. The detected current and the detected voltage measured by the current transformer 15 and the instrument transformer 16 are input to the current detector 17 and the voltage detector 18. The detected current value and the detected voltage value output from the current detector 17 and the voltage detector 18 are input to the active power detector 19 and the reactive power detector 20. The active power detector 19 and the reactive power detector 20 output the active power value and the reactive power value.
[0021]
The reactive power detection value 20A output from the reactive power detector 20, which is a reactive power detecting means, is input to a subtractor 21X. Also, a reactive power command value 22A serving as a reference from the reactive power command device 22 is input to the subtractor 21X, and a reactive power output value 20C output by subtracting the reactive power command value 22A from the reactive power detection value 20A is output to the 2 is input to the subtracter 21Y. The number of the subtractor 21X and the second subtractor 21Y may be one.
[0022]
On the other hand, the active power detector 19 calculates the active power based on the detected voltage and the detected current from the voltage detector 18 and the current detector 17. A voltage fluctuation suppression circuit 27 is connected to the output side of the active power detector 19. The voltage fluctuation suppression circuit 27 inputs the suppression reactive power value 27A corresponding to the active power for suppressing the voltage fluctuating by the active power to the subtractor 21Y, and suppresses the voltage fluctuation in the power system 2. That is, the ratio K P for active power variation in reactive power so as to suppress a voltage variation due to variation of the active power by the voltage change suppression circuit 27, obtained by later-described equation (7).
[0023]
That is, the second subtractor 21Y calculates the reactive power output value 20C and the suppressed reactive power value 27A. Assuming that the reactive power output value 20C is 1, for example, and the suppressed reactive power value 27A is 5, the reactive power output value = 1-5 = -4, and this -4 is input to the constant reactive power control circuit 23. The reactive power output value from the constant reactive power control circuit 23 is input to the pulse phase shifter 24.
[0024]
The pulse phase shifter 24 inputs the ignition control angle signal corresponding to the reactive power output value to the semiconductor control element 26 of the separately-excited reactive power compensator 25, which is a reactive power compensation circuit, as a gate signal G. The semiconductor control element 26 fires according to the gate signal G.
[0025]
In this case, the reactive power supplied to the corresponding winding by the reactance of the SVC transformer 28, such as -2, and the reactive power released from the capacitor 25C and the reactance 25L, for example, 4 results in 4-2 = 2. . Two reactive powers are supplied to the power system 2.
[0026]
Assuming that the reactive power absorbed by the wind power generation is -4, the reactive power in the power system by the reactive power compensator 13 is 2-4 = -2, and the voltage fluctuation can be suppressed. In addition, the system voltage can be stabilized. That is, voltage fluctuations from the wind power generation, which is a distributed power source, are reduced by the amount of the reduced reactive power, and this power can be supplied to the transmission line.
[0027]
Further, if the reactive power output value from the reactive power output value 20C and the suppressed reactive power value 27A is set to -1, the reactive power value -1 supplied to the corresponding winding by the reactance of the SVC transformer 28 and the capacitor 25-1 and the reactive power value, for example, 2 emitted from the reactance 25L, 2-1 = 1.
[0028]
Only one reactive power is supplied to the power system 2 and the voltage fluctuation in the power system 2 can be suppressed by the amount of the increased reactive power, so that the voltage fluctuation is reduced and the system voltage can be stabilized. . Therefore, voltage fluctuations in the power system 2 can be suppressed by the amount of the discharged reactive power, so that voltage fluctuations are reduced and system voltage can be stabilized.
[0029]
In this way, in the separately-excited reactive power compensator 25, the increase / decrease of the reactive power output from the value of the reactive power entering the SVC transformer 28 and the value from the capacitor 25C and the reactance 25L increases or decreases this value. Voltage fluctuations in the power system are suppressed by the amount of supplying the reactive power to the power system, and the system voltage can be stabilized.
[0030]
Next, the basis for calculating the suppression reactive power value 27A, which is the compensation amount of the voltage fluctuation suppression circuit 27, will be described with reference to FIGS.
[0031]
In the system shown in FIG. 5, the transmitting end voltage Vs is calculated from the receiving end voltage Vr, active power Pr, reactive power Qr, system impedance R, and reactance jX.
[0032]
In FIG. 5, the following equation holds for the power transmitting end voltage Vs based on the phase of the power receiving end voltage Vr.
[0033]
(Equation 1)
Figure 2004320860
[0034]
This vector diagram is as shown in FIGS. 6A and 6B, and the reactance transmission line corresponds to the case where R = 0, that is, α = 90 °.
[0035]
From the above (Equation 1), the following (Equation 2) is obtained.
[0036]
(Equation 2)
Figure 2004320860
[0037]
This vector diagram is as shown in FIG. 7, and the common-mode voltage drops R and Pr / Vr and the quadrature common-mode voltage drops -R and Qr / Vr are added to the reactance transmission line.
[0038]
[Equation 3]
Figure 2004320860
[0039]
(Equation 4)
Figure 2004320860
[0040]
It becomes.
[0041]
Therefore, the reactive power Qr with respect to the active power Pr at the power receiving end for describing the voltage change at the power transmitting / receiving end can be expressed by Expression 5.
## EQU5 ##
Figure 2004320860
[0042]
Therefore, the control block of the voltage fluctuation suppression circuit 27 can be determined by the ratio K P (number 6) for active power variation in reactive power so as to suppress a voltage variation due to variation of the active power.
[0043]
(Equation 6)
Figure 2004320860
[0044]
According to this equation, when the system impedance R and the reactance jX are known, the reactive power Qr without voltage fluctuation can be calculated by inputting the unknown active power Pr. By using this value as the reactive power command value, the output of the reactive power compensator (SVC) is controlled, and the reactive power at the voltage and current measurement points is adjusted.
[0045]
In this embodiment, two subtracters are used, but the same effect can be obtained even with one subtractor. Also, by reversing the signs in the middle of the circuit, the same effect can be obtained even if a subtractor is used as an adder.
[0046]
Next, the case of the self-excited var compensator 34 will be described with reference to FIG.
[0047]
A current transformer 29 is connected to the secondary side of the SVC transformer 28. The current command value from the constant reactive power control circuit 23 is input to the current control circuit 32, and is input from the current control circuit 32 to the semiconductor control element 35 of the reactive power compensation circuit 25 via the gate pulse generator 33 as a gate signal G. . The semiconductor control element 35 fires according to the gate signal G.
[0048]
The voltage fluctuation suppression circuit 27 inputs the suppression reactive power value 27A corresponding to the active power for suppressing the voltage fluctuating by the active power to the subtractor 21Y, and suppresses the voltage fluctuation in the power system 2.
[0049]
Thereby, the reactive power is absorbed or released by the self-excited reactive power compensator 34 in accordance with the increase or decrease of the reactive power output value, the voltage fluctuation is reduced, and the system voltage can be stabilized. . Further, the SVC transformer 28 of the above-described embodiment can be omitted, and the circuit can be implemented only with the semiconductor control element 35.
[0050]
In this embodiment, two subtracters are used, but the same effect can be obtained even with one subtractor. Also, by reversing the signs in the middle of the circuit, the same effect can be obtained even if a subtractor is used as an adder.
[0051]
Further, if the voltage fluctuation suppressing circuit of the present invention is used for the electric power generated by wind power generation, it is possible to supply the load with the improved voltage fluctuation suppressed quality to the load, thereby improving the reliability of the power quality of the customer.
[0052]
【The invention's effect】
As described above, according to the reactive power compensating device of the present invention, by suppressing the reactive power in the power system, it is possible to suppress the fluctuation of the system voltage, stabilize the system voltage, and reduce the transmission loss. Can be.
[Brief description of the drawings]
FIG. 1 is a schematic control block diagram including a reactive power compensator SVC according to an embodiment of the present invention.
FIG. 2 is a power characteristic diagram showing a relationship between active power and time by the reactive power compensator SVC of FIG. 1;
FIG. 3 is a schematic control block diagram of a separately-excited reactive power compensator according to an embodiment of the present invention.
FIG. 4 is a schematic control block diagram of a self-excited var compensator according to an embodiment of the present invention.
FIG. 5 is an equivalent circuit diagram showing voltage and power flow of short-circuit distance power transmission in FIG. 1;
FIG. 6 is a vector diagram for obtaining a transmission end system voltage in FIG. 5;
FIG. 7 is a vector diagram for obtaining a transmission end system voltage in FIG. 5;
[Explanation of symbols]
R: impedance, X: reactance, Ps: transmitting end active power, jQs: transmitting end reactive power, Vs: transmitting end system voltage, Pr: receiving end active power, jQr: receiving end reactive power, Vr: receiving end system voltage, DESCRIPTION OF SYMBOLS 1 ... Power system, 2 ... System bus, 7 ... Power transmission end, 10 ... Power reception end, 11 ... Distributed power supply, 12 ... Distributed power generation, 13 ... Reactive power compensator, 13A ... Reactive power compensation control circuit, 15 ... Variable Flow device, 16: Instrument transformer, 17: Current detector, 18: Voltage detector, 19: Active power detector, 20: Reactive power detector, 21X, 21Y: Subtractor, 22: Reactive power command value, 23: constant reactive power control circuit (AQR), 24: pulse phase shifter, 25: separately excited reactive power compensator, 25L: shunt reactor, 25C: capacitor, 26: semiconductor control element, 27: voltage fluctuation suppression circuit, 28 ... S C transformer, 29 ... current transformer, 30 ... current detector, 31 ... subtractor, 32 ... current limiting circuit, 33 ... gate pulse generator, 34 ... self-excited reactive power compensator, 35 ... semiconductor control element.

Claims (5)

電力系統に接続された電圧検出器及び電流検出器からの検出電圧及び検出電流を無効電力に演算する無効電力検出手段と、前記無効電力検出手段からの無効電力検出値と無効電力指令値とを減算器に入力し、前記減算器で無効電力検出値と無効電力指令値の差分を無効電力制御部に入力し、前記無効電力制御部からの制御信号に基づき、遅れ無効電力が多い時には無効電力を吸収し、或いは遅れ無効電力が少ない時には無効電力を放出することにより、電力系統における無効電力を制御する無効電力補償装置において、
前記電圧検出器及び前記電流検出器からの検出電圧及び検出電流により有効電力を有効電力検出手段で演算し、前記有効電力により変動する電圧を抑制する無効電力を前記電力系統に入力し、前記電力系統での電圧変動を抑制する電圧変動抑制回路を設けることを特徴とする無効電力補償装置。
A reactive power detection unit that calculates a detection voltage and a detection current from a voltage detector and a current detector connected to a power system into reactive power, and a reactive power detection value and a reactive power command value from the reactive power detection unit. The difference between the reactive power detection value and the reactive power command value is input to the reactive power control unit, based on the control signal from the reactive power control unit. In a reactive power compensator that controls reactive power in a power system by absorbing reactive power or releasing reactive power when delayed reactive power is small,
The active power is calculated by the active power detection means based on the detected voltage and the detected current from the voltage detector and the current detector, and reactive power that suppresses a voltage that fluctuates due to the active power is input to the power system. A reactive power compensator comprising a voltage fluctuation suppressing circuit for suppressing voltage fluctuation in a system.
前記減算器で差分無効電力と前記電圧変動抑制回路からの無効電力との差分により差分無効電力の増減に応じて、リアクトル要素により無効電力を吸収し、或いはコンデンサ要素により無効電力を放出し、電力系統で電圧変動を抑制する他励式無効電力補償装置を使用することを特徴とする請求項1に記載の無効電力補償装置。According to the difference between the reactive power difference and the reactive power from the voltage fluctuation suppression circuit in the subtractor, the reactive power is absorbed by a reactor element, or the reactive power is released by a capacitor element, 2. The reactive power compensator according to claim 1, wherein a separately-excited reactive power compensator that suppresses voltage fluctuations in a system is used. 前記減算器で差分無効電力と前記電圧変動抑制回路からの無効電力との差分による無効電力の増減に応じて電力系統に供給し、電力系統での電圧変動を抑制する自励式無効電力補償装置を使用することを特徴とする請求項1に記載の無効電力補償装置。A self-excited reactive power compensator that supplies to the power system according to the increase or decrease of the reactive power due to the difference between the reactive power difference and the reactive power from the voltage fluctuation suppression circuit in the subtractor, and suppresses voltage fluctuations in the power system. The reactive power compensator according to claim 1, wherein the reactive power compensator is used. 前記減算器で差分無効電力と前記電圧変動抑制回路からの無効電力との差分による無効電力の増減に応じて、無効電力補償装置用変圧器の2次側電圧を制御して1次側で抑制する無効電力を電力系統に供給し、電力系統で電圧変動を抑制する自励式無効電力補償装置を使用することを特徴とする請求項1に記載の無効電力補償装置。The subtractor controls the secondary voltage of the transformer for the reactive power compensator according to the increase or decrease of the reactive power due to the difference between the reactive power difference and the reactive power from the voltage fluctuation suppression circuit, and suppresses the secondary voltage on the primary side. The reactive power compensating device according to claim 1, wherein the reactive power compensating device that supplies reactive power to the power system and suppresses voltage fluctuation in the power system is used. 前記電圧変動抑制回路により有効電力の変動による電圧変動を抑制するような無効電力の有効電力変動に対する割合Kを、(数6)式により求めることを特徴とする請求項1に記載の無効電力補償装置。2. The reactive power according to claim 1, wherein a ratio K P of the reactive power to the active power variation that suppresses the voltage variation due to the active power variation by the voltage variation suppressing circuit is obtained by Expression (6). Compensation device.
JP2003108999A 2003-04-14 2003-04-14 Reactive power compensator Pending JP2004320860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108999A JP2004320860A (en) 2003-04-14 2003-04-14 Reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108999A JP2004320860A (en) 2003-04-14 2003-04-14 Reactive power compensator

Publications (1)

Publication Number Publication Date
JP2004320860A true JP2004320860A (en) 2004-11-11

Family

ID=33470301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108999A Pending JP2004320860A (en) 2003-04-14 2003-04-14 Reactive power compensator

Country Status (1)

Country Link
JP (1) JP2004320860A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179470A1 (en) 2012-05-31 2013-12-05 三菱重工業株式会社 Voltage control device, control method thereof and voltage control program
CN104348165A (en) * 2014-10-10 2015-02-11 国家电网公司 Reactive voltage control sensitivity analysis method aiming at scaled wind power
JP2016167926A (en) * 2015-03-10 2016-09-15 サンケン電気株式会社 Power fluctuation suppressing device
CN107171335A (en) * 2017-06-22 2017-09-15 清华大学 A kind of wind-powered electricity generation field voltage control method for coordinating based on local Reactive-power control
JP2018097410A (en) * 2016-12-08 2018-06-21 東芝三菱電機産業システム株式会社 Reactive power compensation device and control method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179470A1 (en) 2012-05-31 2013-12-05 三菱重工業株式会社 Voltage control device, control method thereof and voltage control program
CN104348165A (en) * 2014-10-10 2015-02-11 国家电网公司 Reactive voltage control sensitivity analysis method aiming at scaled wind power
JP2016167926A (en) * 2015-03-10 2016-09-15 サンケン電気株式会社 Power fluctuation suppressing device
JP2018097410A (en) * 2016-12-08 2018-06-21 東芝三菱電機産業システム株式会社 Reactive power compensation device and control method thereof
CN107171335A (en) * 2017-06-22 2017-09-15 清华大学 A kind of wind-powered electricity generation field voltage control method for coordinating based on local Reactive-power control
CN107171335B (en) * 2017-06-22 2020-11-03 清华大学 Wind power plant voltage coordination control method based on local reactive power regulation

Similar Documents

Publication Publication Date Title
US8830712B2 (en) Controlling an inverter device of a high voltage DC system for supporting an AC system
US8901893B2 (en) Electricity storage device and hybrid distributed power supply system
US7948217B2 (en) Distributed generation system and power system stabilizing method
JP4306760B2 (en) Distributed power supply
US8560136B2 (en) System stabilizing device
AU2011355888B2 (en) Photovoltaic system and power supply system
JP2010022122A (en) Stabilization control method for distributed power supply
CA2387113C (en) Method for controlling the reactive power and device for generating electrical energy in an electrical network
JP5367252B2 (en) AC voltage control method
JP4568111B2 (en) Power conversion control device
JP3722963B2 (en) Power converter
JP2012175753A (en) Reactive power compensation device
JP2009065820A (en) Voltage fluctuation controller for natural energy power generation
KR20170104809A (en) Apparatus and method for stabilizing voltage for direct current distribution system
CA3070188C (en) Over-voltage prevention apparatus and method of distribution line connected with distributed generator
JP2004320860A (en) Reactive power compensator
JP2004320859A (en) Reactive power compensator
JP3744831B2 (en) Power storage system
JP2005065423A (en) Controller for self-excitation converter
JP6879652B1 (en) Self-excited electrostatic compensator
JPH09201072A (en) Control apparatus for power converter
JP5555376B2 (en) Reactive power compensator, system and method thereof
KR20190037908A (en) A facility having energy storage system and control method for energy storage system
SU1758764A1 (en) Method of automatic intersystem power transfer regulation
JP2005051868A (en) Power converter and control method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212