JP2004320859A - Reactive power compensator - Google Patents

Reactive power compensator Download PDF

Info

Publication number
JP2004320859A
JP2004320859A JP2003108996A JP2003108996A JP2004320859A JP 2004320859 A JP2004320859 A JP 2004320859A JP 2003108996 A JP2003108996 A JP 2003108996A JP 2003108996 A JP2003108996 A JP 2003108996A JP 2004320859 A JP2004320859 A JP 2004320859A
Authority
JP
Japan
Prior art keywords
reactive power
voltage
detection
value
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003108996A
Other languages
Japanese (ja)
Inventor
Takayuki Onose
貴之 小野瀬
Takashi Aihara
孝志 相原
Eiichiro Maeda
栄一郎 前田
Iwao Madori
岩男 真鳥
Osamu Ishioka
修 石岡
Yoshinori Ichikawa
嘉則 市川
Takashi Fuse
隆志 布施
Satoshi Inamura
聡 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2003108996A priority Critical patent/JP2004320859A/en
Publication of JP2004320859A publication Critical patent/JP2004320859A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

<P>PROBLEM TO BE SOLVED: To supply an electric power of improved quality to a load system by controlling a wind energy bus line voltage within a tolerable voltage range to suppress voltage fluctuation. <P>SOLUTION: A detection voltage detected from a system bus line 1 is inputted in a voltage deviation preventing/controlling device 15. If the detection voltage deviates out of the tolerable voltage range, the detection voltage value is processed in addition or subtraction to control a capacitor 13 and a branch reactor 12 of a reactive power control circuit 10, so that a voltage of the system bus line 1 of wind energy in a reactive power compensator SVC is controlled to a prescribed value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は無効電力補償装置(SVC)に係わり、例えば風力発電所の如く、各地点における有効・無効電力変動が多く、特に無効電力のバランスが変わり、系統電圧が変動するものに使用するに好適な無効電力補償装置に関する。
【0002】
【従来の技術】
無効電力補償装置を備えた変電所及び発電所においては、送電損失を低減することを目的として無効電力を一定制御(AQR)して維持しながら、無効電力補償装置が設置される母線等の電圧を許容電圧範囲内に制御することが行われている。
【0003】
ところで、電力需要の変動のみならず、近年増加しつつある自然エネルギーを利用した風力発電所は、風の影響により計画的に電力を供給するのが難しく、各地点での有効・無効電力変動が多くなる傾向にある。また、分散電源など、個々のユーザが個別に電力を供給する傾向にあり、この場合も需要バランスを計画するのが困難である。特に、無効電力のバランスが変わると系統電圧が変動して、許容電圧範囲を超えることがあり、許容電圧範囲を超えると系統全体が不安定となる。
【0004】
そこで、無効電力を補償する無効電力補償装置が必要となる。この無効電力補償装置は、分路リアクトル(SHR)及び並列コンデンサ(SC)で概略構成される。他励式無効電力補償装置の場合には、サイリスタバルブを直列に接続し、分路リアクトルに流れる電流をサイリスタバルブの制御角を連続制御することで無効電力を制御している。
【0005】
無効電力補償装置の制御方式としては、系統電圧の安定を目的とした電圧一定制御(AVR)と、送電損失低減を目的とした無効電力一定制御(AQR)が広く知られている。
【0006】
電圧一定制御(AVR)は、電圧検出点の電圧を一定に保つように無効電力補償装置の出力を制御する方式である。
【0007】
無効電力一定制御(AQR)は、無効電力検出点を一定に保つよう、無効電力補償装置の出力を制御する方式である。
【0008】
【発明が解決しようとする課題】
しかし、無効電力一定制御(AQR)は無効電力検出点を一定に保つが、負荷変動等により有効電力が大きく変動すると、有効電力と無効電力のバランスが崩れるため、系統電圧が変動する。また、電圧による制御をしていないため、無効電力補償装置のL分出力が大きくなり、これにより系統電圧は下がり、また無効電力補償装置のL分出力が小さくなり、これにより系統電圧は上がってしまう。
【0009】
このように、無効電力一定制御(AQR)のみでは、無効電力補償装置の設置母線の電圧が許容電圧範囲を超えてしまい、無効電力を一定に保ようにする制御が働き、無効電力補償装置の設置母線の電圧が許容電圧範囲を更に逸脱していくことがある。
【0010】
尚、この種の技術として特開平10−320063号公報を挙げることができる。
【0011】
本発明の目的は、母線電圧を許容電圧範囲内に保ち、電圧変動を抑えた品質の向上した電力を負荷に供給することができる無効電力補償装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明では、電圧検出器における検出電圧が許容電圧範囲以上に逸脱する時には、前記検出電圧が遅れ無効電力を吸収する方向に加算し、且つ前記検出電圧が許容電圧範囲以下に逸脱する時には、前記検出電圧が遅れ無効電力を放出する方向に減算する補正信号を比較器に入力することで、前記検出電圧を許容電圧範囲内に制御する電圧逸脱防止制御装置を備えていることを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の無効電力補償装置の一実施例を図面に基づいて説明する。
【0014】
本発明の無効電力補償装置の一実施例を図1に示す。
【0015】
該図に示す如く、風力発電機Gからの発生電力は系統母線1に供給される。系統母線1から負荷の系統母線つまり送電線に接続されている。系統母線1には計器用変成器2及び変流器3が接続され、計器用変成器2により計測された検出電圧を電圧検出器4に、変流器3により計測された検出電流を電流検出器5に入力する。電圧検出器4からの検出電圧及び電流検出器5からの検出電流を無効電力検出手段6に入力し、無効電力検出手段6は検出電圧及び検出電流とを演算して無効電力検出値を出力して比較器7に入力する。
【0016】
比較器7には無効電力検出値の他に無効電力指令値7Aが入力され、ここで両者の差を求め、比較器7で求められた無効電力検出値と無効電力指令値7Aとの差分を無効電力制御部8に入力する。無効電力制御部8からの差分無効電力に相当する点弧制御角信号αをパルス位相器9に入力し、パルス位相器9では点弧制御角信号αを無効電力制御回路10に入力する。
【0017】
無効電力制御回路10の半導体制御素子11のゲート11Gは、点弧制御角信号αに基づき点弧し、半導体制御素子11では遅れ無効電力が多い時には分路リアクトル12により無効電力を吸収し、遅れ無効電力が少ない時にはコンデンサ13により無効電力に相当する無効電力を放出で、電力系統における無効電力を所定値に制御することができる。半導体制御素子11としては位相制御半導素子であるサイリスタを使用した。尚。14はリアクトル、Eは接地である。
【0018】
ところで、無効電力一定制御を行っている無効電力補償装置では、上述した如く、電力系統における検出電圧を所定値内に制御することができない場合がある。そこで、本実施例では、検出電圧が許容電圧範囲内を逸脱した場合に、検出電圧を許容電圧範囲内に制御する電圧逸脱防止制御装置15を備えている。
【0019】
この電圧逸脱防止制御装置15内からの補正信号RSIgは、図2及び図3に示すアルゴリズムを格納し、このアルゴリズムにより演算されて比較器7に入力される。
【0020】
図2おいて、系統電圧の許容電圧範囲X1の上限値がVMAXとなり、下限値がVMINとなる。電圧逸脱防止制御装置15は、その調整範囲内に制御するため、閾値の上限がVUP、下限がVLOWである。
【0021】
電圧逸脱防止制御装置15内のアルゴリズムを図3にす。
【0022】
ここで、QBUSは系統母線で計測した無効電力、VBUSは系統母線1で計測した検出電圧、αは半導体制御素子11のゲートを点弧する点弧制御角信号、LAQR及びUAQRは点弧制御角信号αの上限及び下限値範囲である。そして、RSIgは電圧逸脱防止制御装置15の補正信号、kは補償値、tは時間、Δtは無効電力・電圧のサンプリング時間を示す。補正信号RSIgの初期値は0である。
1)start時には、RSIgは0である。
2)input時には、検出電圧(VBUS)とαを入力する。
3)点弧制御角信号αが半導体制御素子を制御できる制御範囲、つまりLAQR<α<UAQRの範囲内であるかを判断し、Noの場合には、RSIg=RSIgになり、何もしないで今までの値を保持する。またLAQR<α<UAQRの範囲外になると点弧角が制御できない。Yesの場合には、4)に進む。
4)検出電圧(VBUS)>VUPの時
Yesの場合には、RSIg=RSIg+kとなる。つまり、電圧逸脱防止制御装置15から比較器7に入力される補正信号RSIgは、検出電圧が許容電圧範囲以上に逸脱する時には、検出電圧が遅れ無効電力を吸収する分路リアク12側方向に補償値kを加算して、検出電圧(VBUS)が下がるように風力系統母線1の母線電圧を制御する。またNoの場合には、5)に進む。
5)検出電圧(VBUS)<VLOWの時
Yesの場合には、RSIg=RSIg−kとなる。つまり、電圧逸脱防止制御装置15から比較器7に入力される補正信号RSIgは、検出電圧が許容電圧範囲以下に逸脱する時には、検出電圧が遅れ無効電力を放出するコンデンサ13側方向に補償値kを減算し、検出電圧(VBUS)が上がるように系統母線1の母線電圧を制御する。またNoの場合には、6)に進む。
6)RSIg=RSIgとなり、許容電圧範囲X1内であるから、何もしないで今までの値を保持し、そのまま7)に進む。
7)OutPutによりEndとなり、1)startに戻る。
【0023】
このように本実施例の電圧逸脱防止制御装置15によれば、検出電圧が許容電圧範囲外では、検出電圧が遅れ無効電力を吸収する分路リアク12側方向に補償値kを加算し、或いは検出電圧が遅れ無効電力を放出するコンデンサ13側方向に補償値kを減算する。この結果、検出電圧(VBUS)が許容電圧範囲に成るように母線電圧を制御することができるので、母線電圧が許容電圧範囲を逸脱しないように制御され、品質を向上した電力を系統の負荷に供給できる。つまり、風力発電所からの発生電力は、系統母線の母線電圧を許容電圧範囲内の制御され、電圧変動を抑えて負荷の系統母線に供給される。
【0024】
特に、風力発電で発生した電力に本実施例の電圧逸脱防止制御装置15を使用すれば、電圧変動を抑制して品質が向上した電力を負荷に供給できるので、需要家の電力品質に対する信頼性が向上する。
【0025】
また、本実施例の電圧逸脱防止制御装置は、検出電圧を電子的なアルゴリズム中で加算・減算等の演算を行っているので、演算速度は、従来の負荷時タップ切換器、自動電圧調整器を使用した場合に比べて、著しく速くなり、系統母線1の電圧変動を早急に所定の範囲内に収めることができる。
【0026】
更に、演算速度が速いことは、急激なパルス信号に対しても加算・減算できるので、母線電圧を許容電圧範囲に制御することができ、負荷の系統電圧の変動を安定化することができる。
【0027】
前述の実施例は他励式無効電力補償装置について説明したが、図4に他の実施例である自励式無効電力補償装置を示す。図1の実施例と同一のものは同符号を付す。図4に示す実施例では、無効電力制御部8からの電流指令値20Aと電流検出器25からの検出電流20Bが電流制限器22に入力され、電流制限器22からの一定電圧指令値23をパルス電圧に変換するゲートパルス発生器24に入力する。このゲートパルス発生器24からのパルス値に応じて、トランジスタT及びフリーホィ−ルダイオードDと直列コンデンサCとを備えている自己消弧型装置26に入力する。
【0028】
この実施例の自励式無効電力補償装置によれば、ゲートパルス発生器24からのパルス値に応じて自己消弧型装置26のトランジスタTのべースBとエミッタE間電圧を制御する。これにより、遅れ無効電力が多い時、或いは遅れ無効電力が少ない時には無効電力を吸収或いは放出する。本実施例の自己消弧型装置26により無効電力の大小を系統母線1の母線電圧を所定の範囲内に収めた後、負荷の系統母線に電圧変動の少ない安定した電力を供給することができる。尚、電圧逸脱防止制御装置の作用は、前述の実施例と同じなので、ここでの説明は省略する。
【0029】
【発明の効果】
以上のように、本発明の無効電力補償装置によれば、母線電圧を許容電圧範囲内に保つことができるので、電圧変動を抑えた品質の向上した電力を負荷に供給することができる。
【図面の簡単な説明】
【図1】本発明の実施例である無効電力補償装置SVCの電圧逸脱防止制御装置を含む概略制御ブロック図。
【図2】図1の電圧逸脱防止制御装置内に格納された許容電圧範囲を示す図。
【図3】図1の電圧逸脱防止制御装置内に格納されたアルゴリズムを示す図。
【図4】本発明の他の実施例である自励式無効電力補償装置SVCを示す概略制御ブロック図。
【符号の説明】
1…系統母線、2…計器用変成器、3…変流器、4…電圧検出器、5,25…電流検出器、6…無効電力検出手段、7…比較器、8…無効電力制御部、9…パルス位相器、10…無効電力制御回路、11…半導体制御素子、12…分路リアクトル、13…コンデンサ、15…電圧逸脱防止制御装置、22…電流制限器、24…ゲートパルス発生器、26…自己消弧型装置、SVC…無効電力補償装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reactive power compensator (SVC), and is suitable for use in, for example, wind power plants where there are many active / reactive power fluctuations at each point, particularly where the reactive power balance changes and the system voltage fluctuates. A reactive power compensator.
[0002]
[Prior art]
In a substation and a power plant equipped with a reactive power compensator, the voltage of a bus or the like on which the reactive power compensator is installed while maintaining the reactive power under constant control (AQR) for the purpose of reducing transmission loss. Is controlled within an allowable voltage range.
[0003]
By the way, not only fluctuations in power demand but also wind power plants that use renewable energy, which has been increasing in recent years, are difficult to supply power systematically due to the effects of wind. It tends to increase. Also, individual users, such as distributed power sources, tend to supply power individually, and in this case also, it is difficult to plan demand balance. In particular, if the balance of the reactive power changes, the system voltage fluctuates and may exceed the allowable voltage range, and if it exceeds the allowable voltage range, the entire system becomes unstable.
[0004]
Therefore, a reactive power compensator for compensating for reactive power is required. This reactive power compensator is generally constituted by a shunt reactor (SHR) and a parallel capacitor (SC). In the case of a separately-excited reactive power compensator, a thyristor valve is connected in series, and the reactive current is controlled by continuously controlling the control angle of the thyristor valve for the current flowing through the shunt reactor.
[0005]
As a control method of the reactive power compensator, there are widely known constant voltage control (AVR) for stabilizing the system voltage and constant reactive power (AQR) for reducing transmission loss.
[0006]
The constant voltage control (AVR) is a method of controlling the output of the reactive power compensator so as to keep the voltage at the voltage detection point constant.
[0007]
The constant reactive power control (AQR) is a method of controlling the output of the reactive power compensator so as to keep the reactive power detection point constant.
[0008]
[Problems to be solved by the invention]
However, the constant reactive power control (AQR) keeps the reactive power detection point constant. However, if the active power fluctuates significantly due to a load change or the like, the balance between the active power and the reactive power is lost, and the system voltage fluctuates. In addition, since control by voltage is not performed, the output of the reactive power compensator for L increases, thereby lowering the system voltage, and the output of the reactive power compensator for L decreases, thereby increasing the system voltage. I will.
[0009]
As described above, with only the constant reactive power control (AQR), the voltage of the bus on which the reactive power compensator is installed exceeds the allowable voltage range, and control is performed to keep the reactive power constant. The voltage of the installation bus may further deviate from the allowable voltage range.
[0010]
Incidentally, JP-A-10-320063 can be cited as this kind of technique.
[0011]
It is an object of the present invention to provide a reactive power compensator capable of maintaining a bus voltage within an allowable voltage range and supplying a high-quality power with reduced voltage fluctuation to a load.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, when a detected voltage in a voltage detector deviates beyond an allowable voltage range, the detected voltage is added in a direction to absorb the delayed reactive power, and the detected voltage is set to an allowable voltage. A voltage deviation prevention control device that controls the detection voltage to fall within an allowable voltage range by inputting a correction signal for subtracting the detection voltage in a direction in which the detection voltage is delayed to release the reactive power when the detection voltage deviates below the range. It is characterized by having.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a reactive power compensator according to the present invention will be described with reference to the drawings.
[0014]
One embodiment of the reactive power compensator of the present invention is shown in FIG.
[0015]
As shown in the figure, the power generated from the wind power generator G is supplied to the system bus 1. It is connected from the system bus 1 to the system bus of the load, that is, the transmission line. An instrument transformer 2 and a current transformer 3 are connected to the system bus 1, and the detected voltage measured by the instrument transformer 2 is detected by the voltage detector 4 and the detected current measured by the current transformer 3 is detected by current detection. Input to the container 5. The detection voltage from the voltage detector 4 and the detection current from the current detector 5 are input to the reactive power detection means 6, and the reactive power detection means 6 calculates the detection voltage and the detection current to output a reactive power detection value. And input to the comparator 7.
[0016]
The reactive power command value 7A is input to the comparator 7 in addition to the reactive power detection value. The difference between the reactive power command value 7A and the reactive power command value 7A is calculated. Input to the reactive power control unit 8. The ignition control angle signal α 0 corresponding to the differential reactive power from the reactive power control unit 8 is input to the pulse phase shifter 9, and the pulse phase shifter 9 inputs the ignition control angle signal α 0 to the reactive power control circuit 10. .
[0017]
The gate 11G of the semiconductor control element 11 of the reactive power control circuit 10 fires based on the firing control angle signal α 0 , and the semiconductor control element 11 absorbs the reactive power by the shunt reactor 12 when the delayed reactive power is large, When the delayed reactive power is small, the reactive power corresponding to the reactive power is released by the capacitor 13 so that the reactive power in the power system can be controlled to a predetermined value. As the semiconductor control element 11, a thyristor which is a phase control semiconductor element was used. still. 14 is a reactor, and E is a ground.
[0018]
By the way, in the reactive power compensating device performing the constant reactive power control, as described above, there are cases where the detected voltage in the power system cannot be controlled within a predetermined value. Therefore, in this embodiment, a voltage deviation prevention control device 15 that controls the detected voltage to be within the allowable voltage range when the detected voltage deviates from within the allowable voltage range is provided.
[0019]
The correction signal R SIg from inside the voltage deviation prevention control device 15 stores the algorithm shown in FIGS. 2 and 3, is calculated by this algorithm, and is input to the comparator 7.
[0020]
In FIG. 2, the upper limit of the allowable voltage range X1 of the system voltage is V MAX , and the lower limit is V MIN . In order to control the voltage deviation prevention control device 15 within the adjustment range, the upper limit of the threshold value is V UP and the lower limit is V LOW .
[0021]
FIG. 3 shows an algorithm in the voltage deviation prevention control device 15.
[0022]
Here, Q BUS is the reactive power measured on the system bus, V BUS is the detection voltage measured on the system bus 1, α 0 is a firing control angle signal for firing the gate of the semiconductor control element 11, and LAQR and UAQR are points. an upper limit and a lower limit value range of the arc control angle signal alpha 0. R SIg is a correction signal of the voltage deviation prevention control device 15, k is a compensation value, t is time, and Δt is a reactive power / voltage sampling time. The initial value of the correction signal R SIg is 0.
1) At start, R SIg is 0.
2) At the time of input, a detection voltage (V BUS ) and α 0 are input.
3) It is determined whether the firing control angle signal α 0 is within a control range in which the semiconductor control element can be controlled, that is, LAQR <α 0 <UAQR, and in the case of No, R SIg = R SIg , Keep the previous value without doing anything. Further, if the value is outside the range of LAQR <α 0 <UAQR, the firing angle cannot be controlled. If Yes, go to 4).
4) If the detection voltage (V BUS )> V UP and Yes, then R SIg = R SIg + k. In other words, when the detected voltage deviates beyond the allowable voltage range, the correction signal R SIg input from the voltage deviation prevention control device 15 to the comparator 7 is shifted toward the shunt reactor 12 where the detected voltage is delayed and the reactive power is absorbed. By adding the compensation value k, the bus voltage of the wind system bus 1 is controlled so that the detection voltage (V BUS ) decreases. If No, go to 5).
5) When the detection voltage (V BUS ) <V LOW and Yes, R SIg = R SIg −k. That is, when the detected voltage deviates below the allowable voltage range, the correction signal R SIg input from the voltage deviation prevention control device 15 to the comparator 7 has a compensation value in the direction of the capacitor 13 that delays the detected voltage and releases the reactive power. By subtracting k, the bus voltage of the system bus 1 is controlled so that the detection voltage (V BUS ) increases. If No, go to 6).
6) Since R SIg = R SIg , which is within the allowable voltage range X1, the current value is held without doing anything, and the process directly proceeds to 7).
7) It becomes End by OutPut, and 1) it returns to start.
[0023]
As described above, according to the voltage deviation prevention control device 15 of the present embodiment, when the detection voltage is outside the allowable voltage range, the detection voltage is delayed and the compensation value k is added in the direction of the shunt reactor 12 that absorbs the reactive power, or The compensation value k is subtracted in the direction of the capacitor 13 where the detection voltage is delayed and the reactive power is released. As a result, the bus voltage can be controlled so that the detection voltage (V BUS ) falls within the allowable voltage range. Therefore, the bus voltage is controlled so as not to deviate from the allowable voltage range, and the power having improved quality is supplied to the system load. Can be supplied. That is, the generated power from the wind power plant is supplied to the system bus of the load while controlling the bus voltage of the system bus within an allowable voltage range and suppressing voltage fluctuation.
[0024]
In particular, if the voltage deviation prevention control device 15 of the present embodiment is used for the power generated by wind power generation, it is possible to supply the power having improved quality by suppressing the voltage fluctuation to the load. Is improved.
[0025]
In addition, since the voltage deviation prevention control device of the present embodiment performs calculations such as addition and subtraction of the detected voltage in an electronic algorithm, the calculation speed is the same as the conventional load tap changer and automatic voltage regulator. , The voltage fluctuation of the system bus 1 can be quickly brought within a predetermined range.
[0026]
Further, the high calculation speed allows addition / subtraction of a sudden pulse signal, so that the bus voltage can be controlled within an allowable voltage range, and the fluctuation of the system voltage of the load can be stabilized.
[0027]
Although the above-described embodiment has described the separately-excited var compensator, FIG. 4 shows a self-excited var compensator as another embodiment. The same components as those in the embodiment of FIG. 1 are denoted by the same reference numerals. In the embodiment shown in FIG. 4, the current command value 20A from the reactive power control unit 8 and the detection current 20B from the current detector 25 are input to the current limiter 22, and the constant voltage command value 23 from the current limiter 22 is The signal is input to a gate pulse generator 24 which converts the voltage into a pulse voltage. According to the pulse value from the gate pulse generator 24, it is input to a self-extinguishing type device 26 including a transistor T, a freewheel diode D and a series capacitor C.
[0028]
According to the self-excited var compensator of this embodiment, the voltage between the base B and the emitter E of the transistor T of the self-extinguishing device 26 is controlled according to the pulse value from the gate pulse generator 24. Thereby, the reactive power is absorbed or released when the delayed reactive power is large or when the delayed reactive power is small. With the self-extinguishing type device 26 of the present embodiment, the magnitude of the reactive power is set within the predetermined range of the bus voltage of the system bus 1, and then stable power with little voltage fluctuation can be supplied to the system bus of the load. . The operation of the voltage deviation prevention control device is the same as that of the above-described embodiment, and the description thereof will be omitted.
[0029]
【The invention's effect】
As described above, according to the reactive power compensator of the present invention, the bus voltage can be kept within the allowable voltage range, so that it is possible to supply high-quality power with reduced voltage fluctuation to the load.
[Brief description of the drawings]
FIG. 1 is a schematic control block diagram including a voltage deviation prevention control device of a reactive power compensator SVC according to an embodiment of the present invention.
FIG. 2 is a diagram showing an allowable voltage range stored in the voltage deviation prevention control device of FIG. 1;
FIG. 3 is a view showing an algorithm stored in the voltage deviation prevention control device of FIG. 1;
FIG. 4 is a schematic control block diagram showing a self-excited var compensator SVC according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... System bus, 2 ... Instrument transformer, 3 ... Current transformer, 4 ... Voltage detector, 5, 25 ... Current detector, 6 ... Reactive power detection means, 7 ... Comparator, 8 ... Reactive power control part , 9 ... Pulse phase shifter, 10 ... Reactive power control circuit, 11 ... Semiconductor control element, 12 ... Shunt reactor, 13 ... Capacitor, 15 ... Voltage departure prevention control device, 22 ... Current limiter, 24 ... Gate pulse generator , 26: self-extinguishing type device, SVC: reactive power compensating device.

Claims (3)

電力系統に接続された電圧検出器からの電圧検出及び電流検出器からの検出電流を無効電力に演算する無効電力検出手段と、該無効電力検出手段からの無効電力検出値及び無効電力指令値とが入力され、両者の差を求める比較器と、該比較器で求められた無効電力検出値と無効電力指令値の差分を入力される無効電力制御部と、該無効電力制御部からの差分無効電力に相当する点弧制御角信号に基き半導体制御素子のゲートを点弧し、遅れ無効電力が多い時には無効電力を吸収し、且つ遅れ無効電力が少ない時には無効電力を放出して前記電力系統における無効電力を所定値に制御する無効電力制御回とを備えた無効電力補償装置において、
前記電圧検出器における電圧検出が許容電圧範囲以上に逸脱する時には、前記電圧検出が遅れ無効電力を吸収する方向に加算し、且つ電圧検出が許容電圧範囲以下に逸脱する時には、前記検出電圧が遅れ無効電力を放出する方向に減算することで、前記検出電圧を許容電圧範囲内に制御する電圧逸脱防止制御装置を更に備えていることを特徴とする無効電力補償装置。
Reactive power detection means for calculating a voltage detected from a voltage detector connected to the power system and a detection current from the current detector into reactive power, a reactive power detection value and a reactive power command value from the reactive power detection means, , A comparator for calculating the difference between the two, a reactive power control unit to which a difference between the reactive power detection value and the reactive power command value obtained by the comparator is input, and a difference reactive from the reactive power control unit. In the power system, the gate of the semiconductor control element is fired based on the ignition control angle signal corresponding to the power, the reactive power is absorbed when the delayed reactive power is large, and the reactive power is released when the delayed reactive power is small. In a reactive power compensator comprising a reactive power control circuit for controlling the reactive power to a predetermined value,
When the voltage detection in the voltage detector deviates beyond the allowable voltage range, the voltage detection is delayed and added in a direction to absorb the reactive power, and when the voltage detection deviates below the allowable voltage range, the detected voltage is delayed. A reactive power compensating device further comprising a voltage deviation prevention control device that controls the detection voltage to fall within an allowable voltage range by subtracting in a direction in which the reactive power is released.
電力系統に接続された電圧検出器からの電圧検出及び電流検出器からの検出電流を無効電力に演算する無効電力検出手段と、該無効電力検出手段からの無効電力検出値及び無効電力指令値とが入力され、両者の差を求める比較器と、該比較器で求めた無効電力検出値と無効電力指令値の差分を入力される無効電力制御部と、該無効電力制御部からの電流指令値と検出電流が入力される電流制限器と、該電流制限器からの一定電圧指令値をパルス電圧に変換するゲートパルス発生器と、該ゲートパルス発生器からのパルス値に応じてトランジスタのべースとエミッタ間電圧を制御し、遅れ無効電力が多い時には無効電力を吸収し、且つ遅れ無効電力が少ない時には無効電力を放出して前記電力系統における無効電力を所定値に制御する自己消弧型装置とを備えた無効電力補償装置において、
前記電圧検出器における電圧検出が許容電圧範囲以上に逸脱する時には、前記電圧検出が遅れ無効電力を吸収する方向に加算し、且つ電圧検出が許容電圧範囲以下に逸脱する時には、前記検出電圧が遅れ無効電力を放出する方向に減算することで、前記検出電圧を許容電圧範囲内に制御する電圧逸脱防止制御装置を更に備えていることを特徴とする無効電力補償装置。
Reactive power detection means for calculating a voltage detected from a voltage detector connected to the power system and a detection current from the current detector into reactive power, a reactive power detection value and a reactive power command value from the reactive power detection means, , A comparator for calculating the difference between the two, a reactive power control unit to which a difference between the reactive power detection value and the reactive power command value obtained by the comparator is input, and a current command value from the reactive power control unit. A current limiter to which a detection current is input, a gate pulse generator for converting a constant voltage command value from the current limiter into a pulse voltage, and a transistor base in accordance with the pulse value from the gate pulse generator. Self-extinguishing to control the source-emitter voltage, absorb the reactive power when the delayed reactive power is large, and release the reactive power when the delayed reactive power is small to control the reactive power in the power system to a predetermined value. In reactive power compensator that includes a device,
When the voltage detection in the voltage detector deviates beyond the allowable voltage range, the voltage detection is delayed and added in a direction to absorb the reactive power, and when the voltage detection deviates below the allowable voltage range, the detected voltage is delayed. A reactive power compensating device further comprising a voltage deviation prevention control device that controls the detection voltage to fall within an allowable voltage range by subtracting in a direction in which the reactive power is released.
電気所に設置され、無効電力に検出する無効電力検出手段と、該無効電力検出手段によって検出された無効電圧値を無効電圧出力指令値から減算する減算器と、該減算器から出力された信号をもとに無効電力を制御する制御信号を演算出力する無効電力制御器とを備えた無効電力補償装置において、
前記電気所の母線電圧を検出して得た母線電圧検出値と、予め定めたれた電圧上限閾値及び電圧下限閾値とを比較して、前記母線電圧検出値が前記電圧上限閾値を上回った場合若しくわ電圧下限閾値を下回った場合に無効電力指令値に補正値を加算若しくわ減算することによって、前記母線電圧が定められた許容電圧範囲を免脱しまいように無効電力を制御する電圧逸脱防止制御装置を更に備えていることを無効電力補償装置。
A reactive power detection unit installed at an electric station and detecting the reactive power, a subtractor for subtracting a reactive voltage value detected by the reactive power detection unit from a reactive voltage output command value, and a signal output from the subtractor A reactive power controller that calculates and outputs a control signal for controlling the reactive power based on
A bus voltage detection value obtained by detecting the bus voltage of the substation is compared with a predetermined voltage upper limit threshold and a predetermined voltage lower limit threshold, and if the bus voltage detection value exceeds the voltage upper limit threshold, In other words, a voltage deviation that controls the reactive power so that the bus voltage escapes a predetermined allowable voltage range by adding or subtracting a correction value to or from the reactive power command value when the voltage falls below the voltage lower limit threshold. A reactive power compensating device further comprising a prevention control device.
JP2003108996A 2003-04-14 2003-04-14 Reactive power compensator Pending JP2004320859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108996A JP2004320859A (en) 2003-04-14 2003-04-14 Reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108996A JP2004320859A (en) 2003-04-14 2003-04-14 Reactive power compensator

Publications (1)

Publication Number Publication Date
JP2004320859A true JP2004320859A (en) 2004-11-11

Family

ID=33470298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108996A Pending JP2004320859A (en) 2003-04-14 2003-04-14 Reactive power compensator

Country Status (1)

Country Link
JP (1) JP2004320859A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006089989A1 (en) * 2005-02-23 2006-08-31 Gamesa Innovation And Technology, S.L. Method and device for injecting reactive current during a mains supply voltage dip
ES2289954A1 (en) * 2006-07-31 2008-02-01 Juan Jose Rodriguez Tornell Reactive energy compensator
CN102222924A (en) * 2011-06-15 2011-10-19 宁波电业局 Electric energy adjusting system and electric energy adjuster based on loads of common bus of substation
KR101148298B1 (en) * 2009-06-05 2012-05-21 미츠비시 쥬고교 가부시키가이샤 System stabilizing method, and wind power generation system
KR101126174B1 (en) * 2010-09-28 2012-06-12 한국전력공사 Voltage management system and voltage management method
CN103166226A (en) * 2013-03-29 2013-06-19 华北电力大学(保定) Network voltage reactive-power compound coordination control system and method for new energy power generation
EP2607692A1 (en) * 2011-12-22 2013-06-26 Siemens Aktiengesellschaft Method for determining a voltage bounding range
WO2013179470A1 (en) 2012-05-31 2013-12-05 三菱重工業株式会社 Voltage control device, control method thereof and voltage control program
WO2014021152A1 (en) * 2012-08-01 2014-02-06 株式会社日立製作所 Voltage adjustment device for power distribution system, voltage adjusting method, and power control system
CN105356480A (en) * 2015-11-13 2016-02-24 中国电力科学研究院 Photovoltaic power station static reactive power control method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006089989A1 (en) * 2005-02-23 2006-08-31 Gamesa Innovation And Technology, S.L. Method and device for injecting reactive current during a mains supply voltage dip
ES2277724A1 (en) * 2005-02-23 2007-07-16 Gamesa Eolica Method and device for injecting reactive current during a mains supply voltage dip
ES2289954A1 (en) * 2006-07-31 2008-02-01 Juan Jose Rodriguez Tornell Reactive energy compensator
WO2008015306A2 (en) * 2006-07-31 2008-02-07 Rodriguez Tornell Juan Jose Reactive energy compensator
WO2008015306A3 (en) * 2006-07-31 2008-03-20 Tornell Juan Jose Rodriguez Reactive energy compensator
KR101148298B1 (en) * 2009-06-05 2012-05-21 미츠비시 쥬고교 가부시키가이샤 System stabilizing method, and wind power generation system
KR101126174B1 (en) * 2010-09-28 2012-06-12 한국전력공사 Voltage management system and voltage management method
CN102222924A (en) * 2011-06-15 2011-10-19 宁波电业局 Electric energy adjusting system and electric energy adjuster based on loads of common bus of substation
US9057356B2 (en) 2011-12-22 2015-06-16 Siemens Aktiengesellschaft Method for determining a voltage bounding range
EP2607692A1 (en) * 2011-12-22 2013-06-26 Siemens Aktiengesellschaft Method for determining a voltage bounding range
WO2013179470A1 (en) 2012-05-31 2013-12-05 三菱重工業株式会社 Voltage control device, control method thereof and voltage control program
WO2014021152A1 (en) * 2012-08-01 2014-02-06 株式会社日立製作所 Voltage adjustment device for power distribution system, voltage adjusting method, and power control system
US9606554B2 (en) 2012-08-01 2017-03-28 Hitachi, Ltd. Voltage adjustment device for power distribution system, voltage adjusting method, and power control system
CN103166226A (en) * 2013-03-29 2013-06-19 华北电力大学(保定) Network voltage reactive-power compound coordination control system and method for new energy power generation
CN103166226B (en) * 2013-03-29 2015-01-28 华北电力大学(保定) Network voltage reactive-power compound coordination control system and method for new energy power generation
CN105356480A (en) * 2015-11-13 2016-02-24 中国电力科学研究院 Photovoltaic power station static reactive power control method
CN105356480B (en) * 2015-11-13 2018-11-09 中国电力科学研究院 A kind of photovoltaic plant static reactive control method

Similar Documents

Publication Publication Date Title
JP5391598B2 (en) Stabilized control system for distributed power supply
US20100008119A1 (en) Solar power generation stabilization system and method
US8830712B2 (en) Controlling an inverter device of a high voltage DC system for supporting an AC system
AU2011355888B2 (en) Photovoltaic system and power supply system
US20150285220A1 (en) Output control device, method and program for wind farm
US20150008743A1 (en) Power Supply System
JPH0965588A (en) Electric power storage system
JP5367252B2 (en) AC voltage control method
JP2008228454A (en) Control method and controller of inverter system device for distributed power supply
JP2008228454A5 (en)
JP2004320859A (en) Reactive power compensator
JP2016119820A (en) Autonomous operation system
JP2009065820A (en) Voltage fluctuation controller for natural energy power generation
JP2013255375A (en) Distribution grid voltage regulator, voltage regulation method, and power control system
US10074985B2 (en) Solar and/or wind inverter
JP2006081285A (en) Control method for static reactive power compensator
JP2008165499A (en) Reactive power compensation device and method
JPH11155236A (en) Method and system for compensating reactive power
JP2006014445A (en) Distribution line voltage fluctuation compensator
JP2004320860A (en) Reactive power compensator
JP2020188614A (en) Control method and control circuit of reactive power compensator
JP2008312370A (en) Reactive power compensating device and control method therefor
JP2006166683A (en) Method and system for suppressing voltage fluctuation
JP2792085B2 (en) Control method of reactive power compensator
JP2002271995A (en) Photovoltaic power generating system, output controlling method therefor, and computer-readable storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205