JP4719760B2 - Control method and system for distributed power supply group - Google Patents

Control method and system for distributed power supply group Download PDF

Info

Publication number
JP4719760B2
JP4719760B2 JP2008079270A JP2008079270A JP4719760B2 JP 4719760 B2 JP4719760 B2 JP 4719760B2 JP 2008079270 A JP2008079270 A JP 2008079270A JP 2008079270 A JP2008079270 A JP 2008079270A JP 4719760 B2 JP4719760 B2 JP 4719760B2
Authority
JP
Japan
Prior art keywords
power
distributed power
distributed
active
sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008079270A
Other languages
Japanese (ja)
Other versions
JP2009239990A5 (en
JP2009239990A (en
Inventor
康則 大野
倫行 内山
真一 近藤
智道 伊藤
貢 松竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008079270A priority Critical patent/JP4719760B2/en
Priority to CN200910004952XA priority patent/CN101567563B/en
Publication of JP2009239990A publication Critical patent/JP2009239990A/en
Publication of JP2009239990A5 publication Critical patent/JP2009239990A5/ja
Application granted granted Critical
Publication of JP4719760B2 publication Critical patent/JP4719760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Description

本発明は、分散型電源群の制御方法及びシステムに係り、例えば、風力発電、太陽光発電、小規模水力発電、潮汐潮力発電などの自然エネルギあるいは再生可能エネルギを発電エネルギとする複数の発電源を分散設置してなる分散型電源群の制御方法及びシステムに関する。   The present invention relates to a control method and system for a distributed power supply group. For example, a plurality of generations using natural energy or renewable energy such as wind power generation, solar power generation, small-scale hydropower generation, tidal power generation, and the like as power generation energy. The present invention relates to a control method and system for a distributed power supply group in which power supplies are installed in a distributed manner.

地球温暖化の原因と考えられている二酸化炭素排出量削減が大きな課題になっている。二酸化炭素排出量削減の手段の一つとして、風力発電や太陽光発電などの分散型電源の導入が盛んになってきている。これらの分散型電源は電力系統に連系されて用いられることが多いが、風速や日射量の変動により発電出力が変動することから、連系している系統の電圧や、大量の分散型電源群が導入された場合には、連系される電力系統の電力品質、例えば電力系統の電圧や周波数に影響を及ぼすことが懸念されている。   Reducing carbon dioxide emissions, which is thought to cause global warming, has become a major issue. As one means of reducing carbon dioxide emissions, the introduction of distributed power sources such as wind power generation and solar power generation has become popular. These distributed power sources are often used in conjunction with the power system, but the power generation output fluctuates due to fluctuations in wind speed and solar radiation, so the voltage of the connected system and a large amount of distributed power sources When a group is introduced, there is a concern that it may affect the power quality of the interconnected power system, for example, the voltage and frequency of the power system.

例えば、電力変換器を介して風力発電機が電力系統に連系された場合の連系点(位置)での電圧変動を抑制する方法として、特許文献1には、分散型電源の有効電力の変動分と電圧変動の各検出値から、電圧変動に関係する系統パラメータα(α=連系点から見た電力系統側の合成インピーダンスの抵抗Req/同リアクタンスXeqの比(Req/Xeq))を推定し、有効電力の変動に起因する電圧変動を打ち消すような無効電力を分散型電源から供給して電圧変動を抑制する方法が開示されている。   For example, as a method of suppressing voltage fluctuations at a connection point (position) when a wind power generator is connected to an electric power system via a power converter, Patent Document 1 discloses the effective power of a distributed power source. From each detected value of fluctuation and voltage fluctuation, system parameter α related to voltage fluctuation (α = ratio of resistance Req / reactance Xeq of the combined impedance on the power system side as seen from the connection point (Req / Xeq)) There is disclosed a method for suppressing voltage fluctuation by supplying reactive power from a distributed power source that estimates and cancels voltage fluctuation caused by fluctuation of active power.

風力発電は効率化のために、複数の風力発電機からなる風力発電機群あるいはウィンドファームとして構成されることが多くなっているが、特許文献1の電圧変動を抑制する方法は、このような風力発電機群にも適用できるとしている。   Wind power generation is often configured as a wind power generator group or wind farm composed of a plurality of wind power generators in order to improve efficiency. It can be applied to wind power generators.

また、特許文献2には、電圧変動に関係する系統パラメータを、次数間高潮波を発生させることにより求める方法が開示されている。   Patent Document 2 discloses a method for obtaining a system parameter related to voltage fluctuation by generating an inter-order storm wave.

特開2007−124779号公報JP 2007-1224779 A 特開2002−171667号公報JP 2002-171667 A

ところで、特許文献1の技術を複数の風力発電機からなる分散型電源群に適用する場合は、各分散型電源での計測情報に基づき、各分散型電源の好ましい有効電力、無効電力、言い換えれば、力率が決定されることになる。   By the way, when applying the technique of Patent Document 1 to a distributed power supply group composed of a plurality of wind power generators, based on measurement information at each distributed power supply, preferred active power, reactive power of each distributed power supply, in other words, The power factor will be determined.

しかし、例え、電力系統側とやり取りする有効電力と無効電力が同じであっても、各分散型電源の無効電力の分担がアンバランスになり、あるいは、分散型電源群から全体として取り出せる有効電力が低下するなどの問題がある。   However, even if the active power and reactive power exchanged with the power system side are the same, the sharing of reactive power among the distributed power sources becomes unbalanced, or the active power that can be extracted from the distributed power source group as a whole There are problems such as lowering.

また、複数の太陽光発電装置を備えたメガソーラと呼ばれる分散型電源群についても、日射量の変化に伴う出力変動、及びそれに起因する連系点の電圧変動があるから、各分散型電源の無効電力の分担がアンバランスになり、あるいは、分散型電源群から全体として取り出せる有効電力が低下するなど、同様の問題がある。   In addition, a distributed power source group called a mega solar equipped with a plurality of photovoltaic power generation devices also has output fluctuations due to changes in the amount of solar radiation, and voltage fluctuations at the interconnection points resulting from it. There are similar problems such as unbalanced power sharing, or a reduction in the effective power that can be extracted from the distributed power supply group as a whole.

本発明が解決しようとする課題は、上記の問題点に鑑み、分散型電源群が系統に連系される連系点の電圧変動を抑えながら、各分散型電源を協調制御して有効電力及び無効電力を適正に配分し、分散型電源群の運用を最適化することにある。   In view of the above-mentioned problems, the problem to be solved by the present invention is that the distributed power supply group controls the distributed power sources in a coordinated manner while suppressing voltage fluctuations at the connection points where the distributed power sources are connected to the grid. The objective is to properly allocate reactive power and optimize the operation of the distributed power supply group.

上記課題を解決するため、本発明の第1の態様は、発電源の出力を所望の電圧と電力に変換して出力する電力変換器を備えてなる複数の分散型電源を、分散型電源用送電線を介して電力系統に接続してなる分散型電源群の制御方法又はシステムにおいて、予め定めた制御周期ごとに、前記各分散型電源の出力電圧と出力電力の計測値を収集し、前記各分散型電源の有効電力の変動分及び前記電力系統の連系点の電圧変動分を前記各分散型電源の無効電力により吸収させる第1の制約条件と、前記各分散型電源の相互間の横流を抑制する第2の制約条件と、前記各分散型電源の有効電力を上限及び下限の範囲内とする第3の制約条件を満たし、かつ、前記連系点における前回制御周期に対する有効電力の変動を最小化するように、前記各分散型電源の有効電力と無効電力の指令値をそれぞれ求めて前記各分散型電源の前記電力変換器を制御することを特徴とする。   In order to solve the above-mentioned problem, a first aspect of the present invention is to provide a plurality of distributed power sources including a power converter that converts an output of a power generation power source into a desired voltage and power and outputs the power. In a control method or system for a distributed power supply group connected to a power system via a transmission line, for each predetermined control cycle, collect measured values of the output voltage and output power of each of the distributed power supplies, A first constraint condition that absorbs the variation of the active power of each distributed power source and the voltage variation of the interconnection point of the power system by the reactive power of each of the distributed power sources, and between each of the distributed power sources It satisfies the second constraint that suppresses the cross current and the third constraint that sets the active power of each distributed power source within the upper and lower limits, and the active power for the previous control cycle at the interconnection point Each of the distributed types so as to minimize variation The source of active power and the command value of the reactive power calculated respectively and controlling the power converter of the respective decentralized power supply.

これによれば、第1の制約条件を満たして連系点の電圧変動を抑制し、第2の制約条件を満たして各分散型電源間の横流を抑制し、さらに第3の制約条件を満たして各分散型電源の特性を考慮しながら、分散型電源群内の各分散型電源の有効電力と無効電力の指令値を求めていることから、各分散型電源を協調制御して有効電力及び無効電力を適正に配分し、分散型電源群の運用を最適化することができる。特に、分散型電源群全体としての有効電力(出力)の変動を最小化することができる。   According to this, the first constraint condition is satisfied to suppress the voltage fluctuation at the interconnection point, the second constraint condition is satisfied to suppress the cross current between the distributed power sources, and the third constraint condition is satisfied. The active power and reactive power command values of each distributed power supply in the distributed power supply group are obtained while considering the characteristics of each distributed power supply. The reactive power can be appropriately distributed and the operation of the distributed power supply group can be optimized. In particular, fluctuations in active power (output) as the entire distributed power supply group can be minimized.

また、本発明の第2の態様は、第1〜第3の制約条件を満たし、かつ、前記電力系統に出力される前記各分散型電源の有効電力を最大化するように、前記各分散型電源の有効電力と無効電力をそれぞれ求めて前記各分散型電源の前記電力変換器を制御することを特徴とする。   Further, the second aspect of the present invention is that each of the distributed types satisfies the first to third constraints and maximizes the effective power of each of the distributed power sources output to the power system. The power converter of each distributed power source is controlled by obtaining the active power and reactive power of the power source, respectively.

これによれば、各分散型電源を協調制御して有効電力及び無効電力を適正に配分して、分散型電源群の運用を最適化することができ、特に、分散型電源群全体としての有効電力(出力)を最大化できる利点がある。   According to this, it is possible to optimize the operation of the distributed power supply group by coordinatingly controlling each distributed power supply and appropriately distributing the active power and reactive power. There is an advantage that power (output) can be maximized.

本発明によれば、分散型電源群が系統に連系される連系点の電圧変動を抑えながら、各分散型電源を協調制御して有効電力及び無効電力を適正に配分し、分散型電源群の運用を最適化することができる。   According to the present invention, a distributed power source is configured to appropriately distribute active power and reactive power by coordinatingly controlling each distributed power source while suppressing voltage fluctuations at a connection point where the distributed power source group is connected to the grid. The group's operation can be optimized.

以下、本発明を実施形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments.

図1に、本発明の一実施形態を風力発電機群の制御方法に適用したシステムの系統構成図を示す。   FIG. 1 shows a system configuration diagram of a system in which an embodiment of the present invention is applied to a method for controlling a wind power generator group.

図1に示すように、風力発電機群は、電力系統の主幹系統1に連系線2を介して連系されており、連系線2には負荷3が連系されている。風力発電機群は、分散して配置された複数の風力発電機から構成される。各風力発電機は、風力タービン10、発電機9、電力変換器8、電流センサ6、電圧センサ7、制御器20から構成されている。電力変換器8は、発電機9の出力を一旦直流に変換し、その直流を所望の電圧と電力(有効電力及び無効電力)に変換して出力するように構成されている。   As shown in FIG. 1, the wind power generator group is connected to a main system 1 of a power system via a connection line 2, and a load 3 is connected to the connection line 2. The wind power generator group is composed of a plurality of wind power generators arranged in a distributed manner. Each wind power generator includes a wind turbine 10, a power generator 9, a power converter 8, a current sensor 6, a voltage sensor 7, and a controller 20. The power converter 8 is configured to once convert the output of the generator 9 into direct current, convert the direct current into desired voltage and power (active power and reactive power), and output the converted voltage.

各風力発電機の出力は、分散型電源用送電線である構内送電線11に接続され、構内送電線11は連系点4で連系線2に接続されている。なお、構内送電線11には変圧器13が設けられており、構内送電線の電圧を昇圧して連系線2に接続している。   The output of each wind power generator is connected to a local transmission line 11 that is a distributed power transmission line, and the local transmission line 11 is connected to the interconnection line 2 at the interconnection point 4. The on-premises power transmission line 11 is provided with a transformer 13 that boosts the voltage of the on-premises power transmission line and connects it to the interconnection line 2.

各風力発電機の制御器20は、通信線12を介して統括監視装置5に接続されている。統括監視装置5は、各風力発電機の制御器20で計測された出力電圧、出力電力に関するデータを収集し、それらのデータに基づいて後述する演算により各風力発電機の制御器20に有効電力、無効電力の指令値を出力するようになっている。各制御器20は、入力される指令値に従って電力変換器8を制御することにより、各風力発電機の有効電力及び無効電力を適正に配分して、風力発電機群全体としての有効電力(出力)の変動を最小化、あるいは風力発電機群全体としての有効電力(出力)を最大化する最適運転を実行するようになっている。   The controller 20 of each wind power generator is connected to the overall monitoring device 5 via the communication line 12. The overall monitoring device 5 collects data related to the output voltage and output power measured by the controller 20 of each wind power generator, and based on those data, the active power is supplied to the controller 20 of each wind power generator by calculation described later. The reactive power command value is output. Each controller 20 controls the power converter 8 according to the input command value to appropriately distribute the active power and reactive power of each wind power generator so that the active power (output) of the wind power generator group as a whole is output. ) To minimize fluctuations or to maximize the effective power (output) of the entire wind power generator group.

図2は、統括監視装置5の主要機器を示すブロック図である。統括監視装置5は、各風力発電機の制御器20から送られてくるデータを受取る通信装置211と、各風力発電機の最適指令値を演算するとともに運転記録やメンテナンス等の各種処理を行うための演算処理装置212と、指示等の入力を受け付ける入力装置213と、表示装置214とを有して構成されている。   FIG. 2 is a block diagram showing the main equipment of the overall monitoring device 5. The overall monitoring device 5 receives the data sent from the controller 20 of each wind power generator, calculates the optimum command value of each wind power generator, and performs various processes such as operation recording and maintenance. The arithmetic processing device 212, an input device 213 that receives an input of an instruction and the like, and a display device 214 are configured.

演算処理装置212は、コンピュータで構成され、図示していないが、中央演算装置、メモリ、プログラムを記憶する記憶装置等を有して構成されている。また、演算処理装置212には、データを記憶してデータベース221〜225を構成するための記憶装置が接続される。データベースは、指令値の演算に必要な系統定数を格納する系統定数データベース(DB)221と、風力発電機群からの送電量等を格納する送電情報DB222と、風速等を格納する気象情報DB223と、運転実績を格納する運転記録DB224と、障害発生・除去あるいは定期点検の情報を格納する障害・メンテナンス情報DB225を含んで構成される。   The arithmetic processing unit 212 is configured by a computer and includes a central processing unit, a memory, a storage device for storing a program, and the like (not shown). The arithmetic processing unit 212 is connected to a storage device for storing data and configuring the databases 221 to 225. The database includes a system constant database (DB) 221 that stores system constants necessary for calculating command values, a power transmission information DB 222 that stores the amount of power transmitted from the wind power generator group, and a weather information DB 223 that stores wind speed and the like. The operation record DB 224 for storing operation results and the failure / maintenance information DB 225 for storing information on occurrence / removal of trouble or periodic inspection are configured.

図3は、制御器20の機能ブロック図である。制御器20は、統括監視装置5との情報の授受を行う通信機能311と、電力変換器8への制御信号を生成する制御信号生成機能312と、電流センサ6と電圧センサ7の計測値から電流、電圧の計測値を算出する計測値算出機能313で構成される。   FIG. 3 is a functional block diagram of the controller 20. The controller 20 includes a communication function 311 for exchanging information with the overall monitoring device 5, a control signal generation function 312 for generating a control signal to the power converter 8, and measured values of the current sensor 6 and the voltage sensor 7. A measurement value calculation function 313 for calculating current and voltage measurement values is provided.

制御信号生成機能312は、計測値算出機能313で得られる計測値に基づき、後述する有効電力と無効電力の指令値を生成し、電力変換器8のゲート信号(制御信号)を生成して制御器20に出力するようになっている。   The control signal generation function 312 generates a command value for active power and reactive power, which will be described later, based on the measurement value obtained by the measurement value calculation function 313, and generates a gate signal (control signal) for the power converter 8 for control. Is output to the container 20.

図4は、統括監視装置5に設けられている表示装置214の表示画面の一部を示す説明図であり、各風力発電機の運転状態と連系されている系統の状態を示している。図示のように、概要図〔○○○ウインドファーム〕400は、連系線401と各風力発電機402を示しており、稼動又は障害等の主な運転状態403が表示される。運転状態404は、各風力発電機の詳しい運転状態を表示している。表示項目としては、名称405、有効電力406、無効電力407、電圧408、風況409、障害410、状況411などが表示される。また、ボタン412を押すことにより、子画面(図では省略)が開き、過去の履歴や詳細なログを見ることができる。表の最下段413は、風力発電機群全体の有効電力、無効電力、電圧等を表示している。また、ボタン414を押すと、送電電力415、電圧のトレンドグラフが表示される。更に、メッセージ欄416が設けられている。   FIG. 4 is an explanatory diagram showing a part of the display screen of the display device 214 provided in the overall monitoring device 5, and shows the state of the grid connected to the operating state of each wind power generator. As shown in the figure, a schematic diagram [XXX wind farm] 400 shows a connection line 401 and each wind power generator 402, and displays a main operation state 403 such as operation or failure. The operation state 404 displays the detailed operation state of each wind power generator. As display items, name 405, active power 406, reactive power 407, voltage 408, wind condition 409, fault 410, condition 411, and the like are displayed. In addition, when a button 412 is pressed, a sub-screen (not shown in the figure) is opened, and a past history and a detailed log can be viewed. The bottom 413 of the table displays the active power, reactive power, voltage, etc. of the entire wind power generator group. When the button 414 is pressed, a trend graph of the transmitted power 415 and voltage is displayed. Further, a message field 416 is provided.

次に、本実施の形態の特徴に係る統括監視装置5における演算処理内容を説明する。図5に図1の系統構成図の等価回路を示すように、n機の風力発電機からなる風力発電機群について説明する。   Next, the contents of the arithmetic processing in the overall monitoring apparatus 5 according to the feature of the present embodiment will be described. A wind power generator group composed of n wind power generators will be described with reference to FIG. 5 showing an equivalent circuit of the system configuration diagram of FIG.

まず、風力発電機群の有効電力の変動に伴う接続点Cn(連系点4)における電圧変動を、式1のような無効電力を発生させることで補償することを第1の制約条件とする。すなわち、各風力発電機の有効電力の変動分と連系点4の電圧変動分に基づいて、連系点4から見た電力系統側の合成インピーダンスの抵抗分Reqとリアクタンス分Xeqの比(Req/Xeq)である系統パラメータを求める。そして、求めた系統パラメータと風力発電機の有効電力の総和とを乗じた値に、各風力発電機の無効電力の総和が等しくなるように、各風力発電機の無効電力を制御する条件である。   First, the first constraint condition is to compensate the voltage fluctuation at the connection point Cn (interconnection point 4) due to the fluctuation of the active power of the wind power generator group by generating the reactive power as shown in Equation 1. . That is, based on the fluctuation of the active power of each wind power generator and the voltage fluctuation of the interconnection point 4, the ratio (Req) of the resistance component Req and the reactance component Xeq of the combined impedance on the power system side viewed from the interconnection point 4 / Xeq) is determined. And, it is a condition for controlling the reactive power of each wind power generator so that the total sum of the reactive power of each wind power generator becomes equal to the value obtained by multiplying the calculated system parameter and the total of the active power of the wind power generator .

ΣQi(t+1)=−α・ΣPi(t+1) ……式1
ここで、i:風力発電機の番号であり、i=1〜n
t:制御周期
Pi(t+1):(t+1)時刻における各発電機からの有効電力
Qi(t+1):(t+1)時刻における各発電機からの無効電力
α:系統パラメータ
連系点4から見た連系線2と負荷3を含む合成インピーダンスの
抗分(Req)/同リアクタンス分Xeq)
Σ:総和をとる記号であり、[i=1〜n]の範囲の総和をとる。
ΣQi (t + 1) = − α · ΣPi (t + 1) Equation 1
Where i is the number of the wind power generator and i = 1 to n
t: Control period Pi (t + 1): Active power from each generator at time (t + 1) Qi (t + 1): Reactive power from each generator at time (t + 1) α: System parameter
The combined impedance including the interconnection line 2 and the load 3 as seen from the interconnection point 4
Anti-component (Req) / Reactance component Xeq)
Σ: A symbol for summation, which is the summation in the range [i = 1 to n].

上述の系統パラメータαについて補足説明を行う。図1の系統構成の場合、風力発電機群(ウインドファーム)側から見た系統側のインピーダンスは、次式で与えられる。   Supplementary explanation will be given for the system parameter α described above. In the case of the system configuration of FIG. 1, the impedance on the system side viewed from the wind power generator group (wind farm) side is given by the following equation.

1/(Req+j Xeq)=
1/(R1+j X1)+1/(R2+j X2) ……式2
ここで、jは虚数単位、R1は連系線インピーダンスの抵抗分、
X1は連系線インピーダンスのリアクタンス分、
R2は負荷の等価インピーダンスの抵抗分、
X2は負荷の等価インピーダンスのリアクタンス分
負荷は時間的に変動するため、R2及びX2は時間的に変動するが、式2の右辺の第2項は同第1項に比べ小さいため、数時間のオーダでは、合成インピーダンスは時間的にはほぼ一定になると考えてよい。
1 / (Req + j Xeq) =
1 / (R1 + j X1) + 1 / (R2 + j X2) (2)
Here, j is an imaginary unit, R1 is the resistance of the interconnection impedance,
X1 is the reactance of the interconnection impedance,
R2 is the resistance component of the equivalent impedance of the load,
X2 is a reactance component of the equivalent impedance of the load. Since the load fluctuates with time, R2 and X2 fluctuate with time. However, since the second term on the right side of Equation 2 is smaller than the first term, In the order, the combined impedance may be considered to be substantially constant in time.

なお、連系点4における有効電力、無効電力、電圧(後述する)に関しては、図1中に記載している変圧器13に付属した電圧センサ、電流センサ(図では省略している)の計測値を用いて推定する。   Note that the active power, reactive power, and voltage (described later) at the interconnection point 4 are measured by a voltage sensor and a current sensor (not shown in the figure) attached to the transformer 13 described in FIG. Estimate using the value.

次に、各風力発電機i相互間の横流を防止することを第2の制約条件とする。すなわち、各風力発電機iが接続された構内送電線11との接続点Ciと、この接続点Ciの隣の接続点Cj(j=i+1)との電圧差を零とすることにより横流を防止することができ、そのための条件は、式3のようになる。なお、式3はi=1〜(n−1)について成立する必要がある。   Next, preventing the cross current between the wind power generators i is a second constraint condition. That is, cross current is prevented by setting the voltage difference between the connection point Ci to the on-site transmission line 11 to which each wind power generator i is connected and the connection point Cj (j = i + 1) adjacent to the connection point Ci to zero. The condition for this can be expressed as Equation 3. In addition, Formula 3 needs to be materialized about i = 1- (n-1).

Vj−Vi≒{Rij ΣPk(t+1)
+Xij ΣQk(t+1)}/Vi=0 ……式3
ここで、Vi:各接続点Ciにおける電圧
Rij:接続点Ci、Cj間の抵抗
Xij:接続点Ci、Cj間のリアクタンス
Σ:総和をとる記号であり、[k=1〜i]の範囲の総和をとる。
Vj−Vi≈ {Rij ΣPk (t + 1)
+ Xij ΣQk (t + 1)} / Vi = 0 (Formula 3)
Where Vi: voltage at each connection point Ci Rij: resistance between connection points Ci and Cj Xij: reactance between connection points Ci and Cj Σ: symbol for summation, in the range of [k = 1 to i] Take the sum.

さらに、式4のように、各風力発電機iの有効電力の上限は風のエネルギで制限され、下限は機械的制御による運転範囲で設定される。式4を、第3の制約条件とする。   Further, as shown in Expression 4, the upper limit of the active power of each wind power generator i is limited by the energy of the wind, and the lower limit is set in the operation range by mechanical control. Equation 4 is a third constraint condition.

Pi(n+1)Min≦Pi(n+1)≦Pi(n+1)Max ……式4
ここで、
Pi(n+1)Max:(t+1)時刻における風力発電機iの有効電力最大値
Pi(n+1)Min:(t+1)時刻における風力発電機iの有効電力最小値
このような制約条件の基に、風力発電機群が系統に連系される連系点4の電圧変動を抑えながら、各風力発電機を協調制御して有効電力及び無効電力を適正に配分し、風力発電機群の運用を最適化する方法として、本実施の形態では次の二つの評価条件(1)、(2)について検討する。
(1)風力発電機群から送電される有効電力の時間的変化を最小にする。
(2)風力発電機群から送電される有効電力を最大化する。
Pi (n + 1) Min ≦ Pi (n + 1) ≦ Pi (n + 1) Max ...... Expression 4
here,
Pi (n + 1) Max : Maximum effective power value of wind power generator i at time (t + 1) Pi (n + 1) Min : Minimum effective power value of wind power generator i at time (t + 1) Based on such constraints, wind power While controlling the voltage fluctuation at the connection point 4 where the generator group is connected to the grid, each wind generator is coordinated to distribute the active power and reactive power appropriately and optimize the operation of the wind generator group In this embodiment, the following two evaluation conditions (1) and (2) are examined as a method to do this.
(1) Minimize temporal changes in active power transmitted from the wind power generator group.
(2) Maximize the effective power transmitted from the wind power generator group.

評価条件(1)の場合の目的関数F1は、式5となる。   The objective function F1 in the case of the evaluation condition (1) is expressed by Equation 5.

F1={ΣPi(t+1)−ΣPi(t)} ……式5
ここで、Pi(t)は、t時刻におけるi番目の風力発電機の有効電力であり、(t+1)時刻においては既知量
式5を最小にするように、言い換えれば、前回周期のPi(t)に対する今回周期のPi(t+1)の変動分を風力発電機i〜nについて総和したものを最小にするようにPi(t+1)を決定する。
F1 = {ΣPi (t + 1) −ΣPi (t)} Equation 5
Here, Pi (t) is the active power of the i-th wind power generator at time t, and the known quantity Equation 5 is minimized at time (t + 1), in other words, Pi (t) of the previous cycle. Pi (t + 1) is determined so as to minimize the sum of fluctuations of Pi (t + 1) in the current cycle with respect to the wind power generators i to n.

同様に、評価条件(2)の場合の目的関数F2は、式6となる。   Similarly, the objective function F2 in the case of the evaluation condition (2) is expressed by Equation 6.

F2=ΣPi(t+1) ……式6
式6を最大にするように、言い換えれば、今回周期のPi(t+1)の総和を最大にするようにPi(t+1)を決定する。
各風力発電機への出力指令値は、式1、式3、式4を制約条件として、式5あるいは式6を目的関数F1、F2とし、線形計画法を用いて最適解として、
Pi(t+1)、Qi(t+1)[i=1〜n]を求めることができる。
次に、線形計画法により最適解を求める方法を説明する。線形計画法を適用するためには、次の特徴を持つ必要がある。
F2 = ΣPi (t + 1) ...... Formula 6
Pi (t + 1) is determined so as to maximize Equation 6, in other words, so as to maximize the sum of Pi (t + 1) in the current cycle.
The output command value to each wind power generator is set as an optimal solution using linear programming, with Formula 1, Formula 3, and Formula 4 as constraints, Formula 5 or Formula 6 as objective functions F1 and F2,
Pi (t + 1) and Qi (t + 1) [i = 1 to n] can be obtained.
Next, a method for obtaining an optimal solution by linear programming will be described. To apply linear programming, it must have the following characteristics:

(a)変数(仮にn個とする)はすべて非負である。     (a) All variables (assuming n) are non-negative.

(b)制約条件は1次式の不等式、または、等式である。     (b) The constraint condition is a linear inequality or an equality.

(c)目的関数(最大化ないし最小化する関数)は、(a)の変数の1次関数である。     (c) The objective function (maximizing or minimizing function) is a linear function of the variable of (a).

上記(a)を満足させるため、必要に応じ変数の変換を行う。例えば、Qi(t+1)は、符号を換えた新たな変数に換えて、係数を求める。   In order to satisfy the above (a), variable conversion is performed as necessary. For example, Qi (t + 1) obtains a coefficient in place of a new variable whose sign has been changed.

以上の前処理を行った線形計画問題から最適解を求める方法としては、シンプレックス法と呼ばれる方法が用いられる。   A method called a simplex method is used as a method for obtaining an optimal solution from the linear programming problem subjected to the above preprocessing.

(b)の制約条件を満足するn個の変数の集まりは、n次元空間の領域(可能領域と呼ぶ)であらわされ、それに属するn個の変数の集まりを可能解と呼んでいる。可能解の中で目的値を最大ないし最小にする変数の集まりが最適解となる。   A collection of n variables satisfying the constraint condition (b) is represented by an area (called a possible area) in an n-dimensional space, and a collection of n variables belonging to it is called a possible solution. A set of variables that maximizes or minimizes the target value among possible solutions is an optimal solution.

(a)〜(c)で定義された線形計画問題では、可能領域がn次元空間の凸多面体になり、最適解はその頂点となるという性質を利用する。シンプレックス法では、目的関数の値が最も大きく変化するような辺に沿って移動し、目的関数が変化しなくなる頂点で終了する。これによって最適解が求まる。実際には、上述の処理は計算機プログラムにより実現される。   The linear programming problem defined in (a) to (c) uses the property that the possible region is a convex polyhedron in n-dimensional space, and the optimal solution is its vertex. In the simplex method, the object function moves along a side where the value of the objective function changes the most, and ends at a vertex where the objective function does not change. As a result, an optimal solution is obtained. Actually, the above-described processing is realized by a computer program.

以上の演算処理は統括監視装置5で行われ、最適解Pi(t+1)、Qi(t+1)を各風力発電機iへの指令値として、対応する制御器20に出力する。   The above arithmetic processing is performed by the overall monitoring device 5, and the optimal solutions Pi (t + 1) and Qi (t + 1) are output to the corresponding controllers 20 as command values to the respective wind power generators i.

図6に、統括監視装置5の処理のフローチャートを示す。まず、連系点4の電圧変動を抑制するための系統パラメータ算出に必要な系統情報を取得する(600)。所定の制御周期に基づいて、制御のタイミングかどうかを判定する(601)。制御タイミングであれば、各風力発電機iから、有効電力、無効電力、出力電圧、風速等の情報を取得し(602)、データベース(DB)に格納する。取得した情報(風速等の情報)に基づき、制御タイミングにおける各風力発電機iの最大有効電力(出力)を推定する。(604)
次に、式1、式3、式4を用いて、電圧変動抑制及び出力最適化(有効電力最大化)に係る有効電力と無効電力の制約式を作成する(605)。式5又は式6を用いて目的関数F1又はF2を作成する(606)。なお、目的関数F1で最適化するか、目的関数F2で最適化するかは、予め統括監視装置5の入力装置から入力しておく。線形計画法を用いて、最適化問題の解を求める(607)。次の制御タイミングでの各風力発電機iの有効電力と無効電力に相当する解の合理性のチェックを行う(608)。ここで、合理性チェックは、各風力発電機iの有効電力と無効電力に制限か設定されている場合に、その制限の範囲を満たしているか否かをチェックする。解の合理性に問題がある場合は前回値あるいはそれを補正した値で置き換える。これを各風力発電機iへの指令値として送信する(609)。以後、制御周期ごとに、601〜609を繰り返す(610)。
FIG. 6 shows a flowchart of processing of the overall monitoring apparatus 5. First, system information necessary for system parameter calculation for suppressing voltage fluctuation at the interconnection point 4 is acquired (600). Based on a predetermined control period, it is determined whether or not it is a control timing (601). If it is a control timing, information, such as active power, reactive power, an output voltage, a wind speed, will be acquired from each wind power generator i (602), and will be stored in a database (DB). Based on the acquired information (information such as wind speed), the maximum effective power (output) of each wind power generator i at the control timing is estimated. (604)
Next, using Equation 1, Equation 3, and Equation 4, a constraint equation for active power and reactive power related to voltage fluctuation suppression and output optimization (effective power maximization) is created (605). An objective function F1 or F2 is created using Expression 5 or 6 (606). Whether to optimize with the objective function F1 or with the objective function F2 is input in advance from the input device of the overall monitoring device 5. A solution of the optimization problem is obtained using linear programming (607). The rationality of the solution corresponding to the active power and reactive power of each wind power generator i at the next control timing is checked (608). Here, the rationality check checks whether or not the range of the limit is satisfied when the limit is set to the active power and the reactive power of each wind power generator i. If there is a problem with the rationality of the solution, replace it with the previous value or the corrected value. This is transmitted as a command value to each wind power generator i (609). Thereafter, steps 601 to 609 are repeated for each control cycle (610).

ここで、電圧変動抑制に関しては、式1の制約式が成立すればよく、各風力発電機からの出力にばらつきがある場合、出力が大きい風力発電機からは、最大限の有効電力を取り出し、無効電力は出力が小さい風力発電機に配分する運転も可能である。   Here, regarding the voltage fluctuation suppression, the constraint formula of Formula 1 may be satisfied, and when there is a variation in the output from each wind power generator, the maximum active power is extracted from the wind power generator with a large output, Reactive power can be distributed to wind power generators with low output.

図7に、本発明の実施形態における3機の風力発電機で構成される風力発電機群での運用例のグラフを示す。同図(a)は、各風力発電機の接続点で、最大1%の電圧差を生じる場合である。接続点間に横流が生じていることがわかる。同図(b)は本実施の形態の方法で、3つの接続点の電圧をほぼ等しくした場合であり、横流を除くことが可能である。   In FIG. 7, the graph of the example of operation | use in the wind power generator group comprised by the three wind power generators in embodiment of this invention is shown. FIG. 4A shows a case where a voltage difference of 1% at the maximum is generated at the connection point of each wind power generator. It can be seen that there is a cross current between the connection points. FIG. 5B shows a case where the voltages at the three connection points are substantially equal in the method of the present embodiment, and it is possible to eliminate the cross current.

なお、図1の例では、風力発電機を構成する全ての発電機について最適化を行ってきたが、風力発電機の数が非常に多い場合などは、接続される送電線の違いによりグルーピングを行い、同一グループの風力発電機について、図1の最適化を適用することも考えられる。   In the example of FIG. 1, all the wind turbine generators have been optimized. However, when the number of wind power generators is very large, grouping is performed depending on the difference in the connected transmission lines. It is conceivable to apply the optimization of FIG. 1 to the same group of wind generators.

以上説明したように、本実施の形態によれば、第1の制約条件を満たして連系点の電圧変動を抑制し、第2の制約条件を満たして各風力発電機間の横流を抑制し、さらに第3の制約条件を満たして各風力発電機の特性を考慮しながら、風力発電機群内の各風力発電機の有効電力と無効電力の指令値を求めていることから、各風力発電機を協調制御して有効電力及び無効電力を適正に配分でき、風力発電機群の運用を最適化することができる。特に、風力発電機群全体としての有効電力(出力)の変動を最小化することができる。   As described above, according to the present embodiment, the first constraint condition is satisfied to suppress the voltage fluctuation at the interconnection point, and the second constraint condition is satisfied to suppress the cross current between the wind power generators. Further, since the command values of the active power and reactive power of each wind power generator in the wind power generator group are obtained while satisfying the third constraint condition and considering the characteristics of each wind power generator, each wind power generation The active power and reactive power can be appropriately distributed by cooperatively controlling the machines, and the operation of the wind power generator group can be optimized. In particular, fluctuations in active power (output) as a whole wind power generator group can be minimized.

また、第1〜第3の制約条件を満たし、かつ、電力系統に出力される風力発電機の有効電力を最大化するように、各風力発電機の有効電力と無効電力をそれぞれ求めて各風力発電機の電力変換器を制御していることから、各風力発電機を協調制御して有効電力及び無効電力を適正に配分でき、風力発電機群の運用を最適化することができ、特に、風力発電機群全体としての有効電力(出力)を最大化できる利点がある。   In addition, each wind power generator obtains the active power and reactive power of each wind power generator so as to maximize the active power of the wind power generator that is output to the power system while satisfying the first to third constraints. Since the power converter of the generator is controlled, each wind power generator can be coordinated to effectively distribute the active power and reactive power, and the operation of the wind power generator group can be optimized. There is an advantage that the effective power (output) of the entire wind power generator group can be maximized.

なお、これまで統括監視装置5と各分散型電源の制御器20を別個のものとして説明してきたが、統括監視装置の機能を各分散型電源の制御器に付加することにより、別置した統括監視装置を使用することなく、これまで説明したのと同様の効果を得ることもできる。さらに、統括監視装置の機能を複数の制御器に設け、万が一、統括監視装置機能を実現している制御器が故障した場合でも、他の統括監視装置機能を持つ制御器がその機能を代行できるようにすることで、より高い信頼性を確保することも可能である。   Although the overall monitoring device 5 and each distributed power controller 20 have been described as separate units so far, the function of the overall monitoring device is added to each distributed power source controller, thereby providing a separate control unit. The same effects as described above can be obtained without using a monitoring device. In addition, the functions of the general monitoring device are provided in multiple controllers, and in the unlikely event that a controller that realizes the general monitoring device function fails, other controllers having the general monitoring device function can perform the function. By doing so, it is also possible to ensure higher reliability.

本発明の一実施形態を風力発電機群の制御方法に適用したシステムの系統構成図である。It is a system configuration | structure figure of the system which applied one Embodiment of this invention to the control method of the wind power generator group. 統括監視装置の構成を示すブロック図である。It is a block diagram which shows the structure of an integrated monitoring apparatus. 制御器の各機能を示すブロック図である。It is a block diagram which shows each function of a controller. 統括監視装置の監視画面を示す説明図である。It is explanatory drawing which shows the monitoring screen of an integrated monitoring apparatus. 図1の系統構成図の等価回路である。It is an equivalent circuit of the system | strain block diagram of FIG. 統括監視装置の処理を示すフローチャート。The flowchart which shows the process of an integrated monitoring apparatus. 実施形態の効果を説明する動作波形図である。It is an operation | movement waveform diagram explaining the effect of embodiment.

符号の説明Explanation of symbols

1…主幹系統、2…連系線、3…負荷、4…連系点、5…統括監視装置、6…電流センサ、7…電圧センサ、8…電力変換器、9…発電機、10…風力タービン、31…通信線、20…制御器   DESCRIPTION OF SYMBOLS 1 ... Master system, 2 ... Interconnection line, 3 ... Load, 4 ... Connection point, 5 ... General monitoring apparatus, 6 ... Current sensor, 7 ... Voltage sensor, 8 ... Power converter, 9 ... Generator, 10 ... Wind turbine, 31 ... communication line, 20 ... controller

Claims (3)

発電源の出力を所望の電圧と電力に変換して出力する電力変換器を備えてなる複数の分散型電源を、分散型電源用送電線を介して電力系統に接続してなる分散型電源群の制御方法において、
予め定めた制御周期ごとに、前記各分散型電源の出力電圧と出力電力の計測値を収集し、
前記各分散型電源の有効電力の変動分及び前記電力系統の連系点の電圧変動分を前記各分散型電源の無効電力により吸収させる第1の制約条件と、
前記各分散型電源の相互間の横流を抑制する第2の制約条件と、
前記各分散型電源の有効電力を上限及び下限の範囲内に制限する第3の制約条件を満たし、かつ、
前記連系点における前回制御周期に対する有効電力の変動を最小化すること、又は前記電力系統に出力される前記各分散型電源の有効電力を最大化することのいずれか一方を評価条件として、前記各分散型電源の有効電力と無効電力の指令値をそれぞれ求めて前記各分散型電源の前記電力変換器を制御することを特徴とする分散型電源群の制御方法。
A group of distributed power sources in which a plurality of distributed power sources each including a power converter that converts the output of the power source into desired voltage and power and outputs the power are connected to the power system via the transmission lines for the distributed power source In the control method of
Collecting measured values of output voltage and output power of each distributed power source for each predetermined control cycle,
A first constraint that absorbs the variation of the active power of each of the distributed power sources and the voltage variation of the interconnection point of the power system by the reactive power of each of the distributed power sources;
A second constraint that suppresses cross current between the distributed power sources;
Satisfying a third constraint that limits the active power of each of the distributed power sources within the upper and lower limits; and
Wherein minimizing the variation of the active power for the previous control cycle in the interconnection node, or as an evaluation condition one of maximizing the active power of each of the distributed power to be output to the electric power system, the A control method of a distributed power supply group, wherein command values of active power and reactive power of each distributed power supply are respectively obtained to control the power converter of each distributed power supply.
請求項1に記載の分散型電源群の制御方法において、
前記第1の制約条件は、前記各分散型電源の有効電力の変動分と前記連系点の電圧変動分に基づいて、前記連系点から見た電力系統側の合成インピーダンスの抵抗分Reqとリアクタンス分Xeqの比(Req/Xeq)である系統パラメータを求め、該系統パラメータと前記各分散型電源の有効電力の総和とを乗じた値に、前記各分散型電源の無効電力の総和を等しくする条件であることを特徴とする分散型電源群の制御方法。
In the control method of the distributed power supply group according to claim 1,
The first constraint condition is based on a fluctuation amount of active power of each of the distributed power sources and a voltage fluctuation amount of the interconnection point, and a resistance component Req of the combined impedance on the power system side viewed from the interconnection point and A system parameter that is a ratio of reactance component Xeq (Req / Xeq) is obtained, and the sum of reactive power of each distributed power source is equal to a value obtained by multiplying the system parameter and the total active power of each distributed power source. A control method for a distributed power supply group, characterized in that:
発電源の出力を所望の電圧と電力に変換して出力する電力変換器を備えてなる複数の分散型電源と、該複数の分散型電源がそれぞれ接続された分散型電源用送電線と、該分散型電源用送電線を電力系統に接続してなる分散型電源群システムにおいて、
予め定めた制御周期ごとに、前記各分散型電源の出力電圧と出力電力の計測値を収集して前記各分散型電源の前記電力変換器を制御する統括制御装置を設け、
前記統括制御装置は、
前記各分散型電源の有効電力の変動分及び前記電力系統の連系点の電圧変動分を前記各分散型電源の無効電力により吸収させる第1の制約条件と、
前記各分散型電源の相互間の横流を抑制する第2の制約条件と、
前記各分散型電源の有効電力を上限及び下限の範囲内に制限する第3の制約条件を満たし、かつ、
前記連系点における前回制御周期に対する有効電力の変動を最小化すること、又は前記電力系統に出力される前記各分散型電源の有効電力を最大化することのいずれか一方を評価条件として、前記各分散型電源の有効電力と無効電力の指令値をそれぞれ求めて前記各分散型電源の前記電力変換器を制御することを特徴とする分散型電源群システム。
A plurality of distributed power sources each including a power converter that converts the output of the power generation source into a desired voltage and power and outputs the power, a distributed power transmission line to which the plurality of distributed power sources are connected, and In a distributed power supply group system in which distributed power transmission lines are connected to a power system,
For each predetermined control cycle, an overall control device is provided that collects measured values of the output voltage and output power of each distributed power source and controls the power converter of each distributed power source,
The overall control device is:
A first constraint that absorbs the variation of the active power of each of the distributed power sources and the voltage variation of the interconnection point of the power system by the reactive power of each of the distributed power sources;
A second constraint that suppresses cross current between the distributed power sources;
Satisfying a third constraint that limits the active power of each of the distributed power sources within the upper and lower limits; and
Wherein minimizing the variation of the active power for the previous control cycle in the interconnection node, or as an evaluation condition one of maximizing the active power of each of the distributed power to be output to the electric power system, the A distributed power supply group system characterized in that command values of active power and reactive power of each distributed power supply are respectively obtained to control the power converter of each distributed power supply.
JP2008079270A 2008-03-25 2008-03-25 Control method and system for distributed power supply group Active JP4719760B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008079270A JP4719760B2 (en) 2008-03-25 2008-03-25 Control method and system for distributed power supply group
CN200910004952XA CN101567563B (en) 2008-03-25 2009-02-20 Method and system for controlling dispersion type power pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008079270A JP4719760B2 (en) 2008-03-25 2008-03-25 Control method and system for distributed power supply group

Publications (3)

Publication Number Publication Date
JP2009239990A JP2009239990A (en) 2009-10-15
JP2009239990A5 JP2009239990A5 (en) 2010-01-21
JP4719760B2 true JP4719760B2 (en) 2011-07-06

Family

ID=41253281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008079270A Active JP4719760B2 (en) 2008-03-25 2008-03-25 Control method and system for distributed power supply group

Country Status (2)

Country Link
JP (1) JP4719760B2 (en)
CN (1) CN101567563B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101709972B1 (en) * 2015-08-26 2017-02-24 전자부품연구원 Control System and Method for Windfarm with Various Wind Turbines

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103736A (en) * 2009-11-11 2011-05-26 Mitsubishi Heavy Ind Ltd Wind power generation system
CN102222930A (en) * 2010-04-19 2011-10-19 严本信 Intelligent and high efficient wind power farm
JP5740561B2 (en) * 2010-04-27 2015-06-24 パナソニックIpマネジメント株式会社 Voltage control apparatus, voltage control method, and voltage control program
EP2397688A1 (en) * 2010-06-16 2011-12-21 Siemens Aktiengesellschaft Electric power control system and electric power facility comprising the electric power control system
US8664800B2 (en) * 2010-08-31 2014-03-04 General Electric Company System and method for distribution of inverter VAR support
WO2012155126A2 (en) * 2011-05-12 2012-11-15 Alencon Acquisition Co., Llc High voltage energy harvesting and conversion renewable energy utility size electric power systems and visual monitoring and control systems
JP6048146B2 (en) 2010-11-08 2016-12-21 日本電気株式会社 Power system control system and method
DE102011081446A1 (en) 2011-08-23 2013-02-28 Wobben Properties Gmbh Method for operating a wind energy plant
CN102354989B (en) * 2011-10-22 2013-08-07 东北电力大学 Transient voltage control method of wind power station with constant-speed asynchronous wind turbine generator system
CN102570493B (en) * 2011-11-08 2014-02-26 山东电力研究院 Optimal control method for reducing parallel initial fault current angles of looped network in power system restoration
JP5694218B2 (en) * 2012-03-16 2015-04-01 東芝三菱電機産業システム株式会社 Natural energy power generation system
US9373958B2 (en) * 2012-03-22 2016-06-21 Sunpower Corporation Control techniques for photovoltaic power plants
JP6081133B2 (en) 2012-10-16 2017-02-15 株式会社東芝 Wind farm output control device, method, and program
DE102013208474A1 (en) * 2013-05-08 2014-11-13 Wobben Properties Gmbh Method for feeding electrical power into an electrical supply network
DE102013215398A1 (en) * 2013-08-06 2015-02-12 Wobben Properties Gmbh Method for controlling wind turbines
DE102013216241A1 (en) * 2013-08-15 2015-02-19 Wobben Properties Gmbh Method for feeding electrical power into a supply network
CN103779875B (en) * 2014-01-21 2016-05-04 燕山大学 The grid-connected transmission line equiva lent impedance of distributed system ratio acquisition methods
KR101819267B1 (en) * 2014-03-17 2018-01-16 엘에스산전 주식회사 Control device for voltage source converter and operating method thereof
JP6342203B2 (en) 2014-04-03 2018-06-13 株式会社東芝 Wind farm output control device, method, and program
KR101569622B1 (en) 2014-05-14 2015-11-16 엘에스산전 주식회사 Converter and operating method thereof
KR101638141B1 (en) * 2014-07-23 2016-07-08 전북대학교산학협력단 System for active power control of wind power plant
US10483759B2 (en) 2016-04-07 2019-11-19 Alencon Acquisition Co., Llc Integrated multi-mode large-scale electric power support system for an electrical grid
JP6923296B2 (en) * 2016-07-05 2021-08-18 株式会社日立製作所 Wind farms and their operation methods and wind farms
JP6925123B2 (en) * 2016-12-22 2021-08-25 株式会社日立製作所 How to control renewable energy power generation system, reactive power controller or renewable energy power generation system
JP6892191B2 (en) * 2017-03-02 2021-06-23 株式会社ダイヘン Power system
JP7010690B2 (en) * 2017-12-27 2022-01-26 株式会社日立インダストリアルプロダクツ Power generation system
JP7250632B2 (en) * 2019-06-27 2023-04-03 株式会社日立製作所 Integrated control device and integrated control method for renewable energy power generation system
KR102237103B1 (en) * 2019-08-23 2021-04-08 한국전력공사 Apparatus for measuring an amount of power for performing a synthesis metering of a plurality of meters
CN111262275B (en) * 2020-03-26 2023-02-24 西安电子科技大学 Global cooperative control method for simulated space solar power station

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515070A (en) * 1991-04-22 1993-01-22 Mitsubishi Electric Corp Parallel operation control device
JP2004023922A (en) * 2002-06-18 2004-01-22 Fuji Electric Holdings Co Ltd Voltage compensating circuit for parallelly operated inverter
JP2006158179A (en) * 2004-10-29 2006-06-15 Tokyo Electric Power Co Inc:The Distributed power supply, power distribution facility, and power supply method
JP2007124779A (en) * 2005-10-27 2007-05-17 Hitachi Ltd Distributed power supply system and method for stabilizing system
JP2007300784A (en) * 2006-04-06 2007-11-15 Tokyo Electric Power Co Inc:The Distributed power supply

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053866A (en) * 2005-08-19 2007-03-01 Chugoku Electric Power Co Inc:The Method of operating distributed power supply system and distributed power supply system
US7319307B2 (en) * 2005-12-16 2008-01-15 General Electric Company Power balancing of multiple synchronized generators
JP4890920B2 (en) * 2006-04-14 2012-03-07 株式会社日立製作所 Power quality maintenance support method and power quality maintenance support system for a distribution system in which a plurality of distributed power sources are connected

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515070A (en) * 1991-04-22 1993-01-22 Mitsubishi Electric Corp Parallel operation control device
JP2004023922A (en) * 2002-06-18 2004-01-22 Fuji Electric Holdings Co Ltd Voltage compensating circuit for parallelly operated inverter
JP2006158179A (en) * 2004-10-29 2006-06-15 Tokyo Electric Power Co Inc:The Distributed power supply, power distribution facility, and power supply method
JP2007124779A (en) * 2005-10-27 2007-05-17 Hitachi Ltd Distributed power supply system and method for stabilizing system
JP2007300784A (en) * 2006-04-06 2007-11-15 Tokyo Electric Power Co Inc:The Distributed power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101709972B1 (en) * 2015-08-26 2017-02-24 전자부품연구원 Control System and Method for Windfarm with Various Wind Turbines

Also Published As

Publication number Publication date
CN101567563B (en) 2012-07-18
CN101567563A (en) 2009-10-28
JP2009239990A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP4719760B2 (en) Control method and system for distributed power supply group
Ishaq et al. A review on recent developments in control and optimization of micro grids
Hajiaghasi et al. Hybrid energy storage system for microgrids applications: A review
Xie et al. Model predictive economic/environmental dispatch of power systems with intermittent resources
Ahadi et al. A novel approach for optimal combinations of wind, PV, and energy storage system in diesel-free isolated communities
Bajaj Design and simulation of hybrid DG system fed single-phase dynamic voltage restorer for smart grid application
Xiao et al. Method, implementation and application of energy storage system designing
Chopra et al. Power-flow-based energy management of hierarchically controlled islanded AC microgrids
Ashouri‐Zadeh et al. Frequency stability improvement in wind‐thermal dominated power grids
Petrovic et al. Overview of software tools for integration and active management of high penetration of DERs in emerging distribution networks
Verma et al. Proactive stabilization of grid faults in DFIG based wind farm using bridge type fault current limiter based on NMPC
Desalegn et al. Wind energy-harvesting technologies and recent research progresses in wind farm control models
Hasanien et al. Hybrid adaptive controlled flywheel energy storage units for transient stability improvement of wind farms
Gobimohan Active power quality improvement for unified renewable energy system with multilevel inverter and PEKF controllers
Abbey et al. Integrating renewable energy sources and storage into isolated diesel generator supplied electric power systems
Rani et al. Improved dynamic performance of permanent magnet synchronous generator based grid connected wind energy system
Yousef et al. Power management for hybrid distributed generation systems
Ghaedi et al. Spinning reserve scheduling in power systems containing wind and solar generations
Maharjan Voltage regulation of low voltage distribution networks
Madiba et al. Optimal load-shedding control of a microgrid power system
Susanto Photovoltaic power plant planning and modeling
Yan et al. Development of economic and stable power-sharing scheme in an autonomous microgrid with volatile wind power generation
Seethalakshmi et al. RETRACTED: Application of Machine Learning and Big Data in Doubly Fed Induction Generator based Stability Analysis of Multi Machine System using Substantial Transformative Optimization Algorithm
Vaziri et al. Volt/VAr regulation and issues with high penetration of renewables on distribution systems
Tomin et al. Flexibility-based improved energy hub model for multi-energy distribution systems

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

R150 Certificate of patent or registration of utility model

Ref document number: 4719760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3