US7422915B2 - Light emitting diode and method for manufacturing the same - Google Patents
Light emitting diode and method for manufacturing the same Download PDFInfo
- Publication number
- US7422915B2 US7422915B2 US11/581,575 US58157506A US7422915B2 US 7422915 B2 US7422915 B2 US 7422915B2 US 58157506 A US58157506 A US 58157506A US 7422915 B2 US7422915 B2 US 7422915B2
- Authority
- US
- United States
- Prior art keywords
- layer
- light emitting
- emitting diode
- manufacturing
- diode according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000000034 method Methods 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000004065 semiconductor Substances 0.000 claims abstract description 66
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 229910000679 solder Inorganic materials 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims description 33
- 238000005253 cladding Methods 0.000 claims description 23
- 238000005530 etching Methods 0.000 claims description 19
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 7
- 238000001704 evaporation Methods 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 3
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 3
- BEQNOZDXPONEMR-UHFFFAOYSA-N cadmium;oxotin Chemical compound [Cd].[Sn]=O BEQNOZDXPONEMR-UHFFFAOYSA-N 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 229910003437 indium oxide Inorganic materials 0.000 claims description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 3
- 238000002207 thermal evaporation Methods 0.000 claims description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 3
- 229910001887 tin oxide Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052593 corundum Inorganic materials 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 238000001579 optical reflectometry Methods 0.000 claims description 2
- 239000011368 organic material Substances 0.000 claims description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 2
- 238000000605 extraction Methods 0.000 description 16
- 235000012431 wafers Nutrition 0.000 description 16
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000003892 spreading Methods 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- -1 TiN) Chemical compound 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/14—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
- H01L33/42—Transparent materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
- H01L33/46—Reflective coating, e.g. dielectric Bragg reflector
Definitions
- the present invention relates to a light emitting diode, and more particularly, to a high-brightness light emitting diode manufactured by a wafer bonding technique.
- FIG. 1 illustrates a cross-sectional view of a conventional light emitting diode.
- the light emitting diode comprises a substrate 100 , a n-type semiconductor buffer layer 102 , a n-type semiconductor contact layer 104 , a n-type semiconductor cladding layer 106 , an active layer 108 , a p-type semiconductor cladding layer 110 and a p-type semiconductor contact layer 112 stacked in sequence.
- the light emitting diode further comprises a p-type contact pad 114 located on a portion of the p-type semiconductor contact layer 112 , and a n-type contact pad 116 located on the exposed portion of the n-type semiconductor contact layer 104 .
- the material of the substrate 100 of a conventional light emitting diode adopts n-type gallium arsenide (GaAs).
- the substrate 100 composed of n-type GaAs can absorb light, so that most of the photons produced by the active layer 108 of the light emitting diode while emitting toward the substrate 100 are absorbed by the substrate 100 , thus seriously affecting the light emitting efficiency of the light emitting diode device.
- the U.S. Pat. No. 5,376,580 has a disadvantage of low yield caused by the need of considering the consistency of the lattice direction between the bonding wafers.
- the U.S. Pat. No. 6,258,699 (application date: May 10, 1999) filed by K. H. Chang et al., Visual Photonics Epitaxy Co., R.O.C. disclosed a technology about using metal as a bonding agent after the light emitting diode wafer is stripped off the growth substrate.
- a disadvantage of the U.S. Pat. No. 6,258,699 is that: the light emitting diode wafer is easy to peel off after bonding, thus lowering the yield.
- An objective of the present invention is to provide a light emitting diode having a transparent substrate, wherein a surface of the substrate having a reflective layer with high light reflection. Therefore, the loss of light absorbed by the substrate can be reduced, and the reuse of the photons can be provided, so as to increase the quantity of the photons extracted from lateral sides of the device.
- Another objective of the present invention is to provide a light emitting diode, wherein a n-type contact pad of the light emitting diode is located on the front side of the device, so that the light emitting diode has a better current-spreading effect.
- Still another objective of the present invention is to provide a light emitting diode, and a transparent conductive layer can be formed to cover the n-type contact layer after etching, thereby increasing light extraction efficiency and keeping a better current-spreading effect.
- the present invention provides a light emitting diode comprising: a transparent substrate; a reflective layer located on a surface of the transparent substrate; a solder layer located on the other surface of the transparent substrate; a semiconductor epitaxial structure located on the solder layer, wherein the semiconductor epitaxial structure comprises a p-type semiconductor contact layer, a p-type semiconductor cladding layer, a multiple quantum well active layer, a n-type semiconductor cladding layer and a n-type semiconductor contact layer stacked in sequence, and the p-type semiconductor layer contacts the solder layer; and a transparent conductive layer located on the semiconductor epitaxial structure.
- the n-type semiconductor contact layer can be a continuous surface structure.
- the n-type semiconductor contact layer can be a discontinuous surface structure, and the discontinuous surface structure can be a cylinder structure or a prism structure.
- the loss of light intensity resulted from the absorbing of the substrate can be reduced greatly by removing the growth substrate. Besides, the yield can be increased and the production cost can be reduced by using a solder material to perform a wafer bonding step. Furthermore, the reflective layer on the transparent substrate can provide reuse of photons to increase the quantity of the photons extracted from the lateral side of the device. In addition, depositing a transparent conductive layer on the etched n-type semiconductor contact layer not only can increase light extraction efficiency, but also can maintain current-spreading effect.
- FIG. 1 illustrates a cross-sectional view of a conventional light emitting diode.
- FIG. 2 to FIG. 5 a are schematic flow diagrams showing the process for manufacturing a light emitting diode in accordance with a preferred embodiment of the present invention.
- FIG. 5 b illustrates a cross-sectional view of a light emitting diode in accordance with another preferred embodiment of the present invention.
- FIG. 6 illustrates a schematic diagram showing light extraction directions of a light emitting diode in accordance with a preferred embodiment of the present invention.
- the present invention discloses a light emitting diode. In order to make the illustration of the present invention more explicitly and completely, the following description and the drawings from FIG. 2 to FIG. 6 are stated.
- AlGaInP is a very commonly-used material. Because AlGaInP is a kind of direct bandgap materials, appropriately adjusting the ratio of In/(Al+Ga) in the AlGaInP material can make the lattice constant of the AlGaInP material and the GaAs substrate matched. Adjusting the ratio of Al and Ga in the AlGaInP material can make light emitted between 550 nm (green light) and 680 nm (red light) in wavelength. It is very easy to adjust the AlGaInP material on the device epitaxy, so it is easy to obtain emitting light with desired wavelengths by a linear method, and AlGaInP is very suitable for use in manufacturing a light emitting device of visible light zone.
- adding the content of Al in AlGaInP material can increase the bandgap of the AlGaInP material, so that the AlGaInP material of high Al content is typically used as a cladding layer to confine carriers falling to a central illuminant layer (which is also called as an active layer), so as to enhance the injecting efficiency and radiation compound efficiency of the carriers and form a light emitting diode having a double heterostructure with high light emitting efficiency.
- the bandgap of the aforementioned cladding layer is larger than the energy of the emitting photons, so that the cladding layer does not absorb the light emitting from the active layer.
- FIG. 2 to FIG. 5 a are schematic flow diagrams showing the process for manufacturing a light emitting diode in accordance with a preferred embodiment of the present invention.
- a substrate 200 is first provided, wherein the substrate 200 is a growth substrate, and the material of the substrate 200 can be such as n-type GaAs.
- a buffer layer 202 and an etching stop layer 204 are grown on the substrate 200 in sequence by using such as a metal organic chemical vapor deposition (MOCVD) method.
- MOCVD metal organic chemical vapor deposition
- a semiconductor epitaxial structure of the light emitting diode is grown by using such as a metal organic chemical vapor deposition method, so as to grow in sequence a n-type semiconductor contact layer 206 , a n-type semiconductor cladding layer 208 , a multiple quantum well active layer 210 , a p-type semiconductor cladding layer 212 and a p-type semiconductor contact layer 214 located on the etching stop layer 204 to form a structure such as shown in FIG. 2 .
- the material of the buffer layer 202 can be such as n-type GaAs; the material of the etching stop layer 204 can be such as n-type AlGaInP; the material of the n-type semiconductor contact layer 206 can be such as n-type GaAs; the material of the n-type semiconductor cladding layer 208 can be such as AlGaInP; the material of the multiple quantum well active layer 210 can be such as AlGaInP/GaInP; the material of the p-type semiconductor cladding layer 212 can be such as AlGaInP; and the material of the p-type semiconductor contact layer 214 can be such as AlGaInAsP.
- the etching stop layer 204 is removed by such as an etching method to remove the buffer layer 202 and the substrate 200 with remaining the epitaxial structure of the light emitting diode, such as shown in FIG. 3 .
- a transparent substrate 300 is provided, wherein the material of the transparent substrate 300 can be such as Al 2 O 3 , ZnSe, ZeO, GaP, or glass, etc.
- a reflective layer 304 is formed on a surface of the transparent substrate 300 by using such as a deposition method, and a solder layer 302 is formed on the other surface of the transparent substrate 300 by using such as a coating method, a deposition method, or an evaporation method, so as to form a structure such as shown in FIG. 4 .
- the material of the reflective layer 304 is preferably a metal of high light reflectivity, such as Al, Au, Ag, and alloy thereof, and the material of the solder layer 302 is a conductive material or an insulating material that is heat-resistant and has a large thermal conductive coefficient, such as organic material or metal.
- the epitaxial structure of the light emitting diode shown in FIG. 3 and the transparent substrate 300 shown in FIG. 4 are bonded together by using such as a wafer bonding technology to bond the solder layer 302 to the p-type semiconductor contact layer 214 . It does not need to consider the direction and disposition of light emitting diode wafer desired to be bonded by using the solder layer 302 composed of the material that is heat-resistant and has a large thermal conductive coefficient to perform the wafer bonding step, so that the yield can be increased and the production cost can be reduced. Besides, after the transparent substrate 300 is used to replace the substrate 200 , the loss of light absorbed by the substrate can be reduced effectively, and the light extraction efficiency of the light emitting diode can be increased. Furthermore, the reflective layer 304 of the transparent substrate 300 can provide reuse of photons produced by the multiple quantum well active layer 210 , so as to increase the quantity of the photons extracted from the lateral side of the light emitting diode device.
- a transparent conductive layer 216 is formed to cover the n-type semiconductor contact layer 206 by using such as an e-gun evaporation method, a thermal evaporation method, or a sputtering method, to increase the light extraction efficiency of the light emitting diode.
- the material of the transparent conductive layer 216 can be such as titanium (Ti), titanium alloy, titanium oxide or titanium nitride (such as TiN), tantalum (Ta) oxide (Such as Ta 2 O 5 ) or tantalum nitride, platinum (Pt), platinum alloy, indium tin oxide (ITO), indium oxide, tin oxide, or cadmium tin oxide, etc.
- a definition step is performed by using such as a photolithographic method and an etching method to remove a portion of the transparent conductive layer 216 , a portion of the n-type semiconductor contact layer 206 , a portion of the n-type semiconductor cladding layer 208 , a portion of the multiple quantum well active layer 210 and a portion of the p-type semiconductor cladding layer 212 , so as to expose a portion of the p-type semiconductor contact layer 214 .
- a n-type contact pad 218 is formed on a portion of the transparent conductive layer 216 and a p-type contact pad 220 is formed on the a portion of the exposed p-type semiconductor contact layer 214 respectively or simultaneously by using such as a definition technology comprising deposition, photolithography and etching, so as to complete the manufacturing of the light emitting diode, such as shown in FIG. 5 a . Because the doping concentration of a n-type semiconductor is greater than that of the p-type semiconductor, the n-type contact pad 218 located on the front side of the light emitting diode can provide better current-spreading effect.
- the n-type semiconductor contact layer 222 can be firstly defined by using such as developing and dry etching or wet etching technology, so as to form the n-type semiconductor contact layer 222 having an uneven surface.
- the n-type semiconductor contact layer 222 can be etched to expose a portion of the n-type semiconductor cladding layer 208 or not to expose the n-type semiconductor cladding layer 208 .
- the n-type semiconductor contact layer 222 can be a cylinder or prism structure having a discontinuous surface, or a reticulate or bar structure having a continuous surface.
- a transparent conductive layer 224 is formed to cover the n-type semiconductor contact layer 222 by using such as an e-gun evaporation method, a thermal evaporation method, or a sputtering method, wherein the material of the transparent conductive layer 224 can be such as titanium, titanium alloy, titanium oxide or titanium nitride, tantalum oxide or tantalum nitride, platinum, platinum alloy, indium tin oxide, indium oxide, tin oxide, or cadmium tin oxide, etc.
- the transparent conductive layer 224 covers the n-type semiconductor contact layer 222 and the exposed portion of the n-type semiconductor cladding layer 208 ; and when the n-type semiconductor contact layer 222 does not expose the n-type semiconductor cladding layer 208 , the transparent conductive layer 224 only covers the n-type semiconductor contact layer 222 .
- a definition, step is performed by using such as photolithographic and etching method to remove a portion of the transparent conductive layer 224 , a portion of the n-type semiconductor contact layer 222 , a portion of the n-type semiconductor cladding layer 208 , a portion of the multiple quantum well active layer 210 and a portion of the p-type semiconductor cladding layer 212 , so as to expose a portion of the p-type semiconductor contact layer 214 .
- a n-type contact pad 218 is formed on a portion of the transparent conductive layer 216 and a p-type contact pad 220 is formed on the a portion of the exposed p-type semiconductor contact layer 214 respectively or simultaneously by using such as a definition technology comprising deposition, photolithograph and etching, so as to complete the manufacturing of the light emitting diode, such as shown in FIG. 5 b.
- FIG. 6 illustrates a schematic diagram showing light extraction directions of a light emitting diode in accordance with a preferred embodiment of the present invention.
- the light emitting diode of the present invention not only has a light extraction direction 1 as the conventional light emitting diode, but also has several newly-added light extraction direction 2 , light extraction direction 3 , light extraction direction 4 , light extraction direction 5 and light extraction direction 6 , so that high light output brightness can be obtained.
- one advantage of the present invention is that: because the present invention uses a solder material that is heat-resistant and has a large thermal conductive coefficient to perform wafer bonding of a light emitting diode, and it does not need to consider the direction and disposition of bonding light emitting diode wafer, thereby increasing the yield and obtaining the objective of reducing the production cost.
- the other advantage of the present invention is that: because the GaAs growth substrate is removed and the epitaxial structure of the light emitting diode is bonded on the transparent substrate, the loss of light resulted from the absorbing of the substrate can be reduced greatly, and light extraction efficiency can be increased.
- still another advantage of the present invention is that: because a transparent conductive layer is deposited on the surface of the light emitting diode wafer after bonding, thereby increasing light extraction efficiency.
- depositing the transparent conductive layer on the n-type semiconductor contact layer after etching can provide high light extraction efficiency and obtain better current-spreading effect.
- yet another advantage of the present invention is that: because the present invention forms a reflective layer on a side of the transparent substrate, the reuse of the photons can be provided and the quantity of the photons extracted from lateral sides of the light emitting diode device can be increased.
- further another advantage of the present invention is that: because the n-type contact pad of the light emitting diode of the present invention is located on the front side of the device, the current-spreading effect of the light emitting diode of the present invention is better than that of a conventional light emitting diode whose p-type contact pad is located on the front side of the light emitting diode.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
Description
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/581,575 US7422915B2 (en) | 2003-07-03 | 2006-10-17 | Light emitting diode and method for manufacturing the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92118242 | 2003-03-07 | ||
TW092118242A TWI222759B (en) | 2003-07-03 | 2003-07-03 | Light emitting diode and method for manufacturing the same |
US10/895,893 US7135713B2 (en) | 2003-07-03 | 2004-07-22 | Light emitting diode and method for manufacturing the same |
US11/581,575 US7422915B2 (en) | 2003-07-03 | 2006-10-17 | Light emitting diode and method for manufacturing the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/895,893 Division US7135713B2 (en) | 2003-07-03 | 2004-07-22 | Light emitting diode and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070087461A1 US20070087461A1 (en) | 2007-04-19 |
US7422915B2 true US7422915B2 (en) | 2008-09-09 |
Family
ID=33550749
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/698,401 Abandoned US20050001224A1 (en) | 2003-07-03 | 2003-11-03 | Light emitting diode and method for manufacturing the same |
US10/895,893 Expired - Fee Related US7135713B2 (en) | 2003-07-03 | 2004-07-22 | Light emitting diode and method for manufacturing the same |
US11/581,575 Expired - Fee Related US7422915B2 (en) | 2003-07-03 | 2006-10-17 | Light emitting diode and method for manufacturing the same |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/698,401 Abandoned US20050001224A1 (en) | 2003-07-03 | 2003-11-03 | Light emitting diode and method for manufacturing the same |
US10/895,893 Expired - Fee Related US7135713B2 (en) | 2003-07-03 | 2004-07-22 | Light emitting diode and method for manufacturing the same |
Country Status (2)
Country | Link |
---|---|
US (3) | US20050001224A1 (en) |
TW (1) | TWI222759B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070224831A1 (en) * | 2006-03-23 | 2007-09-27 | Lg Electronics Inc. | Post structure, semiconductor device and light emitting device using the structure, and method for forming the same |
US20110079911A1 (en) * | 2004-02-27 | 2011-04-07 | Osram Opto Semiconductors Gmbh | Method for the Connection of Two Wafers, and a Wafer Arrangement |
US9450151B2 (en) | 2014-09-02 | 2016-09-20 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005093863A1 (en) * | 2004-03-29 | 2005-10-06 | Showa Denko K.K | Compound semiconductor light-emitting device and production method thereof |
US7642557B2 (en) * | 2004-05-11 | 2010-01-05 | Los Alamos National Security, Llc | Non-contact pumping of light emitters via non-radiative energy transfer |
JP5177638B2 (en) * | 2004-07-12 | 2013-04-03 | 三星電子株式会社 | Flip chip type nitride light emitting device |
US7413918B2 (en) | 2005-01-11 | 2008-08-19 | Semileds Corporation | Method of making a light emitting diode |
TWI291244B (en) * | 2005-07-07 | 2007-12-11 | Formosa Epitaxy Inc | Light emitting diode and light emitting diode package |
TWI331411B (en) * | 2006-12-29 | 2010-10-01 | Epistar Corp | High efficiency light-emitting diode and method for manufacturing the same |
JP5167974B2 (en) * | 2008-06-16 | 2013-03-21 | 豊田合成株式会社 | Group III nitride compound semiconductor light emitting device and method of manufacturing the same |
JP5493624B2 (en) * | 2009-09-15 | 2014-05-14 | ソニー株式会社 | Image display device and electronic device |
CN102832297B (en) * | 2011-06-17 | 2015-09-30 | 比亚迪股份有限公司 | The preparation method of a kind of light emitting semiconductor device and current-diffusion layer |
CN103367559A (en) * | 2012-03-29 | 2013-10-23 | 上海蓝光科技有限公司 | Light emitting diode and manufacturing method thereof |
CN104916752A (en) * | 2014-03-14 | 2015-09-16 | 山东华光光电子有限公司 | Reverse-polarity AlGaInP light-emitting diode structure with window layer being covered with indium tin oxide |
CN105702820B (en) * | 2016-04-08 | 2019-11-22 | 扬州乾照光电有限公司 | The reversed polarity AlGaInP base LED and its manufacturing method of surface covering ITO |
CN113257974B (en) * | 2021-04-30 | 2023-04-21 | 武汉大学 | Light-emitting diode chip with super-nanocrystalline diamond conducting layer and preparation method |
CN117790652A (en) * | 2022-01-25 | 2024-03-29 | 泉州三安半导体科技有限公司 | Light emitting diode and light emitting device |
CN114497299B (en) * | 2022-01-25 | 2024-02-27 | 泉州三安半导体科技有限公司 | Micro light emitting diode and display panel |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5376580A (en) | 1993-03-19 | 1994-12-27 | Hewlett-Packard Company | Wafer bonding of light emitting diode layers |
JPH08172241A (en) | 1994-12-16 | 1996-07-02 | Furukawa Electric Co Ltd:The | Semiconductor light emitting element with algainas multiple quantum well |
JPH09167857A (en) | 1995-12-15 | 1997-06-24 | Toshiba Corp | Semiconductor device and its manufacture |
US5753933A (en) | 1995-03-07 | 1998-05-19 | Nec Corporation | Optical semiconductor device |
US5877558A (en) | 1993-04-28 | 1999-03-02 | Nichia Chemical Industries, Ltd. | Gallium nitride-based III-V group compound semiconductor |
JP2001044503A (en) | 1999-08-04 | 2001-02-16 | Showa Denko Kk | Algainp light emitting diode |
US6258699B1 (en) | 1999-05-10 | 2001-07-10 | Visual Photonics Epitaxy Co., Ltd. | Light emitting diode with a permanent subtrate of transparent glass or quartz and the method for manufacturing the same |
US6462358B1 (en) | 2001-09-13 | 2002-10-08 | United Epitaxy Company, Ltd. | Light emitting diode and method for manufacturing the same |
US20020158572A1 (en) | 2001-03-28 | 2002-10-31 | Chen Shi Ming | Light emitting diode |
US20030138015A1 (en) | 1999-02-15 | 2003-07-24 | Shunichi Sato | Light-emitting semiconductor device producing red wavelength optical radiation |
US20040090179A1 (en) * | 2002-11-08 | 2004-05-13 | United Epitaxy Co. Ltd. | Light emitting diode and method of making the same |
US20050001225A1 (en) | 2002-11-29 | 2005-01-06 | Toyoda Gosei Co., Ltd. | Light emitting apparatus and light emitting method |
US20050017254A1 (en) | 2002-12-31 | 2005-01-27 | United Epitaxy Co., Ltd. | Light emitting diode and method of making the same |
US6869820B2 (en) * | 2002-01-30 | 2005-03-22 | United Epitaxy Co., Ltd. | High efficiency light emitting diode and method of making the same |
US6903381B2 (en) | 2003-04-24 | 2005-06-07 | Opto Tech Corporation | Light-emitting diode with cavity containing a filler |
-
2003
- 2003-07-03 TW TW092118242A patent/TWI222759B/en not_active IP Right Cessation
- 2003-11-03 US US10/698,401 patent/US20050001224A1/en not_active Abandoned
-
2004
- 2004-07-22 US US10/895,893 patent/US7135713B2/en not_active Expired - Fee Related
-
2006
- 2006-10-17 US US11/581,575 patent/US7422915B2/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5376580A (en) | 1993-03-19 | 1994-12-27 | Hewlett-Packard Company | Wafer bonding of light emitting diode layers |
US5877558A (en) | 1993-04-28 | 1999-03-02 | Nichia Chemical Industries, Ltd. | Gallium nitride-based III-V group compound semiconductor |
JPH08172241A (en) | 1994-12-16 | 1996-07-02 | Furukawa Electric Co Ltd:The | Semiconductor light emitting element with algainas multiple quantum well |
US5753933A (en) | 1995-03-07 | 1998-05-19 | Nec Corporation | Optical semiconductor device |
JPH09167857A (en) | 1995-12-15 | 1997-06-24 | Toshiba Corp | Semiconductor device and its manufacture |
US20030138015A1 (en) | 1999-02-15 | 2003-07-24 | Shunichi Sato | Light-emitting semiconductor device producing red wavelength optical radiation |
US6258699B1 (en) | 1999-05-10 | 2001-07-10 | Visual Photonics Epitaxy Co., Ltd. | Light emitting diode with a permanent subtrate of transparent glass or quartz and the method for manufacturing the same |
JP2001044503A (en) | 1999-08-04 | 2001-02-16 | Showa Denko Kk | Algainp light emitting diode |
US20020158572A1 (en) | 2001-03-28 | 2002-10-31 | Chen Shi Ming | Light emitting diode |
US6462358B1 (en) | 2001-09-13 | 2002-10-08 | United Epitaxy Company, Ltd. | Light emitting diode and method for manufacturing the same |
US6869820B2 (en) * | 2002-01-30 | 2005-03-22 | United Epitaxy Co., Ltd. | High efficiency light emitting diode and method of making the same |
US20040090179A1 (en) * | 2002-11-08 | 2004-05-13 | United Epitaxy Co. Ltd. | Light emitting diode and method of making the same |
US20050001225A1 (en) | 2002-11-29 | 2005-01-06 | Toyoda Gosei Co., Ltd. | Light emitting apparatus and light emitting method |
US20050017254A1 (en) | 2002-12-31 | 2005-01-27 | United Epitaxy Co., Ltd. | Light emitting diode and method of making the same |
US6903381B2 (en) | 2003-04-24 | 2005-06-07 | Opto Tech Corporation | Light-emitting diode with cavity containing a filler |
Non-Patent Citations (2)
Title |
---|
Schnitzer et al., "Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AIGaAs/GaAs/AIGaAs double heterostructures," Appl. Phys. Lett. 62 (2), Jan. 11, 1993, pp. 131-133. |
Stringfellow et al., "High Brightness Light Emitting Diodes," Semiconductors and Semimetals, 1997, vol. 48, pp. 195-199. |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110079911A1 (en) * | 2004-02-27 | 2011-04-07 | Osram Opto Semiconductors Gmbh | Method for the Connection of Two Wafers, and a Wafer Arrangement |
US8471385B2 (en) * | 2004-02-27 | 2013-06-25 | Osram Opto Semiconductors Gmbh | Method for the connection of two wafers, and a wafer arrangement |
US20070224831A1 (en) * | 2006-03-23 | 2007-09-27 | Lg Electronics Inc. | Post structure, semiconductor device and light emitting device using the structure, and method for forming the same |
US7867885B2 (en) * | 2006-03-23 | 2011-01-11 | Lg Electronics Inc. | Post structure, semiconductor device and light emitting device using the structure, and method for forming the same |
US9450151B2 (en) | 2014-09-02 | 2016-09-20 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
Also Published As
Publication number | Publication date |
---|---|
TWI222759B (en) | 2004-10-21 |
US20050001226A1 (en) | 2005-01-06 |
TW200503285A (en) | 2005-01-16 |
US20050001224A1 (en) | 2005-01-06 |
US20070087461A1 (en) | 2007-04-19 |
US7135713B2 (en) | 2006-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7422915B2 (en) | Light emitting diode and method for manufacturing the same | |
US9620677B2 (en) | Diode having vertical structure | |
US6583448B2 (en) | Light emitting diode and method for manufacturing the same | |
US8679869B2 (en) | Contact for a semiconductor light emitting device | |
US8389305B2 (en) | Techniques of forming ohmic contacts on GaN light emitting diodes | |
US20060151794A1 (en) | Photonic crystal light emitting device | |
CN102208508B (en) | Light emitting diode structure and manufacturing method thereof | |
US20060186552A1 (en) | High reflectivity p-contacts for group lll-nitride light emitting diodes | |
KR20080087135A (en) | Nitride semiconductor light emitting element | |
KR20090101604A (en) | Group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them | |
JP2008282851A (en) | Semiconductor light-emitting element | |
JPH10173224A (en) | Compound semiconductor light emitting element and its manufacture | |
JP2005175462A (en) | Semiconductor luminous element and manufacturing method of the same | |
CN112259652A (en) | Micro-LED chip structure capable of reducing side wall defect recombination and preparation method | |
TWI795364B (en) | Light emitting device and method of forming the same | |
JP2005136271A (en) | Semiconductor light-emitting element and its manufacturing method | |
TW202046515A (en) | Infrared led device | |
JP2004146539A (en) | Light emitting element and method of manufacturing the same | |
KR101032987B1 (en) | Semiconductor light emitting device | |
KR100751632B1 (en) | Light emitting device | |
JP3507716B2 (en) | Method for manufacturing semiconductor light emitting device | |
KR20090112854A (en) | Group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them | |
JP2004356221A (en) | Semiconductor light emitting element and its manufacturing method | |
JP2002314126A (en) | InGaAlP-BASED OPTICAL SEMICONDUCTOR ELEMENT AND ITS MANUFACTURING METHOD | |
JP2006032837A (en) | Semiconductor luminous element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EPITECH TECHNOLOGY CORPORATION, TAIWAN Free format text: MERGER;ASSIGNOR:EPITECH CORPORATION LTD.;REEL/FRAME:018428/0735 Effective date: 20050824 |
|
AS | Assignment |
Owner name: EPISTAR CORPORATION, TAIWAN Free format text: MERGER;ASSIGNOR:EPITECH TECHNOLOGY CORPORATION;REEL/FRAME:020304/0897 Effective date: 20070301 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: EPISTAR CORPORATION, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, SHI-MING;REEL/FRAME:022597/0980 Effective date: 20090307 Owner name: EPISTAR CORPORATION,TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, SHI-MING;REEL/FRAME:022597/0980 Effective date: 20090307 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200909 |