JP2001044503A - Algainp light emitting diode - Google Patents

Algainp light emitting diode

Info

Publication number
JP2001044503A
JP2001044503A JP22059299A JP22059299A JP2001044503A JP 2001044503 A JP2001044503 A JP 2001044503A JP 22059299 A JP22059299 A JP 22059299A JP 22059299 A JP22059299 A JP 22059299A JP 2001044503 A JP2001044503 A JP 2001044503A
Authority
JP
Japan
Prior art keywords
layer
electrode
oxide
emitting diode
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22059299A
Other languages
Japanese (ja)
Other versions
JP4298861B2 (en
Inventor
Ryoichi Takeuchi
良一 竹内
Takashi Udagawa
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP22059299A priority Critical patent/JP4298861B2/en
Publication of JP2001044503A publication Critical patent/JP2001044503A/en
Application granted granted Critical
Publication of JP4298861B2 publication Critical patent/JP4298861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To impart superior ohmic contact property with an oxide window layer by a method, wherein a downmost layer of an electrode is constituted by a layer containing an oxide of a transition metal, and also the upper most layer of the electrode is constituted by a metal layer. SOLUTION: An n-type ohmic electrode 107 is provide on a window layer 106 provided in an upper part of a lamination structure 30, and a lowermost part 107a joined to a ZnO layer of the ohmic electrode 107 is structured by adhering Ni through vacuum deposition. An Au film is placed on top of the Ni film as an upmost layer 107b by the vacuum deposition. After an electrode material composed of a gold and zinc alloy is adhered on a reverse face of a substrate 101 by the vacuum deposition, it is heated to form a (p) type ohmic electrode 108. In parallel thereto, oxygen diffusing from a zinc oxide layer is made to be absorbed into the Ni film of the lowermost layer 107a, thereby changing it into a NiO film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物窓層を具備
する高輝度の(AlXGa1-XYIn1-YP(0≦X≦
1、0<Y≦1)(以下、AlGaInPと略す)発光
ダイオードを提供するための電極の構成に関する。
The present invention relates to a high-brightness (Al X Ga 1 -x ) Y In 1 -Y P (0 ≦ X ≦
1, 0 <Y ≦ 1) (hereinafter abbreviated as AlGaInP) The present invention relates to a configuration of an electrode for providing a light emitting diode.

【0002】[0002]

【従来の技術】緑色、黄色から赤橙色帯域の発光素子と
して、pn接合型のダブルヘテロ(DH)接合構造から
成るAlGaInP発光ダイオード(LED)が知られ
ている(Appl.Phys.Lett.,61(1
5)(1992)、1775〜1777頁参照)。特
に、インジウム組成比を約0.5とする(AlX
1-X0. 5In0.5P(0≦X≦1)は、砒化ガリウム
(GaAs)単結晶と格子整合するため(Appl.P
hys.Lett.,57(27)(1990)、29
37〜2939頁参照)、DH接合構造の発光部をなす
クラッド(clad)層や発光層(活性層)を構成する
ために利用されている(Appl.Phys.Let
t.,58(10)(1991)、1010〜1012
頁参照)。
2. Description of the Related Art An AlGaInP light emitting diode (LED) having a pn junction type double hetero (DH) junction structure is known as a light emitting element in a green, yellow to red-orange band (Appl. Phys. Lett., 61). (1
5) (1992), pp. 1775-1777). In particular, the indium composition ratio is set to about 0.5 (Al X G
a 1-X) 0. 5 In 0.5 P (0 ≦ X ≦ 1) is gallium arsenide (GaAs) single crystal and for lattice matching (Appl.P
hys. Lett. , 57 (27) (1990), 29
(See pages 37 to 2939), which is used for forming a clad layer and a light emitting layer (active layer) which form a light emitting portion of a DH junction structure (Appl. Phys. Let).
t. , 58 (10) (1991), 1010-1012.
Page).

【0003】従来のAlGaInP高輝度LEDでは、
発光の取出し方向に在る上部クラッド層の上に、発光部
からの発光を効率的に外部へ取りだすための窓層(ウィ
ンドウ層)が配置されている(SPIE、Vol.30
02(1997)、110〜118頁参照)。従来例に
於いて、窓層を酸化インジウム・錫(indium−t
in oxide:略称ITO)から構成する例が知ら
れている(アメリカ合衆国特許第5,481,122号
参照)。また、コンタクト(contact)層として
酸化インジウム、酸化錫、酸化亜鉛や酸化マグネシウム
被膜からなる透明酸化物層を設ける技術手段が開示され
ている(特開平11−17220号公報明細書参照)。
In a conventional AlGaInP high-brightness LED,
A window layer (window layer) for efficiently extracting light emitted from the light emitting section to the outside is disposed on the upper clad layer in the direction of extracting light (SPIE, Vol. 30).
02 (1997), pp. 110-118). In a conventional example, a window layer is formed of indium-tin oxide (indium-t).
An example comprising an in oxide (abbreviated as ITO) is known (see US Pat. No. 5,481,122). Further, there is disclosed a technical means for providing a transparent oxide layer made of indium oxide, tin oxide, zinc oxide or magnesium oxide as a contact layer (see Japanese Patent Application Laid-Open No. 11-17220).

【0004】アルミニウム(Al)が添加された酸化亜
鉛(ZnO)は、1×10-3Ω・cm未満の低い比抵抗
(抵抗率)を呈するのが知られている(電子情報通信学
会技術研究報告,Vol.99,No.63(1999
年5月20日発行)、83〜88頁参照)。このAlド
ープZnO層は、III族窒化物半導体系LEDのウィ
ンドウ(window)層としても利用されている(ア
メリカ合衆国特許第5、889、295号参照)。
It is known that zinc oxide (ZnO) to which aluminum (Al) is added exhibits a low specific resistance (resistivity) of less than 1 × 10 −3 Ω · cm (Technical Research of the Institute of Electronics, Information and Communication Engineers). Report, Vol.99, No.63 (1999)
May 20, 2000), pages 83-88). This Al-doped ZnO layer is also used as a window layer of a group III nitride semiconductor LED (see US Pat. No. 5,889,295).

【0005】従来の高輝度AlGaInPLEDは、上
記の酸化物からなる窓層或いはコンタクト層上にオーミ
ック(Ohmic)電極を敷設して構成される。オーミ
ック電極は金(Au)、或いは、ニッケル(Ni)/金
(ニッケルと金が積層されていることを示し、ニッケル
が下層、金が上層であることを示す。以下同様に表示す
る。)、または白金(Pt)/金から構成されている
(上記のUSP5、889、295号参照)。
A conventional high-luminance AlGaInPLED is constructed by laying an ohmic electrode on a window layer or a contact layer made of the above-mentioned oxide. The ohmic electrode is gold (Au) or nickel (Ni) / gold (indicating that nickel and gold are stacked, nickel is in the lower layer, and gold is in the upper layer; the same applies hereinafter). Alternatively, it is composed of platinum (Pt) / gold (see US Pat. No. 5,889,295).

【0006】[0006]

【発明が解決しようとする課題】しかし、ITO等の酸
化物層上に従来の構成からなる金属電極を直接、接合さ
せても、低いオーミック(Ohmic)接触抵抗が安定
して得られないことが実用上の問題となっている。
However, even if a metal electrode having a conventional structure is directly joined to an oxide layer of ITO or the like, a low ohmic contact resistance cannot be stably obtained. This is a practical problem.

【0007】また、従来の金属単体或いは重層構成から
なる電極では、酸化亜鉛或いはITO等の酸化物膜との
密着性が充分に確保できない。この密着性の不充分さ
は、電極への結線(ボンディング)時に金属電極の酸化
物層からの剥離を発生させ、LEDの製造歩留まりを低
下させる不都合を来している。
In addition, in the case of a conventional electrode composed of a single metal or a multi-layer structure, it is not possible to sufficiently secure adhesion to an oxide film such as zinc oxide or ITO. This insufficient adhesion causes the metal electrode to peel off from the oxide layer at the time of connection (bonding) to the electrode, resulting in a disadvantage of lowering the production yield of the LED.

【0008】本発明は、上記の従来技術の問題点を克服
すべくなされたもので、その目的は酸化物窓層を備えた
pn接合型ダブルヘテロ(DH)構造のAlGaInP
LEDにあって、(1)酸化物窓層と良好なオーミック
接触性が果たせ、且つ(2)酸化物窓層表面から剥離す
ることのない、電極の構成を提示することにある。
The present invention has been made to overcome the above-mentioned problems of the prior art, and has as its object to provide a pn junction type double hetero (DH) structure AlGaInP having an oxide window layer.
It is an object of the present invention to provide a configuration of an electrode in an LED that (1) can achieve good ohmic contact with an oxide window layer and (2) does not peel off from the surface of the oxide window layer.

【0009】[0009]

【課題を解決するための手段】発明者らは上記の課題を
解決すべく鋭意努力検討した結果、本発明に到達した。
即ち、本発明は、[1]発光層が(AlXGa1-XY
1-YP(0≦X≦1、0<Y≦1)からなるpn接合
型ダブルヘテロ構造のLEDにおいて、発光の取出し方
向にn形酸化亜鉛を含む窓層を有し、該窓層と接して複
数層から構成される電極を有し、該電極の最下層が遷移
金属の酸化物を含む層からなり、該電極の最上層が金属
層からなることを特徴とするAlGaInP発光ダイオ
ード、[2]窓層と電極とが接していることを特徴とす
る[1]に記載のAlGaInP発光ダイオード、
[3]遷移金属が、チタン、ニッケル、クロム、コバル
トから選ばれた1種であることを特徴とする[1]また
は[2]に記載のAlGaInP発光ダイオード、
[4]電極の最下層の層厚が、5nm以上で100nm
以下であることを特徴とする[1]〜[3]のいずれか
1項に記載のAlGaInP発光ダイオード、[5]電
極の最上層の金属が、アルミニウムであることを特徴と
する[1]〜[4]のいずれか1項に記載のAlGaI
nP発光ダイオード、[6]電極の最上層の金属が、金
であることを特徴とする[1]〜[4]のいずれか1項
に記載のAlGaInP発光ダイオード、[7]電極の
最上層と最下層との間に、モリブデンまたは白金からな
る層を有することを特徴とする[6]に記載のAlGa
InP発光ダイオード、に関する。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above problems, and as a result, have reached the present invention.
That is, in the present invention, [1] the light-emitting layer is (Al X Ga 1 -x ) Y I
An LED having a pn junction type double hetero structure composed of n 1 -Y P (0 ≦ X ≦ 1, 0 <Y ≦ 1), having a window layer containing n-type zinc oxide in a light emission direction, and the window layer An AlGaInP light-emitting diode, comprising an electrode composed of a plurality of layers in contact with the lower electrode, wherein the lowermost layer of the electrode is formed of a layer containing a transition metal oxide, and the uppermost layer of the electrode is formed of a metal layer. [2] The AlGaInP light-emitting diode according to [1], wherein the window layer and the electrode are in contact with each other;
[3] The AlGaInP light-emitting diode according to [1] or [2], wherein the transition metal is one selected from titanium, nickel, chromium, and cobalt;
[4] The thickness of the lowermost layer of the electrode is 5 nm or more and 100 nm
The AlGaInP light emitting diode according to any one of [1] to [3], wherein the metal in the uppermost layer of the electrode [5] is aluminum. AlGaI according to any one of [4]
The nP light emitting diode, [6] the AlGaInP light emitting diode according to any one of [1] to [4], wherein the metal of the uppermost layer of the electrode is gold; AlGa according to [6], further comprising a layer made of molybdenum or platinum between the lowermost layer and the lowermost layer.
An InP light emitting diode.

【0010】[0010]

【発明の実施の形態】本発明の発光部は、pn接合型の
DH接合構造から成るAlGaInP混晶から構成され
る。特に、インジウム組成比を約0.5とする(AlX
Ga1-X0.5In0.5P(0≦X≦1)は、GaAs単
結晶基板と格子整合するため特に好ましい。本発明の電
極は、n形酸化亜鉛を含む酸化物窓層上の電極の最下層
が、遷移金属の金属酸化物を含む層から構成されてい
る。電極の構成例には、酸化ニッケル(NiO)(最下
層)/Au(最上層)或いは酸化チタン(TiO2)/
Al等の重層構造電極がある。この様な構成からなる重
層電極は、最下層の酸化物層を構成する金属元素である
Ni或いはチタン(Ti)単体膜と最上層をなす金属膜
との積層構造を基として構成できる。即ち、Ni/Au
或いはTi/Al重層構造を基として構成できる。電極
にオーミック性を付与するための熱処理(アロイング)
或いはLED製造プロセスに於ける加熱処理に伴い、か
くの如く構成された単体金属の重層構造電極に於いて
は、最下層のNi層或いはTi層が下地の酸化物窓層か
ら侵入する酸素により酸化され、酸化物を含む層とな
り、結果としてNiO/Au或いはTiO2/Al重層
構造の電極が帰結される。最下層の遷移金属の酸化物を
含む層は、遷移金属酸化物単体、あるいは重量含有量に
して15%以上の遷移金属酸化物を含む層とするのが好
ましい。この最下層の構成層は酸化物窓層側から拡散、
侵入して来る酸素を捕獲する作用を有しているため、酸
化物窓層と電極の最下層は接していることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The light emitting section of the present invention is composed of an AlGaInP mixed crystal having a pn junction type DH junction structure. In particular, the indium composition ratio is set to about 0.5 (Al X
Ga 1-x ) 0.5 In 0.5 P (0 ≦ X ≦ 1) is particularly preferable because of lattice matching with a GaAs single crystal substrate. In the electrode of the present invention, the lowermost layer of the electrode on the oxide window layer containing n-type zinc oxide is composed of a layer containing a metal oxide of a transition metal. Examples of the configuration of the electrode include nickel oxide (NiO) (lowest layer) / Au (top layer) or titanium oxide (TiO 2 ) /
There are multi-layer electrodes made of Al or the like. The multilayer electrode having such a configuration can be configured based on a laminated structure of a single film of Ni or titanium (Ti), which is a metal element forming the lowermost oxide layer, and a metal film forming the uppermost layer. That is, Ni / Au
Alternatively, it can be configured based on a Ti / Al multilayer structure. Heat treatment for imparting ohmic properties to electrodes (alloying)
Alternatively, with the heat treatment in the LED manufacturing process, in the single-metal multilayer structure electrode configured as described above, the lowermost Ni layer or Ti layer is oxidized by oxygen entering from the underlying oxide window layer. As a result, an oxide-containing layer is formed, and as a result, an electrode having a NiO / Au or TiO 2 / Al multilayer structure is obtained. The lowermost layer containing a transition metal oxide is preferably a transition metal oxide alone or a layer containing 15% or more by weight of a transition metal oxide. This lowermost constituent layer diffuses from the oxide window layer side,
It is preferable that the oxide window layer and the lowermost layer of the electrode are in contact with each other because they have a function of capturing invading oxygen.

【0011】上記の如くの単体金属層の重層構造からな
る電極は、高周波スパッタリング法、イオンプレーティ
ング法、電子ビーム(EB)蒸着法、または真空蒸着法
等の金属膜被着手段により形成できる。また、当初よ
り、NiOやTiO2等の酸化物膜を最下層として被着
させる手段もある。しかし、予め酸化物の形態で被着さ
せる場合では、単体金属膜に比較して酸素の捕獲能力は
劣るものとなる。
The electrode having the above-mentioned multilayer structure of a single metal layer can be formed by a metal film applying means such as a high frequency sputtering method, an ion plating method, an electron beam (EB) evaporation method, or a vacuum evaporation method. From the beginning, there is also a means for depositing an oxide film such as NiO or TiO 2 as the lowermost layer. However, when the oxide is previously deposited in the form of an oxide, the ability to capture oxygen is inferior to that of a single metal film.

【0012】酸化物窓層から遊離、拡散してくる酸素の
捕獲能力は、遷移金属からなる層に於いてより良く発揮
される。これは酸素との親和力が優れているためと解釈
される。本発明の実施形態では、最下層をなす酸化物層
を遷移金属の酸化物層から構成し、特に、Ti、Ni、
クロム(Cr)若しくはコバルト(Co)の酸化物層か
ら構成するのが好ましい。
The ability to capture oxygen that is released and diffused from the oxide window layer is better exhibited in the layer composed of the transition metal. This is interpreted as having an excellent affinity for oxygen. In the embodiment of the present invention, the lowermost oxide layer is composed of a transition metal oxide layer, and in particular, Ti, Ni,
It is preferable to constitute the chromium (Cr) or cobalt (Co) oxide layer.

【0013】酸化物層を数μm以上に極端に厚くする
と、LEDの順方向電圧(所謂、Vf)を低減するのに
支障を来す。このため、本発明では、電極の最上層と酸
化物窓層との間の導通を充分とするために、最下層を構
成する酸化物層の層厚を5ナノメーター(nm)以上で
100nm以下に規定する。100nmを越える厚さで
あると順方向電圧の低減が困難となる。
If the thickness of the oxide layer is extremely thick to several μm or more, there is a problem in reducing the forward voltage (so-called Vf) of the LED. For this reason, in the present invention, the thickness of the oxide layer constituting the lowermost layer is set to 5 nm or more and 100 nm or less in order to ensure sufficient conduction between the uppermost layer of the electrode and the oxide window layer. Defined in If the thickness exceeds 100 nm, it is difficult to reduce the forward voltage.

【0014】電極の最下層をなす酸化物層が酸化物窓層
から侵入して来る酸素を捉える作用を有するため、特に
酸化物窓層と電極が接している場合は、良好なオーミッ
ク接触がもたらされる。また、この作用により最下層と
酸化物窓層との密着性が増す。更には、電極の最下層と
最上層との密着性も増し、酸化物窓層から容易には剥離
しないオーミック電極がもたらされる。特に、Au電極
に於いて、酸化物窓層上に直接、敷設する従来の手法に
比べ、顕著に密着性に優れるAu電極層が構成できる。
Since the oxide layer forming the lowermost layer of the electrode has a function of catching oxygen entering from the oxide window layer, a good ohmic contact is provided especially when the oxide window layer and the electrode are in contact with each other. It is. In addition, the adhesion between the lowermost layer and the oxide window layer is increased by this action. Furthermore, the adhesion between the lowermost layer and the uppermost layer of the electrode is increased, and an ohmic electrode that does not easily peel off from the oxide window layer is provided. In particular, in the Au electrode, an Au electrode layer having remarkably excellent adhesion can be formed as compared with the conventional method of laying directly on the oxide window layer.

【0015】本発明では、電極の最上層の金属電極を、
AlやAuから構成することが好ましい。何れの金属も
ボンディングが容易であり、LEDの製造が簡便とな
る。最下層上に複数の層を積層させて重層電極を構成す
るに際しては、AlやAuが最表層をなす様に配置す
る。これらの金属が保有する結線の容易性を保持するた
めである。
In the present invention, the uppermost metal electrode of the electrode is
It is preferable to be composed of Al or Au. Either metal can be easily bonded and the manufacture of the LED is simplified. When a multilayer electrode is formed by stacking a plurality of layers on the lowermost layer, Al and Au are arranged so as to form the outermost layer. This is to maintain the easiness of the connection possessed by these metals.

【0016】また、本発明では、最上層をAuとする重
層電極にあって、最下層と最上層との間に、モリブデン
(Mo)またはPtからなる層を配備することが好まし
い。この様に、高融点金属からなる中間層が挿入された
構成とすると、Au電極層との接合界面近傍の領域に酸
素原子が濃縮されるのが避けられ、相互に強固に密着し
た重層電極がもたらされる利点がある。
Further, in the present invention, it is preferable that a layer made of molybdenum (Mo) or Pt is provided between the lowermost layer and the uppermost layer in the multilayer electrode having Au as the uppermost layer. As described above, when the intermediate layer made of a high melting point metal is inserted, oxygen atoms are prevented from being concentrated in a region near the bonding interface with the Au electrode layer, and the multilayer electrodes that are firmly adhered to each other are formed. There are benefits brought.

【0017】上述の如くの重層構成からなる電極は、n
形酸化亜鉛を含む窓層と接して構成された場合に最も好
適に機能するが、他の酸化物層上に設ける場合にも適用
できる。例えば、窓層の最表層をなすZnO膜上に保護
膜として設けた導電性ITO膜に、本発明の電極を敷設
しても、窓層との密着性が確保されたオーミック性電極
が構成できる。
The electrode having the multilayer structure as described above has n
It functions best when it is configured in contact with a window layer containing zinc oxide, but is also applicable when it is provided on another oxide layer. For example, even if the electrode of the present invention is laid on a conductive ITO film provided as a protective film on a ZnO film that is the outermost layer of the window layer, an ohmic electrode with secured adhesion to the window layer can be formed. .

【0018】[0018]

【実施例】[110]方向に4゜傾斜した亜鉛(Zn)
ドープp形(001)−GaAs単結晶基板101、Z
nドープp形GaAs緩衝層(キャリア濃度(p)=4
×1018cm-3、層厚(d)=3μm)102、Znド
ープp形(Al0.7Ga0.30.5In0.5P下部クラッド
層(p=3×1018cm-3、d=1μm)103、アン
ドープのn形(Al0.2Ga0.80.5In0.5P発光層
(キャリア濃度n=3×1017cm-3、d=0.5μ
m)104、Siドープn形(Al0.7Ga0.3 0.5
0.5P上部クラッド層(n=1×1018cm-3、d=
5μm)105、及びAlドープZnO膜からなる窓層
106から構成される積層構造体30を以下の各実施例
に共通の母体材料としてAlGaInPLEDを構成し
た。
EXAMPLE Zinc (Zn) inclined 4 ° in the [110] direction
Doped p-type (001) -GaAs single crystal substrate 101, Z
n-doped p-type GaAs buffer layer (carrier concentration (p) = 4
× 1018cm-3, Layer thickness (d) = 3 μm) 102, Zn
P-type (Al0.7Ga0.3)0.5In0.5P lower cladding
Layer (p = 3 × 1018cm-3, D = 1 μm) 103, en
Doped n-type (Al0.2Ga0.8)0.5In0.5P light emitting layer
(Carrier concentration n = 3 × 1017cm-3, D = 0.5μ
m) 104, Si-doped n-type (Al0.7Ga0.3) 0.5I
n0.5P upper cladding layer (n = 1 × 1018cm-3, D =
5 μm) 105, and a window layer composed of an Al-doped ZnO film
In each of the following examples,
AlGaInPLED as a common host material
Was.

【0019】窓層106をなすAlドープ酸化亜鉛層
は、一般的なマグネトロンスパッタリング法により被着
させた。酸化亜鉛層の室温でのキャリア濃度は約2×1
20cm-3とし、比抵抗は約3×10-3Ω・cmとし
た。移動度は約12cm2/V・sであった。層厚は約
250nmとした。シート(sheet)抵抗は約56
Ω/□であった。一般的なX線回折分析法により、窓層
106を成す酸化亜鉛層は、<0001>方向(C軸)
に成長した単結晶体の集合体からなる多結晶であるのが
示された。
The Al-doped zinc oxide layer forming the window layer 106 was applied by a general magnetron sputtering method. The carrier concentration of the zinc oxide layer at room temperature is about 2 × 1
And 0 20 cm -3, the resistivity was about 3 × 10 -3 Ω · cm. The mobility was about 12 cm 2 / V · s. The layer thickness was about 250 nm. Sheet resistance is about 56
Ω / □. According to a general X-ray diffraction analysis method, the zinc oxide layer forming the window layer 106 has a <0001> direction (C axis).
It was shown to be a polycrystal consisting of an aggregate of single crystal bodies grown in the above.

【0020】(実施例1)図1は本実施例に係わるLE
D10の断面構造を示す模式図である。積層構造体30
の上部に設けた窓層106上には、n形オーミック電極
107を敷設した。n形オーミック電極107の、Zn
O層と接合する最下層107aは先ず、一般的な真空蒸
着法により、Niを被着させて構成した。Ni膜の層厚
は約10nmとした。Ni膜上には、一般の真空蒸着法
により最上層107bとしてAu膜を重層させた。Au
膜の膜厚は約1.5μmとした。
(Embodiment 1) FIG. 1 shows an LE according to this embodiment.
It is a schematic diagram which shows the cross-section of D10. Laminated structure 30
An n-type ohmic electrode 107 was laid on the window layer 106 provided on the top of the substrate. Zn of the n-type ohmic electrode 107
First, the lowermost layer 107a to be joined to the O layer was formed by applying Ni by a general vacuum deposition method. The layer thickness of the Ni film was about 10 nm. An Au film was overlaid on the Ni film as the uppermost layer 107b by a general vacuum deposition method. Au
The thickness of the film was about 1.5 μm.

【0021】次に、p形GaAs基板101の裏面に金
・亜鉛合金(Au98重量%−Zn2重量%)からなる
電極材料を一般の真空蒸着法により被着させた。然る
後、アルゴン(Ar)気流中で420℃で5分間のアロ
イ(alloy)熱処理を施し、p形オーミック電極1
08となした。
Next, an electrode material made of a gold-zinc alloy (Au 98% by weight-Zn 2% by weight) was applied to the back surface of the p-type GaAs substrate 101 by a general vacuum deposition method. Thereafter, an alloy heat treatment at 420 ° C. for 5 minutes in an argon (Ar) gas flow is performed to form a p-type ohmic electrode 1.
08.

【0022】上記のp形オーミック電極108を形成す
るためのアロイング処理に併行して、酸化亜鉛層からの
拡散してくる酸素を最下層107aのNi膜に吸収させ
て、同膜をNiO膜に変化させた。これより、n形オー
ミック電極107の積層構造はNiO/Auとなった。
また、上記のアロイング後に於いて、重層構造電極10
7の脱色が視認された。
At the same time as the alloying process for forming the p-type ohmic electrode 108, oxygen diffused from the zinc oxide layer is absorbed by the Ni film of the lowermost layer 107a, and the Ni film is converted to the NiO film. Changed. Thus, the laminated structure of the n-type ohmic electrode 107 was NiO / Au.
Further, after the above alloying, the multilayer structure electrode 10
7 was visually observed.

【0023】以上の構成からなるn形オーミック電極1
07は、最表層をAu層としているため容易にAu線を
ボンディングできた。また、ボンディング時に於ける酸
化物窓層106からの電極の剥離は生じなかった。n形
及びp形オーミック電極107、108間に順方向電流
を通流したところ、ZnO窓層106の略全面からほぼ
均等な赤橙色の発光を得た。分光器により測定された発
光波長は約620nmであった。発光スペクトルの半値
幅は約18nmであり、単色性に優れる発光が得られ
た。n形オーミック電極107とZnO窓層106との
良好なオーミック接触性を反映して、20ミリアンペア
(mA)の順方向電流の通流時に於ける順方向電圧は約
1.95ボルト(V)となった。また、LED間での順
方向電圧の変化幅は1.95V±0.03Vであり、均
一な順方向電圧となった。チップ(chip)状態での
発光強度は、約54ミリカンデラ(mcd)に到達し
た。
The n-type ohmic electrode 1 having the above configuration
In No. 07, since the outermost layer was an Au layer, an Au wire could be easily bonded. Further, the electrode did not peel off from the oxide window layer 106 during bonding. When a forward current was passed between the n-type and p-type ohmic electrodes 107 and 108, substantially uniform red-orange light emission was obtained from almost the entire surface of the ZnO window layer 106. The emission wavelength measured by the spectrometer was about 620 nm. The half width of the light emission spectrum was about 18 nm, and light emission having excellent monochromaticity was obtained. Reflecting the good ohmic contact between the n-type ohmic electrode 107 and the ZnO window layer 106, the forward voltage when a forward current of 20 mA (mA) flows is about 1.95 volts (V). became. Further, the change width of the forward voltage between the LEDs was 1.95 V ± 0.03 V, and the forward voltage was uniform. The emission intensity in a chip state reached about 54 millicandela (mcd).

【0024】(実施例2)n形オーミック電極の構成の
みを実施例1とは異にし、他は同一としてAlGaIn
PLEDを作製した。
(Embodiment 2) Only the structure of the n-type ohmic electrode is different from that of the embodiment 1, and the other parts are the same.
A PLED was fabricated.

【0025】本実施例では、n形オーミック電極をTi
/Al重層構造を基にした、チタン酸化物/Al重層構
造から構成した。Ti層からTiOやTiO2などから
なるチタン酸化物層への変換は、上記のアロイ処理を利
用した。
In this embodiment, the n-type ohmic electrode is made of Ti
It was composed of a titanium oxide / Al multilayer structure based on the / Al multilayer structure. The conversion from the Ti layer to the titanium oxide layer made of TiO, TiO 2, or the like utilized the above-described alloy processing.

【0026】チタン酸化物/Al重層構造からなるn形
オーミック電極に、超音波ボンディング法により結線を
果たし、LEDの特性を評価した。ボンディング時に於
けるZnO窓層からの電極の剥離は認められなかった。
得られたLEDの特性は実施例1に記載のものと略同一
となった。
A connection was made by ultrasonic bonding to an n-type ohmic electrode having a titanium oxide / Al multilayer structure, and the characteristics of the LED were evaluated. No peeling of the electrode from the ZnO window layer during bonding was observed.
The characteristics of the obtained LED were substantially the same as those described in Example 1.

【0027】(実施例3)上記の積層構造体30を利用
して図2に示すAlGaInPLED20を構成した。
実施例1と同一の構成要素については(図1参照)、同
一の符号を付して、その説明を省略する。
Example 3 An AlGaInPLED 20 shown in FIG. 2 was constructed using the above-mentioned laminated structure 30.
The same components as those in the first embodiment (see FIG. 1) are denoted by the same reference numerals, and description thereof will be omitted.

【0028】実施例1に記載のZnOからなる窓層10
6上には、ITOからなる保護膜109を重層させた。
保護膜109は、キャリア濃度を約1×1020cm-3
し、比抵抗を約4×10-4Ω・cmとするITO膜から
構成した。層厚は約200nmとした。
The window layer 10 made of ZnO described in Example 1
On 6, a protective film 109 made of ITO was laminated.
The protective film 109 was formed of an ITO film having a carrier concentration of about 1 × 10 20 cm −3 and a specific resistance of about 4 × 10 −4 Ω · cm. The layer thickness was about 200 nm.

【0029】ITO保護膜109上には、通常の電子ビ
ーム蒸着法を利用してTi層/Pt層/Au層の3層の
重層構造からなる電極材料を被着させた。最下層のTi
層107aの層厚は約8nmとした。中間層107cの
層厚は約0.1μmとし、また最上層107bのAu層
の層厚は約1.2μmに設定した。p形GaAs基板1
01の裏面には、実施例1に記載のp形電極材料を被着
させた。
An electrode material having a three-layer structure of a Ti layer / Pt layer / Au layer was deposited on the ITO protective film 109 by using a normal electron beam evaporation method. Ti of the bottom layer
The thickness of the layer 107a was about 8 nm. The thickness of the intermediate layer 107c was set to about 0.1 μm, and the thickness of the Au layer of the uppermost layer 107b was set to about 1.2 μm. p-type GaAs substrate 1
01 was applied with the p-type electrode material described in Example 1.

【0030】然る後、420℃、3分間に亘り、窒素気
流中で熱処理を施し、上記のp形電極材料にオーミック
性を付与し、p形オーミック電極108となした。併せ
て、この熱処理に伴い、ZnO窓層106或いはITO
保護膜109から拡散して来る酸素原子を最下層のTi
層107aに捕獲させた。これより、Ti層をTiOや
TiO2からなる酸化物層に変換させた。
Thereafter, a heat treatment was performed in a nitrogen stream at 420 ° C. for 3 minutes to give ohmic properties to the above-mentioned p-type electrode material to form a p-type ohmic electrode 108. At the same time, the ZnO window layer 106 or ITO
Oxygen atoms diffused from the protective film 109 are replaced with Ti in the lowermost layer.
The layer 107a was captured. Thus, the Ti layer was converted to an oxide layer made of TiO or TiO 2 .

【0031】チタン酸化物/Pt/Au重層構造からな
るn形オーミック電極107には、容易にAu線が結線
でき、また、ボンディング時の電極のITO保護膜10
9からの剥離は認められなかった。n形びp形オーミッ
ク電極107、108間に順方向電流を通流したとこ
ろ、ITO保護膜109の略全面からほぼ均等な赤橙色
の発光を得た。分光器により測定された発光波長は約6
20nmであった。発光スペクトルの半値幅は約18n
mであり、単色性に優れる発光が得られた。n形オーミ
ック電極107とITO保護層109との良好なオーミ
ック接触性を反映して、20mAの順方向電流の通流時
に於ける順方向電圧は約1.98Vとなった。また、L
ED間での順方向電圧の変化幅は1.98V±0.04
Vであり、均一な順方向電圧となった。チップ状態での
発光強度は約50mcdとなった。
An Au wire can be easily connected to the n-type ohmic electrode 107 having a multilayer structure of titanium oxide / Pt / Au.
No peeling from No. 9 was observed. When a forward current was passed between the n-type and p-type ohmic electrodes 107 and 108, substantially uniform red-orange light emission was obtained from almost the entire surface of the ITO protective film 109. The emission wavelength measured by the spectrometer is about 6
20 nm. The half width of the emission spectrum is about 18n
m, and luminescence excellent in monochromaticity was obtained. Reflecting good ohmic contact between the n-type ohmic electrode 107 and the ITO protective layer 109, the forward voltage when a forward current of 20 mA flows was about 1.98V. Also, L
The change width of the forward voltage between EDs is 1.98 V ± 0.04
V, which was a uniform forward voltage. The light emission intensity in the chip state was about 50 mcd.

【0032】[0032]

【発明の効果】本発明に記載の如く、重層構造から電極
を構成すれば、酸化物窓層と良好なオーミック特性が果
たせるため、順方向電圧が低減されて、高輝度のAlG
aInPLEDが得られる。
As described in the present invention, when an electrode is formed from a multilayer structure, good ohmic characteristics can be achieved with an oxide window layer, so that a forward voltage is reduced and a high-luminance AlG
An aInPLED is obtained.

【0033】また、本発明に記載の重層構造の電極とす
れば、酸化物窓層との密着性に優れるオーミック性電極
が得られる。
Further, when the electrode having the multilayer structure according to the present invention is used, an ohmic electrode having excellent adhesion to the oxide window layer can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に記載のLEDの断面構造を示す模式
図である。
FIG. 1 is a schematic diagram illustrating a cross-sectional structure of an LED described in Example 1.

【図2】実施例2に記載のLEDの断面構造を示す模式
図である。
FIG. 2 is a schematic diagram illustrating a cross-sectional structure of the LED described in Example 2.

【符号の説明】[Explanation of symbols]

10 AlGaInPLED 20 AlGaInPLED 30 積層構造体 101 p形GaAs単結晶基板 102 p形GaAs緩衝層 103 p形下部クラッド層 104 発光層 105 上部クラッド層 106 酸化物窓層 107 n形オーミック電極 107a 最下層 107b 最上層 107c 中間層 108 p形オーミック電極 109 保護層 DESCRIPTION OF SYMBOLS 10 AlGaInPLED 20 AlGaInPLED 30 Laminated structure 101 p-type GaAs single crystal substrate 102 p-type GaAs buffer layer 103 p-type lower cladding layer 104 light emitting layer 105 upper cladding layer 106 oxide window layer 107 n-type ohmic electrode 107a lowermost layer 107b uppermost layer 107c Intermediate layer 108 p-type ohmic electrode 109 protective layer

フロントページの続き Fターム(参考) 5F041 AA03 CA04 CA23 CA34 CA35 CA41 CA49 CA53 CA57 CA66 CA67 CA71 CA73 CA82 CA85 CA92 DA07 Continuation of the front page F term (reference) 5F041 AA03 CA04 CA23 CA34 CA35 CA41 CA49 CA53 CA57 CA66 CA67 CA71 CA73 CA82 CA85 CA92 DA07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】発光層が(AlXGa1-XYIn1-YP(0
≦X≦1、0<Y≦1)からなるpn接合型ダブルヘテ
ロ構造のLEDにおいて、発光の取出し方向にn形酸化
亜鉛を含む窓層を有し、該窓層の上に複数層から構成さ
れる電極を有し、該電極の最下層が遷移金属の酸化物を
含む層からなり、該電極の最上層が金属層からなること
を特徴とするAlGaInP発光ダイオード。
The light-emitting layer is composed of (Al X Ga 1 -X ) Y In 1 -Y P (0
≦ X ≦ 1, 0 <Y ≦ 1) a pn junction type double heterostructure LED having a window layer containing n-type zinc oxide in a light emission direction, and comprising a plurality of layers on the window layer An AlGaInP light-emitting diode, comprising: an electrode, wherein the lowermost layer of the electrode comprises a layer containing a transition metal oxide, and the uppermost layer of the electrode comprises a metal layer.
【請求項2】窓層と電極とが接していることを特徴とす
る請求項1に記載のAlGaInP発光ダイオード。
2. The AlGaInP light emitting diode according to claim 1, wherein the window layer and the electrode are in contact with each other.
【請求項3】遷移金属が、チタン、ニッケル、クロム、
コバルトから選ばれた1種であることを特徴とする請求
項1または2に記載のAlGaInP発光ダイオード。
3. The transition metal is titanium, nickel, chromium,
The AlGaInP light emitting diode according to claim 1, wherein the AlGaInP light emitting diode is one selected from cobalt.
【請求項4】電極の最下層の層厚が、5nm以上で10
0nm以下であることを特徴とする請求項1〜3のいず
れか1項に記載のAlGaInP発光ダイオード。
4. The method according to claim 1, wherein the lowermost layer of the electrode has a thickness of 5 nm or more and
The AlGaInP light emitting diode according to any one of claims 1 to 3, wherein the thickness of the AlGaInP light emitting diode is 0 nm or less.
【請求項5】電極の最上層の金属が、アルミニウムであ
ることを特徴とする請求項1〜4のいずれか1項に記載
のAlGaInP発光ダイオード。
5. The AlGaInP light-emitting diode according to claim 1, wherein the metal in the uppermost layer of the electrode is aluminum.
【請求項6】電極の最上層の金属が、金であることを特
徴とする請求項1〜4のいずれか1項に記載のAlGa
InP発光ダイオード。
6. The AlGa according to claim 1, wherein the metal in the uppermost layer of the electrode is gold.
InP light emitting diode.
【請求項7】電極の最上層と最下層との間に、モリブデ
ンまたは白金からなる層を有することを特徴とする請求
項6に記載のAlGaInP発光ダイオード。
7. The AlGaInP light emitting diode according to claim 6, further comprising a layer made of molybdenum or platinum between the uppermost layer and the lowermost layer of the electrode.
JP22059299A 1999-08-04 1999-08-04 AlGaInP light emitting diode Expired - Fee Related JP4298861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22059299A JP4298861B2 (en) 1999-08-04 1999-08-04 AlGaInP light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22059299A JP4298861B2 (en) 1999-08-04 1999-08-04 AlGaInP light emitting diode

Publications (2)

Publication Number Publication Date
JP2001044503A true JP2001044503A (en) 2001-02-16
JP4298861B2 JP4298861B2 (en) 2009-07-22

Family

ID=16753403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22059299A Expired - Fee Related JP4298861B2 (en) 1999-08-04 1999-08-04 AlGaInP light emitting diode

Country Status (1)

Country Link
JP (1) JP4298861B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068730A (en) * 1999-08-25 2001-03-16 Showa Denko Kk AlGaInP LIGHT EMITTING DIODE
DE10261675A1 (en) * 2002-12-31 2004-07-22 Osram Opto Semiconductors Gmbh Optoelectronic structural element for light emitting diodes has an epitaxial semiconductor layer sequence with an electromagnetic radiation emitting zone and electrical contact region(s) with at least one radiation permeable zinc oxide
JP2004214434A (en) * 2003-01-06 2004-07-29 Sharp Corp Oxide semiconductor light emitting element and its manufacturing method
WO2004068661A1 (en) * 2003-01-31 2004-08-12 Shin-Etsu Handotai Co., Ltd. Light-emitting device
JP2004319920A (en) * 2003-04-18 2004-11-11 Sharp Corp Electrode of oxide semiconductor and manufacturing method therefor, and oxide semiconductor light emitting element
US7135713B2 (en) * 2003-07-03 2006-11-14 Epitech Technology Corporation Light emitting diode and method for manufacturing the same
CN100419976C (en) * 2005-01-05 2008-09-17 中国科学院长春光学精密机械与物理研究所 Method for preparing P type ZnO ohmic electrode
WO2010071113A1 (en) * 2008-12-15 2010-06-24 昭和電工株式会社 Semiconductor light emission element
JP2010141262A (en) * 2008-12-15 2010-06-24 Showa Denko Kk Semiconductor light-emitting element, electrode structure, method for manufacturing semiconductor light-emitting element, and method for manufacturing electrode structure
JP2010147097A (en) * 2008-12-16 2010-07-01 Showa Denko Kk Semiconductor element and production process of semiconductor element
JP2010238802A (en) * 2009-03-30 2010-10-21 Showa Denko Kk Semiconductor light-emitting element, electrode structure, method for manufacturing semiconductor light-emitting element, and method for manufacturing electrode structure
EP1724847A3 (en) * 2005-05-19 2011-01-05 Nichia Corporation Nitride semiconductor device
JP2013153178A (en) * 2013-03-01 2013-08-08 Semiconductor Energy Lab Co Ltd Semiconductor device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068730A (en) * 1999-08-25 2001-03-16 Showa Denko Kk AlGaInP LIGHT EMITTING DIODE
DE10261675A1 (en) * 2002-12-31 2004-07-22 Osram Opto Semiconductors Gmbh Optoelectronic structural element for light emitting diodes has an epitaxial semiconductor layer sequence with an electromagnetic radiation emitting zone and electrical contact region(s) with at least one radiation permeable zinc oxide
US6979842B2 (en) 2002-12-31 2005-12-27 Osram Opto Semiconductors Gmbh Opto-electronic component with radiation-transmissive electrical contact layer
JP2004214434A (en) * 2003-01-06 2004-07-29 Sharp Corp Oxide semiconductor light emitting element and its manufacturing method
WO2004068661A1 (en) * 2003-01-31 2004-08-12 Shin-Etsu Handotai Co., Ltd. Light-emitting device
JP2004319920A (en) * 2003-04-18 2004-11-11 Sharp Corp Electrode of oxide semiconductor and manufacturing method therefor, and oxide semiconductor light emitting element
US7135713B2 (en) * 2003-07-03 2006-11-14 Epitech Technology Corporation Light emitting diode and method for manufacturing the same
US7422915B2 (en) 2003-07-03 2008-09-09 Epistar Corporation Light emitting diode and method for manufacturing the same
CN100419976C (en) * 2005-01-05 2008-09-17 中国科学院长春光学精密机械与物理研究所 Method for preparing P type ZnO ohmic electrode
EP1724847A3 (en) * 2005-05-19 2011-01-05 Nichia Corporation Nitride semiconductor device
US8981420B2 (en) 2005-05-19 2015-03-17 Nichia Corporation Nitride semiconductor device
WO2010071113A1 (en) * 2008-12-15 2010-06-24 昭和電工株式会社 Semiconductor light emission element
JP2010141262A (en) * 2008-12-15 2010-06-24 Showa Denko Kk Semiconductor light-emitting element, electrode structure, method for manufacturing semiconductor light-emitting element, and method for manufacturing electrode structure
CN102246326A (en) * 2008-12-15 2011-11-16 昭和电工株式会社 Semiconductor light emission element
US8829555B2 (en) 2008-12-15 2014-09-09 Toyoda Gosei Co., Ltd. Semiconductor light emission element
TWI580074B (en) * 2008-12-15 2017-04-21 Toyoda Gosei Kk Semiconductor light emitting element
JP2010147097A (en) * 2008-12-16 2010-07-01 Showa Denko Kk Semiconductor element and production process of semiconductor element
JP2010238802A (en) * 2009-03-30 2010-10-21 Showa Denko Kk Semiconductor light-emitting element, electrode structure, method for manufacturing semiconductor light-emitting element, and method for manufacturing electrode structure
JP2013153178A (en) * 2013-03-01 2013-08-08 Semiconductor Energy Lab Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JP4298861B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
KR100720101B1 (en) Top-emitting Light Emitting Devices Using Nano-structured Multifunctional Ohmic Contact Layer And Method Of Manufacturing Thereof
KR100750933B1 (en) Top-emitting White Light Emitting Devices Using Nano-structures of Rare-earth Doped Transparent Conducting ZnO And Method Of Manufacturing Thereof
JP5084100B2 (en) Nitride-based light emitting device and manufacturing method thereof
JP5244614B2 (en) Group III nitride light emitting device
US8395176B2 (en) Top-emitting nitride-based light-emitting device with ohmic characteristics and luminous efficiency
US5990500A (en) Nitride compound semiconductor light emitting element and its manufacturing method
US7485897B2 (en) Nitride-based light-emitting device having grid cell layer
JP5220409B2 (en) Method for manufacturing top-emitting nitride-based light emitting device
JP3494478B2 (en) Gallium nitride based compound semiconductor device
JP4298861B2 (en) AlGaInP light emitting diode
US6946372B2 (en) Method of manufacturing gallium nitride based semiconductor light emitting device
JP2002314131A (en) Transparent electrode, manufacturing method thereof and group iii nitride semiconductor light emitting element using the same
JP2004319672A (en) Light emitting diode
JP2005005421A (en) Oxide semiconductor light emitting element
JP2002016286A (en) Semiconductor light-emitting element
JP4312504B2 (en) Electrode of light emitting diode element and light emitting diode element
JP4409684B2 (en) AlGaInP light emitting diode and manufacturing method thereof
JP4376361B2 (en) AlGaInP light emitting diode
JP2004319671A (en) Light emitting diode
JP4241057B2 (en) Oxide semiconductor light emitting device and manufacturing method thereof
JP2001036130A (en) AlGaInP LIGHT EMITTING DIODE PROVIDED WITH WINDOW LAYER
JP4286983B2 (en) AlGaInP light emitting diode
JP2004311982A (en) Ohmic electrode structure, and compound-semiconductor light-emitting element and led lamp furnished with the same
TWI281756B (en) Structure of light-emitting diode
KR100574105B1 (en) Top emitting light emitting device and method of manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150424

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees