US7266274B2 - Pre-connectorized fiber optic distribution cable having overmolded access location - Google Patents

Pre-connectorized fiber optic distribution cable having overmolded access location Download PDF

Info

Publication number
US7266274B2
US7266274B2 US10/980,704 US98070404A US7266274B2 US 7266274 B2 US7266274 B2 US 7266274B2 US 98070404 A US98070404 A US 98070404A US 7266274 B2 US7266274 B2 US 7266274B2
Authority
US
United States
Prior art keywords
distribution cable
fiber optic
optical
fiber
mid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US10/980,704
Other versions
US20060093278A1 (en
Inventor
II Robert B. Elkins
Thomas Theuerkorn
Lars K. Nielsen
James P. Luther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gruenenthal GmbH
Corning Research and Development Corp
Original Assignee
Corning Optical Communications LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Optical Communications LLC filed Critical Corning Optical Communications LLC
Assigned to CORNING CABLE SYSTEMS LLC reassignment CORNING CABLE SYSTEMS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELKINS, ROBERT B. II, LUTHER, JAMES P., NIELSEN, LARS K., THEUERKORN, THOMAS
Priority to US10/980,704 priority Critical patent/US7266274B2/en
Assigned to GRUNENTHAL GMBH reassignment GRUNENTHAL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARKENAU, ELISABETH DR., BARTHOLOMAUS, JOHANNES DR.
Priority to CN200580043451A priority patent/CN100578274C/en
Priority to CA002586113A priority patent/CA2586113A1/en
Priority to AU2005305313A priority patent/AU2005305313B2/en
Priority to ES05806495T priority patent/ES2382338T3/en
Priority to EP05806495A priority patent/EP1807723B1/en
Priority to JP2007515711A priority patent/JP2008501152A/en
Priority to PCT/US2005/036256 priority patent/WO2006052355A1/en
Priority to MX2007005301A priority patent/MX2007005301A/en
Priority to AT05806495T priority patent/ATE547730T1/en
Publication of US20060093278A1 publication Critical patent/US20060093278A1/en
Priority to US11/888,220 priority patent/US7658549B2/en
Publication of US7266274B2 publication Critical patent/US7266274B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4471Terminating devices ; Cable clamps
    • G02B6/4472Manifolds
    • G02B6/4473Three-way systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4431Protective covering with provision in the protective covering, e.g. weak line, for gaining access to one or more fibres, e.g. for branching or tapping

Definitions

  • the present invention relates generally to a pre-connectorized fiber optic distribution cable and, more particularly, to a pre-connectorized fiber optic distribution cable having an overmolded mid-span access location that compensates for span length measurement differences.
  • Optical fiber is increasingly being used for a variety of broadband applications including voice, video and data transmissions.
  • FTTC fiber-to-the-curb
  • FTTB fiber-to-the-business
  • FTTH fiber-to-the-home
  • FTTP fiber-to-the-premises
  • FTTx networks must include a large number of interconnection points, also referred to herein as “tap points,” at which one or more optical fibers of a distribution cable are interconnected with optical fibers of one or more cables leading to a subscriber location.
  • interconnection points also referred to herein as “tap points”
  • plug-and-play factory-prepared interconnection solutions
  • a field technician To supply the large number of tap points needed and to satisfy the demand for plug-and-play systems, it is apparent that more efficient methods of providing mid-span access locations along the length of a distribution cable are needed.
  • a field technician To perform a mid-span access of a distribution cable, a field technician first removes a section of the cable sheath at a convenient location along a previously installed distribution cable. Once the sheath is removed, the technician gains access to preselected optical fibers through the cable sheath, severs the accessed optical fibers and withdraws a useable length of the terminated optical fibers from the distribution cable.
  • the useable length of the terminated optical fibers provides the field technician with sufficient length to splice one or more optical fibers of a cable comprising a lesser amount of optical fibers than the distribution cable (typically referred to as a “drop cable”) to the preselected optical fibers of the distribution cable.
  • the mid-span access location is typically covered using an enclosure designed to protect the splices and the exposed section of the distribution cable.
  • a benefit to this approach is that the distribution cable may be installed without consideration to the proximity of the mid-span access location to a convenient location in the network, such as a telephone pole, hand-hole or optical connection terminal.
  • the field technician may position the mid-span access at any desired location in the network along the length of the distribution cable.
  • the relatively difficult and time consuming process of creating the mid-span access must be accomplished by a highly skilled technician at a significant cost and under less than ideal field working conditions.
  • the splicing of drop cables to the distribution cable is performed at a factory during the manufacturing of the cable.
  • the preterminated distribution cable including the main cable, drop cables and associated splice closures, are assembled and wound onto a cable reel to be delivered to the service provider for installation in the network. Accordingly, favorable conditions in the factory for making high quality optical splices may be utilized, thereby increasing splice quality and also reducing the difficulty and expense, and the unfavorable conditions associated with splicing in the field.
  • pan length measurement differences typically result from network measurement miscalculations, installation errors, and differences between the proposed locations of telephone poles, hand holes, pedestals, etc. and their installed locations. If the mid-span access location on the installed distribution cable is located too far from the desired location, the drop cable may not have sufficient length. On the other hand, if the mid-span access location on the installed distribution cable is located too near the desired location, an excessive amount of drop cable slack must be managed.
  • a pre-connectorized fiber optic distribution cable having a predetermined mid-span access location that provides access to the connectorized optical fibers allows a field technician to readily interconnect a tether having a customized length to the distribution cable following installation to compensate for any span length measurement differences.
  • preselected optical fibers are accessed, severed and prepared “splice-ready” at the mid-span access location for splicing to optical fibers of one or more drop cables in the field following installation of the distribution cable.
  • the mid-span access location in this approach is encapsulated with a protective structure (e.g., closure) for cable reeling, shipping, cable unreeling and installation that is removed and discarded to gain access to the splice-ready optical fibers following installation of the distribution cable.
  • the optical fibers of the drop cables are then spliced to the splice-ready optical fibers at the mid-span access location and a protective splice closure is added around the mid-span access location to protect the optical splices and the exposed section of the distribution cable.
  • a protective splice closure is added around the mid-span access location to protect the optical splices and the exposed section of the distribution cable.
  • Another disadvantage is that a relatively expensive splice closure must be added to the distribution cable assembly at the mid-span access location in the field to protect the optical splices and the exposed section of the distribution cable, thereby increasing installation complexity as well as labor and material costs.
  • a pre-connectorized fiber optic distribution cable having a predetermined mid-span access location that provides access to the connectorized optical fibers allows a field technician to readily interconnect a tether having a customized length to the distribution cable following installation only when needed and without the addition of a relatively expensive splice closure.
  • a factory-assembled fiber optic distribution cable for accessing one or more preterminated and pre-connectorized optical fibers at a mid-span access location having an outer diameter that is only minimally larger than the outer diameter of the distribution cable. It would also be desirable to provide a pre-connectorized fiber optic distribution cable having one or more low profile mid-span access locations that is suitable for both buried installations (e.g., through small-diameter conduit) and aerial installations (e.g., over sheave wheels and pulleys).
  • pre-connectorized fiber optic distribution cable that allows a field technician to readily interconnect a tether having a customized length to the distribution cable following installation to mitigate improper location of the mid-span access location due to span length measurement differences. It would further be desirable to provide a pre-connectorized fiber optic distribution cable that allows a field technician to readily interconnect a tether having a customized length to the distribution cable following installation only as the mid-span access location is needed to provide service to subscribers without the addition of a relatively expensive splice closure.
  • the present invention provides various embodiments of a factory-assembled pre-connectorized fiber optic distribution cable having at least one predetermined mid-span access location along the length of the cable for providing access to at least one, and preferably a plurality of, preterminated optical fibers.
  • Each such mid-span access location is fully protected during cable reeling and unreeling, during the installation process, and until needed by an injection molded encapsulating shell, also referred to herein as an “overmolded” shell.
  • the pre-connectorized fiber optic distribution cable is configured to have a low profile (i.e., small outer diameter) and relative flexibility for installation through a small-diameter conduit system or around aerial installation sheave wheels and pulleys.
  • Each mid-span access location provides access to one or more preterminated and pre-connectorized optical fibers for interconnecting at least one pre-connectorized drop cable to the distribution cable.
  • each mid-span access location provides access to a plurality of optical fibers terminating in a multi-fiber ferrule, such as a mechanically transferable (MT) ferrule, for interconnection with a pre-connectorized tether having a customized length.
  • MT mechanically transferable
  • the present invention comprises a fiber optic distribution cable having at least one predetermined mid-span access location at which a plurality of optical fibers accessed from the distribution cable are terminated and pre-connectorized (i.e., connectorized in the factory) with a multi-fiber ferrule operable for receiving a connectorized drop cable or branch cable, and in particular, a tether.
  • pre-connectorized i.e., connectorized in the factory
  • multi-fiber ferrule operable for receiving a connectorized drop cable or branch cable, and in particular, a tether.
  • a plurality of optical fibers are terminated and furcated from the remaining optical fibers of the distribution cable.
  • the preterminated optical fibers are connectorized and encapsulated within a protective overmolded shell to be subsequently optically connected to respective optical fibers of one or more fiber optic drop cables or fiber optic branch cables.
  • the optical fibers of the drop cables or branch cables preferably are likewise connectorized so that the distribution cable and the drop cables or branch cables provide a true plug-and-play type interconnection system, thereby enabling a less experienced and less skilled field technician to readily install the fiber optic communications network.
  • the drop cables may be used to connect an optical fiber of the distribution cable to a subscriber premises, thereby extending an all-optical communications network entirely to the subscriber premises.
  • the branch cable may be used to connect the preterminated optical fibers of the distribution cable to another distribution point, such as a network optical connection terminal.
  • the fiber optic drop cable or branch cable is a tether having a customized length terminating in an array of optical connection nodes, such as a multi-port connection terminal.
  • the terms “fiber optic drop cable” and “drop cable” should be understood to include any fiber optic cable, monotube, tether or like conduit for routing and protecting at least one optical fiber, including a fiber optic branch cable or secondary distribution cable.
  • the present invention provides a pre-connectorized fiber optic distribution cable assembly comprising a distribution cable having a plurality of optical fibers and at least one mid-span access location positioned along the length of the distribution cable. At least one optical fiber of the distribution cable is accessed and terminated from the distribution cable at the mid-span access location.
  • the assembly further comprises at least one optical connector mounted upon the end of the accessed and terminated optical fiber, a receptacle for receiving the optical connector and providing access to the optical connector without entering the mid-span access location, and a protective overmolded shell formed from a relatively flexible material encapsulating the mid-span access location and securing the receptacle within the shell.
  • the assembly may further comprise a tether having a customized length that is pre-connectorized and interconnected in the field with the optical connector disposed within the receptacle.
  • the tether is operable for mitigating errors in the actual location of the mid-span access along the length of the installed distribution cable, and in particular, span length measurement differences in a pre-engineered fiber optic communications network.
  • the present invention provides a fiber optic distribution cable assembly comprising a plurality of optical fibers and one or more factory-assembled mid-span access locations along the length of the distribution cable.
  • the plurality of optical fibers are accessed and terminated from the distribution cable at each mid-span access location and connectorized with a multi-fiber ferrule.
  • the assembly further comprises a receptacle for receiving and aligning the multi-fiber ferrule with an opposed multi-fiber ferrule mounted upon the end of a fiber optic cable, and a protective overmolded shell formed from a relatively flexible material encapsulating the mid-span access location and securing the receptacle within the shell.
  • the multi-fiber ferrule of the distribution cable is interconnected with the multi-fiber ferrule mounted upon the end of the cable in the field without entering the mid-span access location.
  • the fiber optic cable is a tether having a customized length that is interconnected in the field with the distribution cable to compensate for errors in the actual location of the mid-span access along the length of the installed distribution cable, and in particular, span length measurement differences in a pre-engineered fiber optic communications network.
  • the present invention provides a method for mitigating a span length measurement difference in a pre-engineered fiber optic communications network employing a fiber optic distribution cable assembly comprising a distribution cable having a plurality of optical fibers disposed within a sheath and at least one mid-span access location.
  • the method comprises removing a section of the sheath of the distribution cable at the mid-span access location, accessing at least one of the plurality of optical fibers of the distribution cable within the sheath of the distribution cable, terminating the at least one optical fiber accessed from within the removed section of the sheath, connectorizing the at least one optical fiber, overmolding the mid-span access location such that the connectorized optical fiber is accessible for subsequent interconnection with a connectorized optical fiber mounted on a first end of a tether, installing the distribution cable assembly in the pre-engineered fiber optic communications network, optically connecting the connectorized first end of the tether to the connectorized optical fiber of the distribution cable at the mid-span access location, and positioning a second end of the tether opposite the first end at a desired location to compensate for the span length measurement difference.
  • the present invention provides a pre-connectorized fiber optic distribution cable for use in a pre-engineered optical communications network.
  • the pre-connectorized distribution cable comprises a plurality of predetermined mid-span access locations along the length of the distribution cable that provide access to at least one terminated and pre-connectorized optical fiber disposed within a receptacle through a low-profile, relatively flexible overmolded shell that encapsulates the mid-span access location and the receptacle.
  • the pre-connectorized distribution cable may be readily deployed in the pre-engineered optical communications network in a factory-assembled configuration to be interconnected with at least one fiber optic drop cable leading to a subscriber premises, or with a fiber optic branch cable or tether leading to a network optical connection terminal.
  • FIG. 1 is a perspective view of a pre-connectorized fiber optic distribution cable assembly comprising a mid-span access location and a protective overmolded shell in accordance with an exemplary embodiment of the present invention shown with a connector access cover attached to the overmolded shell;
  • FIG. 2 is a perspective view of the pre-connectorized fiber optic distribution cable assembly of FIG. 1 shown with the connector access cover removed;
  • FIG. 3 is a perspective view of the pre-connectorized fiber optic distribution cable assembly of FIG. 2 shown with a tether having a first end optically connected to the distribution cable and a second end terminating in a first embodiment of a multi-port connection terminal;
  • FIG. 4 is a perspective view of the pre-connectorized fiber optic distribution cable assembly of FIG. 2 shown with a tether having a first end optically connected to the distribution cable and a second end terminating in a second embodiment of a multi-port connection terminal;
  • FIG. 5 is a perspective view of the pre-connectorized fiber optic distribution cable assembly of FIG. 2 shown with a tether having a first end optically connected to the distribution cable and a second end terminating in a third embodiment of a multi-port connection terminal;
  • FIG. 6 is a perspective view of the pre-connectorized fiber optic distribution cable assembly of FIG. 2 shown with a fiber optic drop cable having a first end optically connected to the distribution cable and a second end optically connected to a network optical connection terminal;
  • FIG. 7 is an exploded perspective view of an exemplary fiber optic receptacle and fiber optic plug adapted for use with the fiber optic distribution cable assembly of FIG. 2 shown in an unmated configuration;
  • FIG. 8 is a perspective view of the fiber optic receptacle and fiber optic plug of FIG. 7 shown in a mated configuration.
  • the pre-connectorized fiber optic distribution cable of the present invention comprises at least one mid-span access location along the length of the distribution cable having a protective overmolded shell for providing access to at least one pre-connectorized optical fiber terminating in a multi-fiber ferrule.
  • the pre-connectorized distribution cable comprises a plurality of predetermined mid-span access locations spaced apart along the length of the distribution cable, thereby providing multiple interconnection points, also referred to herein as “tap points,” for subsequently interconnecting a connectorized fiber optic drop cable, branch cable or tether to the distribution cable in the field.
  • the low-profile and relative flexibility of the overmolded shell permit the distribution cable assembly to be wound upon a reel, unreeled and installed through small diameter conduits and over sheave wheels and pulleys in buried and aerial deployments.
  • the pre-connectorized distribution cable is manufactured and assembled in a factory, thus eliminating the need for first installing the distribution cable and then performing a mid-span access and optical splicing in the field.
  • the distribution cable assembly of the present invention offers a provider of communication services factory-prepared and pre-connectorized mid-span access locations having an outer diameter that is only minimally larger than the outer diameter of the distribution cable. Once the distribution cable is installed, a connector access cover is removed as needed to provide access to at least one optical connector, and in preferred embodiments a multi-fiber ferrule, for interconnecting a connectorized fiber optic drop cable branch cable or tether.
  • the distribution cable assembly of the present invention overcomes the difficulties encountered when installing a conventional distribution cable having a plurality of mid-span access locations at predetermined locations spaced along the length of the distribution cable.
  • the distribution cable assemblies described below minimize field labor and material costs and achieve high accuracy tap point locations by utilizing a tether having a customized length that mitigates span length measurement differences.
  • a distribution cable assembly in accordance with the invention is installed such that the factory-assembled mid-span access location is positioned short (i.e., upstream) of a telephone pole, hand hole or network optical connection terminal, such as a pedestal or other termination enclosure. Once the distribution cable assembly is installed, the installer can measure exactly what length of drop cable or tether is needed to extend the mid-span access location to the desired tap point location.
  • a connectorized drop cable or tether having a predetermined length, or more preferably a customized length, is used to compensate for the span length measurement difference between the actual location of the mid-span access and the desired location of the tap point.
  • the overmolded shell seals the mid-span access location and the connectorized optical fibers, while permitting the connectorized drop cable or tether to be optically connected to the distribution cable without the need to enter a complex and relatively expensive splice enclosure.
  • the connectorized drop cable or tether can be optically connected to the distribution cable only as needed to provide service to subscribers of the communications service, thereby deferring the additional labor and material costs of interconnecting the distribution cable with a network optical connection terminal.
  • the term “distribution cable” is intended to include all types of fiber optic cables comprising a plurality of optical fibers within a cable jacket including, but not limited to, loose tube, monotube, central tube, tight buffered, ribbon, armored, and the like.
  • the distribution cable comprises a cable sheath, one or more buffer tubes, an optical transmission component and a strength component.
  • the distribution cables described and shown herein comprise a plurality of buffer tubes containing ribbonized optical fibers (also referred to as optical fiber ribbons) for exemplary purposes only.
  • the distribution cable may also comprise one or more buffer tubes containing individual optical fibers that may be ribbonized prior to terminating the optical fibers in a multi-fiber connector.
  • optical fiber ribbons consist of multiple optical fibers (for example six, eight or twelve) that are bound together in a resin material to form a flat ribbon.
  • the optical fiber count available at each mid-span access location may vary from 1 up to at least 72 fibers using existing multi-fiber ferrules. It is anticipated, however, that most mid-span access locations will provide access to between 4 and 12 optical fibers.
  • the optical fibers may be color-coded for easy identification. It is understood that the optical fibers may be either single mode or multimode and that the optical fibers, ribbonized or not, may terminate in one or more connectors. Preferably, however, the optical fibers terminate in a single multi-fiber ferrule, such as a Mechanically Transferable (MT) style ferrule.
  • MT Mechanically Transferable
  • the terminated optical fibers may be fanned out and connectorized with a plurality of single fiber connectors. It is understood that other cable types may be used in conjunction with the present invention.
  • the distribution cable is preferably designed to provide stable performance over a wide range of temperatures and to be compatible with any telecommunications grade optical fiber.
  • the multi-fiber connector shown is a generic MT ferrule, however, other multi-fiber ferrules such as MTP, MPO and MT-RJ may be used without departing from the scope of the invention.
  • the MT ferrule is mounted upon the ends of the terminated optical fibers accessed from a predetermined mid-span access location along the length of the distribution cable.
  • the MT connector provides a semi-permanent connection between the terminated optical fibers and optical fibers associated with a closure or drop cable(s). If necessary, the MT connector may be connected and disconnected in new configurations as desired.
  • miscalculations in the placement of the access location along the cable length may be adjusted by connecting connectorized drop cables or tethers having predetermined or customized lengths to the connector. If it is desired to later increase the length of a drop cable or tether, or to interconnect the distribution cable with something other than a drop cable or tether, the existing drop cable or tether can be disconnected and replaced without having to perform field optical fiber splicing at the mid-span access location.
  • the pre-connectorized fiber optic distribution cable assembly of the present invention includes at least one, and preferably a plurality of, predetermined mid-span access locations 20 along the length of the distribution cable 24 .
  • the mid-span access locations 20 are “predetermined” because the distribution cable is typically deployed in a pre-engineered optical communications network wherein the positions of the mid-span access locations along the length of the distribution cable are selected to be short (i.e., upstream) of the telephone pole, hand hole or network optical connection terminal (e.g., pedestal or other optical connection enclosure) at which the network designer desires the tap points to be located.
  • optical fibers 22 of the distribution cable 24 in the form of an optical fiber ribbon are accessed and terminated at one of the predetermined mid-span access locations 20 along the length of the fiber optic distribution cable 24 .
  • the fiber optic distribution cable 24 comprises a plurality of buffer tubes 26 disposed within a cable jacket or sheath 28 .
  • the terminated optical fibers 22 are routed out of their respective buffer tube 26 via a buffer tube transition piece 30 at a convenient furcation point.
  • the optical fibers 22 may be accessed, terminated (i.e., severed), transitioned and furcated in any suitable manner know to those of ordinary skill in the art, for example, in the manner described and shown in co-pending U.S. patent application Ser. No. 10,724,244, which is assigned to the assignee of the present invention.
  • the optical fibers 22 terminate in a multi-fiber connector, and in particular to a multi-fiber ferrule 32 , that is mounted upon the ends of the optical fibers 22 .
  • the optical fibers 22 may be direct-connectorized to the ferrule 32 , or the optical fibers 22 may be mechanically or thermally (e.g., fusion) spliced to a short length of connectorized optical fibers commonly referred to in the art as a pigtail.
  • the ferrule 32 is received or disposed within a robust receptacle 34 , such as the connector receptacle shown and described in U.S. Pat. No. 6,579,014, issued Jun. 17, 2003 and entitled “ Fiber Optic Receptacle ,” and U.S. patent application Ser. No. 10/924,525, filed Aug.
  • a protective shell 36 is injection molded around the mid-span access location 20 , a suitable length of the sheath 28 of the distribution cable 24 at each end of the mid-span access location, and the receptacle 34 containing the ferrule 32 .
  • the shell 36 may be injection molded in any suitable manner, for example using a two-piece clamshell molding tool with the mid-span access location 20 , the ends of the sheath 28 and the receptacle 34 suspended therebetween, and is referred to herein as being “overmolded” around the distribution cable 24 at the mid-span access location 20 .
  • the protective overmolded shell 36 is relatively flexible so that the distribution cable can be readily installed through small-diameter conduit for buried deployments and over sheave wheels and pulleys for aerial deployments.
  • the overmolded shell 36 provides physical and environmental protection to the mid-span access location 20 , including the exposed section of the distribution cable 24 , the terminated optical fibers 22 and the ferrule 32 , as well as sealing the ends of the sheath and the receptacle 34 .
  • the overmolded shell 36 is shaped and designed such that a cover 38 is removable following installation of the distribution cable assembly in order to expose the receptacle 34 and thereby provide access to the ferrule 32 .
  • a receptacle cap 40 may be fastened, for example threaded, onto the receptacle 34 underneath the protective cover 38 in order to protect the ferrule 32 and prevent contaminants from entering the receptacle 34 .
  • the protective cover 38 is secured to the overmolded shell 36 during installation and removed only when the mid-span access location 20 is needed to interconnect a fiber optic drop cable or tether.
  • the overmolded shell 36 and receptacle cap 40 are sufficient to protect the receptacle 34 and ferrule 32 during handling, shipping and installation, and therefore, the protective cover 38 is not needed.
  • the overmolded shell 36 may be designed without features for receiving or securing a cover 38 .
  • the ferrule 32 such as the multi-fiber MT ferrule shown, is optically connected in a known manner to a multi-fiber ferrule of a fiber optic drop cable (including a branch cable or secondary cable) or tether, as will be described further hereinafter.
  • the overmolded shell 36 covers a relatively short length of the opposed ends of the sheath 28 adjacent the mid-span access location 20 .
  • the overmolded shell 36 covers at least about 1 inch of each end of the sheath 28 in order to prevent the ingress of water along the distribution cable 24 .
  • the ends of the overmolded shell 36 may separate slightly from the cable sheath 28 along contact areas 42 , thereby forming a slight void for water to enter.
  • water-blocking clamps may be secured around the distribution cable 24 if desired to further prevent water ingress.
  • the water-blocking clamps may also function as bonding surfaces to further secure the overmolded shell 36 in position.
  • the length of the mid-span access location 20 and the overmolded shell 36 ranges from about 12 to 36 inches.
  • the exposed section of the distribution cable 24 has a length sufficient to access about 12 to 24 inches of optical fiber from the distribution cable 24 for direct connectorization, and if necessary, re-connectorization to the ferrule 32 .
  • the terminated optical fibers 22 are spliced to a length of optical fiber comprising a ferrule mounted upon one of its ends (i.e., a “pigtail”)
  • the mid span access location 20 may have a length up to about 36 inches.
  • the flexibility of the overmolded shell 36 may vary as a result of its length and the physical properties of the injection molding material(s) utilized.
  • each mid-span access location 20 is created by removing a section of the cable sheath 28 to access the appropriate buffer tube 26 at two or more locations.
  • the fiber optic distribution cable 24 includes at least one buffer tube 26 disposed within the cable sheath 28 .
  • the distribution cable 24 as shown and described herein may include any known fiber optic cable having a fiber count greater than that of a drop cable and comprising at least one tubular body for containing the optical fibers 22 to be terminated at the mid-span access location 20 .
  • the distribution cable 24 includes a water-blocking compound, such as a gel, to prevent water penetration into the buffer tubes 26 .
  • the distribution cable 24 may also be a “dry-tube” cable.
  • Each buffer tube 26 may include any number of individual optical fibers or ribbonized optical fibers, for example, ribbons of four, six, eight and twelve optical fibers may be used.
  • mid-span access location 20 capable of being installed through relatively small diameter conduit (e.g., about 2 inch diameter) and over sheave wheels and pulleys, a section of the cable sheath 28 is severed and removed to expose the underlying buffer tubes 26 .
  • the exposed length of the buffer tubes 26 may vary according to the length of the optical fibers needed to direct-connectorize, mechanically splice, fusion splice or otherwise optically connect the terminated optical fibers 22 to the ferrule 32 .
  • the length of the terminated optical fibers 22 ranges between about 10 and about 30 inches. In a more preferred embodiment, the length ranges between about 14 and about 20 inches.
  • the exposed length of the buffer tube 26 allows for about 10 to about 30 inches of ribbon optical fiber to be withdrawn from the buffer tube 26 for connectorization, as well as providing sufficient slack fiber length for subsequent repair or re-connectorization if necessary.
  • the cable sheath 28 may be removed by completely or partially ring-cutting the sheath 28 at spaced-apart locations and slitting the sheath 28 in a manner well known in the art without damaging the underlying buffer tubes 26 .
  • a downstream section 44 is formed by ring-cutting the buffer tube 26 and completely removing about a 1 to 5 inch section of the buffer tube 26 between the ring cuts.
  • the appropriate underlying optical fibers 22 are then severed.
  • the optical fibers 22 are ribbonized for convenience.
  • the optical fibers 22 may be individual optical fibers that are ribbonized prior to connectorization to the ferrule 32 , or may be individual optical fibers that are inserted into the fiber bores of the ferrule 32 in a known manner.
  • Another ring cut is then made at a second section of the buffer tube 26 about 9 to 12 inches upstream of the downstream section 44 .
  • the upstream section which is obscured in FIGS. 1 and 2 by buffer tube transition piece 30 , may be formed by making one ring cut and sliding the portion of the buffer tube 26 between the two sections downstream until it rests against the end of the buffer tube 26 created by the first ring cut.
  • the upstream section may also be formed by ring-cutting the buffer tube 26 in two places and removing about 1 to about 5 inches of the buffer tube 26 at the upstream section.
  • the buffer tube 26 may be accessed in two places using a standard No-Slack Optical Fiber Access Tool (NOFAT) available from Corning Cable Systems LLC of Hickory, N.C.
  • NOFAT No-Slack Optical Fiber Access Tool
  • the NOFAT tool is suitable for use in locations in which a minimal amount of cable slack can be obtained and the buffer tubes 26 remain wrapped (e.g., spiral-wrapped) around a central member.
  • the NOFAT tool provides a guide that allows a scalpel to slice open a section of a buffer tube 26 without damaging the underlying optical fibers.
  • the NOFAT tool is compatible with standard Corning Cable Systems buffer tube sizes. In any access method employed, the purpose is to remove portions of the buffer tube 26 so that one or more optical fibers 22 may be identified and severed at a downstream location and fished out of an upstream location to provide a predetermined length of the optical fibers 22 for connectorization to ferrule 32 .
  • the appropriate buffer tube 26 may be accessed at three or more locations, typically about 10-15 inches apart. As will be readily understood by those skilled in the art, three or more access locations are specifically advantageous for withdrawing longer lengths of optical fiber from a buffer tube filled with a water-blocking gel.
  • the appropriate optical fibers 22 are identified and severed at the furthest downstream buffer tube access point. The severed optical fibers 22 are then fished out of the same buffer tube 26 at the next upstream access point, thereby exposing about 12 to about 14 inches of fiber length. The severed optical fibers 22 are then fished out of the same buffer tube 26 at the next upstream access point, thereby exposing a total of about 20 to about 30 inches of fiber length.
  • the process may be repeated, without violating the minimum bend radius of the optical fibers, until the desired length of the optical fibers 22 is removed from the buffer tube 26 and available for connectorization.
  • any water-blocking gel (if present) is cleaned from the optical fibers, for example using an alcohol-based solvent.
  • the optical fiber ribbon (as shown herein) is fed through an opening formed in the buffer tube transition piece 30 .
  • the buffer tube transition piece 30 is preferably made of rubber, soft plastic or other relatively flexible material to permit the buffer tube transition piece 30 to be attached and conform to the curvature of the buffer tube 26 .
  • the buffer tube transition piece 30 is positioned to surround and thereby protect the exposed upstream access point of the buffer tube 26 .
  • the buffer tube transition piece 30 is C-shaped and installed over the exposed upstream access point where the optical fiber ribbon exits the buffer tube 26 .
  • the buffer tube transition piece 30 defines an optical fiber opening operable for retaining and aligning the optical fibers 22 .
  • the buffer tube transition piece 30 may be filled with a sealing material, such as a silicone elastomer or epoxy material, to prevent any injection molding material from entering the buffer tube 26 at the upstream section, to resist torque in the transition piece 30 , and to prevent any water-blocking gel that may be present from leaking out of the buffer tube 26 .
  • the downstream access location 44 may likewise be covered, for example with foil or tape, to prevent any water-blocking gel that may be present from leaking out of the buffer tube 26 and to prevent any injection molding material from entering the buffer tube 26 .
  • the terminated optical fibers 22 shown routed through the buffer tube transition piece 30 may be inserted into a protective tube 46 consisting of an outer jacket, Kevlar and an inner tube.
  • the protective tube 46 may be inserted into the opening formed through the buffer tube transition piece 30 and bonded with epoxy.
  • the opening should be positioned downstream of the origination of the optical fibers so that the optical fibers are smoothly transitioned without violating their minimum bend radius.
  • the severed ends of the optical fibers 22 are dressed and then terminated with the multi-fiber ferrule 32 , for example by direct-connectorization, and polished if necessary.
  • the pre-connectorized distribution cable assembly is shown with a typical mid-span access location 20 fully assembled and ready to be installed.
  • the protective overmolded shell 36 is operable for sealing and protecting the mid-span access location 20 , the pre-connectorized optical fibers 22 and the receptacle 34 during shipping, handling and installation until the mid-span access location 20 , and in particular the receptacle 34 , is needed to interconnect a drop cable or tether with the distribution cable 24 to provide communications service to a subscriber.
  • at least one ripcord may extend a predetermined distance beyond each end of the overmolded shell 36 .
  • the ripcord is operable for removing the protective overmolded shell 36 after cable installation if necessary to repair (e.g., re-connectorize) the optical fibers or replace the ferrule 32 or receptacle 34 .
  • An over-molding wrap (not shown), for example foil, tape, shrink-wrap or water-blocking material may be disposed immediately beneath the overmolded shell 36 prior to overmolding to provide a penetration barrier for the molding material.
  • the mid -span access location 20 is overmolded by clamping or otherwise securing a mold tool around the distribution cable 24 at the mid-span access location 20 that defines one or more cavities into which the molding material can flow.
  • the tool comprises a plurality of injection ports for injecting the molding material.
  • the molding material may include, but is not limited to, any polymeric material that may be injected in a liquid form, will flow into any void defined between the mold tool and the distribution cable 24 , and will cure to form a substantially hardened protective shell, for example a two-part polyurethane or thermoplastic material.
  • the molding material bonds to the over-molding wrap (if present) and to a suitable length of the cable sheath 28 adjacent each end of the mid-span access location 20 , as previously described.
  • the distribution cable assembly having a mid-span access location 20 is shown with a first embodiment of a multi-port connection terminal 48 optically connected to the distribution cable 24 through the receptacle 34 .
  • the mid-span access location 20 provides a means for optically connecting one or more optical fibers contained within a tether 50 to the one or more terminated optical fibers 22 of the fiber optic distribution cable 24 .
  • the term “tether” is intended to include any fiber optic cable or tubular body having one or more optical fibers contained within the tubular body.
  • the remaining optical fibers of the distribution cable 24 are managed and routed separately from the terminated optical fibers 22 such that they extend uninterrupted through the distribution cable 24 and are available for terminating at other downstream mid-span access locations 20 .
  • the tether 50 may have a predetermined length ranging from several feet to several thousand feet that is sufficient to route the multi-port connection terminal 48 to any desired location in the optical communications network downstream or upstream of the mid-span access location 20 .
  • the tether 50 may be constructed with a customized length specifically designed to route the multi-port connection terminal 48 at a particular location, such as a telephone pole, hand hole or optical connection terminal (e.g., pedestal) upstream or downstream of the mid-span access location 20 .
  • the distance between the mid-span access location 20 and the desired location of the multi-port connection terminal 48 is measured following installation of the distribution cable 24 and the customized length of the tether 50 is selected to route and position the multi-port connection terminal 48 at the desired location without any slack length of the tether 50 .
  • the slack length of the tether 50 is avoided and the aesthetic appearance of the installation of the distribution cable and multi-port connection terminal 48 is improved.
  • the terminated and connectorized optical fibers 22 of the distribution cable 24 may be interconnected with the tether 50 at any time subsequent to the initial deployment of the distribution cable assembly, thereby deferring the initial cost of the tether 50 , the multi-port connection terminal 48 , and any drop cable extending to a subscriber premises.
  • the optical fibers of the tether 50 and the terminated optical fibers 22 of the distribution cable 24 may be interconnected through any known optical connector type, including a single multi-fiber connector or one or more single-fiber connectors.
  • the distribution cable assembly provides a convenient location for interconnecting one or more optical fibers of an installed distribution cable 24 with one or more optical fibers of a tether 50 , and subsequently interconnecting the optical fibers of the tether 50 with one or more optical fibers of a drop cable leading to a subscriber premises or a branch cable leading to a network optical connection terminal in a fiber optic communications network.
  • the multi-port connection terminal 48 provides access to one or more connectorized optical fibers optically connected to the preterminated optical fibers 22 of the distribution cable 24 .
  • the multi-port connection terminal 48 may be used to readily interconnect optical fibers of one or more connectorized fiber drop cable or branch cables with the preterminated optical fibers 22 of the fiber optic distribution cable 24 at a desired location in a fiber optic communications network.
  • the multi-port connection terminal 48 may be connected to one or more drop cables or branch cables extending from a downstream location, such as a subscriber premises or an aerial, buried or above-ground network access point (e.g., aerial closure, below-grade closure or pedestal).
  • the multi-port connection terminal 48 allows a field technician to readily connect, disconnect or reconfigure one or more drop cables extending to subscriber premises without disturbing the remaining drop cables.
  • the multi-port connection terminal 48 may be routed separately from the distribution cable 24 to a desired location in the fiber optic communications network in order to compensate for span length measurement differences that typically result from network measurement miscalculations, installation errors, and differences between the proposed locations of telephone poles, hand holes, pedestals, etc. and their installed locations.
  • the multi-port connection terminal 48 in the embodiment shown in FIG. 3 comprises a base 52 and a removable cover 54 , with each preferably made of a lightweight and rigid material, such as aluminum or plastic.
  • the embodiment shown in FIG. 3 comprises four optical connection ports 56 for interconnecting the terminated optical fibers 22 of the distribution cable 24 (via the optical fibers of the tether 50 ) with optical fibers of drop cables or branch cables.
  • each connection port 56 is operable for receiving one or more connectorized optical fibers of the tether 50 on the inside of the connection port 56 , and for receiving one or more connectorized optical fibers of a fiber optic drop cable or branch cable on the outside of the connection port 56 .
  • connection port As used herein, the terms “optical connection port,” “connection port” and “connection port” are intended to broadly include an opening through which the optical fibers of the tether 50 are optically connected to the optical fibers of a drop cable or branch cable, whether pre-connectorized, connectorized in the field (e.g., using field-installable connectors) or mechanically or fusion spliced in the field.
  • each connection port 56 may also include a factory-installed connector sleeve (not shown) for aligning and maintaining mating connectors or ferrules in opposing physical contact.
  • each connection port 56 further provides an environmental seal adjacent the optical interface between the optical fibers of the tether 50 and the drop cable or branch cable.
  • connection port 56 may also serve to transfer any tensile load on the cables to the base 52 or the cover 54 of the multi-port connection terminal 48 . While four optical connection ports 56 are shown for illustrative purposes, it is envisioned that the multi-port connection terminal 48 may have any size or shape suitable for holding any number of optical connection ports 56 . In addition, the multi-port connection terminal 48 defines a cable entry port 58 for receiving the tether 50 . A heat deformable material 60 may be used to provide an environmental seal and a smooth transition between the different outer diameters of the tether 50 and the cable entry port 58 of the multi-port connection terminal 48 .
  • FIG. 4 a perspective view of a typical mid-span access location 20 having a tether 50 attached to the distribution cable 24 that terminates in a second embodiment of a multi-port connection terminal 60 is shown.
  • the multi-port connection terminal 60 is overmolded, thereby eliminating access to the optical fibers of the tether 50 and the optical connection ports 56 within the multi-port connection terminal 60 for repair or replacement.
  • the overmolded multi-port connection terminal 60 includes the advantages of overmolding previously described, while still providing external access to one or more connectorized optical fibers of the tether 50 that are optically connected to the terminated optical fibers 22 of the distribution cable 24 through the ferrule 32 disposed within the receptacle 34 located at the mid-span access location 20 .
  • the overmolded multi-port connection terminal 60 may be used to readily interconnect optical fibers of one or more connectorized fiber optic drop cables or branch cables with the terminated optical fibers 22 of the distribution cable 24 at a desired location in a fiber optic communications network, as previously described.
  • the overmolded multi-port connection terminal 60 may be optically connected to one or more drop cables or branch cables extending from a downstream location, such as a subscriber premises or an aerial, buried or above-ground network access point (e.g., aerial closure, below-grade closure or pedestal).
  • a field technician to readily connect, disconnect or reconfigure one or more drop cables extending to subscriber premises without disturbing the remaining drop cables.
  • the overmolded multi-port connection terminal 60 may be routed separately from the distribution cable 24 to a desired location in the fiber optic communications network in order to compensate for span length measurement differences that typically result from network measurement miscalculations, installation errors, and differences between the proposed locations of telephone poles, hand holes, pedestals, etc. and their installed locations.
  • the overmolded multi-port connection terminal 60 comprises four optical connection ports 56 for providing access to the connectorized optical fibers of the tether 50 .
  • the overmolded multi-port connection terminal 60 may have any shape and may define any number of connection ports 56 , including for example, the (N ⁇ M) array of connection ports 56 shown in FIGS. 3 and 4 or the linear array of connection ports 56 shown in FIG. 5 .
  • the optical fibers of the tether 50 may be connectorized and disposed within receptacles, such as adapter sleeves, retained within the connection ports 56 .
  • the overmolded structure may define recesses 62 that protect the connection ports 56 , and in particular the connectors disposed within the connection ports 56 , from damage caused by impact during shipping, handling and installation.
  • FIG. 6 a perspective view of a pre-connectorized distribution cable assembly having an overmolded mid-span access location 20 and a tether 50 with a first end of the tether 50 attached to a plurality of terminated optical fibers 22 of the distribution cable 24 is shown.
  • the tether 50 ensures that the terminated optical fibers 22 may be optically connected and routed to any desired location regardless of the position of the mid-span access location 20 after installation.
  • the tether 50 permits the distribution cable assembly to be pre-engineered and manufactured without absolute accuracy in the placement of the mid-span access location 20 .
  • the second end of the tether 50 terminates in a plurality of individual optical connectors 64 , or a multi-fiber connector (not shown), routed to a network optical connection terminal 66 at a network access point in a fiber optic communications network, such as but not limited to, a local convergence cabinet (LCC), an aerial closure, a below-grade closure, an above-ground pedestal, or a network interface device (NID) of the types available from Corning Cable Systems LLC of Hickory, N.C.
  • LCC local convergence cabinet
  • NID network interface device
  • one or more connectorized drop cables may be subsequently routed from the optical connection terminal 66 to subscriber premises in a known manner.
  • the optical connection terminal 66 allows a field technician to readily connect, disconnect or reconfigure one or more drop cables extending to subscriber premises without disturbing the remaining drop cables.
  • the optical connection terminal 66 may be positioned away from the distribution cable 24 at a desired location in the fiber optic communications network in order to compensate for span length measurement differences that typically result from network measurement miscalculations, installation errors, and differences between the proposed locations of telephone poles, hand holes, pedestals, etc. and their installed locations.
  • the assembly includes a fiber optic receptacle 34 and a corresponding fiber optic plug 68 .
  • the receptacle 34 is disposed within the overmolded shell 36 at the mid-span access location 20 and the fiber optic plug 68 is attached to the first end of the tether 50 .
  • the receptacle 34 is operable for optically connecting the optical fibers 22 of the distribution cable 24 terminated and connectorized within the mid-span access location 20 with corresponding optical fibers of the tether 50 connectorized within the fiber optic plug 68 .
  • the plug 68 is mounted upon the first end of the tether 50 and is adapted to mate with the corresponding receptacle 34 .
  • the receptacle 34 is operable for optically aligning and maintaining the opposing ferrules 32 , 70 in physical contact. Referring specifically to FIG. 7 , the receptacle 34 and the corresponding plug 68 are shown unmated and with the protective dust caps 40 of the receptacle 34 removed. Although not shown, the plug 68 may likewise be provided with a protective duct cap to protect the ferrule 70 from impact and environmental damage.
  • the plug 68 further comprise an internally threaded coupling nut 72 that is operable for securing the plug 68 to the receptacle 34 following insertion of the plug 68 into the receptacle 34 .
  • the fiber optic plug 68 is shown mated to the receptacle 34 by engaging the threaded coupling nut 72 with the externally threaded end of the receptacle 34 that extends outwardly from the overmolded shell 36 once the dust cap 40 is removed.
  • the exemplary embodiments of a distribution cable assembly comprising at least one mid-span access location 20 and a tether 50 according to the present invention shown and described herein provide a number of significant advantages over previously known distribution cable assemblies and factory-assembled interconnection solutions.
  • the present distribution cable assembly provides the ability to install a distribution cable having one or more mid-span access locations 20 along the length of a distribution cable without absolute accuracy as to the actual location of the mid-span access relative to the desired location of the interconnection or “tap” points needed to connect subscribers to a fiber optic communications network.
  • the distribution cable assembly of the preset invention mitigates and compensates for span length measurement differences between the distribution cable as installed and the pre-engineered distribution cable by providing pre-connectorized tether attach points for optically connecting a connectorized tether having a predetermined or customized length up to several thousand feet.
  • the mid-span access location can be extended from its actual location to a desired location, such as a network access point located at a telephone pole, hand hole or network optical connection terminal.
  • a tether having a customized length can be attached at the mid-span access location and routed to the desired network access point without the need to manage a slack length of excess tether.
  • the mid-span access location 20 and the overmolded shell 36 have a low profile and are sufficiently flexible to permit the distribution cable assembly to be wound onto a cable reel, unreeled, shipped and installed through relatively small diameter conduit in a buried deployment and over sheave wheels and pulleys in an aerial deployment.
  • a distribution cable assembly constructed in accordance with the present invention provides a field technician with the ability to readily connect, disconnect and reconfigure optical connections at a convenient network access point (i.e., “tap point”) regardless of the actual location of the factory-assembled and installed mid-span access location 20 along the length of the distribution cable 24 .
  • the field technician is not required to enter the mid-span access location 20 in order to make subsequent optical connections to the terminated optical fibers 22 of the distribution cable 24 , and the optical connections can be made at any time following initial installation of the distribution cable 24 , thereby deferring additional material and labor costs associated with the tether 50 , optical connection terminal and drop cables.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

A pre-connectorized fiber optic distribution cable assembly includes a plurality of optical fibers and at least one mid-span access location along the length of the distribution cable. At least one of the optical fibers is accessed, terminated and then connectorized at the mid-span access location to an optical connector disposed within a receptacle. The mid-span access location, the accessed, terminated and connectorized optical fiber, the optical connector and at least a portion of the receptacle are encapsulated with a protective overmolded shell. A tether including at least one optical fiber connectorized at a first end of the tether is optically connected to the optical connector through the receptacle. A second end of the tether opposite the first end terminates in a network optical connection terminal, thereby compensating for a span length measurement difference between the actual location of the mid-span access and the desired location of the optical connection terminal.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a pre-connectorized fiber optic distribution cable and, more particularly, to a pre-connectorized fiber optic distribution cable having an overmolded mid-span access location that compensates for span length measurement differences.
2. Description of the Related Art
Optical fiber is increasingly being used for a variety of broadband applications including voice, video and data transmissions. As a result, there is a need for connecting remote locations to a fiber optic distribution cable in order to provide broadband services to an end user, commonly referred to as a subscriber. In this regard, fiber optic networks are being developed that deliver “fiber-to-the-curb” (FTTC), “fiber-to-the-business” (FTTB), “fiber-to-the-home” (FTTH) and “fiber-to-the-premises” (FTTP), referred to generically as “FTTx.” networks. To provide these services to the subscriber, FTTx networks must include a large number of interconnection points, also referred to herein as “tap points,” at which one or more optical fibers of a distribution cable are interconnected with optical fibers of one or more cables leading to a subscriber location. In addition, in order to reduce installation labor costs in FTTx networks, communications service providers are increasingly demanding factory-prepared interconnection solutions, commonly referred to as “plug-and-play” type systems.
To supply the large number of tap points needed and to satisfy the demand for plug-and-play systems, it is apparent that more efficient methods of providing mid-span access locations along the length of a distribution cable are needed. Presently, to perform a mid-span access of a distribution cable, a field technician first removes a section of the cable sheath at a convenient location along a previously installed distribution cable. Once the sheath is removed, the technician gains access to preselected optical fibers through the cable sheath, severs the accessed optical fibers and withdraws a useable length of the terminated optical fibers from the distribution cable. The useable length of the terminated optical fibers provides the field technician with sufficient length to splice one or more optical fibers of a cable comprising a lesser amount of optical fibers than the distribution cable (typically referred to as a “drop cable”) to the preselected optical fibers of the distribution cable. After splicing is completed, the mid-span access location is typically covered using an enclosure designed to protect the splices and the exposed section of the distribution cable. A benefit to this approach is that the distribution cable may be installed without consideration to the proximity of the mid-span access location to a convenient location in the network, such as a telephone pole, hand-hole or optical connection terminal. Since mid-span access is performed in the field following installation of the distribution cable, the field technician may position the mid-span access at any desired location in the network along the length of the distribution cable. The relatively difficult and time consuming process of creating the mid-span access, however, must be accomplished by a highly skilled technician at a significant cost and under less than ideal field working conditions.
Several approaches have been developed to overcome the disadvantages of accessing, terminating and splicing optical fibers in the field. In one approach, the splicing of drop cables to the distribution cable is performed at a factory during the manufacturing of the cable. The preterminated distribution cable, including the main cable, drop cables and associated splice closures, are assembled and wound onto a cable reel to be delivered to the service provider for installation in the network. Accordingly, favorable conditions in the factory for making high quality optical splices may be utilized, thereby increasing splice quality and also reducing the difficulty and expense, and the unfavorable conditions associated with splicing in the field. One disadvantage of this approach is that the drop cables and the relatively bulky and inflexible splice closures are attached to the distribution cable prior to installation. Accordingly, installation through small diameter conduits and over sheave wheels and pulleys is substantially more difficult, and sometimes impossible. Another disadvantage is the fact that if a mid-span access location is unused following installation, the expensive and obtrusive splice closure and drop cables remain attached to the distribution cable. More importantly, drop cables attached to the distribution cable in the factory during manufacture have a predetermined length. As a result, improper location of the mid-span access location due to differences between the pre-engineered span length measurement and the actual span length measurement following installation of the distribution cable can only be mitigated using the predetermined length of drop cable provided from the factory. Such differences, referred to herein as “span length measurement differences” typically result from network measurement miscalculations, installation errors, and differences between the proposed locations of telephone poles, hand holes, pedestals, etc. and their installed locations. If the mid-span access location on the installed distribution cable is located too far from the desired location, the drop cable may not have sufficient length. On the other hand, if the mid-span access location on the installed distribution cable is located too near the desired location, an excessive amount of drop cable slack must be managed. In contrast, a pre-connectorized fiber optic distribution cable having a predetermined mid-span access location that provides access to the connectorized optical fibers allows a field technician to readily interconnect a tether having a customized length to the distribution cable following installation to compensate for any span length measurement differences.
In another factory-manufactured approach, preselected optical fibers are accessed, severed and prepared “splice-ready” at the mid-span access location for splicing to optical fibers of one or more drop cables in the field following installation of the distribution cable. The mid-span access location in this approach is encapsulated with a protective structure (e.g., closure) for cable reeling, shipping, cable unreeling and installation that is removed and discarded to gain access to the splice-ready optical fibers following installation of the distribution cable. The optical fibers of the drop cables are then spliced to the splice-ready optical fibers at the mid-span access location and a protective splice closure is added around the mid-span access location to protect the optical splices and the exposed section of the distribution cable. There are several advantages to splicing the drop cables to the distribution cable in the field following installation of the distribution cable. First, the drop cables can be added only when needed in order to defer labor and material costs. Second, drop cables of customized length can be used to mitigate improper location of the mid-span access location due to span length measurement differences. However, there are disadvantages as well. While terminating and preparing splice-ready optical fibers in the factory significantly reduces the amount of labor required to connect subscribers to a mid-span access location, it is still necessary to splice the optical fibers of the distribution cable to the optical fibers of the drop cables in the field, oftentimes at an inconvenient location or under less than ideal working conditions. Another disadvantage is that a relatively expensive splice closure must be added to the distribution cable assembly at the mid-span access location in the field to protect the optical splices and the exposed section of the distribution cable, thereby increasing installation complexity as well as labor and material costs. In contrast, a pre-connectorized fiber optic distribution cable having a predetermined mid-span access location that provides access to the connectorized optical fibers allows a field technician to readily interconnect a tether having a customized length to the distribution cable following installation only when needed and without the addition of a relatively expensive splice closure.
Accordingly, it would be desirable to provide a factory-assembled fiber optic distribution cable for accessing one or more preterminated and pre-connectorized optical fibers at a mid-span access location having an outer diameter that is only minimally larger than the outer diameter of the distribution cable. It would also be desirable to provide a pre-connectorized fiber optic distribution cable having one or more low profile mid-span access locations that is suitable for both buried installations (e.g., through small-diameter conduit) and aerial installations (e.g., over sheave wheels and pulleys). It would also be desirable to provide a pre-connectorized fiber optic distribution cable that allows a field technician to readily interconnect a tether having a customized length to the distribution cable following installation to mitigate improper location of the mid-span access location due to span length measurement differences. It would further be desirable to provide a pre-connectorized fiber optic distribution cable that allows a field technician to readily interconnect a tether having a customized length to the distribution cable following installation only as the mid-span access location is needed to provide service to subscribers without the addition of a relatively expensive splice closure.
BRIEF SUMMARY OF THE INVENTION
To achieve the foregoing and other objects, and in accordance with the purposes of the invention as embodied and broadly described herein, the present invention provides various embodiments of a factory-assembled pre-connectorized fiber optic distribution cable having at least one predetermined mid-span access location along the length of the cable for providing access to at least one, and preferably a plurality of, preterminated optical fibers. Each such mid-span access location is fully protected during cable reeling and unreeling, during the installation process, and until needed by an injection molded encapsulating shell, also referred to herein as an “overmolded” shell. The pre-connectorized fiber optic distribution cable is configured to have a low profile (i.e., small outer diameter) and relative flexibility for installation through a small-diameter conduit system or around aerial installation sheave wheels and pulleys. Each mid-span access location provides access to one or more preterminated and pre-connectorized optical fibers for interconnecting at least one pre-connectorized drop cable to the distribution cable. In preferred embodiments, each mid-span access location provides access to a plurality of optical fibers terminating in a multi-fiber ferrule, such as a mechanically transferable (MT) ferrule, for interconnection with a pre-connectorized tether having a customized length.
In the various exemplary embodiments described herein, the present invention comprises a fiber optic distribution cable having at least one predetermined mid-span access location at which a plurality of optical fibers accessed from the distribution cable are terminated and pre-connectorized (i.e., connectorized in the factory) with a multi-fiber ferrule operable for receiving a connectorized drop cable or branch cable, and in particular, a tether. Although the drawing figures depict only a single mid-span access location, it is envisioned that any number of factory-prepared access locations may be provided on a distribution cable to accommodate a customized distribution and termination solution for a pre-engineered fiber optic communications network. At each mid-span access location, a plurality of optical fibers are terminated and furcated from the remaining optical fibers of the distribution cable. The preterminated optical fibers are connectorized and encapsulated within a protective overmolded shell to be subsequently optically connected to respective optical fibers of one or more fiber optic drop cables or fiber optic branch cables. The optical fibers of the drop cables or branch cables preferably are likewise connectorized so that the distribution cable and the drop cables or branch cables provide a true plug-and-play type interconnection system, thereby enabling a less experienced and less skilled field technician to readily install the fiber optic communications network. The drop cables may be used to connect an optical fiber of the distribution cable to a subscriber premises, thereby extending an all-optical communications network entirely to the subscriber premises. The branch cable may be used to connect the preterminated optical fibers of the distribution cable to another distribution point, such as a network optical connection terminal. In the exemplary embodiments shown and described herein, the fiber optic drop cable or branch cable is a tether having a customized length terminating in an array of optical connection nodes, such as a multi-port connection terminal. As used hereinafter in the description of the exemplary embodiments, the terms “fiber optic drop cable” and “drop cable” should be understood to include any fiber optic cable, monotube, tether or like conduit for routing and protecting at least one optical fiber, including a fiber optic branch cable or secondary distribution cable.
In one embodiment, the present invention provides a pre-connectorized fiber optic distribution cable assembly comprising a distribution cable having a plurality of optical fibers and at least one mid-span access location positioned along the length of the distribution cable. At least one optical fiber of the distribution cable is accessed and terminated from the distribution cable at the mid-span access location. The assembly further comprises at least one optical connector mounted upon the end of the accessed and terminated optical fiber, a receptacle for receiving the optical connector and providing access to the optical connector without entering the mid-span access location, and a protective overmolded shell formed from a relatively flexible material encapsulating the mid-span access location and securing the receptacle within the shell. The assembly may further comprise a tether having a customized length that is pre-connectorized and interconnected in the field with the optical connector disposed within the receptacle. The tether is operable for mitigating errors in the actual location of the mid-span access along the length of the installed distribution cable, and in particular, span length measurement differences in a pre-engineered fiber optic communications network.
In another embodiment, the present invention provides a fiber optic distribution cable assembly comprising a plurality of optical fibers and one or more factory-assembled mid-span access locations along the length of the distribution cable. The plurality of optical fibers are accessed and terminated from the distribution cable at each mid-span access location and connectorized with a multi-fiber ferrule. The assembly further comprises a receptacle for receiving and aligning the multi-fiber ferrule with an opposed multi-fiber ferrule mounted upon the end of a fiber optic cable, and a protective overmolded shell formed from a relatively flexible material encapsulating the mid-span access location and securing the receptacle within the shell. The multi-fiber ferrule of the distribution cable is interconnected with the multi-fiber ferrule mounted upon the end of the cable in the field without entering the mid-span access location. Preferably, the fiber optic cable is a tether having a customized length that is interconnected in the field with the distribution cable to compensate for errors in the actual location of the mid-span access along the length of the installed distribution cable, and in particular, span length measurement differences in a pre-engineered fiber optic communications network.
In a farther embodiment, the present invention provides a method for mitigating a span length measurement difference in a pre-engineered fiber optic communications network employing a fiber optic distribution cable assembly comprising a distribution cable having a plurality of optical fibers disposed within a sheath and at least one mid-span access location. The method comprises removing a section of the sheath of the distribution cable at the mid-span access location, accessing at least one of the plurality of optical fibers of the distribution cable within the sheath of the distribution cable, terminating the at least one optical fiber accessed from within the removed section of the sheath, connectorizing the at least one optical fiber, overmolding the mid-span access location such that the connectorized optical fiber is accessible for subsequent interconnection with a connectorized optical fiber mounted on a first end of a tether, installing the distribution cable assembly in the pre-engineered fiber optic communications network, optically connecting the connectorized first end of the tether to the connectorized optical fiber of the distribution cable at the mid-span access location, and positioning a second end of the tether opposite the first end at a desired location to compensate for the span length measurement difference.
In a still further embodiment, the present invention provides a pre-connectorized fiber optic distribution cable for use in a pre-engineered optical communications network. The pre-connectorized distribution cable comprises a plurality of predetermined mid-span access locations along the length of the distribution cable that provide access to at least one terminated and pre-connectorized optical fiber disposed within a receptacle through a low-profile, relatively flexible overmolded shell that encapsulates the mid-span access location and the receptacle. The pre-connectorized distribution cable may be readily deployed in the pre-engineered optical communications network in a factory-assembled configuration to be interconnected with at least one fiber optic drop cable leading to a subscriber premises, or with a fiber optic branch cable or tether leading to a network optical connection terminal.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other features, aspects and advantages of the present invention are better understood when the following detailed description of the invention is read with reference to the accompanying drawings, in which:
FIG. 1 is a perspective view of a pre-connectorized fiber optic distribution cable assembly comprising a mid-span access location and a protective overmolded shell in accordance with an exemplary embodiment of the present invention shown with a connector access cover attached to the overmolded shell;
FIG. 2 is a perspective view of the pre-connectorized fiber optic distribution cable assembly of FIG. 1 shown with the connector access cover removed;
FIG. 3 is a perspective view of the pre-connectorized fiber optic distribution cable assembly of FIG. 2 shown with a tether having a first end optically connected to the distribution cable and a second end terminating in a first embodiment of a multi-port connection terminal;
FIG. 4 is a perspective view of the pre-connectorized fiber optic distribution cable assembly of FIG. 2 shown with a tether having a first end optically connected to the distribution cable and a second end terminating in a second embodiment of a multi-port connection terminal;
FIG. 5 is a perspective view of the pre-connectorized fiber optic distribution cable assembly of FIG. 2 shown with a tether having a first end optically connected to the distribution cable and a second end terminating in a third embodiment of a multi-port connection terminal;
FIG. 6 is a perspective view of the pre-connectorized fiber optic distribution cable assembly of FIG. 2 shown with a fiber optic drop cable having a first end optically connected to the distribution cable and a second end optically connected to a network optical connection terminal;
FIG. 7 is an exploded perspective view of an exemplary fiber optic receptacle and fiber optic plug adapted for use with the fiber optic distribution cable assembly of FIG. 2 shown in an unmated configuration; and
FIG. 8 is a perspective view of the fiber optic receptacle and fiber optic plug of FIG. 7 shown in a mated configuration.
DETAILED DESCRIPTION OF THE INVENTION
The present invention will now be described more fully hereinafter with reference to the accompanying drawings in which exemplary embodiments of the invention are shown. However, this invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. These exemplary embodiments are provided so that this disclosure will be both thorough and complete, will fully convey the scope of the invention to those skilled in the art, and will enable one of ordinary skill in the art to make, use and practice the invention without undue experimentation. Like reference numbers refer to like elements throughout the various drawings.
The pre-connectorized fiber optic distribution cable of the present invention comprises at least one mid-span access location along the length of the distribution cable having a protective overmolded shell for providing access to at least one pre-connectorized optical fiber terminating in a multi-fiber ferrule. In preferred embodiments, the pre-connectorized distribution cable comprises a plurality of predetermined mid-span access locations spaced apart along the length of the distribution cable, thereby providing multiple interconnection points, also referred to herein as “tap points,” for subsequently interconnecting a connectorized fiber optic drop cable, branch cable or tether to the distribution cable in the field. The low-profile and relative flexibility of the overmolded shell permit the distribution cable assembly to be wound upon a reel, unreeled and installed through small diameter conduits and over sheave wheels and pulleys in buried and aerial deployments. The pre-connectorized distribution cable is manufactured and assembled in a factory, thus eliminating the need for first installing the distribution cable and then performing a mid-span access and optical splicing in the field. The distribution cable assembly of the present invention offers a provider of communication services factory-prepared and pre-connectorized mid-span access locations having an outer diameter that is only minimally larger than the outer diameter of the distribution cable. Once the distribution cable is installed, a connector access cover is removed as needed to provide access to at least one optical connector, and in preferred embodiments a multi-fiber ferrule, for interconnecting a connectorized fiber optic drop cable branch cable or tether.
The distribution cable assembly of the present invention overcomes the difficulties encountered when installing a conventional distribution cable having a plurality of mid-span access locations at predetermined locations spaced along the length of the distribution cable. The distribution cable assemblies described below minimize field labor and material costs and achieve high accuracy tap point locations by utilizing a tether having a customized length that mitigates span length measurement differences. In use, a distribution cable assembly in accordance with the invention is installed such that the factory-assembled mid-span access location is positioned short (i.e., upstream) of a telephone pole, hand hole or network optical connection terminal, such as a pedestal or other termination enclosure. Once the distribution cable assembly is installed, the installer can measure exactly what length of drop cable or tether is needed to extend the mid-span access location to the desired tap point location. A connectorized drop cable or tether having a predetermined length, or more preferably a customized length, is used to compensate for the span length measurement difference between the actual location of the mid-span access and the desired location of the tap point. The overmolded shell seals the mid-span access location and the connectorized optical fibers, while permitting the connectorized drop cable or tether to be optically connected to the distribution cable without the need to enter a complex and relatively expensive splice enclosure. Furthermore, the connectorized drop cable or tether can be optically connected to the distribution cable only as needed to provide service to subscribers of the communications service, thereby deferring the additional labor and material costs of interconnecting the distribution cable with a network optical connection terminal.
Throughout the specification, the term “distribution cable” is intended to include all types of fiber optic cables comprising a plurality of optical fibers within a cable jacket including, but not limited to, loose tube, monotube, central tube, tight buffered, ribbon, armored, and the like. In the exemplary embodiments shown and described herein, the distribution cable comprises a cable sheath, one or more buffer tubes, an optical transmission component and a strength component. The distribution cables described and shown herein comprise a plurality of buffer tubes containing ribbonized optical fibers (also referred to as optical fiber ribbons) for exemplary purposes only. The distribution cable may also comprise one or more buffer tubes containing individual optical fibers that may be ribbonized prior to terminating the optical fibers in a multi-fiber connector. Typically, optical fiber ribbons consist of multiple optical fibers (for example six, eight or twelve) that are bound together in a resin material to form a flat ribbon. The optical fiber count available at each mid-span access location may vary from 1 up to at least 72 fibers using existing multi-fiber ferrules. It is anticipated, however, that most mid-span access locations will provide access to between 4 and 12 optical fibers. In various embodiments, the optical fibers may be color-coded for easy identification. It is understood that the optical fibers may be either single mode or multimode and that the optical fibers, ribbonized or not, may terminate in one or more connectors. Preferably, however, the optical fibers terminate in a single multi-fiber ferrule, such as a Mechanically Transferable (MT) style ferrule. In an alternative embodiment, the terminated optical fibers may be fanned out and connectorized with a plurality of single fiber connectors. It is understood that other cable types may be used in conjunction with the present invention. The distribution cable is preferably designed to provide stable performance over a wide range of temperatures and to be compatible with any telecommunications grade optical fiber.
In the exemplary embodiments shown and described herein, the multi-fiber connector shown is a generic MT ferrule, however, other multi-fiber ferrules such as MTP, MPO and MT-RJ may be used without departing from the scope of the invention. The MT ferrule is mounted upon the ends of the terminated optical fibers accessed from a predetermined mid-span access location along the length of the distribution cable. The MT connector provides a semi-permanent connection between the terminated optical fibers and optical fibers associated with a closure or drop cable(s). If necessary, the MT connector may be connected and disconnected in new configurations as desired. By providing a connector, as opposed to splicing optical fibers at a mid-span access location, miscalculations in the placement of the access location along the cable length may be adjusted by connecting connectorized drop cables or tethers having predetermined or customized lengths to the connector. If it is desired to later increase the length of a drop cable or tether, or to interconnect the distribution cable with something other than a drop cable or tether, the existing drop cable or tether can be disconnected and replaced without having to perform field optical fiber splicing at the mid-span access location.
Referring now to FIG. 1, the pre-connectorized fiber optic distribution cable assembly of the present invention includes at least one, and preferably a plurality of, predetermined mid-span access locations 20 along the length of the distribution cable 24. The mid-span access locations 20 are “predetermined” because the distribution cable is typically deployed in a pre-engineered optical communications network wherein the positions of the mid-span access locations along the length of the distribution cable are selected to be short (i.e., upstream) of the telephone pole, hand hole or network optical connection terminal (e.g., pedestal or other optical connection enclosure) at which the network designer desires the tap points to be located. As a result, the location of the accessed, terminated and connectorized optical fibers 22 can be extended from the actual mid-span access location to the desired location of the tap points to compensate for span length measurement differences that result from network measurement miscalculations, installation errors, and differences between the proposed locations and the actual locations of the corresponding telephone poles, hand holes and network optical connection terminals. In the exemplary embodiment shown, optical fibers 22 of the distribution cable 24 in the form of an optical fiber ribbon are accessed and terminated at one of the predetermined mid-span access locations 20 along the length of the fiber optic distribution cable 24. In the embodiment shown, the fiber optic distribution cable 24 comprises a plurality of buffer tubes 26 disposed within a cable jacket or sheath 28. The terminated optical fibers 22 are routed out of their respective buffer tube 26 via a buffer tube transition piece 30 at a convenient furcation point. The optical fibers 22 may be accessed, terminated (i.e., severed), transitioned and furcated in any suitable manner know to those of ordinary skill in the art, for example, in the manner described and shown in co-pending U.S. patent application Ser. No. 10,724,244, which is assigned to the assignee of the present invention. Regardless, the optical fibers 22 terminate in a multi-fiber connector, and in particular to a multi-fiber ferrule 32, that is mounted upon the ends of the optical fibers 22. As is well known in the art, the optical fibers 22 may be direct-connectorized to the ferrule 32, or the optical fibers 22 may be mechanically or thermally (e.g., fusion) spliced to a short length of connectorized optical fibers commonly referred to in the art as a pigtail. The ferrule 32 is received or disposed within a robust receptacle 34, such as the connector receptacle shown and described in U.S. Pat. No. 6,579,014, issued Jun. 17, 2003 and entitled “Fiber Optic Receptacle,” and U.S. patent application Ser. No. 10/924,525, filed Aug. 24, 2004 and entitled “Fiber Optic Receptacle and Plug Assemblies,” which are both assigned to the assignee of the present invention. A protective shell 36 is injection molded around the mid-span access location 20, a suitable length of the sheath 28 of the distribution cable 24 at each end of the mid-span access location, and the receptacle 34 containing the ferrule 32. The shell 36 may be injection molded in any suitable manner, for example using a two-piece clamshell molding tool with the mid-span access location 20, the ends of the sheath 28 and the receptacle 34 suspended therebetween, and is referred to herein as being “overmolded” around the distribution cable 24 at the mid-span access location 20. The protective overmolded shell 36 is relatively flexible so that the distribution cable can be readily installed through small-diameter conduit for buried deployments and over sheave wheels and pulleys for aerial deployments. The overmolded shell 36 provides physical and environmental protection to the mid-span access location 20, including the exposed section of the distribution cable 24, the terminated optical fibers 22 and the ferrule 32, as well as sealing the ends of the sheath and the receptacle 34.
Still referring to FIG. 1, the overmolded shell 36 is shaped and designed such that a cover 38 is removable following installation of the distribution cable assembly in order to expose the receptacle 34 and thereby provide access to the ferrule 32. A receptacle cap 40 may be fastened, for example threaded, onto the receptacle 34 underneath the protective cover 38 in order to protect the ferrule 32 and prevent contaminants from entering the receptacle 34. The protective cover 38 is secured to the overmolded shell 36 during installation and removed only when the mid-span access location 20 is needed to interconnect a fiber optic drop cable or tether. In an alternative embodiment, the overmolded shell 36 and receptacle cap 40 are sufficient to protect the receptacle 34 and ferrule 32 during handling, shipping and installation, and therefore, the protective cover 38 is not needed. Thus, the overmolded shell 36 may be designed without features for receiving or securing a cover 38. Referring to FIG. 2 wherein the mid-span access location 20 is shown with the protective cover 38 removed, the ferrule 32, such as the multi-fiber MT ferrule shown, is optically connected in a known manner to a multi-fiber ferrule of a fiber optic drop cable (including a branch cable or secondary cable) or tether, as will be described further hereinafter. With the protective cover 38 removed, the mid-span access location 20, and in particular the exposed section of the distribution cable 24, remain encapsulated by the overmolded shell 36. In all embodiments, the overmolded shell 36 covers a relatively short length of the opposed ends of the sheath 28 adjacent the mid-span access location 20. In preferred embodiments, the overmolded shell 36 covers at least about 1 inch of each end of the sheath 28 in order to prevent the ingress of water along the distribution cable 24. In certain instances in which the distribution cable 24 and the mid-span access location 20 are flexed (for example during reeling or installation), the ends of the overmolded shell 36 may separate slightly from the cable sheath 28 along contact areas 42, thereby forming a slight void for water to enter. However, overmolding the shell 36 around the cable sheath 28 for a distance greater than about 3 inches will ensure that water does not penetrate to the exposed section of the distribution cable 24. Although not shown, water-blocking clamps may be secured around the distribution cable 24 if desired to further prevent water ingress. The water-blocking clamps may also function as bonding surfaces to further secure the overmolded shell 36 in position.
Typically, the length of the mid-span access location 20 and the overmolded shell 36 ranges from about 12 to 36 inches. In embodiments in which the terminated optical fibers 22 are direct connectorized, the exposed section of the distribution cable 24 has a length sufficient to access about 12 to 24 inches of optical fiber from the distribution cable 24 for direct connectorization, and if necessary, re-connectorization to the ferrule 32. In embodiments in which the terminated optical fibers 22 are spliced to a length of optical fiber comprising a ferrule mounted upon one of its ends (i.e., a “pigtail”), the mid span access location 20 may have a length up to about 36 inches. The flexibility of the overmolded shell 36 may vary as a result of its length and the physical properties of the injection molding material(s) utilized.
Referring still to FIGS. 1 and 2, each mid-span access location 20 is created by removing a section of the cable sheath 28 to access the appropriate buffer tube 26 at two or more locations. In the exemplary embodiment shown, the fiber optic distribution cable 24 includes at least one buffer tube 26 disposed within the cable sheath 28. As is known by those skilled in the art, the distribution cable 24 as shown and described herein may include any known fiber optic cable having a fiber count greater than that of a drop cable and comprising at least one tubular body for containing the optical fibers 22 to be terminated at the mid-span access location 20. In various embodiments, the distribution cable 24 includes a water-blocking compound, such as a gel, to prevent water penetration into the buffer tubes 26. However, the distribution cable 24 may also be a “dry-tube” cable. Each buffer tube 26 may include any number of individual optical fibers or ribbonized optical fibers, for example, ribbons of four, six, eight and twelve optical fibers may be used.
To create a low-profile, mid-span access location 20 capable of being installed through relatively small diameter conduit (e.g., about 2 inch diameter) and over sheave wheels and pulleys, a section of the cable sheath 28 is severed and removed to expose the underlying buffer tubes 26. The exposed length of the buffer tubes 26 may vary according to the length of the optical fibers needed to direct-connectorize, mechanically splice, fusion splice or otherwise optically connect the terminated optical fibers 22 to the ferrule 32. However, in a preferred embodiment the length of the terminated optical fibers 22 ranges between about 10 and about 30 inches. In a more preferred embodiment, the length ranges between about 14 and about 20 inches. Accordingly, the exposed length of the buffer tube 26 allows for about 10 to about 30 inches of ribbon optical fiber to be withdrawn from the buffer tube 26 for connectorization, as well as providing sufficient slack fiber length for subsequent repair or re-connectorization if necessary. The cable sheath 28 may be removed by completely or partially ring-cutting the sheath 28 at spaced-apart locations and slitting the sheath 28 in a manner well known in the art without damaging the underlying buffer tubes 26.
In the exemplary embodiment shown in FIGS. 1 and 2, two short sections of the appropriate buffer tube 26 are removed at each mid-span access location 20. A downstream section 44 is formed by ring-cutting the buffer tube 26 and completely removing about a 1 to 5 inch section of the buffer tube 26 between the ring cuts. The appropriate underlying optical fibers 22 are then severed. As shown, the optical fibers 22 are ribbonized for convenience. However, the optical fibers 22 may be individual optical fibers that are ribbonized prior to connectorization to the ferrule 32, or may be individual optical fibers that are inserted into the fiber bores of the ferrule 32 in a known manner. Another ring cut is then made at a second section of the buffer tube 26 about 9 to 12 inches upstream of the downstream section 44. The upstream section, which is obscured in FIGS. 1 and 2 by buffer tube transition piece 30, may be formed by making one ring cut and sliding the portion of the buffer tube 26 between the two sections downstream until it rests against the end of the buffer tube 26 created by the first ring cut. The upstream section may also be formed by ring-cutting the buffer tube 26 in two places and removing about 1 to about 5 inches of the buffer tube 26 at the upstream section. In another embodiment, the buffer tube 26 may be accessed in two places using a standard No-Slack Optical Fiber Access Tool (NOFAT) available from Corning Cable Systems LLC of Hickory, N.C. The NOFAT tool is suitable for use in locations in which a minimal amount of cable slack can be obtained and the buffer tubes 26 remain wrapped (e.g., spiral-wrapped) around a central member. The NOFAT tool provides a guide that allows a scalpel to slice open a section of a buffer tube 26 without damaging the underlying optical fibers. The NOFAT tool is compatible with standard Corning Cable Systems buffer tube sizes. In any access method employed, the purpose is to remove portions of the buffer tube 26 so that one or more optical fibers 22 may be identified and severed at a downstream location and fished out of an upstream location to provide a predetermined length of the optical fibers 22 for connectorization to ferrule 32.
In an alternative embodiment, the appropriate buffer tube 26 may be accessed at three or more locations, typically about 10-15 inches apart. As will be readily understood by those skilled in the art, three or more access locations are specifically advantageous for withdrawing longer lengths of optical fiber from a buffer tube filled with a water-blocking gel. Once the access locations have been formed, the appropriate optical fibers 22 are identified and severed at the furthest downstream buffer tube access point. The severed optical fibers 22 are then fished out of the same buffer tube 26 at the next upstream access point, thereby exposing about 12 to about 14 inches of fiber length. The severed optical fibers 22 are then fished out of the same buffer tube 26 at the next upstream access point, thereby exposing a total of about 20 to about 30 inches of fiber length. The process may be repeated, without violating the minimum bend radius of the optical fibers, until the desired length of the optical fibers 22 is removed from the buffer tube 26 and available for connectorization. After removing the optical fibers 22 from the buffer tube 26, any water-blocking gel (if present) is cleaned from the optical fibers, for example using an alcohol-based solvent.
Once the optical fibers 22 have been withdrawn from the corresponding buffer tube 26, the optical fiber ribbon (as shown herein) is fed through an opening formed in the buffer tube transition piece 30. The buffer tube transition piece 30 is preferably made of rubber, soft plastic or other relatively flexible material to permit the buffer tube transition piece 30 to be attached and conform to the curvature of the buffer tube 26. The buffer tube transition piece 30 is positioned to surround and thereby protect the exposed upstream access point of the buffer tube 26. In a preferred embodiment, the buffer tube transition piece 30 is C-shaped and installed over the exposed upstream access point where the optical fiber ribbon exits the buffer tube 26. The buffer tube transition piece 30 defines an optical fiber opening operable for retaining and aligning the optical fibers 22. Once the optical fiber ribbon has been routed from the buffer tube 26 to the ferrule 32, the buffer tube transition piece 30 may be filled with a sealing material, such as a silicone elastomer or epoxy material, to prevent any injection molding material from entering the buffer tube 26 at the upstream section, to resist torque in the transition piece 30, and to prevent any water-blocking gel that may be present from leaking out of the buffer tube 26. The downstream access location 44 may likewise be covered, for example with foil or tape, to prevent any water-blocking gel that may be present from leaking out of the buffer tube 26 and to prevent any injection molding material from entering the buffer tube 26.
The terminated optical fibers 22 shown routed through the buffer tube transition piece 30 may be inserted into a protective tube 46 consisting of an outer jacket, Kevlar and an inner tube. The protective tube 46 may be inserted into the opening formed through the buffer tube transition piece 30 and bonded with epoxy. The opening should be positioned downstream of the origination of the optical fibers so that the optical fibers are smoothly transitioned without violating their minimum bend radius. The severed ends of the optical fibers 22 are dressed and then terminated with the multi-fiber ferrule 32, for example by direct-connectorization, and polished if necessary.
Referring again to FIG. 1, the pre-connectorized distribution cable assembly is shown with a typical mid-span access location 20 fully assembled and ready to be installed. The protective overmolded shell 36 is operable for sealing and protecting the mid-span access location 20, the pre-connectorized optical fibers 22 and the receptacle 34 during shipping, handling and installation until the mid-span access location 20, and in particular the receptacle 34, is needed to interconnect a drop cable or tether with the distribution cable 24 to provide communications service to a subscriber. In an alternative embodiment, at least one ripcord (not shown) may extend a predetermined distance beyond each end of the overmolded shell 36. The ripcord is operable for removing the protective overmolded shell 36 after cable installation if necessary to repair (e.g., re-connectorize) the optical fibers or replace the ferrule 32 or receptacle 34. An over-molding wrap (not shown), for example foil, tape, shrink-wrap or water-blocking material may be disposed immediately beneath the overmolded shell 36 prior to overmolding to provide a penetration barrier for the molding material. As previously mentioned, the mid -span access location 20 is overmolded by clamping or otherwise securing a mold tool around the distribution cable 24 at the mid-span access location 20 that defines one or more cavities into which the molding material can flow. The tool comprises a plurality of injection ports for injecting the molding material. The molding material may include, but is not limited to, any polymeric material that may be injected in a liquid form, will flow into any void defined between the mold tool and the distribution cable 24, and will cure to form a substantially hardened protective shell, for example a two-part polyurethane or thermoplastic material. The molding material bonds to the over-molding wrap (if present) and to a suitable length of the cable sheath 28 adjacent each end of the mid-span access location 20, as previously described.
Referring now to FIG. 3, the distribution cable assembly having a mid-span access location 20 is shown with a first embodiment of a multi-port connection terminal 48 optically connected to the distribution cable 24 through the receptacle 34. The mid-span access location 20 provides a means for optically connecting one or more optical fibers contained within a tether 50 to the one or more terminated optical fibers 22 of the fiber optic distribution cable 24. As used herein, the term “tether” is intended to include any fiber optic cable or tubular body having one or more optical fibers contained within the tubular body. The remaining optical fibers of the distribution cable 24 are managed and routed separately from the terminated optical fibers 22 such that they extend uninterrupted through the distribution cable 24 and are available for terminating at other downstream mid-span access locations 20. The tether 50 may have a predetermined length ranging from several feet to several thousand feet that is sufficient to route the multi-port connection terminal 48 to any desired location in the optical communications network downstream or upstream of the mid-span access location 20. Alternatively, the tether 50 may be constructed with a customized length specifically designed to route the multi-port connection terminal 48 at a particular location, such as a telephone pole, hand hole or optical connection terminal (e.g., pedestal) upstream or downstream of the mid-span access location 20. In a particular example, the distance between the mid-span access location 20 and the desired location of the multi-port connection terminal 48 is measured following installation of the distribution cable 24 and the customized length of the tether 50 is selected to route and position the multi-port connection terminal 48 at the desired location without any slack length of the tether 50. As a result, management of the slack length of the tether 50 is avoided and the aesthetic appearance of the installation of the distribution cable and multi-port connection terminal 48 is improved. Importantly, the terminated and connectorized optical fibers 22 of the distribution cable 24 may be interconnected with the tether 50 at any time subsequent to the initial deployment of the distribution cable assembly, thereby deferring the initial cost of the tether 50, the multi-port connection terminal 48, and any drop cable extending to a subscriber premises. As is well known and understood in the art, the optical fibers of the tether 50 and the terminated optical fibers 22 of the distribution cable 24 may be interconnected through any known optical connector type, including a single multi-fiber connector or one or more single-fiber connectors. Thus, the distribution cable assembly provides a convenient location for interconnecting one or more optical fibers of an installed distribution cable 24 with one or more optical fibers of a tether 50, and subsequently interconnecting the optical fibers of the tether 50 with one or more optical fibers of a drop cable leading to a subscriber premises or a branch cable leading to a network optical connection terminal in a fiber optic communications network.
The multi-port connection terminal 48 provides access to one or more connectorized optical fibers optically connected to the preterminated optical fibers 22 of the distribution cable 24. As such, the multi-port connection terminal 48 may be used to readily interconnect optical fibers of one or more connectorized fiber drop cable or branch cables with the preterminated optical fibers 22 of the fiber optic distribution cable 24 at a desired location in a fiber optic communications network. In various embodiments, the multi-port connection terminal 48 may be connected to one or more drop cables or branch cables extending from a downstream location, such as a subscriber premises or an aerial, buried or above-ground network access point (e.g., aerial closure, below-grade closure or pedestal). In particular, the multi-port connection terminal 48 allows a field technician to readily connect, disconnect or reconfigure one or more drop cables extending to subscriber premises without disturbing the remaining drop cables. The multi-port connection terminal 48 may be routed separately from the distribution cable 24 to a desired location in the fiber optic communications network in order to compensate for span length measurement differences that typically result from network measurement miscalculations, installation errors, and differences between the proposed locations of telephone poles, hand holes, pedestals, etc. and their installed locations.
The multi-port connection terminal 48 in the embodiment shown in FIG. 3 comprises a base 52 and a removable cover 54, with each preferably made of a lightweight and rigid material, such as aluminum or plastic. The embodiment shown in FIG. 3 comprises four optical connection ports 56 for interconnecting the terminated optical fibers 22 of the distribution cable 24 (via the optical fibers of the tether 50) with optical fibers of drop cables or branch cables. In one embodiment, each connection port 56 is operable for receiving one or more connectorized optical fibers of the tether 50 on the inside of the connection port 56, and for receiving one or more connectorized optical fibers of a fiber optic drop cable or branch cable on the outside of the connection port 56. As used herein, the terms “optical connection port,” “connection port” and “connection port” are intended to broadly include an opening through which the optical fibers of the tether 50 are optically connected to the optical fibers of a drop cable or branch cable, whether pre-connectorized, connectorized in the field (e.g., using field-installable connectors) or mechanically or fusion spliced in the field. In various embodiments, each connection port 56 may also include a factory-installed connector sleeve (not shown) for aligning and maintaining mating connectors or ferrules in opposing physical contact. Preferably, each connection port 56 further provides an environmental seal adjacent the optical interface between the optical fibers of the tether 50 and the drop cable or branch cable. Each connection port 56 may also serve to transfer any tensile load on the cables to the base 52 or the cover 54 of the multi-port connection terminal 48. While four optical connection ports 56 are shown for illustrative purposes, it is envisioned that the multi-port connection terminal 48 may have any size or shape suitable for holding any number of optical connection ports 56. In addition, the multi-port connection terminal 48 defines a cable entry port 58 for receiving the tether 50. A heat deformable material 60 may be used to provide an environmental seal and a smooth transition between the different outer diameters of the tether 50 and the cable entry port 58 of the multi-port connection terminal 48.
Referring now to FIG. 4, a perspective view of a typical mid-span access location 20 having a tether 50 attached to the distribution cable 24 that terminates in a second embodiment of a multi-port connection terminal 60 is shown. In this embodiment, the multi-port connection terminal 60 is overmolded, thereby eliminating access to the optical fibers of the tether 50 and the optical connection ports 56 within the multi-port connection terminal 60 for repair or replacement. The overmolded multi-port connection terminal 60 includes the advantages of overmolding previously described, while still providing external access to one or more connectorized optical fibers of the tether 50 that are optically connected to the terminated optical fibers 22 of the distribution cable 24 through the ferrule 32 disposed within the receptacle 34 located at the mid-span access location 20. The overmolded multi-port connection terminal 60 may be used to readily interconnect optical fibers of one or more connectorized fiber optic drop cables or branch cables with the terminated optical fibers 22 of the distribution cable 24 at a desired location in a fiber optic communications network, as previously described. In various embodiments, the overmolded multi-port connection terminal 60 may be optically connected to one or more drop cables or branch cables extending from a downstream location, such as a subscriber premises or an aerial, buried or above-ground network access point (e.g., aerial closure, below-grade closure or pedestal). In particular, the overmolded multi-port connection terminal 60 allows a field technician to readily connect, disconnect or reconfigure one or more drop cables extending to subscriber premises without disturbing the remaining drop cables. The overmolded multi-port connection terminal 60 may be routed separately from the distribution cable 24 to a desired location in the fiber optic communications network in order to compensate for span length measurement differences that typically result from network measurement miscalculations, installation errors, and differences between the proposed locations of telephone poles, hand holes, pedestals, etc. and their installed locations.
As shown, the overmolded multi-port connection terminal 60 comprises four optical connection ports 56 for providing access to the connectorized optical fibers of the tether 50. However, the overmolded multi-port connection terminal 60 may have any shape and may define any number of connection ports 56, including for example, the (N×M) array of connection ports 56 shown in FIGS. 3 and 4 or the linear array of connection ports 56 shown in FIG. 5. In one embodiment, the optical fibers of the tether 50 may be connectorized and disposed within receptacles, such as adapter sleeves, retained within the connection ports 56. The overmolded structure may define recesses 62 that protect the connection ports 56, and in particular the connectors disposed within the connection ports 56, from damage caused by impact during shipping, handling and installation.
Referring now to FIG. 6, a perspective view of a pre-connectorized distribution cable assembly having an overmolded mid-span access location 20 and a tether 50 with a first end of the tether 50 attached to a plurality of terminated optical fibers 22 of the distribution cable 24 is shown. As in the above embodiments, the tether 50 ensures that the terminated optical fibers 22 may be optically connected and routed to any desired location regardless of the position of the mid-span access location 20 after installation. The tether 50 permits the distribution cable assembly to be pre-engineered and manufactured without absolute accuracy in the placement of the mid-span access location 20. The second end of the tether 50 terminates in a plurality of individual optical connectors 64, or a multi-fiber connector (not shown), routed to a network optical connection terminal 66 at a network access point in a fiber optic communications network, such as but not limited to, a local convergence cabinet (LCC), an aerial closure, a below-grade closure, an above-ground pedestal, or a network interface device (NID) of the types available from Corning Cable Systems LLC of Hickory, N.C. Although not shown, one or more connectorized drop cables may be subsequently routed from the optical connection terminal 66 to subscriber premises in a known manner. In particular, the optical connection terminal 66 allows a field technician to readily connect, disconnect or reconfigure one or more drop cables extending to subscriber premises without disturbing the remaining drop cables. The optical connection terminal 66 may be positioned away from the distribution cable 24 at a desired location in the fiber optic communications network in order to compensate for span length measurement differences that typically result from network measurement miscalculations, installation errors, and differences between the proposed locations of telephone poles, hand holes, pedestals, etc. and their installed locations.
Referring now to FIGS. 7 and 8, a fiber optic receptacle and tether plug assembly according to one embodiment of the present invention is shown. The assembly includes a fiber optic receptacle 34 and a corresponding fiber optic plug 68. In the embodiments of the present invention shown and described herein, the receptacle 34 is disposed within the overmolded shell 36 at the mid-span access location 20 and the fiber optic plug 68 is attached to the first end of the tether 50. The receptacle 34 is operable for optically connecting the optical fibers 22 of the distribution cable 24 terminated and connectorized within the mid-span access location 20 with corresponding optical fibers of the tether 50 connectorized within the fiber optic plug 68. The plug 68 is mounted upon the first end of the tether 50 and is adapted to mate with the corresponding receptacle 34. The receptacle 34 is operable for optically aligning and maintaining the opposing ferrules 32, 70 in physical contact. Referring specifically to FIG. 7, the receptacle 34 and the corresponding plug 68 are shown unmated and with the protective dust caps 40 of the receptacle 34 removed. Although not shown, the plug 68 may likewise be provided with a protective duct cap to protect the ferrule 70 from impact and environmental damage. The plug 68 further comprise an internally threaded coupling nut 72 that is operable for securing the plug 68 to the receptacle 34 following insertion of the plug 68 into the receptacle 34. Referring specifically to FIG. 8, the fiber optic plug 68 is shown mated to the receptacle 34 by engaging the threaded coupling nut 72 with the externally threaded end of the receptacle 34 that extends outwardly from the overmolded shell 36 once the dust cap 40 is removed.
The exemplary embodiments of a distribution cable assembly comprising at least one mid-span access location 20 and a tether 50 according to the present invention shown and described herein provide a number of significant advantages over previously known distribution cable assemblies and factory-assembled interconnection solutions. The present distribution cable assembly provides the ability to install a distribution cable having one or more mid-span access locations 20 along the length of a distribution cable without absolute accuracy as to the actual location of the mid-span access relative to the desired location of the interconnection or “tap” points needed to connect subscribers to a fiber optic communications network. In particular, the distribution cable assembly of the preset invention mitigates and compensates for span length measurement differences between the distribution cable as installed and the pre-engineered distribution cable by providing pre-connectorized tether attach points for optically connecting a connectorized tether having a predetermined or customized length up to several thousand feet. As a result, the mid-span access location can be extended from its actual location to a desired location, such as a network access point located at a telephone pole, hand hole or network optical connection terminal. By installing the distribution cable and then measuring the distance from the accrual location of the mid-span access to the desired location of the network access point, a tether having a customized length can be attached at the mid-span access location and routed to the desired network access point without the need to manage a slack length of excess tether. By terminating the appropriate optical fibers 22 of the distribution cable 24 and overmolding the mid-span access location 20 with a protective overmolded shell 36 in the factory, field labor is reduced while maintaining installation flexibility. The mid-span access location 20 and the overmolded shell 36 have a low profile and are sufficiently flexible to permit the distribution cable assembly to be wound onto a cable reel, unreeled, shipped and installed through relatively small diameter conduit in a buried deployment and over sheave wheels and pulleys in an aerial deployment. In addition to the advantages described above, a distribution cable assembly constructed in accordance with the present invention provides a field technician with the ability to readily connect, disconnect and reconfigure optical connections at a convenient network access point (i.e., “tap point”) regardless of the actual location of the factory-assembled and installed mid-span access location 20 along the length of the distribution cable 24. In all embodiments, the field technician is not required to enter the mid-span access location 20 in order to make subsequent optical connections to the terminated optical fibers 22 of the distribution cable 24, and the optical connections can be made at any time following initial installation of the distribution cable 24, thereby deferring additional material and labor costs associated with the tether 50, optical connection terminal and drop cables.
The foregoing is a description of various embodiments of the invention that are provided here by way of example only. Although the pre-connectorized fiber optic distribution cable has been described with reference to preferred embodiments and examples thereof, other embodiments and examples may perform similar functions and/or achieve similar results. All such equivalent embodiments and examples are within the spirit and scope of the present invention and are intended to be covered by the appended claims.

Claims (23)

1. A pre-connectorized fiber optic distribution cable assembly, comprising:
a distribution cable comprising a plurality of optical fibers disposed within the distribution cable and at least one factory-assembled mid-span access location along the length of the distribution cable;
at least one of the plurality of optical fibers of the distribution cable accessed and terminated from the distribution cable at the mid-span access location;
at least one optical connector mounted upon the end of the at least one accessed and terminated optical fiber;
a receptacle for receiving the at least one optical connector therein; and
an injection molded shell encapsulating the mid-span access location, the at least one accessed and terminated optical fiber, the at least one connector and at least a portion of the receptacle, the receptacle providing access to the at least one optical connector without having to enter the shell.
2. The fiber optic distribution cable assembly of claim 1, further comprising a tether having a connectorized first end that is interconnected in the field with the at least one optical connector, wherein the tether is operable for mitigating span length differences in a pre-engineered fiber optic communications network.
3. The fiber optic distribution cable assembly of claim 2, wherein the tether comprises a second end opposite the first end terminating in a network optical connection terminal for optically connecting the distribution cable with a fiber drop cable or fiber optic branch cable.
4. The fiber optic distribution cable assembly of claim 3, wherein the second end of the tether is connectorized and disposed within the network optical connection terminal.
5. The fiber optic distribution cable assembly of claim 3, wherein the second end of the tether is connectorized and disposed within a multi-port connection terminal comprising at least one connector port.
6. The fiber optic distribution cable assembly of claim 2, wherein the tether has a length greater than about 3 feet.
7. The fiber optic distribution cable assembly of claim 1, wherein the at least one accessed and terminated optical fiber of the distribution cable is direct connectorized to the at least one optical connector and disposed within the injection molded shell.
8. The fiber optic distribution cable assembly of claim 1, wherein the at least one accessed and terminated optical fiber of the distribution cable is optically spliced to a length of optical fiber having the at least one optical connector mounted thereon and disposed within the injection molded shell.
9. The fiber optic distribution cable assembly of claim 1, wherein the at least one mid-span access location has a length of between about 12 and about 36 inches.
10. The fiber optic distribution cable assembly of claim 1, further comprising a removable cover for protecting and providing access to the receptacle.
11. The fiber optic distribution cable assembly of claim 1, wherein the receptacle comprises an alignment sleeve operable for receiving and aligning the at least one optical connector and a connectorized first end of a fiber optic drop cable or tether.
12. A fiber optic distribution cable assembly, comprising:
a distribution cable comprising a tube containing a plurality of optical fibers and at least one factory-assembled mid-span access location along the length of the distribution cable;
a plurality of optical fibers accessed and terminated from the distribution cable at the mid-span access location;
a first multi-fiber connector mounted upon the ends of the optical fibers accessed and terminated from the distribution cable;
a receptacle for receiving and aligning the first multi-fiber connection with a multi-fiber connector of a fiber optic cable in the field following installation of the distribution cable; and
a tether comprising a plurality of optical fibers disposed within the tether, a second multi-fiber connector mounted upon the ends of the optical fibers at a first end of the tether and a second end opposite the first end terminating in a network optical connection terminal.
13. A fiber optic distribution cable assembly according to claim 12, further comprising a protective overmolded shell encapsulating the mid-span access location, the plurality of optical fibers accessed and terminated from the distribution cable, the first multi-fiber connector and at least a portion of the receptacle such that the tether can be attached to the first multi-fiber connector without entering the shell.
14. The fiber optic distribution cable assembly of claim 13, wherein the second multi-fiber connector is optically connected to the first multi-fiber connector through the receptacle.
15. The fiber optic distribution cable assembly of claim 12, wherein the tether is connectorized at the second end.
16. The fiber optic distribution cable assembly of claim 15, wherein the network optical connection terminal at the second end of the tether comprises at least one connector port for optically connecting the distribution cable to a fiber optic drop cable or fiber optic branch cable.
17. The fiber optic distribution cable assembly of claim 12, wherein the tether is splice-ready at the second end.
18. The fiber optic distribution cable assembly of claim 12, wherein the tether has a length greater than about 3 feet.
19. The fiber optic distribution cable assembly of claim 12, wherein the plurality of optical fibers accessed and terminated from the distribution cable are direct connectorized to the first multi-fiber connector.
20. The fiber optic distribution cable assembly of claim 12, wherein the plurality of optical fibers accessed and terminated from the distribution cable are optically spliced to a length of optical fibers having the first multi-fiber connector mounted upon their ends.
21. A method for mitigating a span length measurement difference in a pre-engineered fiber optic communications network employing a fiber optic distribution cable assembly comprising a distribution cable having a plurality of optical fibers disposed within a sheath and at least one mid-span access location along the length of the distribution cable, the method comprising:
removing a section of the sheath of the distribution cable at the mid-span access location;
accessing at least one of the plurality of optical fibers of the distribution cable within the section of the sheath removed from the distribution cable;
terminating the at least one optical fiber of the distribution cable accessed within the section of the sheath removed from the distribution cable;
connectorizing to at least one accessed and terminated optical fiber of the distribution cable;
injection molding around the mid-span access location and the at least one accessed, terminated and connectorized optical fiber of the distribution cable to produce an overmolded shell tat provides access to the at least one accessed, terminated and connectorized optical fiber without entering the shell.
22. The method of claim 21, further comprising installing the distribution cable assembly in the pro-engineered fiber optic communications network;
optically connecting a tether having a connectorized first end to the at least one accessed, terminated and connectorized optical fiber of the distribution cable at the mid-span access location; and
positioning a second end of the tether opposite the first end at a desired location in the fiber optic communications network to compensate for the span length measurement difference.
23. The method of claim 22, wherein the first end of the tether is optically connected to the at least one accessed, terminated and connectorized optical fiber of the distribution cable at the mid-span access location through a receptacle operable for mating opposing optical connectors or ferrules.
US10/980,704 2004-11-03 2004-11-03 Pre-connectorized fiber optic distribution cable having overmolded access location Active US7266274B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US10/980,704 US7266274B2 (en) 2004-11-03 2004-11-03 Pre-connectorized fiber optic distribution cable having overmolded access location
AT05806495T ATE547730T1 (en) 2004-11-03 2005-10-12 PRE-CONNECTED FIBER OPTICAL DISTRIBUTION CABLE WITH OVERMADE ACCESS POINT
EP05806495A EP1807723B1 (en) 2004-11-03 2005-10-12 Pre-connectorized fiber optic distribution cable having overmolded access location
MX2007005301A MX2007005301A (en) 2004-11-03 2005-10-12 Pre-connectorized fiber optic distribution cable having overmolded access location.
AU2005305313A AU2005305313B2 (en) 2004-11-03 2005-10-12 Pre-connectorized fiber optic distribution cable having overmolded access location
ES05806495T ES2382338T3 (en) 2004-11-03 2005-10-12 Pre-connectorized fiber optic distribution cable with an overmolded access site
CN200580043451A CN100578274C (en) 2004-11-03 2005-10-12 Pre-connectorized fiber optic distribution cable having overmolded access location
JP2007515711A JP2008501152A (en) 2004-11-03 2005-10-12 Pre-connector-processed optical fiber distribution cable with composite molded branch points
PCT/US2005/036256 WO2006052355A1 (en) 2004-11-03 2005-10-12 Pre-connectorized fiber optic distribution cable having overmolded access location
CA002586113A CA2586113A1 (en) 2004-11-03 2005-10-12 Pre-connectorized fiber optic distribution cable having overmolded access location
US11/888,220 US7658549B2 (en) 2004-11-03 2007-07-31 Pre-connectorized fiber optic distribution cable having overmolded access location

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/980,704 US7266274B2 (en) 2004-11-03 2004-11-03 Pre-connectorized fiber optic distribution cable having overmolded access location

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/888,220 Continuation US7658549B2 (en) 2004-11-03 2007-07-31 Pre-connectorized fiber optic distribution cable having overmolded access location

Publications (2)

Publication Number Publication Date
US20060093278A1 US20060093278A1 (en) 2006-05-04
US7266274B2 true US7266274B2 (en) 2007-09-04

Family

ID=35509276

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/980,704 Active US7266274B2 (en) 2004-11-03 2004-11-03 Pre-connectorized fiber optic distribution cable having overmolded access location
US11/888,220 Active US7658549B2 (en) 2004-11-03 2007-07-31 Pre-connectorized fiber optic distribution cable having overmolded access location

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/888,220 Active US7658549B2 (en) 2004-11-03 2007-07-31 Pre-connectorized fiber optic distribution cable having overmolded access location

Country Status (10)

Country Link
US (2) US7266274B2 (en)
EP (1) EP1807723B1 (en)
JP (1) JP2008501152A (en)
CN (1) CN100578274C (en)
AT (1) ATE547730T1 (en)
AU (1) AU2005305313B2 (en)
CA (1) CA2586113A1 (en)
ES (1) ES2382338T3 (en)
MX (1) MX2007005301A (en)
WO (1) WO2006052355A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070196068A1 (en) * 2006-02-22 2007-08-23 Julian Mullaney Fiber optic cable systems and kits and methods for terminating the same
US7403685B2 (en) * 2006-10-13 2008-07-22 Adc Telecommunications, Inc. Overmold zip strip
US7480436B2 (en) * 2006-10-10 2009-01-20 Adc Telecommunications, Inc. Systems and methods for securing a tether to a distribution cable
US20090060421A1 (en) * 2007-03-16 2009-03-05 3M Innovative Properties Company Optical fiber cable inlet device
US20100054669A1 (en) * 2008-09-04 2010-03-04 Dimarco Brian Anthony Fiber optic connector
US20100054678A1 (en) * 2008-09-04 2010-03-04 Dimarco Brian Anthony Fiber optic furcation method
US20100158453A1 (en) * 2008-12-22 2010-06-24 Joseph Todd Cody Distribution Cable Assembly Having Mid-Span Access Location
EP2216662A1 (en) 2009-02-10 2010-08-11 Tyco Electronics Raychem BVBA Splice protection device for optical splices and optical fibre cable assembly incorporating same
US20110052127A1 (en) * 2009-08-28 2011-03-03 Bollinger Jr George W Cable Conduits Having Ripcords For Longitudinally Slitting the Conduit and Related Methods
US8961035B2 (en) 2010-08-02 2015-02-24 Adc Telecommunications, Inc. Architecture for a fiber optic network
US9329354B2 (en) 2013-12-09 2016-05-03 Corning Optical Commnications Llc Branch distribution cable connectorization system
US10054741B2 (en) 2015-10-14 2018-08-21 Commscope Technologies Llc Fiber optic enclosure assembly
US10317639B2 (en) 2016-11-11 2019-06-11 CommScope Connectivity Belgium BVBA Fiber optic network architecture
US10763653B2 (en) * 2018-04-04 2020-09-01 Yazaki Corporation Branch circuit body and electric wire branching method
US10788629B2 (en) * 2012-03-30 2020-09-29 Commscope Technologies Llc Passive distribution system using fiber indexing
US10886714B2 (en) * 2018-04-04 2021-01-05 Yazaki Corporation Branching circuit body and branching method of electric wires
US11215768B2 (en) 2017-06-28 2022-01-04 Corning Research & Development Corporation Fiber optic connectors and connectorization employing adhesive admitting adapters
US11300746B2 (en) 2017-06-28 2022-04-12 Corning Research & Development Corporation Fiber optic port module inserts, assemblies and methods of making the same
US11604320B2 (en) 2020-09-30 2023-03-14 Corning Research & Development Corporation Connector assemblies for telecommunication enclosures
US11650388B2 (en) 2019-11-14 2023-05-16 Corning Research & Development Corporation Fiber optic networks having a self-supporting optical terminal and methods of installing the optical terminal
US11668890B2 (en) 2017-06-28 2023-06-06 Corning Research & Development Corporation Multiports and other devices having optical connection ports with securing features and methods of making the same
US11686913B2 (en) 2020-11-30 2023-06-27 Corning Research & Development Corporation Fiber optic cable assemblies and connector assemblies having a crimp ring and crimp body and methods of fabricating the same
US11703646B2 (en) 2017-06-28 2023-07-18 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US11880076B2 (en) 2020-11-30 2024-01-23 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release housing
US11886010B2 (en) 2019-10-07 2024-01-30 Corning Research & Development Corporation Fiber optic terminals and fiber optic networks having variable ratio couplers
US11927810B2 (en) 2020-11-30 2024-03-12 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release member
US11947167B2 (en) 2021-05-26 2024-04-02 Corning Research & Development Corporation Fiber optic terminals and tools and methods for adjusting a split ratio of a fiber optic terminal
US11994722B2 (en) 2020-11-30 2024-05-28 Corning Research & Development Corporation Fiber optic adapter assemblies including an adapter housing and a locking housing
US12019279B2 (en) 2019-05-31 2024-06-25 Corning Research & Development Corporation Multiports and other devices having optical connection ports with sliding actuators and methods of making the same

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7120347B2 (en) 2004-01-27 2006-10-10 Corning Cable Systems Llc Multi-port optical connection terminal
US7013074B2 (en) * 2004-02-06 2006-03-14 Corning Cable Systems Llc Optical connection closure having at least one connector port
US7489849B2 (en) 2004-11-03 2009-02-10 Adc Telecommunications, Inc. Fiber drop terminal
US7680388B2 (en) 2004-11-03 2010-03-16 Adc Telecommunications, Inc. Methods for configuring and testing fiber drop terminals
CA2604948A1 (en) 2005-04-19 2006-10-26 Adc Telecommunications, Inc. Loop back plug and method
US7444056B2 (en) * 2005-05-31 2008-10-28 Tyco Electronics Corporation Optical network architecture and terminals for use in such networks
US7742667B2 (en) * 2005-06-08 2010-06-22 Commscope, Inc. Of North Carolina Fiber optic cables and methods for forming the same
US10578812B2 (en) 2005-06-08 2020-03-03 Commscope, Inc. Of North Carolina Methods for forming connectorized fiber optic cabling
US8992098B2 (en) * 2005-06-08 2015-03-31 Commscope, Inc. Of North Carolina Methods for forming connectorized fiber optic cabling
US7623749B2 (en) * 2005-08-30 2009-11-24 Adc Telecommunications, Inc. Fiber distribution hub with modular termination blocks
US7555181B2 (en) * 2005-12-20 2009-06-30 Corning Cable Systems Llc Fiber optic cables having at least one tether optical fiber
US8582938B2 (en) 2006-05-11 2013-11-12 Corning Cable Systems Llc Fiber optic distribution cables and structures therefore
EP2016453B1 (en) * 2006-05-11 2016-04-20 Corning Optical Communications LLC Fiber optic distribution cables and structures therefor
JP2008129170A (en) * 2006-11-17 2008-06-05 Advanced Cable Systems Corp Optical fiber cable, optical fiber cable system using the same, and method of laying optical fiber cable
US7596294B2 (en) * 2006-12-21 2009-09-29 Corning Cable Systems Llc Cable assembly having semi-hardened network access point
US20080175548A1 (en) * 2007-01-23 2008-07-24 Dennis Michael Knecht Preconnectorized fiber optic cable assembly
US7489843B2 (en) * 2007-02-06 2009-02-10 Adc Telecommunications, Inc. Polyurethane to polyethylene adhesion process
GB2446840B (en) * 2007-02-07 2011-09-07 David Frederick Hawkins A cable duct restraining device
US8798427B2 (en) 2007-09-05 2014-08-05 Corning Cable Systems Llc Fiber optic terminal assembly
US7740409B2 (en) 2007-09-19 2010-06-22 Corning Cable Systems Llc Multi-port optical connection terminal
EP2344915A4 (en) 2008-10-09 2015-01-21 Corning Cable Sys Llc Fiber optic terminal having adapter panel supporting both input and output fibers from an optical splitter
US8879882B2 (en) 2008-10-27 2014-11-04 Corning Cable Systems Llc Variably configurable and modular local convergence point
US7773843B2 (en) * 2008-12-26 2010-08-10 Corning Cable Systems Llc Bi-directional tap assemblies for two-way fiber topologies
EP2237091A1 (en) 2009-03-31 2010-10-06 Corning Cable Systems LLC Removably mountable fiber optic terminal
US20100303431A1 (en) * 2009-05-29 2010-12-02 Cox Terry D Fiber Optic Harnesses and Assemblies Facilitating Use of a Pre-Connectorized Fiber Optic Cable(s) with a Fiber Optic Terminal
US8467651B2 (en) * 2009-09-30 2013-06-18 Ccs Technology Inc. Fiber optic terminals configured to dispose a fiber optic connection panel(s) within an optical fiber perimeter and related methods
US9268091B2 (en) * 2010-02-18 2016-02-23 Corning Cable Systems Llc Methods for laser processing arrayed optical fibers along with splicing connectors
US9547144B2 (en) 2010-03-16 2017-01-17 Corning Optical Communications LLC Fiber optic distribution network for multiple dwelling units
US8792767B2 (en) 2010-04-16 2014-07-29 Ccs Technology, Inc. Distribution device
WO2011143401A2 (en) 2010-05-14 2011-11-17 Adc Telecommunications, Inc. Splice enclosure arrangement for fiber optic cables
AU2011317244A1 (en) 2010-10-19 2013-05-23 Corning Cable Systems Llc Transition box for multiple dwelling unit fiber optic distribution network
CN101968561A (en) * 2010-10-22 2011-02-09 华为技术有限公司 Prefabricated optical distribution cable and manufacturing method thereof
US9279951B2 (en) * 2010-10-27 2016-03-08 Corning Cable Systems Llc Fiber optic module for limited space applications having a partially sealed module sub-assembly
CA2816059A1 (en) 2010-10-28 2012-05-03 Corning Cable Systems Llc Impact resistant fiber optic enclosures and related methods
US8885998B2 (en) 2010-12-09 2014-11-11 Adc Telecommunications, Inc. Splice enclosure arrangement for fiber optic cables
US8494331B2 (en) 2011-07-06 2013-07-23 Go!Foton Holdings, Inc. Apparatus and method for mass producing optical fiber splice-on connector subunits
US8506178B2 (en) * 2011-06-24 2013-08-13 Go!Foton Holdings, Inc. Mechanical splicer apparatus for fiber optic cables
US8506179B2 (en) 2011-07-21 2013-08-13 Go!Foton Holdings, Inc. Deformable plastic radially symmetric mechanical splicers and connectors for optical fibers
US9069151B2 (en) 2011-10-26 2015-06-30 Corning Cable Systems Llc Composite cable breakout assembly
US9219546B2 (en) 2011-12-12 2015-12-22 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
RU2014138122A (en) * 2012-02-20 2016-04-10 Адс Телекоммьюникейшнз, Инк. FIBER OPTICAL CONNECTOR, FIBER OPTICAL CONNECTOR AND CABLE ASSEMBLY AND METHODS FOR THEIR MANUFACTURE
US10110307B2 (en) 2012-03-02 2018-10-23 Corning Optical Communications LLC Optical network units (ONUs) for high bandwidth connectivity, and related components and methods
US8873926B2 (en) 2012-04-26 2014-10-28 Corning Cable Systems Llc Fiber optic enclosures employing clamping assemblies for strain relief of cables, and related assemblies and methods
US9004778B2 (en) 2012-06-29 2015-04-14 Corning Cable Systems Llc Indexable optical fiber connectors and optical fiber connector arrays
US9049500B2 (en) 2012-08-31 2015-06-02 Corning Cable Systems Llc Fiber optic terminals, systems, and methods for network service management
US8909019B2 (en) 2012-10-11 2014-12-09 Ccs Technology, Inc. System comprising a plurality of distribution devices and distribution device
WO2015066185A1 (en) * 2013-10-29 2015-05-07 3M Innovative Properties Company Fiber optic splice closure
US9373018B2 (en) 2014-01-08 2016-06-21 Hand Held Products, Inc. Indicia-reader having unitary-construction
US9766414B2 (en) 2014-06-27 2017-09-19 Commscope Technologies Llc Indexing terminals for supporting a bidirectional indexing architecture
US20160018615A1 (en) * 2014-07-15 2016-01-21 Ofs Fitel, Llc Plug-and-play optical fiber distribution system
US20160103290A1 (en) * 2014-09-30 2016-04-14 Adc Telecommunications, Inc. Distribution cable with bidirectional breakout locations
JP5925930B1 (en) * 2015-03-18 2016-05-25 日本航空電子工業株式会社 Optical fiber cable assembly and measuring device
MX2017015717A (en) * 2015-06-05 2018-05-23 Corning Optical Communications LLC Field access terminal system.
US10353164B2 (en) * 2017-06-27 2019-07-16 Afl Telecommunications Llc Fiber optic transition assemblies
US11187859B2 (en) 2017-06-28 2021-11-30 Corning Research & Development Corporation Fiber optic connectors and methods of making the same
US10641967B1 (en) 2018-11-16 2020-05-05 Corning Research & Development Corporation Multiport assemblies including a modular adapter support array
US10768382B2 (en) 2018-11-29 2020-09-08 Corning Research & Development Corporation Multiport assemblies including access apertures and a release tool
MX2021007772A (en) 2018-12-28 2021-08-05 Corning Res & Dev Corp Multiport assemblies including mounting features or dust plugs.
US11294133B2 (en) 2019-07-31 2022-04-05 Corning Research & Development Corporation Fiber optic networks using multiports and cable assemblies with cable-to-connector orientation
CN110957070A (en) * 2019-09-11 2020-04-03 安徽华能电缆股份有限公司 Waterproof distributed instrument cable for warship
US11487073B2 (en) 2019-09-30 2022-11-01 Corning Research & Development Corporation Cable input devices having an integrated locking feature and assemblies using the cable input devices
US12055769B2 (en) 2019-12-05 2024-08-06 Commscope Technologies Llc Terminal formed by sequentially assembled modules
US11536921B2 (en) 2020-02-11 2022-12-27 Corning Research & Development Corporation Fiber optic terminals having one or more loopback assemblies
CN113557461B (en) * 2020-02-26 2022-11-18 华为技术有限公司 Home-entry optical cable connecting device and home-entry optical cable connecting system
CN111679389B (en) * 2020-07-13 2021-08-24 长飞光纤光缆股份有限公司 Optical cable for 5G small base station and manufacturing method thereof
MX2021001662A (en) 2020-08-05 2022-04-12 Huawei Tech Co Ltd Connector.
EP4252057A1 (en) * 2020-11-25 2023-10-04 Corning Research & Development Corporation System and method of measuring for manufacture and deployment of distribution cable assemblies
WO2022226895A1 (en) * 2021-04-29 2022-11-03 Corning Research & Development Corporation Preconnectorized optical distribution cable assemblies and corresponding methods of deployment

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105114A (en) 1981-12-17 1983-06-22 Hitachi Cable Ltd Optical fiber cable line with branch
JPS60169813A (en) 1984-02-15 1985-09-03 Sumitomo Electric Ind Ltd Optical branching terminal
JPS60169815A (en) 1984-02-13 1985-09-03 Dainichi Nippon Cables Ltd Connection end part of cable with optical fiber
JPS6127510A (en) 1984-07-17 1986-02-07 Fujitsu Ltd Undersea branching device of optical submarine cable
JPS61190305A (en) 1985-02-20 1986-08-25 Fujitsu Ltd Housing structure for underwater branching device
JPS61220536A (en) 1985-03-27 1986-09-30 Hitachi Ltd Information transmission line for car
JPS6254204A (en) 1985-08-10 1987-03-09 Fujikura Ltd Branch connecting construction method for optical cable
JPS6259906A (en) 1985-09-10 1987-03-16 Nec Corp Optical submarine branching device
DE3537684A1 (en) 1985-10-23 1987-04-23 Rheydt Kabelwerk Ag Optical fibre cable branch and method for producing it
JPS63136007A (en) 1986-11-28 1988-06-08 Furukawa Electric Co Ltd:The Optical branch and connection box
JPS63180915A (en) 1987-01-22 1988-07-26 Furukawa Electric Co Ltd:The Terminal part for optical cable
JPS63287916A (en) 1987-05-21 1988-11-25 Furukawa Electric Co Ltd:The Terminal part of composite cable
JPS63310317A (en) 1987-06-11 1988-12-19 Showa Electric Wire & Cable Co Ltd Junction structural-unit for submaring cable
JPH01138828A (en) 1987-08-12 1989-05-31 Tokyo Tsushin Netsutowaaku Kk Method and system set for temporary restoration of multi-core optical cable
US4884863A (en) 1989-03-06 1989-12-05 Siecor Corporation Optical fiber splicing enclosure for installation in pedestals
US4961623A (en) 1989-09-05 1990-10-09 Siecor Corporation Preterminated optical cable
US5004315A (en) 1983-10-20 1991-04-02 Furukawa Electric Co., Ltd. Optical cable and optical cable line
US5042901A (en) 1990-07-31 1991-08-27 Siecor Corporation Preconnectorized optical splice closure
US5121458A (en) 1991-04-05 1992-06-09 Alcatel Na Cable Systems, Inc. Preterminated fiber optic cable
US5125060A (en) 1991-04-05 1992-06-23 Alcatel Na Cable Systems, Inc. Fiber optic cable having spliceless fiber branch and method of making
EP0512811A1 (en) 1991-05-06 1992-11-11 COMPUTER CRAFTS, Inc. Branching method for a multi-fiber fiberoptic cable
US5210812A (en) 1991-04-05 1993-05-11 Alcatel Na Cable Systems, Inc. Optical fiber cable having spliced fiber branch and method of making the same
US5440665A (en) 1993-04-16 1995-08-08 Raychem Corporation Fiber optic cable system including main and drop cables and associated fabrication method
US5778122A (en) 1996-12-24 1998-07-07 Siecor Corporation Fiber optic cable assembly for interconnecting optical fibers within a receptacle mounted within the wall of an enclosure
US5892870A (en) * 1995-11-16 1999-04-06 Fiber Connections Inc. Fibre optic cable connector
USRE36592E (en) 1994-07-01 2000-02-29 Siecor Corporation Optical receiver stub fitting
USRE37028E1 (en) 1994-02-02 2001-01-23 Siecor Corporation Cable assembly for use with opto-electronic equipment enclosures
JP2001116968A (en) 1999-08-11 2001-04-27 Toyokuni Electric Cable Co Ltd Optical communication trunk cable and branching tool for optical communication trunk cable
US6466725B2 (en) 2000-11-29 2002-10-15 Corning Cable Systems Llc Apparatus and method for splitting optical fibers
US6619697B2 (en) * 2000-12-27 2003-09-16 Nkf Kabel B.V. Y-branch splittable connector
US6621975B2 (en) 2001-11-30 2003-09-16 Corning Cable Systems Llc Distribution terminal for network access point
US20050265672A1 (en) * 2004-05-27 2005-12-01 Thomas Theuerkorn Distribution cable having articulated optical connection nodes

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2830032B2 (en) * 1989-04-20 1998-12-02 住友電気工業株式会社 Optical fiber cable branching method and optical fiber cable
DE3937693A1 (en) * 1989-11-13 1991-05-23 Rheydt Kabelwerk Ag METHOD FOR CONNECTING PARTICIPANTS WITHOUT SPLICE
JPH08262299A (en) * 1995-01-25 1996-10-11 Sumitomo Electric Ind Ltd Pipeline branching parts for optical fiber and method for passing optical fiber
US5861575A (en) * 1996-03-19 1999-01-19 Broussard; Blaine L. Device and method for a fluid stop splice for a submersible cable
JPH11271577A (en) * 1998-03-18 1999-10-08 Fujikura Ltd Optical prefabricated cable
JP4136229B2 (en) * 1999-11-22 2008-08-20 トヨクニ電線株式会社 Wiring method of optical communication cable
JP4136244B2 (en) * 2000-01-18 2008-08-20 トヨクニ電線株式会社 Optical communication trunk cable
JP2003177254A (en) * 2001-12-10 2003-06-27 Furukawa Electric Co Ltd:The Closure
JP2003202427A (en) * 2002-01-09 2003-07-18 Furukawa Electric Co Ltd:The Closure for drop cable connection
US7006739B2 (en) * 2003-12-15 2006-02-28 Corning Cable Systems Llc Pre-connectorized fiber optic distribution cable

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105114A (en) 1981-12-17 1983-06-22 Hitachi Cable Ltd Optical fiber cable line with branch
US5004315A (en) 1983-10-20 1991-04-02 Furukawa Electric Co., Ltd. Optical cable and optical cable line
JPS60169815A (en) 1984-02-13 1985-09-03 Dainichi Nippon Cables Ltd Connection end part of cable with optical fiber
JPS60169813A (en) 1984-02-15 1985-09-03 Sumitomo Electric Ind Ltd Optical branching terminal
JPS6127510A (en) 1984-07-17 1986-02-07 Fujitsu Ltd Undersea branching device of optical submarine cable
JPS61190305A (en) 1985-02-20 1986-08-25 Fujitsu Ltd Housing structure for underwater branching device
JPS61220536A (en) 1985-03-27 1986-09-30 Hitachi Ltd Information transmission line for car
JPS6254204A (en) 1985-08-10 1987-03-09 Fujikura Ltd Branch connecting construction method for optical cable
JPS6259906A (en) 1985-09-10 1987-03-16 Nec Corp Optical submarine branching device
DE3537684A1 (en) 1985-10-23 1987-04-23 Rheydt Kabelwerk Ag Optical fibre cable branch and method for producing it
JPS63136007A (en) 1986-11-28 1988-06-08 Furukawa Electric Co Ltd:The Optical branch and connection box
JPS63180915A (en) 1987-01-22 1988-07-26 Furukawa Electric Co Ltd:The Terminal part for optical cable
JPS63287916A (en) 1987-05-21 1988-11-25 Furukawa Electric Co Ltd:The Terminal part of composite cable
JPS63310317A (en) 1987-06-11 1988-12-19 Showa Electric Wire & Cable Co Ltd Junction structural-unit for submaring cable
JPH01138828A (en) 1987-08-12 1989-05-31 Tokyo Tsushin Netsutowaaku Kk Method and system set for temporary restoration of multi-core optical cable
US4884863A (en) 1989-03-06 1989-12-05 Siecor Corporation Optical fiber splicing enclosure for installation in pedestals
US4961623A (en) 1989-09-05 1990-10-09 Siecor Corporation Preterminated optical cable
US5042901A (en) 1990-07-31 1991-08-27 Siecor Corporation Preconnectorized optical splice closure
US5121458A (en) 1991-04-05 1992-06-09 Alcatel Na Cable Systems, Inc. Preterminated fiber optic cable
US5125060A (en) 1991-04-05 1992-06-23 Alcatel Na Cable Systems, Inc. Fiber optic cable having spliceless fiber branch and method of making
US5210812A (en) 1991-04-05 1993-05-11 Alcatel Na Cable Systems, Inc. Optical fiber cable having spliced fiber branch and method of making the same
EP0512811A1 (en) 1991-05-06 1992-11-11 COMPUTER CRAFTS, Inc. Branching method for a multi-fiber fiberoptic cable
US5440665A (en) 1993-04-16 1995-08-08 Raychem Corporation Fiber optic cable system including main and drop cables and associated fabrication method
US5528718A (en) 1993-04-16 1996-06-18 Raychem Corporation Fiber optic cable system including main and drop cables and associated fabrication method
US5657413A (en) 1993-04-16 1997-08-12 Raychem Corporation Sealing assembly for a fiber optic cable and associated fabrication method
USRE37028E1 (en) 1994-02-02 2001-01-23 Siecor Corporation Cable assembly for use with opto-electronic equipment enclosures
USRE36592E (en) 1994-07-01 2000-02-29 Siecor Corporation Optical receiver stub fitting
US5892870A (en) * 1995-11-16 1999-04-06 Fiber Connections Inc. Fibre optic cable connector
US5778122A (en) 1996-12-24 1998-07-07 Siecor Corporation Fiber optic cable assembly for interconnecting optical fibers within a receptacle mounted within the wall of an enclosure
JP2001116968A (en) 1999-08-11 2001-04-27 Toyokuni Electric Cable Co Ltd Optical communication trunk cable and branching tool for optical communication trunk cable
US6466725B2 (en) 2000-11-29 2002-10-15 Corning Cable Systems Llc Apparatus and method for splitting optical fibers
US6619697B2 (en) * 2000-12-27 2003-09-16 Nkf Kabel B.V. Y-branch splittable connector
US6621975B2 (en) 2001-11-30 2003-09-16 Corning Cable Systems Llc Distribution terminal for network access point
US20050265672A1 (en) * 2004-05-27 2005-12-01 Thomas Theuerkorn Distribution cable having articulated optical connection nodes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Patent Abstract of Japan, 2003177254, Jun. 27, 2003.
Tyco Electronics Raychem Product Sheet, FITS FOSC-Factory Installed Termination System for Fiber Optic Cable Splices, 1999, 2 pages.

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7756372B2 (en) * 2006-02-22 2010-07-13 Tyco Electronics Corporation Fiber optic cable systems and kits and methods for terminating the same
US8126304B2 (en) 2006-02-22 2012-02-28 Tyco Electronics Corporation Methods for terminating optical fiber cables
US20070196068A1 (en) * 2006-02-22 2007-08-23 Julian Mullaney Fiber optic cable systems and kits and methods for terminating the same
US20100239215A1 (en) * 2006-02-22 2010-09-23 Julian Mullaney Methods for Terminating Optical Fiber Cables
US7480436B2 (en) * 2006-10-10 2009-01-20 Adc Telecommunications, Inc. Systems and methods for securing a tether to a distribution cable
US7403685B2 (en) * 2006-10-13 2008-07-22 Adc Telecommunications, Inc. Overmold zip strip
US20090060421A1 (en) * 2007-03-16 2009-03-05 3M Innovative Properties Company Optical fiber cable inlet device
US8879883B2 (en) 2007-03-16 2014-11-04 3M Innovative Properties Company Optical fiber cable inlet device and telecommunications enclosure system
US20100086260A1 (en) * 2007-03-16 2010-04-08 Parikh Rutesh D Optical fiber cable inlet device and telecommunications enclosure system
US7738759B2 (en) 2007-03-16 2010-06-15 3M Innovative Properties Company Optical fiber cable inlet device
US20100054669A1 (en) * 2008-09-04 2010-03-04 Dimarco Brian Anthony Fiber optic connector
US7712973B2 (en) 2008-09-04 2010-05-11 Fibersource, Inc. Fiber optic connector
US7955004B2 (en) 2008-09-04 2011-06-07 Fibersource, Inc. Fiber optic furcation method
US20100054678A1 (en) * 2008-09-04 2010-03-04 Dimarco Brian Anthony Fiber optic furcation method
US20100158453A1 (en) * 2008-12-22 2010-06-24 Joseph Todd Cody Distribution Cable Assembly Having Mid-Span Access Location
US7941021B2 (en) 2008-12-22 2011-05-10 Corning Cable Systems Llc Distribution cable assembly having mid-span access location
EP2216662A1 (en) 2009-02-10 2010-08-11 Tyco Electronics Raychem BVBA Splice protection device for optical splices and optical fibre cable assembly incorporating same
US20100232752A1 (en) * 2009-02-10 2010-09-16 Tyco Electronics Raychem Bvba Splice protection device for optical splices
US8814446B2 (en) * 2009-02-10 2014-08-26 Tyco Electronics Raychem Bvba Splice protection device for optical splices
US20110052127A1 (en) * 2009-08-28 2011-03-03 Bollinger Jr George W Cable Conduits Having Ripcords For Longitudinally Slitting the Conduit and Related Methods
US8280209B2 (en) 2009-08-28 2012-10-02 Commscope, Inc. Cable conduits having ripcords for longitudinally slitting the conduit and related methods
US8961035B2 (en) 2010-08-02 2015-02-24 Adc Telecommunications, Inc. Architecture for a fiber optic network
US9348097B2 (en) 2010-08-02 2016-05-24 Commscope Technologies Llc Architecture for a fiber optic network
US10495825B2 (en) 2010-08-02 2019-12-03 Commscope Technologies Llc Architecture for a fiber optic network
US10830965B2 (en) 2010-08-02 2020-11-10 Commscope Technologies Llc Architecture for a fiber optic network
US11221450B2 (en) 2012-03-30 2022-01-11 Commscope Technologies Llc Passive distribution system using fiber indexing
US10788629B2 (en) * 2012-03-30 2020-09-29 Commscope Technologies Llc Passive distribution system using fiber indexing
US9329354B2 (en) 2013-12-09 2016-05-03 Corning Optical Commnications Llc Branch distribution cable connectorization system
US10054741B2 (en) 2015-10-14 2018-08-21 Commscope Technologies Llc Fiber optic enclosure assembly
US10317639B2 (en) 2016-11-11 2019-06-11 CommScope Connectivity Belgium BVBA Fiber optic network architecture
US11215768B2 (en) 2017-06-28 2022-01-04 Corning Research & Development Corporation Fiber optic connectors and connectorization employing adhesive admitting adapters
US11703646B2 (en) 2017-06-28 2023-07-18 Corning Research & Development Corporation Multiports and optical connectors with rotationally discrete locking and keying features
US12092878B2 (en) 2017-06-28 2024-09-17 Corning Research & Development Corporation Fiber optic connectors having a keying structure and methods of making the same
US11287581B2 (en) * 2017-06-28 2022-03-29 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US11300746B2 (en) 2017-06-28 2022-04-12 Corning Research & Development Corporation Fiber optic port module inserts, assemblies and methods of making the same
US11409055B2 (en) 2017-06-28 2022-08-09 Corning Optical Communications LLC Multiports having connection ports with associated securing features and methods of making the same
US11415759B2 (en) 2017-06-28 2022-08-16 Corning Optical Communications LLC Multiports having a connection port insert and methods of making the same
US11460646B2 (en) 2017-06-28 2022-10-04 Corning Research & Development Corporation Fiber optic connectors and multiport assemblies including retention features
US11487065B2 (en) 2017-06-28 2022-11-01 Corning Research & Development Corporation Multiports and devices having a connector port with a rotating securing feature
US11536913B2 (en) 2017-06-28 2022-12-27 Corning Research & Development Corporation Fiber optic connectors and connectorization employing adhesive admitting adapters
US11579377B2 (en) 2017-06-28 2023-02-14 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same with alignment elements
US12013578B2 (en) 2017-06-28 2024-06-18 Corning Research & Development Corporation Multifiber fiber optic connectors, cable assemblies and methods of making the same
US11624877B2 (en) 2017-06-28 2023-04-11 Corning Research & Development Corporation Multiports having connection ports with securing features that actuate flexures and methods of making the same
US11966089B2 (en) 2017-06-28 2024-04-23 Corning Optical Communications, Llc Multiports having connection ports formed in the shell and associated securing features
US11656414B2 (en) 2017-06-28 2023-05-23 Corning Research & Development Corporation Multiports and other devices having connection ports with securing features and methods of making the same
US11668890B2 (en) 2017-06-28 2023-06-06 Corning Research & Development Corporation Multiports and other devices having optical connection ports with securing features and methods of making the same
US11940656B2 (en) 2017-06-28 2024-03-26 Corning Research & Development Corporation Compact fiber optic connectors, cable assemblies and methods of making the same
US11914197B2 (en) 2017-06-28 2024-02-27 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11789214B2 (en) 2017-06-28 2023-10-17 Corning Research & Development Corporation Multiports and other devices having keyed connection ports and securing features and methods of making the same
US11914198B2 (en) 2017-06-28 2024-02-27 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US11886017B2 (en) 2017-06-28 2024-01-30 Corning Research & Development Corporation Multiports and other devices having connection ports with securing features and methods of making the same
US11906792B2 (en) 2017-06-28 2024-02-20 Corning Research & Development Corporation Compact fiber optic connectors having multiple connector footprints, along with cable assemblies and methods of making the same
US10886714B2 (en) * 2018-04-04 2021-01-05 Yazaki Corporation Branching circuit body and branching method of electric wires
US10763653B2 (en) * 2018-04-04 2020-09-01 Yazaki Corporation Branch circuit body and electric wire branching method
US12019279B2 (en) 2019-05-31 2024-06-25 Corning Research & Development Corporation Multiports and other devices having optical connection ports with sliding actuators and methods of making the same
US11886010B2 (en) 2019-10-07 2024-01-30 Corning Research & Development Corporation Fiber optic terminals and fiber optic networks having variable ratio couplers
US11650388B2 (en) 2019-11-14 2023-05-16 Corning Research & Development Corporation Fiber optic networks having a self-supporting optical terminal and methods of installing the optical terminal
US11604320B2 (en) 2020-09-30 2023-03-14 Corning Research & Development Corporation Connector assemblies for telecommunication enclosures
US12019285B2 (en) 2020-09-30 2024-06-25 Corning Research & Development Corporation Connector assemblies for telecommunication enclosures
US11880076B2 (en) 2020-11-30 2024-01-23 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release housing
US11927810B2 (en) 2020-11-30 2024-03-12 Corning Research & Development Corporation Fiber optic adapter assemblies including a conversion housing and a release member
US11686913B2 (en) 2020-11-30 2023-06-27 Corning Research & Development Corporation Fiber optic cable assemblies and connector assemblies having a crimp ring and crimp body and methods of fabricating the same
US11994722B2 (en) 2020-11-30 2024-05-28 Corning Research & Development Corporation Fiber optic adapter assemblies including an adapter housing and a locking housing
US11947167B2 (en) 2021-05-26 2024-04-02 Corning Research & Development Corporation Fiber optic terminals and tools and methods for adjusting a split ratio of a fiber optic terminal

Also Published As

Publication number Publication date
CN101091132A (en) 2007-12-19
MX2007005301A (en) 2007-07-04
US7658549B2 (en) 2010-02-09
EP1807723A1 (en) 2007-07-18
CN100578274C (en) 2010-01-06
US20060093278A1 (en) 2006-05-04
CA2586113A1 (en) 2006-05-18
AU2005305313B2 (en) 2011-04-07
WO2006052355A1 (en) 2006-05-18
AU2005305313A1 (en) 2006-05-18
EP1807723B1 (en) 2012-02-29
ATE547730T1 (en) 2012-03-15
US20080019641A1 (en) 2008-01-24
ES2382338T3 (en) 2012-06-07
JP2008501152A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
US7266274B2 (en) Pre-connectorized fiber optic distribution cable having overmolded access location
US7088893B2 (en) Pre-connectorized fiber optic distribution cable having multifiber connector
US7127143B2 (en) Distribution cable assembly having overmolded mid-span access location
US7302152B2 (en) Overmolded multi-port optical connection terminal having means for accommodating excess fiber length
US7660501B2 (en) Distribution cable assembly having overmolded mid-span access location
US7228036B2 (en) Adjustable tether assembly for fiber optic distribution cable
US7277614B2 (en) Tether assembly having individual connector ports
US7941021B2 (en) Distribution cable assembly having mid-span access location
AU2011203294B2 (en) A tap point for connecting fiber optic cable

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORNING CABLE SYSTEMS LLC, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ELKINS, ROBERT B. II;NIELSEN, LARS K.;THEUERKORN, THOMAS;AND OTHERS;REEL/FRAME:015957/0623

Effective date: 20041102

AS Assignment

Owner name: GRUNENTHAL GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARKENAU, ELISABETH DR.;BARTHOLOMAUS, JOHANNES DR.;REEL/FRAME:015977/0602

Effective date: 20041109

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12