US6975892B2 - Methods for non-invasive analyte measurement from the conjunctiva - Google Patents

Methods for non-invasive analyte measurement from the conjunctiva Download PDF

Info

Publication number
US6975892B2
US6975892B2 US10/824,214 US82421404A US6975892B2 US 6975892 B2 US6975892 B2 US 6975892B2 US 82421404 A US82421404 A US 82421404A US 6975892 B2 US6975892 B2 US 6975892B2
Authority
US
United States
Prior art keywords
radiation
glucose
mid
infrared radiation
conjunctiva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/824,214
Other versions
US20050085701A1 (en
Inventor
John F. Burd
Gary Krantz
Jacob Fraden
Charles Kramer
Bart Chapman
William Sell
Original Assignee
Oculir Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/824,214 priority Critical patent/US6975892B2/en
Assigned to OCULIR, INC. reassignment OCULIR, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURD, JOHN F., CHAPMAN, BART, FRADEN, JACOB, KRAMER, CHARLES E., KRANTZ, GARY, SELL, WILLIAM
Application filed by Oculir Inc filed Critical Oculir Inc
Priority to JP2006513353A priority patent/JP2006525084A/en
Priority to PCT/US2004/012893 priority patent/WO2004099824A2/en
Priority to EP04760590A priority patent/EP1622507A2/en
Publication of US20050085701A1 publication Critical patent/US20050085701A1/en
Application granted granted Critical
Publication of US6975892B2 publication Critical patent/US6975892B2/en
Priority to US11/420,076 priority patent/US20060224057A1/en
Priority to US11/460,162 priority patent/US20060258917A1/en
Priority to US11/460,191 priority patent/US20060258920A1/en
Priority to US11/460,173 priority patent/US20060258918A1/en
Priority to US11/460,145 priority patent/US20060259328A1/en
Priority to US11/460,186 priority patent/US20060258919A1/en
Priority to US11/837,146 priority patent/US20080009688A1/en
Assigned to BURD, JOHN F. reassignment BURD, JOHN F. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OCULIR, INC.
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes

Definitions

  • the present invention is related to non-invasive methods to detect the presence or measure the concentration of a wide range of analytes, such as glucose, in the conjunctiva of a subject.
  • the spectra of mid-infrared radiation emitted or reflected from the subject's conjunctiva are altered corresponding to the presence, absence or concentration of the analyte within the subject's conjunctiva.
  • the conjunctiva of the subject's eye is utilized as a source of an optical signal to determine an analyte's presence, absence or concentration based on said analyte's distinctive spectral characteristics detected by an instrument capable of detecting the optical signal.
  • the measurements made by the instrument do not require direct contact of the instrument with the conjunctiva and are, therefore, non-invasive.
  • Diabetes remains one of the most serious and under-treated diseases facing the worldwide healthcare system. Diabetes is a chronic disease where the body fails to maintain normal levels of glucose in the bloodstream. It is now the fifth leading cause of death from disease in the U.S. today and accounts for about 15% of the entire healthcare budget. People with diabetes are classified into two groups: Type 1 (formerly known as “juvenile onset” or “insulin dependent” diabetes, that are required to take insulin to maintain life) and Type 2 (formerly known as “adult onset” or “non-insulin dependent,” that may require insulin but may sometimes be treated by diet and oral hypoglycemic drugs). In both cases, without dedicated and regular blood glucose measurement, all patients face the possibility of the complications of diabetes that include cardiovascular disease, kidney failure, blindness, amputation of limbs and premature death.
  • SMBG Blood Glucose
  • Type 1 diabetics 39% measure their glucose levels less than once per day and 21% do not monitor their glucose at all.
  • Type 2 diabetics who take insulin only 26% monitor at least once per day and 47% do not monitor at all. Over 75% of non-insulin-taking Type 2 diabetics never monitor their glucose levels.
  • the present invention seeks to replace the currently used blood glucose measurement methods, devices and instruments, including invasive measures and the use of glucose test strips, with an optical non-invasive instrument.
  • U.S. Pat. No. 5,086,229 (the '229 patent), expressly incorporated by reference herein, is directed to an instrument which generates near-infrared radiation within the spectrum of about 600 to about 1100 nanometers.
  • a person places their finger in between the generated near-infrared radiation source and a detector, which correlates the blood-glucose concentration based on the detected near-infrared radiation.
  • U.S. Pat. No. 5,321,265 (the '265 patent), expressly incorporated by reference herein, also measures blood-glucose level using both near-infrared radiation and the fingertip as a testing site.
  • the detectors disclosed in the '265 patent further comprise silicon photocells and broad bandpass filters.
  • U.S. Pat. No. 5,361,758 (the '758 patent), expressly incorporated by reference herein, is directed to an instrument which measures near-infrared radiation that is either transmitted through or is reflected from the finger or earlobe of a human.
  • the transmitted or reflected light is separated by a grating or prism, and the near-infrared radiation is detected and correlated with blood-glucose concentration.
  • This instrument of the '758 patent also comprises an additional timing and control program wherein the device takes measurements specifically in between heartbeats and can also adjust for temperature.
  • U.S. Pat. No. 6,362,144 (the '144 patent), expressly incorporated by reference herein, discloses using the fingertip as a testing site, however, the described instrument uses attenuated total reflection (ATR) infrared spectroscopy.
  • ATR attenuated total reflection
  • a selected skin surface preferably the finger
  • the skin is then irradiated with a mid-infrared beam, wherein said infrared radiation is detected and quantified to measure blood-glucose levels.
  • This technique is not ideal, however, if the surface of tissue from which the measurement is taken is very dense in the wavelength region of interest or is not amenable to direct contact with the ATR plate, such as an eye, conjunctiva, nose, mouth, or other orifice, cavity or piercing tract.
  • peripheral capillaries in epithelial tissues typically about 40 microns. Again, there are physical characteristics as well as a number of substances present in the skin that can interfere with the desired glucose-specific signal. While useful in the laboratory, both the near-infrared transmission methods and the ATR method mentioned above are not practical, or may not be adequate for use in monitoring blood glucose concentration in patients.
  • the optical rotation of the radiation that passes through the cornea correlates with the glucose concentration in the cornea according to the '560 and '321 patents. While this method would be termed, “non-invasive” because the withdrawal of blood is not required, it may still cause significant discomfort or distort vision of the user because of the need to place the sensor directly in contact with the eye.
  • U.S. Pat. No. 5,009,230 (the '230 patent), expressly incorporated by reference herein, uses a polarized light beam of near-infrared radiation within the range of 940 to 1000 nm.
  • the amount of rotation imparted by glucose present in the bloodstream of the eye on the polarized light beam is measured to determine glucose concentration. Again, the accuracy is limited because glucose simply lacks a sufficiently distinguishable “fingerprint” in this near-infrared radiation spectrum.
  • U.S. Pat. No. 5,687,721 expressly incorporated by reference herein, also discloses a method of measuring blood-glucose concentration by generating both a measurement and reference polarized light beam, and comparing said beams to determine the angle of rotation, which is attributable to the blood-glucose concentration.
  • the preferable testing site disclosed, however, is the finger or other suitable appendage according to the '721 patent.
  • the '721 patent further discloses and requires the use of a monochromatic laser and/or semi-conductor as a light source.
  • U.S. Pat. No. 5,788,632 discloses a non-invasive instrument for determining blood-glucose concentration by transmitting a first beam of light through a first polarizer and a first retarder, then directing the light through the sample to be measured, transmitting the light through a second polarizer or retarder, and lastly detecting the light from the second detector.
  • the rotation of measured polarized light is correlated to the blood-glucose concentration of the sample measured according to the '632 patent.
  • 5,666,956 (the '956 patent), expressly incorporated by reference herein, discloses an instrument which measures electromagnetic radiation from the tympanic membrane and computes monochromatic emissivity using Plank's law by measuring the radiation intensity, spectral distribution, and blackbody temperature.
  • the resultant monochromatic emissivity is variable depending on the spectral characteristics of the site measured, namely the blood-glucose concentration measured from the tympanic membrane. It should be noted, however, that the '956 patent equates skin surfaces of the body to a “gray-body” rather than a black-body with respect to its monochromatic emissivity.
  • the accuracy of such skin surface-based methods utilizing natural black-body emitted radiation is not useful for analyte measurements, as compared to a method of subsurface analysis utilizing natural black-body radiation emitted from the tympanic membrane.
  • the human body naturally emits from its surfaces infrared radiation whose spectrum, or radiation signature, is modified by the presence, absence or concentration of analytes in the body tissues.
  • the eye is particularly well suited as a testing site to detect this infrared radiation.
  • certain analytes such as glucose, exhibit a minimal time delay in glucose concentration changes between the eye and the blood, and the eye provides a body surface with few interferences.
  • the conjunctiva covers the exposed surface of the eye, with the exception of the cornea.
  • the conjunctiva is a clear, thin layer of tissue that lies over the white part of the eye and also lines the inside of the eyelids.
  • the conjunctiva helps keep the eyelids and eyeball moist, and has other functions important for the eye.
  • the conjunctiva is highly vascularized, and the interstitial fluid contained within the conjunctiva has been found to provide an excellent site for the non-invasive measurement of blood or tissue analytes, including glucose.
  • Non-invasive methods of the present invention include, but are not limited to, electromagnetic radiation and any other optical signal measurement.
  • the methods and instrument of the present invention may also be utilized to detect the presence, absence or concentration of analytes in air that has been contacted with or exhaled by a subject.
  • airborne analytes may be, for example, any volatile compound or substance including, but not limited to, ketones, beta hydroxybutyrate, or alcohols.
  • Another embodiment of the present invention relates to a method for measuring an analyte concentration in a tissue of a subject which comprises exposing the conjunctiva of the subject to mid-infrared radiation, determining the reflected mid-infrared radiation spectrum and determining the analyte concentration in the tissue.
  • the subject being tested may be a mammal, and preferably the subject is a human.
  • the analyte concentration being measured may be any analyte having a detectable radiation signature.
  • the analyte concentration being measured is glucose concentration.
  • FIG. 1 Panels A and B: Provides a graphical illustration of the human eye in Panel A showing the conjunctiva.
  • Panel B shows the high degree of vascularization in the conjunctiva, with veins (V) and arterioles (A).
  • FIG. 2 Provides a graphical illustration of one embodiment of the present invention, wherein analyte concentration is measured from the mid-infrared radiation reflected back from the conjunctiva.
  • FIG. 3 Provides a flowchart of one embodiment of the present invention, comprising a method wherein a remote access user can receive a subject's measured analyte concentrations which have been downloaded and stored in a computer system.
  • FIG. 4 Provides a graph of multiple dose response measurements using detection of varying concentrations of glucose using polyethylene membranes as the measurement surface.
  • FIG. 5 Shows a plot of the glucose concentration versus mid-infrared absorption using polyethylene membranes as the measurement surface.
  • FIG. 6 Shows a plot of the results obtained from mid-infrared measurements of glucose concentration using rabbit eye as the surface from which the measurements were made.
  • FIG. 7 Shows a plot of human data obtained from the conjunctiva of the patient's eye measured using mid-infrared absorption to determine blood glucose concentration of the patient.
  • FIG. 8 Shows a plot of the data obtained from a human diabetic patient in a glucose tracking study demonstrating a correlation of glucose concentration with mid-infrared absorption measured from the human eye surface.
  • FIG. 9 Shows the correlation between glucose measurements taken from the conjunctiva according to the methods of the present invention (squares) and SMBG measurements (diamonds.
  • Analyte As used herein describes any particular substance to be measured. Analyte may also include any substance in the tissue of a subject, or is present in air that was in contact with or exhaled by a subject, which demonstrates radiation signature. Examples of analytes include, but are not limited to, metabolic compounds or substances, carbohydrates such as sugars including glucose, proteins, peptides, or amino acids, fats or fatty acids, triglycerides, polysaccharides, alcohols including ethanol, toxins, hormones, vitamins, bacteria-related substances, fungus-related substances, virus-related substances, parasite-related substances, pharmaceutical or non-pharmaceutical compounds, substances, pro-drugs or drugs, and any precursor, metabolite, degradation product or surrogate marker of any of the foregoing. Analyte may also include any substance which is foreign to or not normally present in the body of the subject.
  • Conjunctiva As used herein describes the membranous tissue that covers the exposed surface of the eye and the inner surface of the eyelids.
  • Far-Infrared Radiation refers to any radiation, either generated from any source or naturally emitted, having wavelengths of about 50.00 to about 1000.00 microns.
  • Flooding As used herein refers to broadly applying relatively widely diffused or spread-out rays of light onto a surface.
  • Focused As used herein means mostly parallel rays of light that are caused to converge on a specific predetermined point.
  • Infrared Radiation refers to any radiation, either generated from any source or naturally emitted, having wavelengths of about 0.78 to about 1000.00 microns.
  • Mid-Infrared Radiation refers to any radiation, either generated from any source or naturally emitted, having wavelengths of about 2.50 microns to about 50.00 microns.
  • Mid-Infrared Radiation Detector As used herein refers to any detector or sensor capable of registering infrared radiation. Examples of a suitable infrared radiation detectors include, but are not limited to, a thermocouple, a thermistor, a microbolometer, and a liquid nitrogen cooled MCT. The combined detected infrared radiation may be correlated with wavelengths corresponding to analyte concentrations using means such as the Fourier transform to produce high resolution spectra.
  • Near-Infrared Radiation refers to any radiation, either generated or naturally emitted, having wavelengths of about 0.78 to about 2.50 microns.
  • Surface refers to any part of a subject's body that may be exposed to the external environment, including, but not limited to, skin, the eye, ear, mouth, nose or any other orifice, body cavities, piercing tracts or other surface whether naturally occurring or artificial such as a surgically created surface.
  • Tissue As used herein includes any tissue or component of a subject, including, but not limited to, skin, blood, body fluids, the eye, the tear layer of the eye, interstitial fluid, ocular fluid, bone, muscle, epithelium, fat, hair, fascia, organs, cartilage, tendons, ligaments, and any mucous membrane.
  • electromagnetic radiation such as mid-infrared radiation is flooded onto the conjunctiva using a radiation source.
  • This flooded mid-infrared radiation is reflected from the conjunctiva to a detector.
  • the reflected radiation is detected by a mid-infrared detection instrument placed before the conjunctiva.
  • the radiation signature of the reflected mid-infrared radiation is affected by the presence or concentration of analytes.
  • This provides a non-invasive method employing an instrument of the present invention to measure analyte presence, absence or concentration, such as glucose, from the conjunctiva of a subject (FIG. 2 ).
  • the glucose in the eye is located throughout the various components and compartments of the eye, including, but not limited to, epithelial cells, the aqueous humor, the vitreous humor, various layers of the cornea, iris, various layers of the sclera, conjunctiva, tears, the tear layer, and blood vessels.
  • the eye including, but not limited to, the tear layer and the conjunctiva, is both an ideal and suitable body surface for non-invasive measurement of the presence, absence or concentration of analytes in the tissue of a subject.
  • the conjunctiva is highly vascularized and generally consistent with an individual and between individuals, and provides ready access for the measurement of analytes. Therefore, the present invention is drawn to the use of the conjunctiva for analyte measurements that are non-invasive.
  • Electromagnetic radiation is energy and hence when a molecule absorbs radiation it gains energy as it undergoes a quantum transition from one energy state (E initial ) to another (E final ).
  • some measure of the percent radiation absorbed by the sample is the radiation signature of the compound.
  • the absorption of some amount of the radiation that is applied to a substance, or body surface containing substances, that absorbs radiation may result in a measurable decrease in the amount of radiation energy that actually passes through, or is affected by, the radiation absorbing substances.
  • Such a decrease in the amount of radiation that passes through, or is affected by, the radiation absorbing substances may provide a measurable signal that may be utilized to measure the presence, absence or the concentration of an analyte.
  • One embodiment of the present invention provides a method for non-invasively measuring the blood-analyte concentration in a subject comprising the steps of generating mid-infrared radiation which is flooded onto the conjunctiva of the subject, detecting the reflected mid-infrared radiation, correlating the spectral characteristics of the detected mid-infrared radiation with a radiation signature that corresponds to the analyte concentration, and analyzing the detected mid-infrared radiation signature to give an analyte concentration measurement.
  • the method includes a filtering step before detection, by filtering the mid-infrared radiation reflected back from a body surface so that only wavelengths of about 8.00 microns to about 11.00 pass through the filter.
  • the filtering step may be accomplished using absorption filters, interference filters, monochromators, linear or circular variable filters, prisms or any other functional equivalent known in the art.
  • the detecting step may be accomplished using any mid-infrared radiation sensor such as a thermocouple, thermistor, microbolometer, liquid nitrogen cooled MCT, or any other functional equivalent known in the art.
  • Correlating the spectral characteristics of the detected mid-infrared radiation may comprise the use of a microprocessor to correlate the detected mid-infrared radiation signature with a radiation signature of an analyte. If the analyte being measured is glucose, then the radiation signature generated may be within the wavelength range within about 8.0 to about 11.0 microns.
  • the analyzing step further comprises a microprocessor using algorithms based on Plank's law to correlate the absorption spectrum with a glucose concentration.
  • the analyzing step may comprise the use of a transform, such as, but not limited to, Kramers-Kronig transform or other classical transform known in the art, to transform the detected mid-infrared signal to the analyte spectra for correlation.
  • an instrument comprising a mid-infrared radiation detector and a display may be held up to the conjunctiva of a subject.
  • the infrared radiation from the conjunctiva may optionally be filtered so that only wavelengths of about 8.0 microns to about 11.0 microns reach the mid-infrared radiation detector.
  • the radiation signature of the mid-infrared radiation detected by the detector may then be correlated with a radiation signature that corresponds to a glucose concentration.
  • the radiation signature may then be analyzed to give an accurate glucose concentration measurement.
  • the measured glucose concentration may be displayed.
  • an instrument comprising a mid-infrared radiation generator, a mid-infrared radiation detector and a display may be held up to the conjunctiva of a subject.
  • Mid-infrared radiation may be generated by the instrument and used for flooding or alternatively aiming a focused beam onto the conjunctiva of a subject.
  • the mid-infrared radiation generated may be broad band or narrow band radiation, and may also be filtered to allow only desired wavelengths of radiation to reach the body surface. Any analyte, such as glucose, present in any constituent of the conjunctiva may absorb some of the generated radiation.
  • the mid-infrared radiation that is not absorbed may be reflected back to the instrument.
  • the reflected mid-infrared radiation may optionally be filtered so that only wavelengths of about 8.0 microns to about 11.0 microns reach the mid-infrared radiation detector.
  • the radiation signature of the mid-infrared radiation detected by the detector may then be correlated with a radiation signature that corresponds to analyte, such as glucose, concentration.
  • the radiation signature may be analyzed to give analyte, such as glucose, concentration.
  • the measured analyte, such as glucose, concentration may be displayed by the instrument.
  • Infrared radiation may be generated by the instrument of the present invention.
  • Such infrared radiation may be generated by any suitable generator including, but not limited to, a narrow band wavelength generator or a broadband wavelength generator.
  • an instrument may comprise a mid-infrared radiation generator.
  • the instrument comprises a light source with one or more filters to restrict the wavelengths of the light reaching the conjunctiva.
  • the mid-infrared generator may further comprise a heating element.
  • the heating element of this embodiment may be a Nernst glower (zirconium oxide/yttrium oxides), a NiChrome wire (nickel-chromium wire), and a Globar (silicon-carbon rod), narrow band or broad band light emitting diodes, or any other functional equivalent known in the art.
  • Mid-infrared radiation has wavelengths in the range of about 2.5 microns to about 50.0 microns. Analytes typically have a characteristic “fingerprint” or “signature” or “radiation signature” with respect to its mid-infrared radiation spectrum that results from the analyte's affect on the mid-infrared radiation, such as absorption.
  • Glucose in particular has a distinct spectral “fingerprint” or “signature” in the mid-infrared radiation spectrum, at wavelengths between about 8.0 microns to about 11.0 microns.
  • This radiation signature of glucose may be readily generated for a wide variety of glucose concentrations utilizing a wide variety of body surfaces, such as the conjunctiva, for taking radiation signature data.
  • an instrument may comprise a mid-infrared radiation filter, for filtering out all mid-infrared radiation not within a range of wavelengths from about 8.0 to about 11.0 microns.
  • the filter is selected to filter out all mid-infrared radiation other than other than the wavelengths that provide the radiation signature of the desired analyte, such as glucose.
  • Filtering mid-infrared radiation may be accomplished using absorption filters, interference filters, monochromators, linear or circular variable filters, prisms or any other functional equivalent known in the art.
  • the instrument of the present invention may also comprise a mid-infrared radiation detector for detecting mid-infrared radiation.
  • the mid-infrared radiation detector can measure the naturally emitted or reflected mid-infrared radiation in any form, including in the form of heat energy. Detecting the naturally emitted or reflected mid-infrared radiation may be accomplished using thermocouples, thermistors, microbolometers, liquid nitrogen cooled MCT, or any other functional equivalent known in the art. Both thermocouples and thermistors are well known in the art and are commercially available. For example, thermocouples are commonly used temperature sensors because they are relatively inexpensive, interchangeable, have standard connectors and can measure a wide range of temperatures (http://www.picotech.com).
  • Thermometrics product portfolio comprises a wide range of thermistors (thermally sensitive resistors) which have, according to type, a negative (NTC), or positive (PTC) resistance/temperature coefficient (http://www.thermometrics.com).
  • the instrument of the present invention may also comprise a microprocessor.
  • the microprocessor of this embodiment correlates the detected mid-infrared radiation with a radiation signature whose spectral characteristics provide information to the microprocessor about the analyte concentration being measured.
  • the microprocessor of this embodiment analyzes the resultant radiation signature using suitable algorithms such as those based on Plank's law, to translate the radiation signature into an accurate analyte concentration measurement in the sample being measured.
  • a broad band light source may be modulated by an interferometer, such as in Fourier transform spectroscopy, or by an electro-optical or moving mask, as in Hadamard transform spectroscopy, to encode wavelength information in the time domain.
  • a discrete wavelength band may be selected and scanned in center wavelength using, for example, an acousto-optical tuned filter.
  • the instrument of the present invention having a radiation source comprises one or more mid-infrared radiation sources, which provide radiation at many wavelengths, and also comprises one or more mid-infrared radiation detector.
  • the instrument may further comprise one or more filter or wavelength selector to remove, distinguish or select radiation of a desired wavelength, before or after detection by the detector.
  • the instrument may also comprise an alphanumeric display for displaying the measured blood-glucose concentration.
  • the alphanumeric display of this embodiment may comprise a visual display and an audio display.
  • the visual display may be a liquid crystal display (LCD), a plasma display panel (PDP), and a field emission display (FED) or any other functional equivalent known in the art.
  • An audio display capable of transmitting alphanumeric data and converting this alphanumeric data to an audio display, may be provided with an audio source comprising recorded audio clips, speech synthesizers and voice emulation algorithms or any other functional equivalent known in the art.
  • an instrument for non-invasively measuring blood-glucose concentration further comprises a microprocessor and a memory which is operatively linked to the microprocessor for storing the blood glucose measurements.
  • the instrument of this embodiment further comprises a communications interface adapted to transmit data from the instrument to a computer system.
  • the communications interface selected may include, for example, serial, parallel, universal serial bus (USB), FireWire, Ethernet, fiber optic, co-axial, and twisted pair cables or any other functional equivalent known in the art.
  • the present invention includes a computer system for downloading and storing these measurement data to facilitate storage and access to this information.
  • the present invention further contemplates a computer processor, a memory which is operatively linked to the computer processor, a communications interface adapted to receive and send data within the computer processor, and a computer program stored in the memory which executes in the computer processor.
  • the computer program of this embodiment further comprises a database, wherein data received by the database may be sorted into predetermined fields, and the database may be capable of graphical representations of the downloaded analyte concentrations.
  • the graphical representations of this embodiment may include, but are not limited to, column, line, bar, pie, XY scatter, area, radar, and surface representations.
  • the computer system contemplated by the present invention should be accessible to a remote access user via an analogous communications interface for use as a diagnostic, research, or other medically related tool.
  • Physicians could logon to the computer system via their analogous communications interface and upload a patient's blood-glucose measurements over any period of time. This information could provide a physician with an accurate record to use as a patient monitoring or diagnostic tool such as, for example, adjusting medication levels or recommending dietary changes.
  • Other remote access users contemplated may include research institutes, clinical trial centers, specialists, nurses, hospice service providers, insurance carriers, and any other health care provider.
  • the present invention has demonstrated that glucose can be non-invasively measured using a mid-infrared signal from the conjunctiva. Studies have been performed in a variety of systems, in vitro studies using glucose solutions on membrane samples, in vivo rabbit studies with varying blood glucose concentrations, and human studies with a diabetic human volunteer with varying blood glucose concentrations. These studies have used different types of infrared detector heads for taking the infrared measurements.
  • the inventors of the present invention have found that mid-infrared radiation (in the 8 to 12 micron wavelength range) was unable to penetrate through the cornea (which is about 500 microns thick) and into the aqueous humor.
  • the inventors of the present invention have also found that mid-infrared radiation did penetrate the conjunctiva, and that glucose measurements obtained using mid-infrared radiation from the conjunctiva provided a dose response curve that correlated very well to blood glucose measurements using standard SMBG testing strips.
  • the instrument used for the mid-infrared measurements was the SOC 400 portable FTIR.
  • the SOC 400 portable FTIR is based on an interferometer and was originally designed for the U.S. Army to detect battlefield gases.
  • This instrument has been modified to allow measurements on rabbit and human eyes. These modifications have included the installation of a filter to allow only energy in the 7 to 13 micron region to be measured and also the modification of the faceplate to permit easier placement of the instrument for rabbit and human studies.
  • a glucose tracking study was performed using the diffuse detector for the SOC 400 (all previous experiments were performed using the Specular detector).
  • a glucose tracking study was performed with a diabetic volunteer and the results shown in FIG. 8 demonstrate that the glucose concentration changes were clearly detected and measured using an instrument and method of the present invention.
  • the correlation between the measurements taken with the instrument of the present invention using the methods of the present invention is shown in FIG. 9 . Measurements using the instruments and methods of the present invention showed surprisingly close correlation to SMBG measurements (squares and diamonds respectively).
  • One aspect of the present invention relates to a method of downloading and storing a subject's measured analyte concentrations (FIG. 3 ).
  • a subject first measures the analyte concentration from a body surface such as their eye ( 100 ), whereby reflected mid-infrared radiation ( 150 ) is measured using a non-invasive instrument ( 200 ).
  • the non-invasive instrument ( 200 ) further comprises a communications interface ( 250 ) which is capable of connecting ( 300 ) the non-invasive instrument ( 200 ) through the communications interface ( 250 ) to a computer system ( 400 ).
  • the communications interface ( 250 ) is specifically adapted to transmit data from the instrument to the computer system ( 400 ).
  • the computer system ( 400 ) comprises a computer processor, a computer program which executes in the computer processor, and an analogous communications interface ( 450 ).
  • the measured analyte concentrations from the non-invasive instrument ( 200 ) are downloaded via the communications interface ( 250 ) to the computer system ( 400 ).
  • a remote access user ( 500 ), having a computer system with an analogous communications interface ( 450 ) is capable of retrieving the downloaded measured analyte concentrations from the computer system ( 400 ).
  • the communications interfaces ( 250 , 450 ) may include, for example, serial, parallel, universal serial bus (USB), FireWire, Ethernet, fiber optic, co-axial, and twisted pair cables. This information is used, for example, to provide data, warnings, advice or assistance to the patient or physician, and to track a patient's progress throughout the course of the disease.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Emergency Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention is related to non-invasive methods and instruments to detect the level of analyte concentrations in the tissue of a subject by measuring electromagnetic radiation signatures from the subject's conjunctiva. The spectra of mid-infrared radiation emitted from a subject's body are altered corresponding to the concentration of various compounds within the radiating tissue. In one aspect of the invention, an instrument floods the conjunctiva of the subject with electromagnetic radiation in the mid-infrared range and measures analyte concentrations based on mid-infrared radiation reflected back to the instrument.

Description

CROSS-REFERENCE TO RELATED APPLICATION
Applicants claim the benefit of prior provisional application 60/513,396, filed on Oct. 21, 2003 under 35 U.S.C. 119(e).
FIELD OF THE INVENTION
The present invention is related to non-invasive methods to detect the presence or measure the concentration of a wide range of analytes, such as glucose, in the conjunctiva of a subject. The spectra of mid-infrared radiation emitted or reflected from the subject's conjunctiva are altered corresponding to the presence, absence or concentration of the analyte within the subject's conjunctiva. In one aspect of the present invention, the conjunctiva of the subject's eye is utilized as a source of an optical signal to determine an analyte's presence, absence or concentration based on said analyte's distinctive spectral characteristics detected by an instrument capable of detecting the optical signal. The measurements made by the instrument do not require direct contact of the instrument with the conjunctiva and are, therefore, non-invasive.
BACKGROUND OF THE INVENTION
Diabetes remains one of the most serious and under-treated diseases facing the worldwide healthcare system. Diabetes is a chronic disease where the body fails to maintain normal levels of glucose in the bloodstream. It is now the fifth leading cause of death from disease in the U.S. today and accounts for about 15% of the entire healthcare budget. People with diabetes are classified into two groups: Type 1 (formerly known as “juvenile onset” or “insulin dependent” diabetes, that are required to take insulin to maintain life) and Type 2 (formerly known as “adult onset” or “non-insulin dependent,” that may require insulin but may sometimes be treated by diet and oral hypoglycemic drugs). In both cases, without dedicated and regular blood glucose measurement, all patients face the possibility of the complications of diabetes that include cardiovascular disease, kidney failure, blindness, amputation of limbs and premature death.
The number of cases of diabetes in the U.S. has jumped 40% in the last decade. This high rate of growth is believed to be due to a combination of genetic and lifestyle origins that appear to be a long-term trend, including obesity and poor diet. The American Diabetes Association (ADA) and others estimate that about 17 million Americans and over 150 million people worldwide have diabetes, and it is estimated that up to 40% of these people are currently undiagnosed. American Diabetes Association, “Facts & Figures.”
Diabetes must be “controlled” in order to delay the onset of the disease complications. Therefore, it is essential for people with diabetes to measure their blood glucose levels several times per day in an attempt to keep their glucose levels within the normal range (80 to 130 mg/dl). These glucose measurements are used to determine the amount of insulin or alternative treatments necessary to bring the glucose level to within target limits. Self-Monitoring of Blood Glucose (SMBG) is an ongoing process repeated multiple times per day for the rest of the patient's lifetime.
All currently FDA approved invasive or “less-invasive” (blood taken from the arm or other non-fingertip site) glucose monitoring products currently on the market require the drawing of blood in order to make a quantitative measurement of blood glucose. The ongoing and frequent measurement requirements (1 to possibly 10 times per day) presents all diabetic patients with pain, skin trauma, inconvenience, and infection risk resulting in a general reluctance to frequently perform the critical measurements necessary for selecting the appropriate insulin dose or other therapy.
These current product drawbacks have led to a poor rate of patient compliance. Among Type 1 diabetics, 39% measure their glucose levels less than once per day and 21% do not monitor their glucose at all. Among Type 2 diabetics who take insulin, only 26% monitor at least once per day and 47% do not monitor at all. Over 75% of non-insulin-taking Type 2 diabetics never monitor their glucose levels. Roper Starch Worldwide Survey. Of 1,186 diabetics surveyed, 91% showed interest in a non-invasive glucose monitor. [www.childrenwithdiabetes.com] As such, there is both a tremendous interest and clinical need for a non-invasive glucose sensor.
The present invention seeks to replace the currently used blood glucose measurement methods, devices and instruments, including invasive measures and the use of glucose test strips, with an optical non-invasive instrument.
Various methods have been developed related to non-invasive glucose sensing using a dermal testing site such as the finger or earlobe. These methods primarily employ instruments which measure blood-glucose concentration by generating and measuring light only in the near-infrared radiation spectrum. For example, U.S. Pat. No. 4,882,492 (the '492 patent), expressly incorporated by reference herein, is directed to an instrument which transmits near-infrared radiation through a sample to be tested on the skin surface of a human. In the '492 patent, the near-infrared radiation that passes through the sample is split into two beams, wherein one beam is directed through a negative correlation filter and the second through a neutral density filter. The differential light intensity measured through the filters of the two light beams is proportional to glucose concentration according to the '492 patent.
U.S. Pat. No. 5,086,229 (the '229 patent), expressly incorporated by reference herein, is directed to an instrument which generates near-infrared radiation within the spectrum of about 600 to about 1100 nanometers. According to the '229 patent, a person places their finger in between the generated near-infrared radiation source and a detector, which correlates the blood-glucose concentration based on the detected near-infrared radiation. Similarly, U.S. Pat. No. 5,321,265 (the '265 patent), expressly incorporated by reference herein, also measures blood-glucose level using both near-infrared radiation and the fingertip as a testing site. The detectors disclosed in the '265 patent further comprise silicon photocells and broad bandpass filters.
U.S. Pat. No. 5,361,758 (the '758 patent), expressly incorporated by reference herein, is directed to an instrument which measures near-infrared radiation that is either transmitted through or is reflected from the finger or earlobe of a human. In the '758 patent, the transmitted or reflected light is separated by a grating or prism, and the near-infrared radiation is detected and correlated with blood-glucose concentration. This instrument of the '758 patent also comprises an additional timing and control program wherein the device takes measurements specifically in between heartbeats and can also adjust for temperature.
U.S. Pat. No. 5,910,109 (the '109 patent), expressly incorporated by reference herein, is also directed to an instrument for measuring blood-glucose concentration using near-infrared radiation and the earlobe as the testing site. The instrument of the '109 patent comprises four light sources of a very specific near-infrared emission spectrum, and four detectors having specific near-infrared detection spectra corresponding to the wavelength of the light sources. The signals detected by the four distinct detectors are averaged, and these averages are analyzed to determine blood-glucose concentration according to the '109 patent.
The technique of using near-infrared radiation, wherein the near-infrared radiation is transmitted through or reflected from a dermal testing site and monitored for measuring glucose in vivo, is known to be inaccurate. The glucose concentration of interest is in the blood or the interstitial fluid, not on the surface of the dermis. Therefore these methods must penetrate down into the layers beneath the top layers of dermis. There are a number of substances in the dermis that can interfere with the near-infrared glucose signal. Additionally, there is a wide variation in the human dermis, both between individuals and within a given individual. Moreover, glucose simply lacks a satisfactory distinguishable “fingerprint” in the near-infrared radiation spectrum. Because near-infrared radiation is not sufficiently adsorbed by glucose and because of the level of tissue interferences found in the dermis, this technique is substantially less desirable for the accurate measurement of blood-glucose concentrations.
U.S. Pat. No. 6,362,144 (the '144 patent), expressly incorporated by reference herein, discloses using the fingertip as a testing site, however, the described instrument uses attenuated total reflection (ATR) infrared spectroscopy. According to the '144 patent, a selected skin surface, preferably the finger, is contacted with an ATR plate while ideally maintaining the pressure of contact. In the '144 patent, the skin is then irradiated with a mid-infrared beam, wherein said infrared radiation is detected and quantified to measure blood-glucose levels. This technique is not ideal, however, if the surface of tissue from which the measurement is taken is very dense in the wavelength region of interest or is not amenable to direct contact with the ATR plate, such as an eye, conjunctiva, nose, mouth, or other orifice, cavity or piercing tract.
The minimal depth of peripheral capillaries in epithelial tissues is typically about 40 microns. Again, there are physical characteristics as well as a number of substances present in the skin that can interfere with the desired glucose-specific signal. While useful in the laboratory, both the near-infrared transmission methods and the ATR method mentioned above are not practical, or may not be adequate for use in monitoring blood glucose concentration in patients.
Methods have also been developed related to non-invasive glucose sensing using the eye as a testing site. For example, in both U.S. Pat. Nos. 3,958,560 (the '560 patent) and 4,014,321 (the '321 patent), both expressly incorporated by reference herein, a device utilizing the optical rotation of polarized light is described. In the '560 and the '321 patents, the light source and light detector are incorporated into a contact lens which is placed in contact with the surface of the eye whereby the eye is scanned using a dual source of polarized radiation, each source transmitting in a different absorption spectrum at one side of the cornea or aqueous humor. The optical rotation of the radiation that passes through the cornea correlates with the glucose concentration in the cornea according to the '560 and '321 patents. While this method would be termed, “non-invasive” because the withdrawal of blood is not required, it may still cause significant discomfort or distort vision of the user because of the need to place the sensor directly in contact with the eye.
U.S. Pat. No. 5,009,230 (the '230 patent), expressly incorporated by reference herein, uses a polarized light beam of near-infrared radiation within the range of 940 to 1000 nm. In the '230 patent, the amount of rotation imparted by glucose present in the bloodstream of the eye on the polarized light beam is measured to determine glucose concentration. Again, the accuracy is limited because glucose simply lacks a sufficiently distinguishable “fingerprint” in this near-infrared radiation spectrum.
Both U.S. Pat. No. 5,209,231 (the '231 patent), and International Publication No. WO 92/07511 (the '511 application), both expressly incorporated by reference herein, similarly disclose the use of polarized light, which is initially split by a beam splitter into a reference beam and a detector beam, and then transmitted through a specimen, preferably the aqueous humor of the eye. The amount of phase shift as compared between the transmitted reference and detector beams are correlated to determine glucose concentration in the '231 patent and '511 application. U.S. Pat. No. 5,535,743 (the '743 patent), expressly incorporated by reference herein, measures diffusely reflected light provided by the surface of the iris as opposed to the aqueous humor of the eye. According to the '743 patent, the measurement of optical absorption is possible whereas measurement of the optical rotation through the aqueous humor is not possible. In the '743 patent, the intensity of the diffusely reflected light, however, may be analyzed to obtain useful information on the optical properties of the aqueous humor, including blood-glucose concentration.
U.S. Pat. No. 5,687,721 (the '721 patent), expressly incorporated by reference herein, also discloses a method of measuring blood-glucose concentration by generating both a measurement and reference polarized light beam, and comparing said beams to determine the angle of rotation, which is attributable to the blood-glucose concentration. The preferable testing site disclosed, however, is the finger or other suitable appendage according to the '721 patent. The '721 patent further discloses and requires the use of a monochromatic laser and/or semi-conductor as a light source.
U.S. Pat. No. 5,788,632 (the '632 patent), expressly incorporated by reference herein, discloses a non-invasive instrument for determining blood-glucose concentration by transmitting a first beam of light through a first polarizer and a first retarder, then directing the light through the sample to be measured, transmitting the light through a second polarizer or retarder, and lastly detecting the light from the second detector. The rotation of measured polarized light is correlated to the blood-glucose concentration of the sample measured according to the '632 patent.
U.S. Pat. No. 5,433,197 (the '197 patent), expressly incorporated by reference herein, discloses a non-invasive instrument for determining blood-glucose concentration using a broad-band of near-infrared radiation which illuminates the eye in such a manner that the energy passes through the aqueous humor in the anterior chamber of the eye and is then reflected from the iris. The reflected energy then passes back through the aqueous humor and the cornea and is collected for spectral analysis. According to the '197 patent, the electrical signals representative of the reflected energy are analyzed by univariate and/or multivariate signal processing techniques to correct for any errors in the glucose determination. Again, the accuracy of the instrument in the '197 patent is limited because glucose simply lacks a sufficiently distinguishable “fingerprint” in this near-infrared radiation spectrum.
Instruments and methods of using the body's naturally emitted radiation to measure blood-glucose concentration using the human body, and in particular, the tympanic membrane as a testing site have also been disclosed. U.S. Pat. Nos. 4,790,324; 4,797,840; 4,932,789; 5,024,533; 5,167,235; 5,169,235; and 5,178,464, expressly incorporated by reference herein, describe various designs, stabilization techniques and calibration techniques for tympanic non-contact thermometers. In addition, U.S. Pat. No. 5,666,956 (the '956 patent), expressly incorporated by reference herein, discloses an instrument which measures electromagnetic radiation from the tympanic membrane and computes monochromatic emissivity using Plank's law by measuring the radiation intensity, spectral distribution, and blackbody temperature. According to the '956 patent, the resultant monochromatic emissivity is variable depending on the spectral characteristics of the site measured, namely the blood-glucose concentration measured from the tympanic membrane. It should be noted, however, that the '956 patent equates skin surfaces of the body to a “gray-body” rather than a black-body with respect to its monochromatic emissivity. Therefore, according to the '956 patent, the accuracy of such skin surface-based methods utilizing natural black-body emitted radiation is not useful for analyte measurements, as compared to a method of subsurface analysis utilizing natural black-body radiation emitted from the tympanic membrane.
The human body naturally emits from its surfaces infrared radiation whose spectrum, or radiation signature, is modified by the presence, absence or concentration of analytes in the body tissues. The eye is particularly well suited as a testing site to detect this infrared radiation. For example, certain analytes, such as glucose, exhibit a minimal time delay in glucose concentration changes between the eye and the blood, and the eye provides a body surface with few interferences. Cameron et al., (3)2 DIABETES TECHNOL. THER., 202-207 (2001). There is, therefore, in the field of non-invasive blood analyte monitoring, an unmet need for a suitable instrument, and methodologies for using it, to accurately measure analyte concentrations, such as blood glucose concentration, as well as concentrations of other desired analytes, in subjects requiring this type of blood analyte measurement.
SUMMARY OF THE INVENTION
The conjunctiva covers the exposed surface of the eye, with the exception of the cornea. The conjunctiva is a clear, thin layer of tissue that lies over the white part of the eye and also lines the inside of the eyelids. The conjunctiva helps keep the eyelids and eyeball moist, and has other functions important for the eye. The conjunctiva is highly vascularized, and the interstitial fluid contained within the conjunctiva has been found to provide an excellent site for the non-invasive measurement of blood or tissue analytes, including glucose. Non-invasive methods of the present invention include, but are not limited to, electromagnetic radiation and any other optical signal measurement. The present invention in one embodiment is related to optical non-invasive methods to detect the presence of an analyte or the level of analyte concentrations, in the tissue of a subject by utilizing emitted or reflected infrared radiation from the conjunctiva. The instruments and methods of the present invention do not require direct contact of the instrument with a subject's conjunctiva in order to make the analyte measurements.
The analyte that is actually measured or detected may be any compound or substance that has a radiation signature in the mid-infrared range. In addition to directly measuring the presence, absence or concentration of a particular analyte, the methods and instrument of the present invention may also be used to detect the presence, absence or concentration of any compound or substance that represents a surrogate marker for or has a correlation to the presence, absence, or concentration of another analyte of interest, including, but not limited to, any metabolite or degradation product of an analyte, or an upstream or downstream pathway component or product that is affected by an analyte of interest. In this situation, the analyte that is actually measured is a surrogate marker for another analyte of interest. The methods and instrument of the present invention may also be utilized to detect the presence, absence or concentration of analytes in air that has been contacted with or exhaled by a subject. Such airborne analytes may be, for example, any volatile compound or substance including, but not limited to, ketones, beta hydroxybutyrate, or alcohols.
Another embodiment of the present invention relates to a method for measuring an analyte concentration in a tissue of a subject which comprises exposing the conjunctiva of the subject to mid-infrared radiation, determining the reflected mid-infrared radiation spectrum and determining the analyte concentration in the tissue. In this embodiment, the subject being tested may be a mammal, and preferably the subject is a human. Further, the analyte concentration being measured may be any analyte having a detectable radiation signature. In one embodiment, the analyte concentration being measured is glucose concentration.
Other objectives, features and advantages of the present invention will become apparent from the following detailed description. The detailed description and the specific examples, although indicating specific embodiments of the invention, are provided by way of illustration only. Accordingly, the present invention also includes those various changes and modifications within the spirit and scope of the invention that may become apparent to those skilled in the art from this detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1, Panels A and B: Provides a graphical illustration of the human eye in Panel A showing the conjunctiva. Panel B shows the high degree of vascularization in the conjunctiva, with veins (V) and arterioles (A).
FIG. 2: Provides a graphical illustration of one embodiment of the present invention, wherein analyte concentration is measured from the mid-infrared radiation reflected back from the conjunctiva.
FIG. 3: Provides a flowchart of one embodiment of the present invention, comprising a method wherein a remote access user can receive a subject's measured analyte concentrations which have been downloaded and stored in a computer system.
FIG. 4: Provides a graph of multiple dose response measurements using detection of varying concentrations of glucose using polyethylene membranes as the measurement surface.
FIG. 5: Shows a plot of the glucose concentration versus mid-infrared absorption using polyethylene membranes as the measurement surface.
FIG. 6: Shows a plot of the results obtained from mid-infrared measurements of glucose concentration using rabbit eye as the surface from which the measurements were made.
FIG. 7: Shows a plot of human data obtained from the conjunctiva of the patient's eye measured using mid-infrared absorption to determine blood glucose concentration of the patient.
FIG. 8: Shows a plot of the data obtained from a human diabetic patient in a glucose tracking study demonstrating a correlation of glucose concentration with mid-infrared absorption measured from the human eye surface.
FIG. 9: Shows the correlation between glucose measurements taken from the conjunctiva according to the methods of the present invention (squares) and SMBG measurements (diamonds.
DETAILED DESCRIPTION OF THE INVENTION
It is understood that the present invention is not limited to the particular methodologies, protocols, instruments, and systems, etc., described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a mid-infrared filter” is a reference to one or more filters and includes equivalents thereof known to those skilled in the art, and so forth.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Preferred methods, devices, and materials are described, although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention. All references cited herein are incorporated by reference herein in their entirety.
Definitions
Analyte: As used herein describes any particular substance to be measured. Analyte may also include any substance in the tissue of a subject, or is present in air that was in contact with or exhaled by a subject, which demonstrates radiation signature. Examples of analytes include, but are not limited to, metabolic compounds or substances, carbohydrates such as sugars including glucose, proteins, peptides, or amino acids, fats or fatty acids, triglycerides, polysaccharides, alcohols including ethanol, toxins, hormones, vitamins, bacteria-related substances, fungus-related substances, virus-related substances, parasite-related substances, pharmaceutical or non-pharmaceutical compounds, substances, pro-drugs or drugs, and any precursor, metabolite, degradation product or surrogate marker of any of the foregoing. Analyte may also include any substance which is foreign to or not normally present in the body of the subject.
Conjunctiva: As used herein describes the membranous tissue that covers the exposed surface of the eye and the inner surface of the eyelids.
Far-Infrared Radiation: As used herein refers to any radiation, either generated from any source or naturally emitted, having wavelengths of about 50.00 to about 1000.00 microns.
Flooding: As used herein refers to broadly applying relatively widely diffused or spread-out rays of light onto a surface.
Focused: As used herein means mostly parallel rays of light that are caused to converge on a specific predetermined point.
Infrared Radiation: As used herein refers to any radiation, either generated from any source or naturally emitted, having wavelengths of about 0.78 to about 1000.00 microns.
Mid-Infrared Radiation: As used herein refers to any radiation, either generated from any source or naturally emitted, having wavelengths of about 2.50 microns to about 50.00 microns.
Mid-Infrared Radiation Detector: As used herein refers to any detector or sensor capable of registering infrared radiation. Examples of a suitable infrared radiation detectors include, but are not limited to, a thermocouple, a thermistor, a microbolometer, and a liquid nitrogen cooled MCT. The combined detected infrared radiation may be correlated with wavelengths corresponding to analyte concentrations using means such as the Fourier transform to produce high resolution spectra.
Near-Infrared Radiation: As used herein refers to any radiation, either generated or naturally emitted, having wavelengths of about 0.78 to about 2.50 microns.
Surface: As used herein refers to any part of a subject's body that may be exposed to the external environment, including, but not limited to, skin, the eye, ear, mouth, nose or any other orifice, body cavities, piercing tracts or other surface whether naturally occurring or artificial such as a surgically created surface.
Tissue: As used herein includes any tissue or component of a subject, including, but not limited to, skin, blood, body fluids, the eye, the tear layer of the eye, interstitial fluid, ocular fluid, bone, muscle, epithelium, fat, hair, fascia, organs, cartilage, tendons, ligaments, and any mucous membrane.
Non-Invasive Glucose Measurement
In one aspect of the present invention, electromagnetic radiation, such as mid-infrared radiation is flooded onto the conjunctiva using a radiation source. This flooded mid-infrared radiation is reflected from the conjunctiva to a detector. The reflected radiation is detected by a mid-infrared detection instrument placed before the conjunctiva. The radiation signature of the reflected mid-infrared radiation is affected by the presence or concentration of analytes. This provides a non-invasive method employing an instrument of the present invention to measure analyte presence, absence or concentration, such as glucose, from the conjunctiva of a subject (FIG. 2).
There is substantial evidence that fluctuations in blood glucose levels are well correlated with glucose levels in the aqueous humor of the eye. (Steffes, 1(2) DIABETES TECHNOL. THER., 129-133 (1999)). In fact, it is estimated that the time delay between the blood and aqueous humor glucose concentration averages only about five minutes. (Cameron et al., 3(2) DIABETES TECHNOL. THER., 201-207 (2001)). The aqueous humor is a watery liquid that lies between the lens and cornea, which bathes and supplies the nutrients to the cornea, lens and iris. The glucose in the eye is located throughout the various components and compartments of the eye, including, but not limited to, epithelial cells, the aqueous humor, the vitreous humor, various layers of the cornea, iris, various layers of the sclera, conjunctiva, tears, the tear layer, and blood vessels. The eye, including, but not limited to, the tear layer and the conjunctiva, is both an ideal and suitable body surface for non-invasive measurement of the presence, absence or concentration of analytes in the tissue of a subject. The conjunctiva is highly vascularized and generally consistent with an individual and between individuals, and provides ready access for the measurement of analytes. Therefore, the present invention is drawn to the use of the conjunctiva for analyte measurements that are non-invasive.
Measuring Mid-Infrared Radiation
When electromagnetic radiation is passed through a substance, it can either be absorbed or transmitted, depending upon its frequency and the structure of the molecules it encounters. Electromagnetic radiation is energy and hence when a molecule absorbs radiation it gains energy as it undergoes a quantum transition from one energy state (Einitial) to another (Efinal). The frequency of the absorbed radiation is related to the energy of the transition by Planck's law: Efinal−Einitial=E=hn=hc/l. Thus, if a transition exists which is related to the frequency of the incident radiation by Planck's constant, then the radiation can be absorbed. Conversely, if the frequency does not satisfy the Planck expression, then the radiation will be transmitted. A plot of the frequency of the incident radiation vs. some measure of the percent radiation absorbed by the sample is the radiation signature of the compound. The absorption of some amount of the radiation that is applied to a substance, or body surface containing substances, that absorbs radiation may result in a measurable decrease in the amount of radiation energy that actually passes through, or is affected by, the radiation absorbing substances. Such a decrease in the amount of radiation that passes through, or is affected by, the radiation absorbing substances may provide a measurable signal that may be utilized to measure the presence, absence or the concentration of an analyte.
One embodiment of the present invention provides a method for non-invasively measuring the blood-analyte concentration in a subject comprising the steps of generating mid-infrared radiation which is flooded onto the conjunctiva of the subject, detecting the reflected mid-infrared radiation, correlating the spectral characteristics of the detected mid-infrared radiation with a radiation signature that corresponds to the analyte concentration, and analyzing the detected mid-infrared radiation signature to give an analyte concentration measurement. In another embodiment, the method includes a filtering step before detection, by filtering the mid-infrared radiation reflected back from a body surface so that only wavelengths of about 8.00 microns to about 11.00 pass through the filter. In this embodiment, the filtering step may be accomplished using absorption filters, interference filters, monochromators, linear or circular variable filters, prisms or any other functional equivalent known in the art. The detecting step may be accomplished using any mid-infrared radiation sensor such as a thermocouple, thermistor, microbolometer, liquid nitrogen cooled MCT, or any other functional equivalent known in the art. Correlating the spectral characteristics of the detected mid-infrared radiation may comprise the use of a microprocessor to correlate the detected mid-infrared radiation signature with a radiation signature of an analyte. If the analyte being measured is glucose, then the radiation signature generated may be within the wavelength range within about 8.0 to about 11.0 microns. The analyzing step further comprises a microprocessor using algorithms based on Plank's law to correlate the absorption spectrum with a glucose concentration. In another embodiment of the present invention, the analyzing step may comprise the use of a transform, such as, but not limited to, Kramers-Kronig transform or other classical transform known in the art, to transform the detected mid-infrared signal to the analyte spectra for correlation.
In another embodiment of the present invention, where glucose is the analyte of interest, an instrument comprising a mid-infrared radiation detector and a display may be held up to the conjunctiva of a subject. The infrared radiation from the conjunctiva may optionally be filtered so that only wavelengths of about 8.0 microns to about 11.0 microns reach the mid-infrared radiation detector. The radiation signature of the mid-infrared radiation detected by the detector may then be correlated with a radiation signature that corresponds to a glucose concentration. The radiation signature may then be analyzed to give an accurate glucose concentration measurement. The measured glucose concentration may be displayed.
In another embodiment of the present invention, an instrument comprising a mid-infrared radiation generator, a mid-infrared radiation detector and a display may be held up to the conjunctiva of a subject. Mid-infrared radiation may be generated by the instrument and used for flooding or alternatively aiming a focused beam onto the conjunctiva of a subject. The mid-infrared radiation generated may be broad band or narrow band radiation, and may also be filtered to allow only desired wavelengths of radiation to reach the body surface. Any analyte, such as glucose, present in any constituent of the conjunctiva may absorb some of the generated radiation. The mid-infrared radiation that is not absorbed may be reflected back to the instrument. The reflected mid-infrared radiation may optionally be filtered so that only wavelengths of about 8.0 microns to about 11.0 microns reach the mid-infrared radiation detector. The radiation signature of the mid-infrared radiation detected by the detector may then be correlated with a radiation signature that corresponds to analyte, such as glucose, concentration. The radiation signature may be analyzed to give analyte, such as glucose, concentration. The measured analyte, such as glucose, concentration may be displayed by the instrument.
Infrared radiation may be generated by the instrument of the present invention. Such infrared radiation may be generated by any suitable generator including, but not limited to, a narrow band wavelength generator or a broadband wavelength generator. In one embodiment of the present invention, an instrument may comprise a mid-infrared radiation generator. In another embodiment of the present invention, the instrument comprises a light source with one or more filters to restrict the wavelengths of the light reaching the conjunctiva. The mid-infrared generator may further comprise a heating element. The heating element of this embodiment may be a Nernst glower (zirconium oxide/yttrium oxides), a NiChrome wire (nickel-chromium wire), and a Globar (silicon-carbon rod), narrow band or broad band light emitting diodes, or any other functional equivalent known in the art. Mid-infrared radiation has wavelengths in the range of about 2.5 microns to about 50.0 microns. Analytes typically have a characteristic “fingerprint” or “signature” or “radiation signature” with respect to its mid-infrared radiation spectrum that results from the analyte's affect on the mid-infrared radiation, such as absorption. Glucose in particular has a distinct spectral “fingerprint” or “signature” in the mid-infrared radiation spectrum, at wavelengths between about 8.0 microns to about 11.0 microns. This radiation signature of glucose may be readily generated for a wide variety of glucose concentrations utilizing a wide variety of body surfaces, such as the conjunctiva, for taking radiation signature data. In one embodiment of the present invention, an instrument may comprise a mid-infrared radiation filter, for filtering out all mid-infrared radiation not within a range of wavelengths from about 8.0 to about 11.0 microns. In other embodiments the filter is selected to filter out all mid-infrared radiation other than other than the wavelengths that provide the radiation signature of the desired analyte, such as glucose. Filtering mid-infrared radiation may be accomplished using absorption filters, interference filters, monochromators, linear or circular variable filters, prisms or any other functional equivalent known in the art.
The instrument of the present invention may also comprise a mid-infrared radiation detector for detecting mid-infrared radiation. The mid-infrared radiation detector can measure the naturally emitted or reflected mid-infrared radiation in any form, including in the form of heat energy. Detecting the naturally emitted or reflected mid-infrared radiation may be accomplished using thermocouples, thermistors, microbolometers, liquid nitrogen cooled MCT, or any other functional equivalent known in the art. Both thermocouples and thermistors are well known in the art and are commercially available. For example, thermocouples are commonly used temperature sensors because they are relatively inexpensive, interchangeable, have standard connectors and can measure a wide range of temperatures (http://www.picotech.com). In addition, Thermometrics product portfolio comprises a wide range of thermistors (thermally sensitive resistors) which have, according to type, a negative (NTC), or positive (PTC) resistance/temperature coefficient (http://www.thermometrics.com).
The instrument of the present invention may also comprise a microprocessor. The microprocessor of this embodiment correlates the detected mid-infrared radiation with a radiation signature whose spectral characteristics provide information to the microprocessor about the analyte concentration being measured. The microprocessor of this embodiment analyzes the resultant radiation signature using suitable algorithms such as those based on Plank's law, to translate the radiation signature into an accurate analyte concentration measurement in the sample being measured.
It is readily apparent to those skilled in the art that a broad band light source may be modulated by an interferometer, such as in Fourier transform spectroscopy, or by an electro-optical or moving mask, as in Hadamard transform spectroscopy, to encode wavelength information in the time domain. A discrete wavelength band may be selected and scanned in center wavelength using, for example, an acousto-optical tuned filter. The instrument of the present invention having a radiation source, comprises one or more mid-infrared radiation sources, which provide radiation at many wavelengths, and also comprises one or more mid-infrared radiation detector. The instrument may further comprise one or more filter or wavelength selector to remove, distinguish or select radiation of a desired wavelength, before or after detection by the detector.
Clinical Applications
It may be required for diabetes patients and subjects at risk for diabetes to measure their blood glucose levels regularly in an attempt to keep their blood glucose levels within an acceptable range, and to make an accurate recordation of blood-glucose levels for both personal and medical records. In one aspect of the present invention, the instrument may also comprise an alphanumeric display for displaying the measured blood-glucose concentration. The alphanumeric display of this embodiment may comprise a visual display and an audio display. The visual display may be a liquid crystal display (LCD), a plasma display panel (PDP), and a field emission display (FED) or any other functional equivalent known in the art. An audio display, capable of transmitting alphanumeric data and converting this alphanumeric data to an audio display, may be provided with an audio source comprising recorded audio clips, speech synthesizers and voice emulation algorithms or any other functional equivalent known in the art.
Self-Monitoring of Blood Glucose (SMBG) is an ongoing process repeated multiple times per day for the rest of the diabetic patient's lifetime. Accurate recordation of these measurements are crucial for diagnostic purposes. A facile storage and access system for this data is also contemplated in this invention. In one aspect of the present invention, an instrument for non-invasively measuring blood-glucose concentration further comprises a microprocessor and a memory which is operatively linked to the microprocessor for storing the blood glucose measurements. The instrument of this embodiment further comprises a communications interface adapted to transmit data from the instrument to a computer system. In this embodiment the communications interface selected may include, for example, serial, parallel, universal serial bus (USB), FireWire, Ethernet, fiber optic, co-axial, and twisted pair cables or any other functional equivalent known in the art.
In addition to storing blood-glucose measurement data within an instrument, the present invention includes a computer system for downloading and storing these measurement data to facilitate storage and access to this information. The present invention further contemplates a computer processor, a memory which is operatively linked to the computer processor, a communications interface adapted to receive and send data within the computer processor, and a computer program stored in the memory which executes in the computer processor. The computer program of this embodiment further comprises a database, wherein data received by the database may be sorted into predetermined fields, and the database may be capable of graphical representations of the downloaded analyte concentrations. The graphical representations of this embodiment may include, but are not limited to, column, line, bar, pie, XY scatter, area, radar, and surface representations.
The computer system contemplated by the present invention should be accessible to a remote access user via an analogous communications interface for use as a diagnostic, research, or other medically related tool. Physicians, for example, could logon to the computer system via their analogous communications interface and upload a patient's blood-glucose measurements over any period of time. This information could provide a physician with an accurate record to use as a patient monitoring or diagnostic tool such as, for example, adjusting medication levels or recommending dietary changes. Other remote access users contemplated may include research institutes, clinical trial centers, specialists, nurses, hospice service providers, insurance carriers, and any other health care provider.
The present invention has demonstrated that glucose can be non-invasively measured using a mid-infrared signal from the conjunctiva. Studies have been performed in a variety of systems, in vitro studies using glucose solutions on membrane samples, in vivo rabbit studies with varying blood glucose concentrations, and human studies with a diabetic human volunteer with varying blood glucose concentrations. These studies have used different types of infrared detector heads for taking the infrared measurements.
All studies, including the human studies, clearly demonstrate the dose-response to blood glucose concentrations using mid-infrared measurement techniques compared to standard SMBG monitoring test strips.
The inventors of the present invention have found that mid-infrared radiation (in the 8 to 12 micron wavelength range) was unable to penetrate through the cornea (which is about 500 microns thick) and into the aqueous humor. The inventors of the present invention have also found that mid-infrared radiation did penetrate the conjunctiva, and that glucose measurements obtained using mid-infrared radiation from the conjunctiva provided a dose response curve that correlated very well to blood glucose measurements using standard SMBG testing strips.
EXAMPLES
The following examples are provided to describe and illustrate the present invention. As such, they should not be construed to limit the scope of the invention. Those in the art will well appreciate that many other embodiments also fall within the scope of the invention, as it is described hereinabove and in the claims.
Example 1 Experimental In-Vitro Model to Test Precision and Accuracy of the Instrument
Instrumentation
The instrument used for the mid-infrared measurements was the SOC 400 portable FTIR. The SOC 400 portable FTIR is based on an interferometer and was originally designed for the U.S. Army to detect battlefield gases. This instrument has been modified to allow measurements on rabbit and human eyes. These modifications have included the installation of a filter to allow only energy in the 7 to 13 micron region to be measured and also the modification of the faceplate to permit easier placement of the instrument for rabbit and human studies.
In Vitro Studies
Studies were performed to demonstrate that solutions with varying concentrations of glucose would give a mid-infrared dose-response. Hydrophilic polyethylene membranes from Millipore Corporation were saturated with glucose solutions with concentrations at 2000 mg/dl and lower. The series of curves generated in this experiment are shown in FIG. 4. For this plot, the following equation was used: Absorption=−1n (sample spectrum/gold reference spectrum). When the glucose concentration is plotted against the absorption at 9.75 microns, the plot shown in FIG. 5 was observed. These studies confirmed that glucose concentration can be measured in an aqueous environment in the mid-infrared wavelength range.
Example 2 Experimental Rabbit Model
Ketamine Anesthetized Rabbit Studies
As noted in the scientific literature (Cameron et al., DIABETES TECH. THER., (1999) 1(2):135-143), rabbits anesthetized with Ketamine experience a rapid and marked increase in blood glucose concentration, due to the release of glucose from the liver. We have confirmed this in a series of experiments and observed that the rabbit blood sugar can change from ˜125 mg/dl to ˜325 mg/dl in 60 minutes, as measured with a LXN ExpressView blood glucose meter. These experiments require a preliminary use of gas anesthesia (Isoflorane) prior to the use of Ketamine. The rabbit was immobilized such that after anesthesia, the eyeball was available for measurements with the SOC 400 portable FTIR. Once the animal was unconscious, a drop of blood from a vein was taken and tested on a blood glucose test strip with the LXN ExpressView blood glucose meter. Such samples were taken every fifteen minutes throughout the study. The gas must be discontinued in order for the Ketamine effect to fully manifest itself. The drying out of the eye may be prevented by suturing the eyelids and using the sutures to open the eye for the measurement and then allowing them to close after the measurement to moisten the eyeball.
The data from the rabbit study measuring glucose concentration from the sclera yielded the results with a regression coefficient (R squared) of 0.86, shown in FIG. 6.
Example 3 Human Clinical Study
Human Studies
Several studies were performed with non-diabetic and diabetic human volunteers. Prior to performing these studies it was confirmed that the infrared radiation being used poses no health hazard.
Several experiments with a diabetic volunteer were performed. The subject was asked to adjust his food intake and insulin administration in order to have his glucose levels move from approximately 100 to 300 mg/dl over a three to four hour timeframe. During the study, the patient took duplicate fingerstick glucose measurements every ten to fifteen minutes and was scanned with the SOC 400 approximately every fifteen minutes. Prior to collecting the infrared scan, the instrument operator aligned the SOC 400 with the subjects' eye to attempt to collect the strongest signal being reflected off of the eye.
In a study performed on the patient using the SOC 400 specular detection head and measuring off of the surface of the patient's eyeball, the following correlation was observed, as shown in FIG. 7. As seen, the correlation of the signal with the glucose concentration is clear and confirms the rabbit study observations.
Human Study Using the SOC 400 Diffuse Detector
A glucose tracking study was performed using the diffuse detector for the SOC 400 (all previous experiments were performed using the Specular detector). A glucose tracking study was performed with a diabetic volunteer and the results shown in FIG. 8 demonstrate that the glucose concentration changes were clearly detected and measured using an instrument and method of the present invention. The correlation between the measurements taken with the instrument of the present invention using the methods of the present invention is shown in FIG. 9. Measurements using the instruments and methods of the present invention showed surprisingly close correlation to SMBG measurements (squares and diamonds respectively).
Example 4 A Method Wherein a Remote Access User Can Receive a Subject's Measured Analyte Concentrations Which Have Been Downloaded and Stored in a Computer System
One aspect of the present invention relates to a method of downloading and storing a subject's measured analyte concentrations (FIG. 3). A subject first measures the analyte concentration from a body surface such as their eye (100), whereby reflected mid-infrared radiation (150) is measured using a non-invasive instrument (200). The non-invasive instrument (200) further comprises a communications interface (250) which is capable of connecting (300) the non-invasive instrument (200) through the communications interface (250) to a computer system (400). The communications interface (250) is specifically adapted to transmit data from the instrument to the computer system (400). The computer system (400) comprises a computer processor, a computer program which executes in the computer processor, and an analogous communications interface (450). The measured analyte concentrations from the non-invasive instrument (200) are downloaded via the communications interface (250) to the computer system (400). A remote access user (500), having a computer system with an analogous communications interface (450) is capable of retrieving the downloaded measured analyte concentrations from the computer system (400). The communications interfaces (250, 450) may include, for example, serial, parallel, universal serial bus (USB), FireWire, Ethernet, fiber optic, co-axial, and twisted pair cables. This information is used, for example, to provide data, warnings, advice or assistance to the patient or physician, and to track a patient's progress throughout the course of the disease.

Claims (10)

1. A method of determining glucose concentration in a tissue of a subject, the subject including an eye with an ocular surface and a conjunctiva surface, comprising the steps:
a. exposing at least a portion of the conjunctiva surface of the subject to electromagnetic radiation without contact with the ocular surface;
b. detecting electromagnetic radiation reflected from the conjunctiva without contact with the ocular surface; and,
c. determining a radiation signature of said reflected electromagnetic radiation to determine glucose concentration in the tissue of the subject.
2. The method of claim 1, wherein said method is non-invasive and wherein said subject is a human.
3. The method of claim 1, wherein said electromagnetic radiation is mid-infrared radiation.
4. The method of claim 3, wherein the mid-infrared radiation is in a wavelength range of about 2.5 microns to about 25.0 microns.
5. The method of claim 1, wherein said detecting step further comprises selecting at least one wavelength within said reflected electromagnetic radiation.
6. The method of claim 5, wherein said selecting of said reflected electromagnetic radiation further comprises filtering said reflected electromagnetic radiation.
7. The method of claim 1, wherein said determining step further comprises using a microprocessor.
8. The method of claim 1, wherein said reflected electromagnetic radiation comprises infrared radiation having a wavelength range between about 2.5 microns to about 25.0 microns.
9. The method of claim 8, wherein said reflected infrared radiation is within the wavelength range between about 8.0 microns to about 11.0 microns.
10. A method of downloading and storing a subject's measured glucose concentration, comprising the steps of:
a. measuring said glucose concentration according to the method of claim 1 using a non-invasive instrument having a communications interface;
b. connecting said non-invasive instrument through said communications interface to a computer system having a computer processor, a computer program which executes in said computer processor, and an analogous communications interface; and
c. downloading from said non-invasive instrument to said computer system said measured glucose concentrations.
US10/824,214 2003-05-02 2004-04-14 Methods for non-invasive analyte measurement from the conjunctiva Expired - Fee Related US6975892B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US10/824,214 US6975892B2 (en) 2003-10-21 2004-04-14 Methods for non-invasive analyte measurement from the conjunctiva
JP2006513353A JP2006525084A (en) 2003-05-02 2004-04-27 Method and device for non-invasive analyte measurement
PCT/US2004/012893 WO2004099824A2 (en) 2003-05-02 2004-04-27 Methods and device for non-invasive analyte measurement
EP04760590A EP1622507A2 (en) 2003-05-02 2004-04-27 Methods and device for non-invasive analyte measurement
US11/420,076 US20060224057A1 (en) 2003-10-21 2006-05-24 Methods for non-invasive analyte measurement
US11/460,186 US20060258919A1 (en) 2004-04-14 2006-07-26 Non-Invasive Analyte Measurement Device for Measuring Tears and Other Ocular Elements Using Electromagnetic Radiation and Method of Using the Same
US11/460,162 US20060258917A1 (en) 2004-04-14 2006-07-26 Apparatus and Method of Use for Non-Invasive Analyte Measurement
US11/460,145 US20060259328A1 (en) 2003-10-21 2006-07-26 Wireless Non-Invasive Analyte Measurement Device
US11/460,173 US20060258918A1 (en) 2004-04-14 2006-07-26 Combination Analyte Measurement Device and Method of Use
US11/460,191 US20060258920A1 (en) 2004-04-14 2006-07-26 Non-Invasive Analyte Measurement Glasses and Method of Use
US11/837,146 US20080009688A1 (en) 2004-04-14 2007-08-10 Methods for non-invasive analyte measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US51339603P 2003-10-21 2003-10-21
US10/824,214 US6975892B2 (en) 2003-10-21 2004-04-14 Methods for non-invasive analyte measurement from the conjunctiva

Related Child Applications (6)

Application Number Title Priority Date Filing Date
US12247205A Continuation 2003-10-21 2005-05-05
US11/420,076 Continuation US20060224057A1 (en) 2003-10-21 2006-05-24 Methods for non-invasive analyte measurement
US11/460,145 Continuation US20060259328A1 (en) 2003-10-21 2006-07-26 Wireless Non-Invasive Analyte Measurement Device
US11/460,186 Continuation US20060258919A1 (en) 2004-04-14 2006-07-26 Non-Invasive Analyte Measurement Device for Measuring Tears and Other Ocular Elements Using Electromagnetic Radiation and Method of Using the Same
US11/460,162 Continuation US20060258917A1 (en) 2004-04-14 2006-07-26 Apparatus and Method of Use for Non-Invasive Analyte Measurement
US11/837,146 Continuation US20080009688A1 (en) 2004-04-14 2007-08-10 Methods for non-invasive analyte measurement

Publications (2)

Publication Number Publication Date
US20050085701A1 US20050085701A1 (en) 2005-04-21
US6975892B2 true US6975892B2 (en) 2005-12-13

Family

ID=34526861

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/824,214 Expired - Fee Related US6975892B2 (en) 2003-05-02 2004-04-14 Methods for non-invasive analyte measurement from the conjunctiva

Country Status (1)

Country Link
US (1) US6975892B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7308293B2 (en) 2001-08-02 2007-12-11 Glucovista, Llc Non-invasive glucose meter
US20080058627A1 (en) * 2006-08-24 2008-03-06 University Of Central Florida Research Foundation, Inc. Noninvasive glucose monitor
US20080103376A1 (en) * 2006-10-27 2008-05-01 Felder Robin A Microelectronic biosensor plug
US20080109259A1 (en) * 2004-05-14 2008-05-08 Bayer Healthcare Llc Method and Apparatus for Implementing Patient Data Download for Multiple Different Meter Types
WO2009016403A2 (en) 2007-07-30 2009-02-05 Lein Applied Diagnostics Limited Optical alignment apparatus and method therefor
WO2009101433A1 (en) 2008-02-11 2009-08-20 Lein Applied Diagnostics Limited Measurement apparatus and method therefor
WO2010086640A1 (en) 2009-01-30 2010-08-05 Lein Applied Diagnostics Limited Signal sample trigger apparatus, data acquisition system and method of sampling an analogue signal
US7802883B2 (en) 2007-12-20 2010-09-28 Johnson & Johnson Vision Care, Inc. Cosmetic contact lenses having a sparkle effect
US8219169B2 (en) 2008-02-11 2012-07-10 Glucovista Inc. Apparatus and method using light retro-reflected from a retina to non-invasively measure the blood concentration of a substance
US8364218B2 (en) 2008-02-11 2013-01-29 Glucovista, Inc. Apparatus and method for non-invasive measurement of the concentration of a substance in subjects blood
US9456772B2 (en) 2009-10-07 2016-10-04 The University Of Toledo Non-invasive ocular analyte sensing system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20041644A1 (en) * 2004-08-11 2004-11-11 Eni Spa PROCEDURE FOR THE STORAGE OF SULFUR WITH ZERO EMISSION
US20090124873A1 (en) * 2005-10-24 2009-05-14 Shinji Uchida Biocomponent concentration measuring device
EP1905356A4 (en) * 2006-03-10 2008-10-15 Matsushita Electric Ind Co Ltd Living body ingredient concentration measuring instrument
DE102008013821B4 (en) * 2008-03-10 2010-11-18 Westphal, Peter, Dr. Method and device for measuring dissolved substances in human or animal ocular aqueous humor
WO2016054079A1 (en) 2014-09-29 2016-04-07 Zyomed Corp. Systems and methods for blood glucose and other analyte detection and measurement using collision computing
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
DE112017004707T5 (en) * 2016-09-20 2019-06-13 Furman University Optical blood glucose meter

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868219A (en) 1972-06-14 1975-02-25 Akzona Inc Determination of HCG glucose and galactose in body fluids with chromogenic indicators
US3920969A (en) 1974-01-31 1975-11-18 Robert E Berglas Digital glucose analyzer
US3958560A (en) 1974-11-25 1976-05-25 Wayne Front March Non-invasive automatic glucose sensor system
US4014321A (en) 1974-11-25 1977-03-29 March Wayne F Non-invasive glucose sensor system
US4055175A (en) 1976-05-07 1977-10-25 Miles Laboratories, Inc. Blood glucose control apparatus
US4151845A (en) 1977-11-25 1979-05-01 Miles Laboratories, Inc. Blood glucose control apparatus
US4163780A (en) 1977-03-30 1979-08-07 Kirin-Seagram Limited Ks-2-a
US4178917A (en) * 1979-01-03 1979-12-18 Shapiro Howard M Method and system for non-invasive detection of zinc protoporphyrin in erythrocytes
US4230697A (en) 1978-07-03 1980-10-28 Morinaga Milk Industry Co. Ltd. Virus-inactivated HGI-glycoprotein capable of stimulating proliferation and differentiation of human granulocyte, process for preparing same and leukopenia curative containing same
US4312979A (en) 1978-04-20 1982-01-26 Toyo Soda Manufacturing Co., Ltd. Polysaccharides containing allose
US4313935A (en) 1979-03-05 1982-02-02 Fujisawa Pharmaceutical Co., Ltd. Antibiotic FR-900129 substance, a process for the preparation thereof and pharmaceutical compositions containing the same
US4313934A (en) 1979-05-08 1982-02-02 Kirin Beer Kabushiki Kaisha Physiologically active polysaccharides, production and uses thereof
US4330533A (en) 1977-11-08 1982-05-18 Mitsubishi Petrochemical Co., Ltd. Novel polysaccharide and hypocholesterol composition containing the same
US4390622A (en) 1981-09-21 1983-06-28 Cartwright Garry W Neisseria bacteria species identification and beta lactamase testing methods
US4396763A (en) 1981-01-14 1983-08-02 Meiji Milk Products Company Limited High molecular polysaccharide MPS-80
US4473530A (en) 1980-09-24 1984-09-25 Villa Real Antony Euclid C Compact sanitary urinalysis unit
US4482543A (en) 1981-02-27 1984-11-13 Otsuka Pharmaceutical Factory, Inc. Biologically active substance, process for preparing the substance and immunoactive composition
US4533548A (en) 1981-12-02 1985-08-06 Kitasato Institute Acidic polysaccharide CH-1 isolated from Chlorella pyrenoidosa and the use thereof
US4557933A (en) 1983-07-15 1985-12-10 Sankyo Company Limited Antibiotic called "chloropolysporin", a process for its preparation, and its therapeutic and veterinary use
US4575551A (en) 1983-05-02 1986-03-11 Nakano Vinegar Co., Ltd. Acidic heteropolysaccharide AM-2
US4627445A (en) 1985-04-08 1986-12-09 Garid, Inc. Glucose medical monitoring system
US4787398A (en) 1985-04-08 1988-11-29 Garid, Inc. Glucose medical monitoring system
US4790324A (en) 1984-10-23 1988-12-13 Intelligent Medical Systems, Inc. Method and apparatus for measuring internal body temperature utilizing infrared emissions
US4797840A (en) 1985-04-17 1989-01-10 Thermoscan Inc. Infrared electronic thermometer and method for measuring temperature
US4801582A (en) 1984-04-05 1989-01-31 Toyo Yakushoku Kogyo Co., Ltd. Method and composition for treating hypoglycemia using aloe polysaccharides
US4882492A (en) 1988-01-19 1989-11-21 Biotronics Associates, Inc. Non-invasive near infrared measurement of blood analyte concentrations
US4898813A (en) 1986-04-04 1990-02-06 Albarella James P Catalytic test composition intended to produce a range of colors
US4901728A (en) 1988-05-31 1990-02-20 Eol, Inc. Personal glucose monitor
US4918054A (en) 1985-01-11 1990-04-17 Sankyo Company Limited Antibiotics called `chloropolysporins B and C`, a process for their preparation, and their therapeutic and veterinary use
US4932789A (en) 1988-04-12 1990-06-12 Citizen Watch Co., Ltd. Radiation clinical thermometer
US4975367A (en) 1986-04-04 1990-12-04 Miles Inc. Catalytic test composition intended to produce a range of colors
US4998533A (en) * 1986-07-15 1991-03-12 Winkelman James W Apparatus and method for in vivo analysis of red and white blood cell indices
US5009230A (en) 1988-05-31 1991-04-23 Eol, Inc. Personal glucose monitor
US5054487A (en) 1990-02-02 1991-10-08 Boston Advanced Technologies, Inc. Laser systems for material analysis based on reflectance ratio detection
US5068536A (en) 1989-01-19 1991-11-26 Futrex, Inc. Method for providing custom calibration for near infrared instruments for measurement of blood glucose
US5070874A (en) 1990-01-30 1991-12-10 Biocontrol Technology, Inc. Non-invasive determination of glucose concentration in body of patients
US5077476A (en) 1990-06-27 1991-12-31 Futrex, Inc. Instrument for non-invasive measurement of blood glucose
US5086229A (en) 1989-01-19 1992-02-04 Futrex, Inc. Non-invasive measurement of blood glucose
US5137023A (en) 1990-04-19 1992-08-11 Worcester Polytechnic Institute Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
US5167265A (en) 1991-07-05 1992-12-01 Kyoichi Limited Hand-operated binding device
US5167235A (en) 1991-03-04 1992-12-01 Pat O. Daily Revocable Trust Fiber optic ear thermometer
US5169235A (en) 1990-08-30 1992-12-08 Hirose Electric Co., Ltd. Radiation type thermometer
US5178464A (en) 1991-04-19 1993-01-12 Thermoscan Inc. Balance infrared thermometer and method for measuring temperature
US5194615A (en) 1983-07-08 1993-03-16 The William Seroy Group Synthetic GTF chromium nicotinate material and its preparation
US5209231A (en) 1990-11-02 1993-05-11 University Of Connecticut Optical glucose sensor apparatus and method
US5212066A (en) 1991-11-14 1993-05-18 Miles Inc. Use of inhibitors of color generation in chromogenic assays
US5222496A (en) 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Infrared glucose sensor
US5243983A (en) 1990-12-14 1993-09-14 Georgia Tech Research Corporation Non-invasive blood glucose measurement system and method using stimulated raman spectroscopy
US5267152A (en) 1989-10-28 1993-11-30 Yang Won S Non-invasive method and apparatus for measuring blood glucose concentration
US5279294A (en) 1985-04-08 1994-01-18 Cascade Medical, Inc. Medical diagnostic system
US5313941A (en) 1993-01-28 1994-05-24 Braig James R Noninvasive pulsed infrared spectrophotometer
US5321265A (en) 1992-07-15 1994-06-14 Block Myron J Non-invasive testing
US5332667A (en) 1989-02-08 1994-07-26 Sapporo Breweries Limited Method for producing biologically active polysaccharide RON substance
US5352411A (en) 1993-08-13 1994-10-04 Khuri Raja N Device for determination of tear constituents
US5361758A (en) 1988-06-09 1994-11-08 Cme Telemetrix Inc. Method and device for measuring concentration levels of blood constituents non-invasively
US5370114A (en) 1992-03-12 1994-12-06 Wong; Jacob Y. Non-invasive blood chemistry measurement by stimulated infrared relaxation emission
US5424545A (en) 1992-07-15 1995-06-13 Myron J. Block Non-invasive non-spectrophotometric infrared measurement of blood analyte concentrations
US5424201A (en) 1990-05-31 1995-06-13 Sapporo Breweries Limited Method for preparing an antitumor dextran using Lactobacillus confusus
US5433197A (en) 1992-09-04 1995-07-18 Stark; Edward W. Non-invasive glucose measurement method and apparatus
US5434412A (en) 1992-07-15 1995-07-18 Myron J. Block Non-spectrophotometric measurement of analyte concentrations and optical properties of objects
US5448992A (en) 1992-12-10 1995-09-12 Sunshine Medical Instruments, Inc. Method and apparatus for non-invasive phase sensitive measurement of blood glucose concentration
US5459317A (en) 1994-02-14 1995-10-17 Ohio University Method and apparatus for non-invasive detection of physiological chemicals, particularly glucose
US5476656A (en) 1993-03-18 1995-12-19 Kureha Kagaku Kogyo Kabushiki Kaisha Substance BS-3
US5497772A (en) 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5515847A (en) 1993-01-28 1996-05-14 Optiscan, Inc. Self-emission noninvasive infrared spectrophotometer
US5535743A (en) 1992-12-19 1996-07-16 Boehringer Mannheim Gmbh Device for the in vivo determination of an optical property of the aqueous humour of the eye
US5553616A (en) 1993-11-30 1996-09-10 Florida Institute Of Technology Determination of concentrations of biological substances using raman spectroscopy and artificial neural network discriminator
US5553613A (en) 1994-08-17 1996-09-10 Pfizer Inc. Non invasive blood analyte sensor
US5556761A (en) 1994-04-26 1996-09-17 Phillips; Kevin J. Test strip for blood glucose testing
US5565342A (en) 1989-02-08 1996-10-15 Sapporo Breweries Limited Process for producing polysaccharide ron substance with a synthetase
US5615672A (en) 1993-01-28 1997-04-01 Optiscan, Inc. Self-emission noninvasive infrared spectrophotometer with body temperature compensation
US5666956A (en) 1996-05-20 1997-09-16 Buchert; Janusz Michal Instrument and method for non-invasive monitoring of human tissue analyte by measuring the body's infrared radiation
US5687721A (en) 1992-12-15 1997-11-18 Kuhls; Burkhard Measurement device for non-invasively determining the concentration of polarising substances
US5713353A (en) 1996-04-19 1998-02-03 Castano; Jaime A. Optical method and device for determining blood glucose levels
US5719034A (en) 1995-03-27 1998-02-17 Lifescan, Inc. Chemical timer for a visual test strip
US5755231A (en) 1995-05-17 1998-05-26 Plus Bio, Inc. Test strip including integral specimen flow retarding structure
US5756318A (en) 1995-03-24 1998-05-26 Amino Up Chemical Co., Ltd. Polysaccharides and preparation thereof
US5786584A (en) 1995-09-06 1998-07-28 Eli Lilly And Company Vial and cartridge reading device providing audio feedback for a blood glucose monitoring system
US5788632A (en) 1996-03-19 1998-08-04 Abbott Laboratories Apparatus and process for the non-invasive measurement of optically active compounds
US5791344A (en) 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5820557A (en) 1996-03-01 1998-10-13 Terumo Kabushiki Kaisha Blood glucose measurement apparatus
US5823966A (en) 1997-05-20 1998-10-20 Buchert; Janusz Michal Non-invasive continuous blood glucose monitoring
US5835215A (en) 1996-05-16 1998-11-10 Fuji Photo Film Co., Ltd. Glucose concentration measuring method and apparatus with short coherence source and heterodyne interferometer
US5896198A (en) 1996-11-11 1999-04-20 Chien Chou Optical heterodyne-based method and apparatus for determining the concentration of optically active substances
US5910109A (en) 1997-02-20 1999-06-08 Emerging Technology Systems, Llc Non-invasive glucose measuring device and method for measuring blood glucose
US5991653A (en) 1995-03-14 1999-11-23 Board Of Regents, The University Of Texas System Near-infrared raman spectroscopy for in vitro and in vivo detection of cervical precancers
US5995236A (en) 1998-04-13 1999-11-30 Mit Development Corporation Blood fluid characteristics analysis instrument
US5995860A (en) 1995-07-06 1999-11-30 Thomas Jefferson University Implantable sensor and system for measurement and control of blood constituent levels
US6026314A (en) 1997-09-05 2000-02-15 Samsung Electronics Co., Ltd. Method and device for noninvasive measurements of concentrations of blood components
US6025597A (en) 1995-10-17 2000-02-15 Optiscan Biomedical Corporation Non-invasive infrared absorption spectrometer for measuring glucose or other constituents in a human or other body
US6039697A (en) * 1998-03-20 2000-03-21 Datex-Ohmeda, Inc. Fiber optic based multicomponent infrared respiratory gas analyzer
US6049727A (en) 1996-07-08 2000-04-11 Animas Corporation Implantable sensor and system for in vivo measurement and control of fluid constituent levels
US6072180A (en) 1995-10-17 2000-06-06 Optiscan Biomedical Corporation Non-invasive infrared absorption spectrometer for the generation and capture of thermal gradient spectra from living tissue
US6088605A (en) 1996-02-23 2000-07-11 Diasense, Inc. Method and apparatus for non-invasive blood glucose sensing
US20020049389A1 (en) * 1996-09-04 2002-04-25 Abreu Marcio Marc Noninvasive measurement of chemical substances

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220847A (en) * 1987-03-10 1988-09-14 松下電器産業株式会社 Ultrasonic probe
US5877012A (en) * 1993-03-25 1999-03-02 Novartis Finance Corporation Class of proteins for the control of plant pests
US6113537A (en) * 1996-04-19 2000-09-05 Castano; Jaime A. Optical method and device for determining blood glucose levels
US6268604B1 (en) * 1997-03-03 2001-07-31 California Institute Of Technology Electron tunneling infrared sensor module with integrated control circuitry
US6246893B1 (en) * 1997-06-12 2001-06-12 Tecmed Incorporated Method and device for glucose concentration measurement with special attention to blood glucose determinations
US6574501B2 (en) * 1998-07-13 2003-06-03 Childrens Hospital Los Angeles Assessing blood brain barrier dynamics or identifying or measuring selected substances or toxins in a subject by analyzing Raman spectrum signals of selected regions in the eye
WO2000002479A1 (en) * 1998-07-13 2000-01-20 Children's Hospital Of Los Angeles Non-invasive glucose monitor
US6424851B1 (en) * 1998-10-13 2002-07-23 Medoptix, Inc. Infrared ATR glucose measurement system (II)
US6441388B1 (en) * 1998-10-13 2002-08-27 Rio Grande Medical Technologies, Inc. Methods and apparatus for spectroscopic calibration model transfer
US6442410B1 (en) * 1999-06-10 2002-08-27 Georgia Tech Research Corp. Non-invasive blood glucose measurement system and method using optical refractometry
US6203496B1 (en) * 1999-08-12 2001-03-20 Michael R. Gael Apparatus with reagents for detection of medical conditions
US20020007113A1 (en) * 1999-08-26 2002-01-17 March Wayne Front Ocular analyte sensor
US20020016535A1 (en) * 2000-01-28 2002-02-07 Martin W. Blake Subcutaneous glucose measurement device
US6673630B2 (en) * 2000-02-23 2004-01-06 Bayer Corporation Method and apparatus for producing visual results using colorimetric strips
US6640117B2 (en) * 2000-09-26 2003-10-28 Sensys Medical, Inc. Method and apparatus for minimizing spectral effects attributable to tissue state variations during NIR-based non-invasive blood analyte determination
JP2002202258A (en) * 2000-12-28 2002-07-19 Bios Ikagaku Kenkyusho:Kk Spectroscopic blood sugar level measuring instrument

Patent Citations (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868219A (en) 1972-06-14 1975-02-25 Akzona Inc Determination of HCG glucose and galactose in body fluids with chromogenic indicators
US3920969A (en) 1974-01-31 1975-11-18 Robert E Berglas Digital glucose analyzer
US3958560A (en) 1974-11-25 1976-05-25 Wayne Front March Non-invasive automatic glucose sensor system
US4014321A (en) 1974-11-25 1977-03-29 March Wayne F Non-invasive glucose sensor system
US4055175A (en) 1976-05-07 1977-10-25 Miles Laboratories, Inc. Blood glucose control apparatus
US4163780A (en) 1977-03-30 1979-08-07 Kirin-Seagram Limited Ks-2-a
US4330533A (en) 1977-11-08 1982-05-18 Mitsubishi Petrochemical Co., Ltd. Novel polysaccharide and hypocholesterol composition containing the same
US4151845A (en) 1977-11-25 1979-05-01 Miles Laboratories, Inc. Blood glucose control apparatus
US4312979A (en) 1978-04-20 1982-01-26 Toyo Soda Manufacturing Co., Ltd. Polysaccharides containing allose
US4230697A (en) 1978-07-03 1980-10-28 Morinaga Milk Industry Co. Ltd. Virus-inactivated HGI-glycoprotein capable of stimulating proliferation and differentiation of human granulocyte, process for preparing same and leukopenia curative containing same
US4178917A (en) * 1979-01-03 1979-12-18 Shapiro Howard M Method and system for non-invasive detection of zinc protoporphyrin in erythrocytes
US4313935A (en) 1979-03-05 1982-02-02 Fujisawa Pharmaceutical Co., Ltd. Antibiotic FR-900129 substance, a process for the preparation thereof and pharmaceutical compositions containing the same
US4313934A (en) 1979-05-08 1982-02-02 Kirin Beer Kabushiki Kaisha Physiologically active polysaccharides, production and uses thereof
US4473530A (en) 1980-09-24 1984-09-25 Villa Real Antony Euclid C Compact sanitary urinalysis unit
US4396763A (en) 1981-01-14 1983-08-02 Meiji Milk Products Company Limited High molecular polysaccharide MPS-80
US4482543A (en) 1981-02-27 1984-11-13 Otsuka Pharmaceutical Factory, Inc. Biologically active substance, process for preparing the substance and immunoactive composition
US4390622A (en) 1981-09-21 1983-06-28 Cartwright Garry W Neisseria bacteria species identification and beta lactamase testing methods
US4533548A (en) 1981-12-02 1985-08-06 Kitasato Institute Acidic polysaccharide CH-1 isolated from Chlorella pyrenoidosa and the use thereof
US4575551A (en) 1983-05-02 1986-03-11 Nakano Vinegar Co., Ltd. Acidic heteropolysaccharide AM-2
US5194615A (en) 1983-07-08 1993-03-16 The William Seroy Group Synthetic GTF chromium nicotinate material and its preparation
US4557933A (en) 1983-07-15 1985-12-10 Sankyo Company Limited Antibiotic called "chloropolysporin", a process for its preparation, and its therapeutic and veterinary use
US4801582A (en) 1984-04-05 1989-01-31 Toyo Yakushoku Kogyo Co., Ltd. Method and composition for treating hypoglycemia using aloe polysaccharides
US4790324A (en) 1984-10-23 1988-12-13 Intelligent Medical Systems, Inc. Method and apparatus for measuring internal body temperature utilizing infrared emissions
US5013550A (en) 1985-01-11 1991-05-07 Sankyo Company Limited Antibiotics called "chloropolysporins B and C", a process for their preparation, and their therapeutic and veterinary use
US4918054A (en) 1985-01-11 1990-04-17 Sankyo Company Limited Antibiotics called `chloropolysporins B and C`, a process for their preparation, and their therapeutic and veterinary use
US4787398A (en) 1985-04-08 1988-11-29 Garid, Inc. Glucose medical monitoring system
US4637403A (en) 1985-04-08 1987-01-20 Garid, Inc. Glucose medical monitoring system
US4627445A (en) 1985-04-08 1986-12-09 Garid, Inc. Glucose medical monitoring system
US5279294A (en) 1985-04-08 1994-01-18 Cascade Medical, Inc. Medical diagnostic system
US4797840A (en) 1985-04-17 1989-01-10 Thermoscan Inc. Infrared electronic thermometer and method for measuring temperature
US4898813A (en) 1986-04-04 1990-02-06 Albarella James P Catalytic test composition intended to produce a range of colors
US4975367A (en) 1986-04-04 1990-12-04 Miles Inc. Catalytic test composition intended to produce a range of colors
US4998533A (en) * 1986-07-15 1991-03-12 Winkelman James W Apparatus and method for in vivo analysis of red and white blood cell indices
US4882492A (en) 1988-01-19 1989-11-21 Biotronics Associates, Inc. Non-invasive near infrared measurement of blood analyte concentrations
US4932789A (en) 1988-04-12 1990-06-12 Citizen Watch Co., Ltd. Radiation clinical thermometer
US5024533A (en) 1988-04-12 1991-06-18 Citizen Watch Co., Ltd. Radiation clinical thermometer
US5009230A (en) 1988-05-31 1991-04-23 Eol, Inc. Personal glucose monitor
US4901728A (en) 1988-05-31 1990-02-20 Eol, Inc. Personal glucose monitor
US5361758A (en) 1988-06-09 1994-11-08 Cme Telemetrix Inc. Method and device for measuring concentration levels of blood constituents non-invasively
US5068536A (en) 1989-01-19 1991-11-26 Futrex, Inc. Method for providing custom calibration for near infrared instruments for measurement of blood glucose
US5086229A (en) 1989-01-19 1992-02-04 Futrex, Inc. Non-invasive measurement of blood glucose
US5565342A (en) 1989-02-08 1996-10-15 Sapporo Breweries Limited Process for producing polysaccharide ron substance with a synthetase
US5332667A (en) 1989-02-08 1994-07-26 Sapporo Breweries Limited Method for producing biologically active polysaccharide RON substance
US5267152A (en) 1989-10-28 1993-11-30 Yang Won S Non-invasive method and apparatus for measuring blood glucose concentration
US5070874A (en) 1990-01-30 1991-12-10 Biocontrol Technology, Inc. Non-invasive determination of glucose concentration in body of patients
US5222496A (en) 1990-02-02 1993-06-29 Angiomedics Ii, Inc. Infrared glucose sensor
US5054487A (en) 1990-02-02 1991-10-08 Boston Advanced Technologies, Inc. Laser systems for material analysis based on reflectance ratio detection
US5137023A (en) 1990-04-19 1992-08-11 Worcester Polytechnic Institute Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
US5424201A (en) 1990-05-31 1995-06-13 Sapporo Breweries Limited Method for preparing an antitumor dextran using Lactobacillus confusus
US5484715A (en) 1990-05-31 1996-01-16 Sapporo Breweries Limited Method for preparing an antitumor dextran using a dextran synthetase from Lactobacillus confusus
US5077476A (en) 1990-06-27 1991-12-31 Futrex, Inc. Instrument for non-invasive measurement of blood glucose
US5169235A (en) 1990-08-30 1992-12-08 Hirose Electric Co., Ltd. Radiation type thermometer
US5209231A (en) 1990-11-02 1993-05-11 University Of Connecticut Optical glucose sensor apparatus and method
US5243983A (en) 1990-12-14 1993-09-14 Georgia Tech Research Corporation Non-invasive blood glucose measurement system and method using stimulated raman spectroscopy
US5167235A (en) 1991-03-04 1992-12-01 Pat O. Daily Revocable Trust Fiber optic ear thermometer
US5178464A (en) 1991-04-19 1993-01-12 Thermoscan Inc. Balance infrared thermometer and method for measuring temperature
US5167265A (en) 1991-07-05 1992-12-01 Kyoichi Limited Hand-operated binding device
US5212066A (en) 1991-11-14 1993-05-18 Miles Inc. Use of inhibitors of color generation in chromogenic assays
US5370114A (en) 1992-03-12 1994-12-06 Wong; Jacob Y. Non-invasive blood chemistry measurement by stimulated infrared relaxation emission
US5321265A (en) 1992-07-15 1994-06-14 Block Myron J Non-invasive testing
US5424545A (en) 1992-07-15 1995-06-13 Myron J. Block Non-invasive non-spectrophotometric infrared measurement of blood analyte concentrations
US5434412A (en) 1992-07-15 1995-07-18 Myron J. Block Non-spectrophotometric measurement of analyte concentrations and optical properties of objects
US5433197A (en) 1992-09-04 1995-07-18 Stark; Edward W. Non-invasive glucose measurement method and apparatus
US5448992A (en) 1992-12-10 1995-09-12 Sunshine Medical Instruments, Inc. Method and apparatus for non-invasive phase sensitive measurement of blood glucose concentration
US5687721A (en) 1992-12-15 1997-11-18 Kuhls; Burkhard Measurement device for non-invasively determining the concentration of polarising substances
US5535743A (en) 1992-12-19 1996-07-16 Boehringer Mannheim Gmbh Device for the in vivo determination of an optical property of the aqueous humour of the eye
US5615672A (en) 1993-01-28 1997-04-01 Optiscan, Inc. Self-emission noninvasive infrared spectrophotometer with body temperature compensation
US5313941A (en) 1993-01-28 1994-05-24 Braig James R Noninvasive pulsed infrared spectrophotometer
US5515847A (en) 1993-01-28 1996-05-14 Optiscan, Inc. Self-emission noninvasive infrared spectrophotometer
US5476656A (en) 1993-03-18 1995-12-19 Kureha Kagaku Kogyo Kabushiki Kaisha Substance BS-3
US5352411A (en) 1993-08-13 1994-10-04 Khuri Raja N Device for determination of tear constituents
US5497772A (en) 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5791344A (en) 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5660163A (en) 1993-11-19 1997-08-26 Alfred E. Mann Foundation For Scientific Research Glucose sensor assembly
US5553616A (en) 1993-11-30 1996-09-10 Florida Institute Of Technology Determination of concentrations of biological substances using raman spectroscopy and artificial neural network discriminator
US5459317A (en) 1994-02-14 1995-10-17 Ohio University Method and apparatus for non-invasive detection of physiological chemicals, particularly glucose
US6061582A (en) 1994-02-14 2000-05-09 University Of Iowa Research Foundation Method and apparatus for non-invasive determination of physiological chemicals, particularly glucose
US5556761A (en) 1994-04-26 1996-09-17 Phillips; Kevin J. Test strip for blood glucose testing
US5553613A (en) 1994-08-17 1996-09-10 Pfizer Inc. Non invasive blood analyte sensor
US5991653A (en) 1995-03-14 1999-11-23 Board Of Regents, The University Of Texas System Near-infrared raman spectroscopy for in vitro and in vivo detection of cervical precancers
US5756318A (en) 1995-03-24 1998-05-26 Amino Up Chemical Co., Ltd. Polysaccharides and preparation thereof
US5719034A (en) 1995-03-27 1998-02-17 Lifescan, Inc. Chemical timer for a visual test strip
US5755231A (en) 1995-05-17 1998-05-26 Plus Bio, Inc. Test strip including integral specimen flow retarding structure
US5995860A (en) 1995-07-06 1999-11-30 Thomas Jefferson University Implantable sensor and system for measurement and control of blood constituent levels
US5786584A (en) 1995-09-06 1998-07-28 Eli Lilly And Company Vial and cartridge reading device providing audio feedback for a blood glucose monitoring system
US6072180A (en) 1995-10-17 2000-06-06 Optiscan Biomedical Corporation Non-invasive infrared absorption spectrometer for the generation and capture of thermal gradient spectra from living tissue
US6025597A (en) 1995-10-17 2000-02-15 Optiscan Biomedical Corporation Non-invasive infrared absorption spectrometer for measuring glucose or other constituents in a human or other body
US6088605A (en) 1996-02-23 2000-07-11 Diasense, Inc. Method and apparatus for non-invasive blood glucose sensing
US5820557A (en) 1996-03-01 1998-10-13 Terumo Kabushiki Kaisha Blood glucose measurement apparatus
US5788632A (en) 1996-03-19 1998-08-04 Abbott Laboratories Apparatus and process for the non-invasive measurement of optically active compounds
US5713353A (en) 1996-04-19 1998-02-03 Castano; Jaime A. Optical method and device for determining blood glucose levels
US5961449A (en) 1996-05-16 1999-10-05 Fuji Photo Film Co., Ltd. Glucose concentration measuring method and apparatus
US5969815A (en) 1996-05-16 1999-10-19 Fuji Photo Film Co., Ltd. Glucose concentration measuring method and apparatus with a coherent source and heterodyne interferometer
US5835215A (en) 1996-05-16 1998-11-10 Fuji Photo Film Co., Ltd. Glucose concentration measuring method and apparatus with short coherence source and heterodyne interferometer
US5666956A (en) 1996-05-20 1997-09-16 Buchert; Janusz Michal Instrument and method for non-invasive monitoring of human tissue analyte by measuring the body's infrared radiation
US6049727A (en) 1996-07-08 2000-04-11 Animas Corporation Implantable sensor and system for in vivo measurement and control of fluid constituent levels
US20020049389A1 (en) * 1996-09-04 2002-04-25 Abreu Marcio Marc Noninvasive measurement of chemical substances
US5896198A (en) 1996-11-11 1999-04-20 Chien Chou Optical heterodyne-based method and apparatus for determining the concentration of optically active substances
US5910109A (en) 1997-02-20 1999-06-08 Emerging Technology Systems, Llc Non-invasive glucose measuring device and method for measuring blood glucose
US5823966A (en) 1997-05-20 1998-10-20 Buchert; Janusz Michal Non-invasive continuous blood glucose monitoring
US6026314A (en) 1997-09-05 2000-02-15 Samsung Electronics Co., Ltd. Method and device for noninvasive measurements of concentrations of blood components
US6039697A (en) * 1998-03-20 2000-03-21 Datex-Ohmeda, Inc. Fiber optic based multicomponent infrared respiratory gas analyzer
US5995236A (en) 1998-04-13 1999-11-30 Mit Development Corporation Blood fluid characteristics analysis instrument

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Cameron, et al., "Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor", Diabetes Technology & Therapeutics, vol. 3, No. 2, 201-207 (2001).
Cameron, et al., "The use of polarized laser light through the eye for noninvasive glucose monitoring", Diabetes Technology & Therapeutics, vol. 1, No. 2, 135-143 (1999).
Steffes, "Laser-based measurement of glucose in the ocular aqueous humor: An efficacious portal for determination of serum Glucose levels", Diabetes Technology & Therapeutics, vol. 1, No. 2, 129-133 (1999).

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080111971A1 (en) * 2001-08-02 2008-05-15 Gluco Vista Non-invasive glucose meter
US7308293B2 (en) 2001-08-02 2007-12-11 Glucovista, Llc Non-invasive glucose meter
US7643859B2 (en) 2001-08-02 2010-01-05 Glucovista, Llc Non-invasive glucose meter
US20100152558A1 (en) * 2001-08-02 2010-06-17 Glucovista, Llc Non-invasive glucose meter
US8364219B2 (en) * 2001-08-02 2013-01-29 Gluco Vista, Inc. Non-invasive glucose meter
US20080109259A1 (en) * 2004-05-14 2008-05-08 Bayer Healthcare Llc Method and Apparatus for Implementing Patient Data Download for Multiple Different Meter Types
US10198555B2 (en) * 2004-05-14 2019-02-05 Ascensia Diabetes Care Holdings Ag Method and apparatus for implementing patient data download for multiple different meter types
US20080058627A1 (en) * 2006-08-24 2008-03-06 University Of Central Florida Research Foundation, Inc. Noninvasive glucose monitor
US7972862B2 (en) * 2006-08-24 2011-07-05 The University Of Central Florida Research Foundation, Inc. Noninvasive glucose monitor
US8090426B2 (en) 2006-10-27 2012-01-03 Felder Robin A Microelectronic biosensor plug
US20080103376A1 (en) * 2006-10-27 2008-05-01 Felder Robin A Microelectronic biosensor plug
US8364232B2 (en) 2006-10-27 2013-01-29 Felder Robin A Microelectronic biosensor plug
WO2009016403A2 (en) 2007-07-30 2009-02-05 Lein Applied Diagnostics Limited Optical alignment apparatus and method therefor
EP2441382A2 (en) 2007-07-30 2012-04-18 Lein Applied Diagnostics Limited Optical alignment apparatus
US7802883B2 (en) 2007-12-20 2010-09-28 Johnson & Johnson Vision Care, Inc. Cosmetic contact lenses having a sparkle effect
US8219169B2 (en) 2008-02-11 2012-07-10 Glucovista Inc. Apparatus and method using light retro-reflected from a retina to non-invasively measure the blood concentration of a substance
US8364218B2 (en) 2008-02-11 2013-01-29 Glucovista, Inc. Apparatus and method for non-invasive measurement of the concentration of a substance in subjects blood
WO2009101433A1 (en) 2008-02-11 2009-08-20 Lein Applied Diagnostics Limited Measurement apparatus and method therefor
WO2010086640A1 (en) 2009-01-30 2010-08-05 Lein Applied Diagnostics Limited Signal sample trigger apparatus, data acquisition system and method of sampling an analogue signal
US9456772B2 (en) 2009-10-07 2016-10-04 The University Of Toledo Non-invasive ocular analyte sensing system

Also Published As

Publication number Publication date
US20050085701A1 (en) 2005-04-21

Similar Documents

Publication Publication Date Title
US6968222B2 (en) Methods and device for non-invasive analyte measurement
US6958039B2 (en) Method and instruments for non-invasive analyte measurement
US6975892B2 (en) Methods for non-invasive analyte measurement from the conjunctiva
Do Amaral et al. Current development in non-invasive glucose monitoring
US6430424B1 (en) Infrared ATR glucose measurement system utilizing a single surface of skin
US20060258918A1 (en) Combination Analyte Measurement Device and Method of Use
US6662030B2 (en) Non-invasive sensor having controllable temperature feature
US20060224057A1 (en) Methods for non-invasive analyte measurement
US6442410B1 (en) Non-invasive blood glucose measurement system and method using optical refractometry
US20060258920A1 (en) Non-Invasive Analyte Measurement Glasses and Method of Use
WO2006079797A2 (en) Apparatus for measurement of analyte concentration
JP2002527136A (en) Infrared ATR glucose measurement system
Losoya-Leal et al. State of the art and new perspectives in non-invasive glucose sensors
GB2482378A (en) Determining analyte concentration using optical assembly interference pattern
Arefin et al. Non-invasive blood glucose determination using near infrared LED in diffused reflectance method
WO2004099824A2 (en) Methods and device for non-invasive analyte measurement
Khan et al. Non-Invasive Blood Glucose Measurement Device: Performance analysis of Diffused Reflectance method and Diffused Transmittance method using Near Infrared Light
US20080009688A1 (en) Methods for non-invasive analyte measurement
US20090240124A1 (en) Systems and Methods for Measuring the Concentration of Analytes in the Human Eye
US20060258919A1 (en) Non-Invasive Analyte Measurement Device for Measuring Tears and Other Ocular Elements Using Electromagnetic Radiation and Method of Using the Same
Lam Clinical evaluation of non-invasive blood glucose measurement by using near infrared spectroscopy via inter-and intra-subject analysis
Ali FEASIBILITY STUDY ON DEVELOPING AN OPTICAL FIBRE-BASED, NON-INVASIVE, ELECTRO-TEXTILE SENSOR FOR DETECTING BLOOD GLUCOSE
Ben-David et al. Noninvasive glucose monitoring
WO2022201009A1 (en) Non-invasive glucose level monitoring device using absorption spectroscopy with affordability
MXPA01003773A (en) Infrared atr glucose measurement system

Legal Events

Date Code Title Description
AS Assignment

Owner name: OCULIR, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURD, JOHN F.;KRANTZ, GARY;FRADEN, JACOB;AND OTHERS;REEL/FRAME:015224/0891

Effective date: 20040408

AS Assignment

Owner name: BURD, JOHN F., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OCULIR, INC.;REEL/FRAME:020741/0683

Effective date: 20080307

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20091213