US6794257B2 - Method of manufacturing a semiconductor integrated circuit device - Google Patents

Method of manufacturing a semiconductor integrated circuit device Download PDF

Info

Publication number
US6794257B2
US6794257B2 US10/465,642 US46564203A US6794257B2 US 6794257 B2 US6794257 B2 US 6794257B2 US 46564203 A US46564203 A US 46564203A US 6794257 B2 US6794257 B2 US 6794257B2
Authority
US
United States
Prior art keywords
film
insulating film
gate insulating
integrated circuit
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/465,642
Other versions
US20030235962A1 (en
Inventor
Dai Ishikawa
Satoshi Sakai
Atsushi Hiraiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Assigned to HITACHI, LTD. reassignment HITACHI, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIRAIWA, ATSUSHI, ISHIKAWA, DAI, SAKAI, SATOSHI
Publication of US20030235962A1 publication Critical patent/US20030235962A1/en
Assigned to RENESAS TECHNOLOGY CORP. reassignment RENESAS TECHNOLOGY CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HITACHI, LTD.
Priority to US10/917,294 priority Critical patent/US7262101B2/en
Application granted granted Critical
Publication of US6794257B2 publication Critical patent/US6794257B2/en
Priority to US11/505,280 priority patent/US20060275991A1/en
Assigned to RENESAS ELECTRONICS CORPORATION reassignment RENESAS ELECTRONICS CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: RENESAS TECHNOLOGY CORP.
Assigned to RENESAS ELECTRONICS CORPORATION reassignment RENESAS ELECTRONICS CORPORATION CHANGE OF ADDRESS Assignors: RENESAS ELECTRONICS CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/82345MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/09Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts

Definitions

  • the present invention relates to a semiconductor integrated circuit device and the manufacture thereof; and, more specifically, the invention relates to a technology which is applicable to a semiconductor integrated circuit device comprising a silicon oxynitride film used as a gate insulating film for a MISFET (Metal Insulator Semiconductor Field Effect Transistor).
  • MISFET Metal Insulator Semiconductor Field Effect Transistor
  • the gate oxide film thereof To realize a low-voltage operation of a MISFET, the gate oxide film thereof must be made thinner in proportion to a reduction in the thickness of the MISFET. However, when the thickness of the gate oxide film is reduced, a direct tunnel current running through the film grows, thereby causing a gate leakage current, which cannot be ignored from the viewpoint of reducing the power consumption.
  • a high dielectric film such as a titanium oxide (TiO 2 ) or tantalum oxide (Ta 2 O 5 ) film, having a higher relative dielectric constant than silicon oxide.
  • TiO 2 titanium oxide
  • Ta 2 O 5 tantalum oxide
  • a silicon oxynitride film that is formed by nitriding part of a silicon oxide film has a higher dielectric constant than silicon oxide, the effect of reducing the leakage current by increasing the physical thickness of a gate insulating film can be expected from this film. It is reported that a gate insulating film formed of a silicon oxynitride film is effective in achieving a suppression of boron leakage in which an impurity (boron) contained in a p type gate electrode goes through the channel area of a substrate at the time of heat treatment during the process, an improvement of the hot carrier resistance of the MISFET and an improvement of the electron mobility of an n channel type MISFET.
  • Japanese Unexamined Patent Publication No. 2001-332724 discloses a technology for forming a gate insulating film from silicon oxynitride having two peaks of nitrogen concentration at the interface with a silicon substrate and in the film, to prevent the penetration of boron contained in the p type gate electrode and to improve hot carrier resistance, in an MIS device having a so-called dual gate structure using an n type gate electrode as an n channel MISFET and a p type gate electrode as a p channel MISFET.
  • a silicon substrate is first wet oxidized to form a silicon oxide film having a thickness of about 7 nm on the surface; it is then heated in an atmosphere containing an NO gas to segregate nitrogen at the interface between the silicon oxide film and the substrate; and then it is dry oxidized.
  • this dry oxidation is carried out, the interface between the silicon oxide film and the substrate is oxidized to form a silicon oxide film having a thickness of 1 to 2 nm underlying an area where nitrogen has been segregated.
  • Japanese Unexamined Patent Publication No. 2000-357688 discloses a technology for forming a gate insulating film from silicon oxynitride having two peaks in the nitrogen concentration distribution in the thickness direction by a method different from that of the above-referenced publication.
  • the silicon substrate is first heated in an oxygen atmosphere to form a silicon oxide film having a thickness of about 5 nm on the surface, and then it is heated in an NO gas atmosphere to form a silicon oxynitride film having a thickness of about 5.5 nm having a peak of nitrogen concentration near the interface with the substrate. Thereafter, the surface of this silicon oxynitride film is etched with a hydrofluoric acid aqueous solution to remove its surface layer portion, thereby obtaining a silicon oxynitride film having a thickness of about 1 nm and containing nitrogen in the entire thickness direction in large quantities.
  • a second heat treatment is carried out in an NO gas or N 2 O gas atmosphere to grow a new thermally oxidized film on the substrate and introduce nitrogen into the thermally oxidized film, thereby obtaining a silicon oxynitride film having two peaks in nitrogen concentration distribution in the thickness direction.
  • Japanese Unexamined Patent Publication No. Hei 8(1996)-167664 (U.S. Pat. No. 5,591,681) discloses a technology for forming a silicon oxide film containing nitrogen by heating in a NO or N 2 O gas atmosphere.
  • the dielectric constant must be increased by raising the concentration of nitrogen contained in the film in order to reduce the gate leakage current.
  • FIG. 30 is a graph showing the relationship between the concentration of nitrogen at the interface between the gate insulating film and the substrate and the carrier mobility of a MISFET.
  • the carrier mobility becomes higher than when nitrogen is not introduced, but when the concentration of nitrogen further increases, the above effect gradually decreases.
  • the carrier mobility becomes lower in proportion to the concentration of nitrogen at the interface.
  • the concentration of nitrogen is higher than 10 atomic %, the carrier mobility drops by about 20%, thereby reducing the drain current (Ids) by about 10% and making circuit design difficult to achieve in practice.
  • the method of introducing nitrogen into a silicon oxide film by oxynitridation treatment has limits in the amount of introduced nitrogen.
  • the high-temperature oxynitridation treatment is carried out several times, with the result that the silicon oxynitride film becomes thick, thereby making it difficult to form a gate insulating film as thin as 5 nm or less.
  • the present invention relates to the following.
  • the method of manufacturing a semiconductor integrated circuit device according to the present invention comprises the following steps:
  • a gate insulating film can be formed from silicon oxynitride by using both an oxynitridation treatment and a nitrogen plasma treatment, the concentration of nitrogen contained in the gate insulating film can be increased without raising the concentration of nitrogen near the interface between the substrate and the gate insulating film to a higher level than required.
  • a semiconductor integrated circuit device comprising MISFET's having a 5 nm or less-thick gate insulating film formed from silicon oxynitride on the main surface of a semiconductor substrate made from monocrystal silicon, wherein nitrogen contained in the gate insulating film has a first peak concentration near the interface between the: semiconductor substrate and the gate insulating film and a second peak concentration near the surface of the gate insulating film.
  • a semiconductor integrated circuit device wherein the second peak concentration is higher than the first peak concentration.
  • a semiconductor integrated circuit device wherein the MISFET's have a gate electrode containing a silicon film doped with boron.
  • a semiconductor integrated circuit device wherein the first peak concentration is in the range of 1 to 10 atomic %.
  • a semiconductor integrated circuit device comprising MISFET's having a 5 nm or less-thick gate insulating film formed of a laminate consisting of a silicon oxynitride film and a silicon nitride film formed over the silicon oxynitride film on the main surface of a semiconductor substrate made from monocrystal silicon, wherein the concentration of nitrogen contained in the silicon oxynitride film is the highest near the interface between the semiconductor substrate and the silicon oxynitride film.
  • a semiconductor integrated circuit device wherein the MISFET's have a gate electrode containing a silicon film doped with boron.
  • a semiconductor integrated circuit device wherein the concentration of nitrogen contained near the interface between the semiconductor substrate and the silicon oxynitride film is in the range of 1 to 10 atomic %.
  • FIG. 1 a sectional view of a principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention
  • FIG. 2 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention
  • FIG. 3 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention
  • FIG. 4 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention
  • FIG. 5 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention
  • FIG. 6 is a graph showing the profile of nitrogen concentration in a silicon oxynitride film formed by an oxynitridation treatment
  • FIG. 7 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention
  • FIG. 8 is a graph showing the profile of nitrogen concentration in a gate insulating film made from silicon oxynitride formed by an oxynitridation treatment and a plasma treatment;
  • FIG. 9 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention.
  • FIG. 10 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention
  • FIG. 11 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention
  • FIG. 12 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention
  • FIG. 13 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention
  • FIG. 14 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention
  • FIG. 15 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention
  • FIG. 16 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to a second embodiment of the present invention
  • FIG. 17 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention.
  • FIG. 18 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention.
  • FIG. 19 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention.
  • FIG. 20 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention
  • FIG. 21 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention.
  • FIG. 22 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention
  • FIG. 23 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention.
  • FIG. 24 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention.
  • FIG. 25 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention.
  • FIG. 26 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention.
  • FIG. 27 is a sectional view of the principal portion of a semiconductor substrate showing a step in a method of manufacturing a semiconductor integrated circuit device according to a third embodiment of the present invention.
  • FIG. 28 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the third embodiment of the present invention.
  • FIG. 29 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the third embodiment of the present invention.
  • FIG. 30 is a graph showing the relationship between the concentration of nitrogen near the interface between the gate insulating film and the substrate and the carrier mobility of a MISFET.
  • CMOS-LSI complementary metal-oxide-semiconductor
  • element separation grooves 2 are formed in the main surface of a semiconductor substrate (to be referred to simply as a “substrate” hereinafter) made from p type monocrystal silicon having a resistivity of about 1 to 10 ⁇ cm.
  • the substrate 1 is thermally oxidized to form a silicon oxide film 30 having a thickness of about 10 nm on the surface, a silicon nitride film 31 having a thickness of about 100 nm deposited on the top of the silicon oxide film 30 by CVD is patterned, and then the substrate 1 is etched by using this silicon nitride film 31 as a mask.
  • a silicon oxide film 3 having a thickness of about 500 nm is deposited on the substrate 1 by CVD, the silicon oxide film 3 around the element separation grooves 2 is removed by a chemical and mechanical polishing method, and then the silicon nitride film 31 on the substrate 1 is removed by wet etching using hot phosphoric acid. Thereafter, the silicon oxide film 3 in the element separation grooves 2 is made fine by heating the substrate 1 .
  • p type wells 4 are formed on part of the main surface of the substrate 1 and n type wells 5 are formed on the other part of the main surface.
  • the substrate 1 is heated to diffuse these impurities (boron and phosphorus) into the substrate 1 .
  • the substrate 1 is wet oxidized to form a silicon oxide film 6 a having a thickness of 5 nm or less (3.0 nm in this embodiment) on the surfaces of the p type wells 4 and the n type wells 5 .
  • the silicon oxide film 6 a may be formed by an oxidation method, rather than the above-described wet oxidation method, for example, a dry oxidation method or the exposure of the substrate 1 to an atmosphere containing active oxygen may be employed.
  • the substrate 1 is heated in an atmosphere containing 5% of an NO (nitrogen monoxide) gas at 900 to 1,100° C.
  • an NO nitrogen monoxide
  • nitrogen is introduced into the silicon oxide film 6 a that is formed on the surface of the substrate 1 to change the silicon oxide film 6 a into a silicon oxynitride film 6 b (FIG. 5 ).
  • the silicon oxynitride film 6 b may be formed by heating the substrate 1 in an atmosphere containing an N 2 O (nitrous oxide) gas in place of the NO gas.
  • FIG. 6 is a graph showing the profile of nitrogen concentration in the silicon oxynitride film 6 b formed by the above-described heat treatment (oxynitridation treatment), in which the horizontal axis shows the depth (nm) from the surface of the substrate 1 .
  • the concentration of nitrogen in the silicon oxynitride film 6 b is the highest near the interface between the silicon oxynitride film 6 b and the substrate 1 (depth of 3.4 nm). This shows that NO introduced into the silicon oxide film 6 a diffuses near the surface of the film without reacting with silicon and segregates at the interface with the substrate 1 because the reactivity of NO with silicon is low.
  • the heat treatment conditions are set to ensure that the concentration of nitrogen near the interface between the silicon oxynitride film 6 b and the substrate 1 becomes 1 to 10 atomic %.
  • concentration of nitrogen near the interface is higher than 10 atomic %, the carrier mobility of the p channel MISFET drops by about 20 %, thereby reducing the drain current (Ids) by about 10 % and making the circuit design difficult in practice.
  • concentration of nitrogen near the interface is lower than 1 atomic %, the effect of the oxynitridation treatment is not obtained.
  • Nitrogen is further introduced into the silicon oxynitride film 6 b by exposing the substrate 1 to a nitrogen plasma atmosphere.
  • This nitrogen plasma treatment is carried out with a known plasma treatment apparatus for generating plasma through interaction between an electric field and a magnetic field by introducing high frequency waves into a treatment chamber which is provided with a magnetic field coil therearound.
  • a remote plasma treatment apparatus in which plasma generated in a plasma generator that is separate from the treatment chamber, is introduced into the treatment chamber may be used.
  • FIG. 8 is a graph showing the profile of nitrogen concentration in the gate insulating film 6 made from silicon oxynitride formed by the above-described oxynitridation treatment and plasma treatment, in which the horizontal axis shows the depth (nm) from the surface of the substrate 1 .
  • the concentration of nitrogen in the gate insulating film 6 has a first peak near the interface between the substrate 1 and the gate insulating film 6 and a second peak near the surface of the gate insulating film 6 .
  • Nitrogen existent near the interface between the substrate 1 and the insulating film 6 is mainly introduced by the oxynitridation treatment and nitrogen existent near the surface of the gate insulating film 6 is mainly introduced by the nitrogen plasma treatment. That is, since active nitrogen introduced by the nitrogen plasma treatment has a higher reactivity with silicon than nitrogen introduced by the oxynitridation treatment, most of it reacts with silicon near the surface of the silicon oxynitride film 6 b . Meanwhile, since nitrogen introduced by the oxynitridation treatment has a low reactivity, as described above, most of it diffuses in the film and segregates at the interface with the substrate 1 .
  • the concentration of nitrogen in this area is desirably made higher than the upper limit (10 atomic %) of the concentration of nitrogen near the interface between the substrate 1 and the gate insulating film 6 .
  • the above-described nitrogen plasma treatment is carried out at a low temperature of 600° C. or less to prevent nitrogen that is introduced into the film from being diffused to the interface with the substrate 1 .
  • nitrogen diffuses to the interface with the substrate 1 and may exceed the upper limit (10 atomic %) of its concentration.
  • the nitrogen plasma treatment is carried out at room temperature, the temperature of the substrate 1 rises to about 200° C. due to its exposure to plasma. Therefore, it is desired to heat the substrate at 200° C. or higher in order to ensure the controllability of the process.
  • the order of the oxynitridation treatment and the nitrogen plasma treatment may be reversed. That is, after the nitrogen plasma treatment, the oxynitridation treatment may be carried out. Since the oxynitridation treatment is accompanied by heating at a high temperature (900 to 1,100° C.), when the oxynitridation treatment is carried out after the nitrogen plasma treatment, nitrogen near the surface of the gate insulating film 6 introduced by the nitrogen plasma treatment diffuses near the interface with the substrate 1 at the time of the oxynitridation treatment, thereby increasing the concentration of nitrogen in this area to a higher level than required. Therefore, the treatment conditions must be set by taking this into account.
  • a conductive film 7 a for gate electrodes is then deposited on the gate insulating film 6 .
  • the conductive film 7 a for gate electrodes is a laminate (polycide film) consisting of an n type polycrystal silicon film deposited by CVD and a W (tungsten) suicide film, or a laminate (polymetal film) consisting of an n type polycrystal silicon film deposited by CVD, a tungsten nitride (WN) film deposited by sputtering and a W film.
  • gate electrodes 7 are then formed on the gate oxide films 6 of the p type wells 4 and the n type wells 5 by patterning the conductive film 7 a for gate electrodes by dry etching using the photomask film 32 as a mask.
  • phosphorus or arsenic ions are injected into the p type wells 4 to form n ⁇ type semiconductor areas 8 having a low content of an impurity and boron ions are injected into the n type wells 5 to form p ⁇ type semiconductor areas 9 having a low content of an impurity.
  • a silicon nitride film is then deposited on the substrate 1 by CVD, and then it is etched anisotropically to form a side wall spacer 10 on the side walls of the gate electrodes 7 , phosphorus or arsenic ions are injected into the p type wells 4 to form n + type semiconductor areas 11 (source, drain) having a high content of an impurity, and phosphorus ions are injected into the n type wells 5 to form p + type semiconductor areas 12 (source, drain) having a high content of an impurity.
  • N channel MISFET's (Qn) and p channel MISFET's (Qp) are completed by the above-described steps.
  • contact holes 17 are formed above the source and drain (n + type semiconductor areas 11 ) of the n channel MISFET's (Qn) and the source and drain (p + type semiconductor areas 12 ) of the p channel MISFET's (Qp) by dry etching a silicon oxide film 16 using a photoresist film 33 as a mask.
  • a metal film 18 a for wiring is deposited on the silicon oxide film 16 , including the insides of the contact holes 17 , by sputtering.
  • the metal film 18 a for wiring is an Al alloy film or a composite metal film consisting of an Al alloy film as a lower layer and a Ti film or TiN film as an upper layer.
  • a first metal wiring 18 which is the metal film 18 a for wiring, is formed on the silicon oxide film 16 by dry etching the metal film 18 a for wiring using the photoresist film 34 as a mask.
  • a silicon oxide film 19 is deposited on the metal wiring 18 by CVD, and it is dry etched to form through holes 20 ; and, a metal film for wiring is deposited on the silicon oxide film 19 , including the insides of the through holes 20 , by sputtering, and it is dry etched to form a second metal wiring 21 over the silicon oxide film 19 .
  • interlayer insulating films and wirings are formed alternately on the second metal wiring 21 by repetitions of the above-described wiring forming step to accomplish the CMOS-LSI of this embodiment.
  • the concentration of nitrogen in the film can be increased without raising the concentration of nitrogen near the interface between the substrate 1 and the gate insulating film 6 to a higher level than required.
  • the gate insulating film 6 having a high dielectric constant can be formed without reducing the carrier mobility of the p channel MISFET's (Qp), the leakage current of the MISFET's (n channel MISFET's (Qn) and p channel MISFET's (Qp)) can be reduced. Further, the hot carrier resistance of the MISFET's (n channel MISFET's (Qn) and p channel MISFET's (Qp)) and the electron mobility of the n channel MISFET's can be improved.
  • the oxynitridation treatment which requires a heat treatment at a high temperature, is carried out only once, the excessive growth of the gate insulating film 6 can be suppressed, thereby making it possible to obtain a gate insulating film 6 having a thickness of 5 nm or less.
  • the semiconductor integrated circuit device of this embodiment is a DRAM-logic hybrid LSI having a DRAM (Dynamic Random Access Memory) and a logic circuit formed on the same semiconductor substrate.
  • the method of manufacturing this hybrid LSI will be described in the order of the steps thereof with reference to FIGS. 16 to 26 .
  • the left and center areas in these figures are a DRAM memory cell forming area (to be referred to as a “DRAM forming area” hereinafter) and the right area is a logic circuit forming area.
  • element separation grooves 2 , p type wells 4 and an n type well 5 are first formed on the main surface of a substrate 1 in the same manner as employed in the above-described Embodiment 1, a silicon oxide film 6 a is formed on the surfaces of the p type wells 4 and the n type well 5 , and nitrogen is introduced into the silicon oxide film 6 a by using both of the above-described oxynitridation treatment and nitrogen plasma treatment to form a silicon oxynitride gate insulating film 6 having a thickness of 1.5 nm on the surfaces of the p type wells 4 and the n type well 5 .
  • the concentration of nitrogen in the gate insulating film 6 has a first peak near the interface with the substrate 1 and a second peak (10 atomic % or more) higher than the first peak near the surface of the film like the gate insulating film 6 of the Embodiment 1.
  • an n type polycrystal silicon film 13 n is formed on the gate insulating film 6 of the p type wells 4 and a p type polycrystal silicon film 13 p is formed on the gate insulating film 6 of the n type well 5 .
  • an amorphous silicon film is first formed on the gate insulating film 6 by CVD, phosphorus ions are injected into the amorphous silicon film overlying the p type wells 4 by using a photoresist film as a mask, boron ions are injected into the amorphous silicon film overlying the n type well 5 , and the substrate 1 is heated.
  • the injection of ions is carried out to change n channel MISFET's for forming the memory cells of a DRAM and an n channel MISFET and a p channel MISFET for forming a logic circuit into surface channel MISFET's.
  • a WN x film 14 , W film 15 and silicon nitride film 22 are deposited on the polycrystal silicon films ( 13 p , 13 n ), as shown in FIG. 18, the silicon nitride film 22 , W film 15 , WN x film 14 and polycrystal silicon films ( 13 p , 13 n ) are dry etched using a photoresist film 35 as a mask, to form gate electrodes 23 a (word lines WL) on the gate insulating film 6 of the DRAM forming area and form gate electrodes 23 b and 23 c on the gate insulating film 6 of the logic circuit forming area, as shown in FIG. 19 .
  • gate electrodes 23 a word lines WL
  • phosphorus or arsenic ions are injected into the p type wells 4 to form n ⁇ type semiconductor areas 24 having a low content of an impurity, and boron ions are injected into the n type well 5 to form p ⁇ type semiconductor areas 25 having a low content of an impurity.
  • a silicon nitride film 26 is then deposited on the substrate 1 , a side wall spacer 26 s is formed on the side walls of the gate electrodes 23 b and 23 c by etching the silicon nitride film 26 of the logic circuit forming area anisotropically, phosphorus or arsenic ions are injected into the p type wells 4 of the logic circuit forming area to form n + type semiconductor areas 27 (source, drain) having a high content of an impurity, and boron ions are injected into the n type well 5 to form p + type semiconductor areas 28 (source, drain) having a high content of an impurity.
  • the n channel MISFET (Qn) and p channel MISFET (Qp) of the logic circuit are completed by the above-described steps.
  • a silicon oxide film 40 is deposited on the gate electrodes 23 a , 23 b and 23 c , contact holes 41 and 42 are formed above the n ⁇ type semiconductor areas 24 of the DRAM forming area, and plugs 43 made from n type polycrystal silicon are formed in the insides of the contact holes 41 and 42 .
  • the substrate 1 is heated to diffuse the n type impurity (phosphorus) contained in the polycrystal silicon film forming the plugs 43 into the n ⁇ type semiconductor areas 24 , thereby forming low-resistance source and drain.
  • MISFET's (Qt) for selecting memory cells are provided in the DRAM forming area by the above-described steps.
  • a silicon oxide film 44 is deposited on the silicon oxide film 40 , the silicon oxide films 44 and 40 in the logic circuit forming area are dry etched to form contact holes 45 above the source and drain (n + type semiconductor areas 27 ) of the n channel MISFET (Qn) and contact holes 46 above the source and drain (p + type semiconductor areas 28 ) of the p channel MISFET (Qp).
  • the silicon oxide film 44 in the DRAM forming area is etched to form a through hole 47 above the contact hole 41 .
  • bit lines BL are formed above the silicon oxide film 44 of the DRAM forming area
  • wires 50 to 53 are formed above the silicon oxide film 44 of the logic circuit forming area.
  • the plug 48 is formed of a laminate consisting of a TiN film and a W film, and the bit lines BL and the wires 50 to 53 are each formed of a W film.
  • the bit lines BL are electrically connected to one ( 24 ) of the source and drain of the memory cell selecting MISFET (Qt) through the through hole 47 and the contact hole 41 .
  • the wires 50 and 51 are electrically connected to the source and drain (n + type semiconductor areas 27 ) of the n channel MISFET (Qn) through the contact holes 45 and 45
  • the wires 52 and 53 are electrically connected to the source and drain (p + type semiconductor areas 28 ) of the p channel MISFET (Qp) through the contact holes 46 and 46 .
  • a silicon oxide film 54 is deposited above the bit lines BL and the wires 50 to 53 , the silicon oxide films 54 and 44 overlying the contact holes 41 are etched to form through holes 55 , and a plug 56 made of an n type polycrystal silicon film is formed inside of the through holes 55 . Thereafter, a silicon nitride film 57 and a silicon oxide film 58 are deposited on the silicon oxide film 54 , and the silicon oxide film 58 and the silicon nitride film 57 overlying the through holes 55 are etched to form grooves 59 .
  • a lower electrode 60 made of a polycrystal silicon film is formed in the inner walls of the grooves 59 .
  • an n type amorphous silicon film is deposited inside of the grooves 60 and above the silicon oxide film 58 , and then unrequired portions of the amorphous silicon film on the silicon oxide film 58 are removed.
  • monosilane (SiH 4 ) is supplied to the surface of the amorphous silicon film in a vacuum atmosphere and the substrate 1 is heated to polycrystalize the amorphous silicon film and grow silicon grains on the surface.
  • the lower electrode 60 made of a polycrystal silicon film having a roughened surface is obtained.
  • a capacitor insulating film 61 made of a Ta 2 O 5 (tantalum oxide) film is formed on the lower electrodes 60 formed inside of the grooves 59 .
  • the Ta 2 O 5 film is deposited by CVD and then the substrate 1 is heated at 700 to 750° C. to modify the film.
  • the gate electrode 23 c of the p channel MISFET (Qp) constituting part of the logic circuit includes a p type polycrystal silicon film doped with boron ( 13 p ).
  • the gate insulating film 6 of the P channel MISFET (Qp) is formed of a silicon oxynitride film having a high concentration of nitrogen, even when a heat treatment for modifying the above Ta 2 O 5 film is carried out, boron contained in the p type polycrystal silicon film ( 13 p ) can be prevented from going through the gate insulating film 6 to be diffused into the substrate 1 (n type well 5 ), whereby variations in the threshold voltage of the p channel MISFET (Qp) can be suppressed.
  • a TiN upper electrode 62 is formed on the capacitor insulating film 61 to form information storage capacitor elements C, each consisting of the lower electrode 60 , capacitor insulating film 61 and upper electrode 62 .
  • a DRAM memory cell comprising memory cell selecting MISFET's (Qt) and information storage capacitor elements C connected to the MISFETs in series are completed by the above-described steps.
  • the capacitor insulating film 61 of the information storage capacitor element C may be formed of a high dielectric or ferroelectric film having a perovskite or composite perovskite crystal structure, such as a PZT, PLT, PLZT, PbTiO 3 , SrTiO 3 , BaTiO 3 , BST, SBT or Ta 2 O 5 film, besides a Ta 2 O 5 film.
  • the lower electrode 60 may be formed of a platinum metal film, such as Ru or Pt, besides the polycrystal silicon film.
  • the gate insulating film 6 of the p channel MISFET (Qp) is formed of a silicon oxynitride film having a high concentration of nitrogen, boron contained in the p type polycrystal silicon film ( 13 p ) can be prevented from going through the gate insulating film 6 to be diffused into the substrate 1 (n type well 5 ) even when the heat treatment is carried out, whereby variations in the threshold voltage of the p channel MISFET (Qp) can be suppressed.
  • two Al wiring layers are formed above the information storage capacitor elements C in such a manner that they sandwich an interlayer insulating film formed of a silicon oxide film, and a passivation film formed of a laminate consisting of a silicon nitride film and a silicon oxide film is formed above the Al wiring layers to produce the DRAM-logic hybrid LSI of this embodiment.
  • the concentration of nitrogen in the film can be increased without raising the concentration of nitrogen near the interface between the substrate 1 and the gate insulating film 6 to a higher level than required.
  • the gate insulating film having a high dielectric constant can be formed without reducing the carrier mobility of the p channel MISFET (Qp), thereby making it possible to reduce the leakage current of the MISFET. Also, the hot carrier resistance of a MISFET and the electron mobility of the n channel MISFET can be improved. Further, variations in the threshold voltage of the p channel MISFET (Qp) caused by the leakage of boron can be suppressed.
  • a method of forming a gate insulating film according to this embodiment will be described with reference to FIGS. 27 to 29 .
  • element separation grooves 2 , p type wells 4 and n type wells 5 are formed on the main surface of the substrate 1 , and the substrate 1 is wet oxidized to form a silicon oxide film 6 a having a thickness of 1 to 1.5 nm on the surfaces of the p type wells 4 and the n type wells 5 in the same manner as in the Embodiment 1.
  • the substrate 1 is heated in an atmosphere containing 5% of an NO gas at 900 to 1,100° C.
  • nitrogen is introduced into the silicon oxide film 6 a formed on the surface of the substrate 1 and a silicon oxynitride film 6 b in which nitrogen segregates near the interface with the substrate 1 is formed as in the Embodiment 1.
  • Conditions for carrying out the heat treatment must be set to ensure that the concentration of nitrogen near the interface between the silicon oxynitride film 6 b and the substrate 1 should be 1 to 10 atomic %, as in the Embodiment 1.
  • a silicon nitride film 6 c having a thickness of about 1 to 1.5 nm is deposited above the silicon oxynitride film 6 b by CVD to obtain a gate insulating laminate film 70 consisting of the silicon oxynitride film 6 b and the silicon nitride film 6 c.
  • the gate insulating film 70 which is formed of a laminate consisting of the silicon oxynitride film 6 b and the silicon nitride film 6 c , has the silicon nitride film 6 c on the surface side, it has a higher dielectric constant than a gate insulating film formed of only the silicon oxynitride film 6 b in which nitrogen segregates near the interface with the substrate 1 .
  • the gate insulating film 70 is thus formed of a laminate consisting of the silicon oxynitride film 6 b and the silicon nitride film 6 c , it has a high dielectric constant without raising the concentration of nitrogen near the interface with the substrate 1 to a higher level than required.
  • the leakage current of the MISFET can be reduced without deteriorating the carrier mobility of the p channel MISFET (Qp). Also, the hot carrier resistance of the MISFET and the electron mobility of the n channel MISFET can be improved. Further, variations in the threshold voltage of the p channel MISFET (Qp) caused by the leakage of boron can be suppressed.
  • a gate insulating film made from silicon oxynitride is to be formed by introducing nitrogen into a silicon oxide film, by using both an oxynitridation treatment and a nitrogen plasma treatment, a gate insulating film having a high concentration of nitrogen can be formed without increasing the concentration of nitrogen near the interface between the substrate and the gate insulating film to a higher level than required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

A method of manufacturing a semiconductor integrated circuit device includes steps of forming a silicon oxide film as thin as 5 nm or less on the surfaces of p-type wells and n-type wells by wet oxidizing a substrate, heating the substrate in an atmosphere containing about 5% of an NO gas to introduce nitrogen into the silicon oxide film to form a silicon oxynitride film, and exposing the substrate to a nitrogen plasma atmosphere to further introduce nitrogen into the silicon oxynitride film to form a silcon oxynitride gate insulating film having a first peak concentration near the interface with the substrate and a second peak concentration near the surface thereof. Thereby, the concentration of nitrogen in the gate insulating film is increased without raising the concentration of nitrogen near the interface between the substrate and the gate insulating film to a higher level than required.

Description

BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor integrated circuit device and the manufacture thereof; and, more specifically, the invention relates to a technology which is applicable to a semiconductor integrated circuit device comprising a silicon oxynitride film used as a gate insulating film for a MISFET (Metal Insulator Semiconductor Field Effect Transistor).
To realize a low-voltage operation of a MISFET, the gate oxide film thereof must be made thinner in proportion to a reduction in the thickness of the MISFET. However, when the thickness of the gate oxide film is reduced, a direct tunnel current running through the film grows, thereby causing a gate leakage current, which cannot be ignored from the viewpoint of reducing the power consumption.
To cope with this problem, attempts have been made to increase the physical thickness of the gate insulating film by using a high dielectric film, such as a titanium oxide (TiO2) or tantalum oxide (Ta2O5) film, having a higher relative dielectric constant than silicon oxide. However, since the gate insulating film that is formed of this high dielectric film has many problems with interfacial control and the like, use of this film in mass-produced devices is currently considered to be difficult.
Since a silicon oxynitride film that is formed by nitriding part of a silicon oxide film has a higher dielectric constant than silicon oxide, the effect of reducing the leakage current by increasing the physical thickness of a gate insulating film can be expected from this film. It is reported that a gate insulating film formed of a silicon oxynitride film is effective in achieving a suppression of boron leakage in which an impurity (boron) contained in a p type gate electrode goes through the channel area of a substrate at the time of heat treatment during the process, an improvement of the hot carrier resistance of the MISFET and an improvement of the electron mobility of an n channel type MISFET.
As a means of nitriding a gate insulating film made from silicon oxide, there is a known method in which a substrate is heated in a high-temperature atmosphere of around 1,000° C. containing an NO (nitrogen monoxide) gas after a silicon oxide film is formed on the silicon substrate.
Japanese Unexamined Patent Publication No. 2001-332724 discloses a technology for forming a gate insulating film from silicon oxynitride having two peaks of nitrogen concentration at the interface with a silicon substrate and in the film, to prevent the penetration of boron contained in the p type gate electrode and to improve hot carrier resistance, in an MIS device having a so-called dual gate structure using an n type gate electrode as an n channel MISFET and a p type gate electrode as a p channel MISFET.
To form the above-described silicon oxynitride film, a silicon substrate is first wet oxidized to form a silicon oxide film having a thickness of about 7 nm on the surface; it is then heated in an atmosphere containing an NO gas to segregate nitrogen at the interface between the silicon oxide film and the substrate; and then it is dry oxidized. When this dry oxidation is carried out, the interface between the silicon oxide film and the substrate is oxidized to form a silicon oxide film having a thickness of 1 to 2 nm underlying an area where nitrogen has been segregated. Thereafter, when the substrate is heated in an atmosphere containing an NO gas again, nitrogen is segregated at the interface between the silicon oxide film underlying the area where nitrogen has been segregated and the substrate, thereby obtaining a gate insulating film made of silicon oxynitride and having two peaks of nitrogen concentration at the interface with the silicon substrate and in the film.
Japanese Unexamined Patent Publication No. 2000-357688 discloses a technology for forming a gate insulating film from silicon oxynitride having two peaks in the nitrogen concentration distribution in the thickness direction by a method different from that of the above-referenced publication.
In this publication, the silicon substrate is first heated in an oxygen atmosphere to form a silicon oxide film having a thickness of about 5 nm on the surface, and then it is heated in an NO gas atmosphere to form a silicon oxynitride film having a thickness of about 5.5 nm having a peak of nitrogen concentration near the interface with the substrate. Thereafter, the surface of this silicon oxynitride film is etched with a hydrofluoric acid aqueous solution to remove its surface layer portion, thereby obtaining a silicon oxynitride film having a thickness of about 1 nm and containing nitrogen in the entire thickness direction in large quantities. Thereafter, a second heat treatment is carried out in an NO gas or N2O gas atmosphere to grow a new thermally oxidized film on the substrate and introduce nitrogen into the thermally oxidized film, thereby obtaining a silicon oxynitride film having two peaks in nitrogen concentration distribution in the thickness direction.
Japanese Unexamined Patent Publication No. Hei 8(1996)-167664 (U.S. Pat. No. 5,591,681) discloses a technology for forming a silicon oxide film containing nitrogen by heating in a NO or N2O gas atmosphere.
SUMMARY OF THE INVENTION
When the above-described silicon oxynitride film is used as a gate insulating film for a MISFET and the gate insulating film becomes thinner in proportion to a reduction in the thickness of the MISFET, the dielectric constant must be increased by raising the concentration of nitrogen contained in the film in order to reduce the gate leakage current.
However, it is difficult to increase the dielectric constant of the silicon oxynitride film, formed by the conventional oxynitridation treatment in which nitrogen is introduced into a silicon nitride film by heating a substrate in a NO to gas or N2O gas atmosphere, by increasing the concentration of nitrogen contained in the entire film, because the surface of the film is not nitrided, although the concentration of nitrogen near the interface between the film and the substrate can be increased.
When a portion near the interface between the gate insulating film and the substrate is nitrided excessively, a trap in the interfacial level or the film increases, thereby causing a problem, such as a reduction in the carrier mobility of the MISFET.
FIG. 30 is a graph showing the relationship between the concentration of nitrogen at the interface between the gate insulating film and the substrate and the carrier mobility of a MISFET. As shown in the graph, in the case of an n channel MISFET in which electrons are carriers, when several atomic percents of nitrogen is introduced into the interface, the carrier mobility becomes higher than when nitrogen is not introduced, but when the concentration of nitrogen further increases, the above effect gradually decreases. Meanwhile, in the case of a p channel MISFET in which electron holes are carriers, the carrier mobility becomes lower in proportion to the concentration of nitrogen at the interface. When the concentration of nitrogen is higher than 10 atomic %, the carrier mobility drops by about 20%, thereby reducing the drain current (Ids) by about 10% and making circuit design difficult to achieve in practice.
Thus, the method of introducing nitrogen into a silicon oxide film by oxynitridation treatment has limits in the amount of introduced nitrogen.
In the above-described technology for forming a silicon oxynitride film having two peaks in the nitrogen concentration distribution in the thickness direction, the high-temperature oxynitridation treatment is carried out several times, with the result that the silicon oxynitride film becomes thick, thereby making it difficult to form a gate insulating film as thin as 5 nm or less.
It is an object of the present invention to provide a technology that is capable of forming a silicon oxynitride film having a high concentration of nitrogen in a semiconductor integrated circuit device comprising a silicon oxynitride film used a gate insulating film for a MISFET
It is another object of the present invention to provide a technology that is capable of improving the reliability of a semiconductor integrated circuit device comprising a silicon oxynitride film used as a gate-insulating film for a MISFET.
The above and other objects and new features of the present invention will become apparent from the following description and the accompanying drawings.
The present invention relates to the following.
The method of manufacturing a semiconductor integrated circuit device according to the present invention comprises the following steps:
(a) forming a silicon oxide gate insulating film on a main surface of a semiconductor substrate made from monocrystal silicon by heating the semiconductor substrate,
(b) introducing nitrogen into the gate insulating film by heating the semiconductor substrate in an atmosphere containing an NO gas or N2O gas;
(c) introducing nitrogen into the gate insulating film by exposing the semiconductor substrate to a nitrogen plasma atmosphere; and
(d) forming gate electrodes for a MISFET over the gate insulating film after the steps (b) and (c).
According to the above method, since a gate insulating film can be formed from silicon oxynitride by using both an oxynitridation treatment and a nitrogen plasma treatment, the concentration of nitrogen contained in the gate insulating film can be increased without raising the concentration of nitrogen near the interface between the substrate and the gate insulating film to a higher level than required.
According to a first aspect of the present invention, there is provided a semiconductor integrated circuit device comprising MISFET's having a 5 nm or less-thick gate insulating film formed from silicon oxynitride on the main surface of a semiconductor substrate made from monocrystal silicon, wherein nitrogen contained in the gate insulating film has a first peak concentration near the interface between the: semiconductor substrate and the gate insulating film and a second peak concentration near the surface of the gate insulating film.
According to a second aspect of the present invention, there is provided a semiconductor integrated circuit device wherein the second peak concentration is higher than the first peak concentration.
According to a third aspect of the present invention, there is provided a semiconductor integrated circuit device wherein the MISFET's have a gate electrode containing a silicon film doped with boron.
According to a fourth aspect of the present invention, there is provided a semiconductor integrated circuit device wherein the first peak concentration is in the range of 1 to 10 atomic %.
According to a fifth aspect of the present invention, there is provided a semiconductor integrated circuit device comprising MISFET's having a 5 nm or less-thick gate insulating film formed of a laminate consisting of a silicon oxynitride film and a silicon nitride film formed over the silicon oxynitride film on the main surface of a semiconductor substrate made from monocrystal silicon, wherein the concentration of nitrogen contained in the silicon oxynitride film is the highest near the interface between the semiconductor substrate and the silicon oxynitride film.
According to a sixth aspect of the present invention, there is provided a semiconductor integrated circuit device wherein the MISFET's have a gate electrode containing a silicon film doped with boron.
According to a seventh aspect of the present invention, a semiconductor integrated circuit device is provided wherein the concentration of nitrogen contained near the interface between the semiconductor substrate and the silicon oxynitride film is in the range of 1 to 10 atomic %.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 a sectional view of a principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention;
FIG. 2 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention;
FIG. 3 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention;
FIG. 4 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention;
FIG. 5 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention;
FIG. 6 is a graph showing the profile of nitrogen concentration in a silicon oxynitride film formed by an oxynitridation treatment;
FIG. 7 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention;
FIG. 8 is a graph showing the profile of nitrogen concentration in a gate insulating film made from silicon oxynitride formed by an oxynitridation treatment and a plasma treatment;
FIG. 9 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention;
FIG. 10 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention;
FIG. 11 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention;
FIG. 12 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention;
FIG. 13 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention;
FIG. 14 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention;
FIG. 15 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the first embodiment of the present invention;
FIG. 16 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to a second embodiment of the present invention;
FIG. 17 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention;
FIG. 18 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention;
FIG. 19 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention;
FIG. 20 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention;
FIG. 21 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention;
FIG. 22 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention;
FIG. 23 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention;
FIG. 24 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention;
FIG. 25 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention;
FIG. 26 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the second embodiment of the present invention;
FIG. 27 is a sectional view of the principal portion of a semiconductor substrate showing a step in a method of manufacturing a semiconductor integrated circuit device according to a third embodiment of the present invention;
FIG. 28 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the third embodiment of the present invention;
FIG. 29 is a sectional view of the principal portion of a semiconductor substrate showing a step in the method of manufacturing a semiconductor integrated circuit device according to the third embodiment of the present invention; and
FIG. 30 is a graph showing the relationship between the concentration of nitrogen near the interface between the gate insulating film and the substrate and the carrier mobility of a MISFET.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Members identified by the same symbol have the same function in all of the drawings, and a repeated description of such common members is omitted. In the following embodiments, the same or a similar description is not repeated unless it is necessary.
Embodiment 1
The method of manufacturing a CMOS-LSI according to this embodiment will be described in the order of the steps thereof with reference to FIGS. 1 to 15.
First, as shown in FIG. 1, element separation grooves 2 are formed in the main surface of a semiconductor substrate (to be referred to simply as a “substrate” hereinafter) made from p type monocrystal silicon having a resistivity of about 1 to 10 Ωcm. To form the element separation grooves 2, the substrate 1 is thermally oxidized to form a silicon oxide film 30 having a thickness of about 10 nm on the surface, a silicon nitride film 31 having a thickness of about 100 nm deposited on the top of the silicon oxide film 30 by CVD is patterned, and then the substrate 1 is etched by using this silicon nitride film 31 as a mask.
Thereafter, as shown in FIG. 2, a silicon oxide film 3 having a thickness of about 500 nm is deposited on the substrate 1 by CVD, the silicon oxide film 3 around the element separation grooves 2 is removed by a chemical and mechanical polishing method, and then the silicon nitride film 31 on the substrate 1 is removed by wet etching using hot phosphoric acid. Thereafter, the silicon oxide film 3 in the element separation grooves 2 is made fine by heating the substrate 1.
Subsequently, as shown in FIG. 3, p type wells 4 are formed on part of the main surface of the substrate 1 and n type wells 5 are formed on the other part of the main surface. To form the p type wells 4 and the n type wells 5, after boron ions are injected into part of the substrate 1 and phosphorus ions are injected into the other part of the substrate 1, the substrate 1 is heated to diffuse these impurities (boron and phosphorus) into the substrate 1.
After the silicon oxide film 30 on the surface of the substrate 1 is removed by wet etching with hydrofluoric acid, as shown in FIG. 4, the substrate 1 is wet oxidized to form a silicon oxide film 6 a having a thickness of 5 nm or less (3.0 nm in this embodiment) on the surfaces of the p type wells 4 and the n type wells 5. The silicon oxide film 6 a may be formed by an oxidation method, rather than the above-described wet oxidation method, for example, a dry oxidation method or the exposure of the substrate 1 to an atmosphere containing active oxygen may be employed.
Thereafter, the substrate 1 is heated in an atmosphere containing 5% of an NO (nitrogen monoxide) gas at 900 to 1,100° C. When this heat treatment is carried out, nitrogen is introduced into the silicon oxide film 6 a that is formed on the surface of the substrate 1 to change the silicon oxide film 6 a into a silicon oxynitride film 6 b (FIG. 5). The silicon oxynitride film 6 b may be formed by heating the substrate 1 in an atmosphere containing an N2O (nitrous oxide) gas in place of the NO gas.
FIG. 6 is a graph showing the profile of nitrogen concentration in the silicon oxynitride film 6 b formed by the above-described heat treatment (oxynitridation treatment), in which the horizontal axis shows the depth (nm) from the surface of the substrate 1.
As shown in the graph, the concentration of nitrogen in the silicon oxynitride film 6 b is the highest near the interface between the silicon oxynitride film 6 b and the substrate 1 (depth of 3.4 nm). This shows that NO introduced into the silicon oxide film 6 a diffuses near the surface of the film without reacting with silicon and segregates at the interface with the substrate 1 because the reactivity of NO with silicon is low.
For the above-described heat treatment (oxynitridation treatment), the heat treatment conditions are set to ensure that the concentration of nitrogen near the interface between the silicon oxynitride film 6 b and the substrate 1 becomes 1 to 10 atomic %. When the concentration of nitrogen near the interface is higher than 10 atomic %, the carrier mobility of the p channel MISFET drops by about 20 %, thereby reducing the drain current (Ids) by about 10 % and making the circuit design difficult in practice. When the concentration of nitrogen near the interface is lower than 1 atomic %, the effect of the oxynitridation treatment is not obtained.
Nitrogen is further introduced into the silicon oxynitride film 6 b by exposing the substrate 1 to a nitrogen plasma atmosphere. This nitrogen plasma treatment is carried out with a known plasma treatment apparatus for generating plasma through interaction between an electric field and a magnetic field by introducing high frequency waves into a treatment chamber which is provided with a magnetic field coil therearound. A remote plasma treatment apparatus, in which plasma generated in a plasma generator that is separate from the treatment chamber, is introduced into the treatment chamber may be used.
When the substrate 1 is placed in the treatment chamber of the above-described plasma treatment apparatus and a nitrogen gas is introduced into the treatment chamber, nitrogen radicals activated by plasma are introduced into the silicon oxynitride film 6 b and react with silicon contained in the film to form a silicon oxynitride gate insulating film 6 having a higher concentration of nitrogen than the silicon oxynitride film 6 b (FIG. 7).
FIG. 8 is a graph showing the profile of nitrogen concentration in the gate insulating film 6 made from silicon oxynitride formed by the above-described oxynitridation treatment and plasma treatment, in which the horizontal axis shows the depth (nm) from the surface of the substrate 1.
As shown in the graph, the concentration of nitrogen in the gate insulating film 6 has a first peak near the interface between the substrate 1 and the gate insulating film 6 and a second peak near the surface of the gate insulating film 6. Nitrogen existent near the interface between the substrate 1 and the insulating film 6 is mainly introduced by the oxynitridation treatment and nitrogen existent near the surface of the gate insulating film 6 is mainly introduced by the nitrogen plasma treatment. That is, since active nitrogen introduced by the nitrogen plasma treatment has a higher reactivity with silicon than nitrogen introduced by the oxynitridation treatment, most of it reacts with silicon near the surface of the silicon oxynitride film 6 b. Meanwhile, since nitrogen introduced by the oxynitridation treatment has a low reactivity, as described above, most of it diffuses in the film and segregates at the interface with the substrate 1.
Since the effect of reducing a leakage current becomes greater as the concentration of nitrogen near the surface of the gate insulating film 6 increases, the concentration of nitrogen in this area is desirably made higher than the upper limit (10 atomic %) of the concentration of nitrogen near the interface between the substrate 1 and the gate insulating film 6.
The above-described nitrogen plasma treatment is carried out at a low temperature of 600° C. or less to prevent nitrogen that is introduced into the film from being diffused to the interface with the substrate 1. When the temperature of the substrate 1 is high, nitrogen diffuses to the interface with the substrate 1 and may exceed the upper limit (10 atomic %) of its concentration. When the nitrogen plasma treatment is carried out at room temperature, the temperature of the substrate 1 rises to about 200° C. due to its exposure to plasma. Therefore, it is desired to heat the substrate at 200° C. or higher in order to ensure the controllability of the process.
The order of the oxynitridation treatment and the nitrogen plasma treatment may be reversed. That is, after the nitrogen plasma treatment, the oxynitridation treatment may be carried out. Since the oxynitridation treatment is accompanied by heating at a high temperature (900 to 1,100° C.), when the oxynitridation treatment is carried out after the nitrogen plasma treatment, nitrogen near the surface of the gate insulating film 6 introduced by the nitrogen plasma treatment diffuses near the interface with the substrate 1 at the time of the oxynitridation treatment, thereby increasing the concentration of nitrogen in this area to a higher level than required. Therefore, the treatment conditions must be set by taking this into account.
As shown in FIG. 9, a conductive film 7 a for gate electrodes is then deposited on the gate insulating film 6. The conductive film 7 a for gate electrodes is a laminate (polycide film) consisting of an n type polycrystal silicon film deposited by CVD and a W (tungsten) suicide film, or a laminate (polymetal film) consisting of an n type polycrystal silicon film deposited by CVD, a tungsten nitride (WN) film deposited by sputtering and a W film.
As shown in FIG. 10, gate electrodes 7 are then formed on the gate oxide films 6 of the p type wells 4 and the n type wells 5 by patterning the conductive film 7 a for gate electrodes by dry etching using the photomask film 32 as a mask.
After the photoresist films 32 on the gate electrodes 7 are removed by an ashing treatment, as shown in FIG. 11, phosphorus or arsenic ions are injected into the p type wells 4 to form n type semiconductor areas 8 having a low content of an impurity and boron ions are injected into the n type wells 5 to form p type semiconductor areas 9 having a low content of an impurity.
A silicon nitride film is then deposited on the substrate 1 by CVD, and then it is etched anisotropically to form a side wall spacer 10 on the side walls of the gate electrodes 7, phosphorus or arsenic ions are injected into the p type wells 4 to form n+ type semiconductor areas 11 (source, drain) having a high content of an impurity, and phosphorus ions are injected into the n type wells 5 to form p+ type semiconductor areas 12 (source, drain) having a high content of an impurity. N channel MISFET's (Qn) and p channel MISFET's (Qp) are completed by the above-described steps.
As shown in FIG. 12, contact holes 17 are formed above the source and drain (n+ type semiconductor areas 11) of the n channel MISFET's (Qn) and the source and drain (p+ type semiconductor areas 12) of the p channel MISFET's (Qp) by dry etching a silicon oxide film 16 using a photoresist film 33 as a mask.
After the photoresist film 33 on the silicon oxide film 16 is removed by ashing treatment or the like, as shown in FIG. 13, a metal film 18 a for wiring is deposited on the silicon oxide film 16, including the insides of the contact holes 17, by sputtering. The metal film 18 a for wiring is an Al alloy film or a composite metal film consisting of an Al alloy film as a lower layer and a Ti film or TiN film as an upper layer.
As shown in FIG. 14, after a photoresist film 34 is formed on the metal film 18 a for wiring, a first metal wiring 18, which is the metal film 18 a for wiring, is formed on the silicon oxide film 16 by dry etching the metal film 18 a for wiring using the photoresist film 34 as a mask.
After the photoresist film 34 on the metal wiring 18 is removed by ashing treatment, as shown in FIG. 15, a silicon oxide film 19 is deposited on the metal wiring 18 by CVD, and it is dry etched to form through holes 20; and, a metal film for wiring is deposited on the silicon oxide film 19, including the insides of the through holes 20, by sputtering, and it is dry etched to form a second metal wiring 21 over the silicon oxide film 19.
Although not illustrated, interlayer insulating films and wirings are formed alternately on the second metal wiring 21 by repetitions of the above-described wiring forming step to accomplish the CMOS-LSI of this embodiment.
Since the gate insulating film 6 is formed from silicon oxynitride by using both oxynitridation treatment and nitrogen plasma treatment in this embodiment, the concentration of nitrogen in the film can be increased without raising the concentration of nitrogen near the interface between the substrate 1 and the gate insulating film 6 to a higher level than required.
Since the gate insulating film 6 having a high dielectric constant can be formed without reducing the carrier mobility of the p channel MISFET's (Qp), the leakage current of the MISFET's (n channel MISFET's (Qn) and p channel MISFET's (Qp)) can be reduced. Further, the hot carrier resistance of the MISFET's (n channel MISFET's (Qn) and p channel MISFET's (Qp)) and the electron mobility of the n channel MISFET's can be improved.
Since the oxynitridation treatment, which requires a heat treatment at a high temperature, is carried out only once, the excessive growth of the gate insulating film 6 can be suppressed, thereby making it possible to obtain a gate insulating film 6 having a thickness of 5 nm or less.
Embodiment 2
The semiconductor integrated circuit device of this embodiment is a DRAM-logic hybrid LSI having a DRAM (Dynamic Random Access Memory) and a logic circuit formed on the same semiconductor substrate. The method of manufacturing this hybrid LSI will be described in the order of the steps thereof with reference to FIGS. 16 to 26. The left and center areas in these figures are a DRAM memory cell forming area (to be referred to as a “DRAM forming area” hereinafter) and the right area is a logic circuit forming area.
As shown in FIG. 16, element separation grooves 2, p type wells 4 and an n type well 5 are first formed on the main surface of a substrate 1 in the same manner as employed in the above-described Embodiment 1, a silicon oxide film 6 a is formed on the surfaces of the p type wells 4 and the n type well 5, and nitrogen is introduced into the silicon oxide film 6 a by using both of the above-described oxynitridation treatment and nitrogen plasma treatment to form a silicon oxynitride gate insulating film 6 having a thickness of 1.5 nm on the surfaces of the p type wells 4 and the n type well 5. The concentration of nitrogen in the gate insulating film 6 has a first peak near the interface with the substrate 1 and a second peak (10 atomic % or more) higher than the first peak near the surface of the film like the gate insulating film 6 of the Embodiment 1.
As shown in FIG. 17, an n type polycrystal silicon film 13 n is formed on the gate insulating film 6 of the p type wells 4 and a p type polycrystal silicon film 13 p is formed on the gate insulating film 6 of the n type well 5. To form the n type polycrystal silicon film 13 n and the p type polycrystal silicon film 13 p, an amorphous silicon film is first formed on the gate insulating film 6 by CVD, phosphorus ions are injected into the amorphous silicon film overlying the p type wells 4 by using a photoresist film as a mask, boron ions are injected into the amorphous silicon film overlying the n type well 5, and the substrate 1 is heated. The injection of ions is carried out to change n channel MISFET's for forming the memory cells of a DRAM and an n channel MISFET and a p channel MISFET for forming a logic circuit into surface channel MISFET's.
After a WNx film 14, W film 15 and silicon nitride film 22 are deposited on the polycrystal silicon films (13 p, 13 n), as shown in FIG. 18, the silicon nitride film 22, W film 15, WNx film 14 and polycrystal silicon films (13 p, 13 n) are dry etched using a photoresist film 35 as a mask, to form gate electrodes 23 a (word lines WL) on the gate insulating film 6 of the DRAM forming area and form gate electrodes 23 b and 23 c on the gate insulating film 6 of the logic circuit forming area, as shown in FIG. 19.
After the photoresist film 35 is removed, as shown in FIG. 20, phosphorus or arsenic ions are injected into the p type wells 4 to form n type semiconductor areas 24 having a low content of an impurity, and boron ions are injected into the n type well 5 to form p type semiconductor areas 25 having a low content of an impurity.
A silicon nitride film 26 is then deposited on the substrate 1, a side wall spacer 26 s is formed on the side walls of the gate electrodes 23 b and 23 c by etching the silicon nitride film 26 of the logic circuit forming area anisotropically, phosphorus or arsenic ions are injected into the p type wells 4 of the logic circuit forming area to form n+ type semiconductor areas 27 (source, drain) having a high content of an impurity, and boron ions are injected into the n type well 5 to form p+ type semiconductor areas 28 (source, drain) having a high content of an impurity. The n channel MISFET (Qn) and p channel MISFET (Qp) of the logic circuit are completed by the above-described steps.
As shown in FIG. 21, a silicon oxide film 40 is deposited on the gate electrodes 23 a, 23 b and 23 c, contact holes 41 and 42 are formed above the n type semiconductor areas 24 of the DRAM forming area, and plugs 43 made from n type polycrystal silicon are formed in the insides of the contact holes 41 and 42. Thereafter, the substrate 1 is heated to diffuse the n type impurity (phosphorus) contained in the polycrystal silicon film forming the plugs 43 into the n type semiconductor areas 24, thereby forming low-resistance source and drain. MISFET's (Qt) for selecting memory cells are provided in the DRAM forming area by the above-described steps.
As shown in FIG. 22, a silicon oxide film 44 is deposited on the silicon oxide film 40, the silicon oxide films 44 and 40 in the logic circuit forming area are dry etched to form contact holes 45 above the source and drain (n+ type semiconductor areas 27) of the n channel MISFET (Qn) and contact holes 46 above the source and drain (p+ type semiconductor areas 28) of the p channel MISFET (Qp). The silicon oxide film 44 in the DRAM forming area is etched to form a through hole 47 above the contact hole 41.
After a plug 48 is formed inside of the contact holes 45 and 46 and the through hole 47, bit lines BL are formed above the silicon oxide film 44 of the DRAM forming area, and wires 50 to 53 are formed above the silicon oxide film 44 of the logic circuit forming area. The plug 48 is formed of a laminate consisting of a TiN film and a W film, and the bit lines BL and the wires 50 to 53 are each formed of a W film.
The bit lines BL are electrically connected to one (24) of the source and drain of the memory cell selecting MISFET (Qt) through the through hole 47 and the contact hole 41. The wires 50 and 51 are electrically connected to the source and drain (n+ type semiconductor areas 27) of the n channel MISFET (Qn) through the contact holes 45 and 45, and the wires 52 and 53 are electrically connected to the source and drain (p+ type semiconductor areas 28) of the p channel MISFET (Qp) through the contact holes 46 and 46.
As shown in FIG. 23, a silicon oxide film 54 is deposited above the bit lines BL and the wires 50 to 53, the silicon oxide films 54 and 44 overlying the contact holes 41 are etched to form through holes 55, and a plug 56 made of an n type polycrystal silicon film is formed inside of the through holes 55. Thereafter, a silicon nitride film 57 and a silicon oxide film 58 are deposited on the silicon oxide film 54, and the silicon oxide film 58 and the silicon nitride film 57 overlying the through holes 55 are etched to form grooves 59.
As shown in FIG. 24, a lower electrode 60 made of a polycrystal silicon film is formed in the inner walls of the grooves 59. To form the lower electrode 60, an n type amorphous silicon film is deposited inside of the grooves 60 and above the silicon oxide film 58, and then unrequired portions of the amorphous silicon film on the silicon oxide film 58 are removed. Then, monosilane (SiH4) is supplied to the surface of the amorphous silicon film in a vacuum atmosphere and the substrate 1 is heated to polycrystalize the amorphous silicon film and grow silicon grains on the surface. Thereby, the lower electrode 60 made of a polycrystal silicon film having a roughened surface is obtained.
As shown in FIG. 25, a capacitor insulating film 61 made of a Ta2O5 (tantalum oxide) film is formed on the lower electrodes 60 formed inside of the grooves 59. The Ta2O5 film is deposited by CVD and then the substrate 1 is heated at 700 to 750° C. to modify the film.
As described above, the gate electrode 23 c of the p channel MISFET (Qp) constituting part of the logic circuit includes a p type polycrystal silicon film doped with boron (13 p). However, since the gate insulating film 6 of the P channel MISFET (Qp) is formed of a silicon oxynitride film having a high concentration of nitrogen, even when a heat treatment for modifying the above Ta2O5 film is carried out, boron contained in the p type polycrystal silicon film (13 p) can be prevented from going through the gate insulating film 6 to be diffused into the substrate 1 (n type well 5), whereby variations in the threshold voltage of the p channel MISFET (Qp) can be suppressed.
As shown in FIG. 26, a TiN upper electrode 62 is formed on the capacitor insulating film 61 to form information storage capacitor elements C, each consisting of the lower electrode 60, capacitor insulating film 61 and upper electrode 62. A DRAM memory cell comprising memory cell selecting MISFET's (Qt) and information storage capacitor elements C connected to the MISFETs in series are completed by the above-described steps.
The capacitor insulating film 61 of the information storage capacitor element C may be formed of a high dielectric or ferroelectric film having a perovskite or composite perovskite crystal structure, such as a PZT, PLT, PLZT, PbTiO3, SrTiO3, BaTiO3, BST, SBT or Ta2O5 film, besides a Ta2O5 film. The lower electrode 60 may be formed of a platinum metal film, such as Ru or Pt, besides the polycrystal silicon film. When the capacitor insulating film 61 is formed of a high dielectric film or ferroelectric film and when the lower electrode 60 is formed of a platinum metal film, a heat treatment is required to modify these films. Since the gate insulating film 6 of the p channel MISFET (Qp) is formed of a silicon oxynitride film having a high concentration of nitrogen, boron contained in the p type polycrystal silicon film (13 p) can be prevented from going through the gate insulating film 6 to be diffused into the substrate 1 (n type well 5) even when the heat treatment is carried out, whereby variations in the threshold voltage of the p channel MISFET (Qp) can be suppressed.
Although not illustrated, two Al wiring layers are formed above the information storage capacitor elements C in such a manner that they sandwich an interlayer insulating film formed of a silicon oxide film, and a passivation film formed of a laminate consisting of a silicon nitride film and a silicon oxide film is formed above the Al wiring layers to produce the DRAM-logic hybrid LSI of this embodiment.
According to this embodiment, as the silicon oxynitride gate insulating film 6 is formed by using both an oxynitridation treatment and a nitrogen plasma treatment, the concentration of nitrogen in the film can be increased without raising the concentration of nitrogen near the interface between the substrate 1 and the gate insulating film 6 to a higher level than required.
Thereby, the gate insulating film having a high dielectric constant can be formed without reducing the carrier mobility of the p channel MISFET (Qp), thereby making it possible to reduce the leakage current of the MISFET. Also, the hot carrier resistance of a MISFET and the electron mobility of the n channel MISFET can be improved. Further, variations in the threshold voltage of the p channel MISFET (Qp) caused by the leakage of boron can be suppressed.
Since an oxynitridation treatment, which requires a heat treatment at a high temperature, is carried out only once, the excessive growth of the gate insulating film 6 is suppressed, thereby making it possible to obtain a gate insulating film as thin as 5 nm or less.
Embodiment 3
A method of forming a gate insulating film according to this embodiment will be described with reference to FIGS. 27 to 29.
As shown in FIG. 27, element separation grooves 2, p type wells 4 and n type wells 5 are formed on the main surface of the substrate 1, and the substrate 1 is wet oxidized to form a silicon oxide film 6 a having a thickness of 1 to 1.5 nm on the surfaces of the p type wells 4 and the n type wells 5 in the same manner as in the Embodiment 1.
As shown in FIG. 28, the substrate 1 is heated in an atmosphere containing 5% of an NO gas at 900 to 1,100° C. Thereby, nitrogen is introduced into the silicon oxide film 6 a formed on the surface of the substrate 1 and a silicon oxynitride film 6 b in which nitrogen segregates near the interface with the substrate 1 is formed as in the Embodiment 1. Conditions for carrying out the heat treatment (oxynitridation treatment) must be set to ensure that the concentration of nitrogen near the interface between the silicon oxynitride film 6 b and the substrate 1 should be 1 to 10 atomic %, as in the Embodiment 1.
As shown in FIG. 29, a silicon nitride film 6 c having a thickness of about 1 to 1.5 nm is deposited above the silicon oxynitride film 6 b by CVD to obtain a gate insulating laminate film 70 consisting of the silicon oxynitride film 6 b and the silicon nitride film 6 c.
Since the gate insulating film 70, which is formed of a laminate consisting of the silicon oxynitride film 6 b and the silicon nitride film 6 c, has the silicon nitride film 6 c on the surface side, it has a higher dielectric constant than a gate insulating film formed of only the silicon oxynitride film 6 b in which nitrogen segregates near the interface with the substrate 1.
Since the gate insulating film 70 is thus formed of a laminate consisting of the silicon oxynitride film 6 b and the silicon nitride film 6 c, it has a high dielectric constant without raising the concentration of nitrogen near the interface with the substrate 1 to a higher level than required.
Thereby, the leakage current of the MISFET can be reduced without deteriorating the carrier mobility of the p channel MISFET (Qp). Also, the hot carrier resistance of the MISFET and the electron mobility of the n channel MISFET can be improved. Further, variations in the threshold voltage of the p channel MISFET (Qp) caused by the leakage of boron can be suppressed.
Since an oxynitridation treatment which requires a heat treatment at a high temperature is carried out only once, the excessive growth of the gate insulating film 70 is suppressed, thereby making it possible to obtain a gate insulating film 70 that is as thin as 5 nm or less.
While the present invention has been described with reference to various Embodiments, it is needless to say that the present invention is not limited to the above-described embodiments and that various changes and modifications may be made in the invention without departing from the spirit and scope thereof.
An effect obtained by a typical aspect of the invention disclosed in the present application is briefly described below.
When a gate insulating film made from silicon oxynitride is to be formed by introducing nitrogen into a silicon oxide film, by using both an oxynitridation treatment and a nitrogen plasma treatment, a gate insulating film having a high concentration of nitrogen can be formed without increasing the concentration of nitrogen near the interface between the substrate and the gate insulating film to a higher level than required.

Claims (19)

What is claimed is:
1. A method of manufacturing a semiconductor integrated circuit device, comprising the steps of:
(a) forming a silicon oxide gate insulating film on a main surface of a semiconductor substrate by heating the semiconductor substrate made from monocrystal silicon;
(b) introducing nitrogen into the gate insulating film by heating the semiconductor substrate in an atmosphere containing an NO gas or N2O gas;
(c) after step (b), introducing nitrogen into the gate insulating film by exposing the semiconductor substrate to a nitrogen plasma atmosphere; and
(d) forming MISFET gate electrodes over the main surface after the steps (b) and (c).
2. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the gate insulating film has a thickness of 5 nm or less.
3. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein concentration of nitrogen introduced near the interface between the semiconductor substrate and the gate insulating film is in the range of 1 to 10 atomic %.
4. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the nitrogen introduced into the gate insulating film has a first peak concentration near the interface between the semiconductor substrate and the gate insulating film and a second peak concentration near the surface of the gate insulating film.
5. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the second peak concentration is higher than the first peak concentration.
6. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the MISFET gate electrodes contain a silicon film doped with boron.
7. The method of manufacturing a semiconductor integrated circuit device according to claim 6, further comprising after the step (d):
(e) forming a first conductive film constituting one of the electrodes of a capacitor element over the MISFET and a first insulating film constituting the dielectric film of the capacitor element over the first conductive film; and
(f) heating the semiconductor substrate after the first conductive film is formed or after the first insulating film is formed.
8. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the step (c) is carried out while the semiconductor substrate is heated at 200 to 600° C.
9. A method of manufacturing a semiconductor integrated circuit device, comprising:
(a) forming a silicon oxide film on a main surface of a semiconductor substrate by heating the semiconductor substrate made from monocrystal silicon;
(b) introducing nitrogen into the silicon oxide film by heating the semiconductor substrate in an atmosphere containing an NO gas or N2O gas to form a silicon oxynitride film on the main surface of the semiconductor substrate;
(c) forming a silicon nitride film over the silicon oxynitride film by CVD to form a gate insulating film which is a laminate comprised of the silicon oxynitride film and the silicon nitride film; and
(d) forming MISFET gate electrodes over the gate insulating film, wherein concentration of nitrogen near the interface between the silicon oxynitride film and the substrate is 1 to 10 atomic %.
10. The method of manufacturing a semiconductor integrated circuit device according to claim 9, wherein the gate insulating film has a thickness of 5 nm or less.
11. The method of manufacturing a semiconductor integrated circuit device according to claim 9, wherein the MISFET gate electrodes contain a silicon film doped with boron.
12. The method of manufacturing a semiconductor integrated circuit device according to claim 9, wherein the concentration of nitrogen in the silicon oxynitride film is highest near the interface between the substrate and the silicon oxynitride film.
13. A method of manufacturing a semiconductor integrated circuit device, comprising the steps of:
(a) forming a silicon oxide film, for a gate insulating film, on a main surface of a semiconductor substrate by heating the semiconductor substrate made from monocrystal silicon;
(b) introducing nitrogen into the silicon oxide film by heating the semiconductor substrate in an atmosphere containing an NO gas or N2O gas;
(c) introducing nitrogen into the silicon oxide film by exposing the semiconductor substrate to a nitrogen plasma atmosphere; and
(d) forming MISFET gate electrodes over the main surface after the steps (b) and (c),
wherein the nitrogen introduced into the silicon oxide film has a first peak concentration near the interface between the semiconductor substrate and the gate insulating film and a second peak concentration near the surface of the gate insulating film.
14. A method of manufacturing a semiconductor integrated circuit device according to claim 13, wherein the gate insulating film has a thickness of 5 nm or less.
15. A method of manufacturing a semiconductor integrated circuit device according to claim 13, wherein concentration of nitrogen introduced near the interface between the semiconductor substrate and the gate insulating film is in the range of 1 to 10 atomic %.
16. A method of manufacturing a semiconductor integrated circuit device according to claim 15, wherein the second peak concentration is higher than the first peak concentration.
17. A method of manufacturing a semiconductor integrated circuit device according to claim 13, wherein the step (c) is carried out after the step (b).
18. A method of manufacturing a semiconductor integrated circuit device according to claim 13, wherein the gate electrodes contain a silicon film doped with boron.
19. A method of manufacturing a semiconductor integrated circuit device according to claim 13, wherein the second peak concentration is higher than the first peak concentration.
US10/465,642 2002-06-20 2003-06-20 Method of manufacturing a semiconductor integrated circuit device Expired - Lifetime US6794257B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/917,294 US7262101B2 (en) 2002-06-20 2004-08-13 Method of manufacturing a semiconductor integrated circuit device
US11/505,280 US20060275991A1 (en) 2002-06-20 2006-08-17 Method of manufacturing a semiconductor integrated circuit device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-179321 2002-06-20
JP2002179321A JP2004023008A (en) 2002-06-20 2002-06-20 Semiconductor integrated circuit device and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/917,294 Continuation US7262101B2 (en) 2002-06-20 2004-08-13 Method of manufacturing a semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
US20030235962A1 US20030235962A1 (en) 2003-12-25
US6794257B2 true US6794257B2 (en) 2004-09-21

Family

ID=29728222

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/465,642 Expired - Lifetime US6794257B2 (en) 2002-06-20 2003-06-20 Method of manufacturing a semiconductor integrated circuit device
US10/917,294 Expired - Fee Related US7262101B2 (en) 2002-06-20 2004-08-13 Method of manufacturing a semiconductor integrated circuit device
US11/505,280 Abandoned US20060275991A1 (en) 2002-06-20 2006-08-17 Method of manufacturing a semiconductor integrated circuit device

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/917,294 Expired - Fee Related US7262101B2 (en) 2002-06-20 2004-08-13 Method of manufacturing a semiconductor integrated circuit device
US11/505,280 Abandoned US20060275991A1 (en) 2002-06-20 2006-08-17 Method of manufacturing a semiconductor integrated circuit device

Country Status (4)

Country Link
US (3) US6794257B2 (en)
JP (1) JP2004023008A (en)
KR (1) KR20030097682A (en)
TW (1) TWI273709B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020018A1 (en) * 2002-06-20 2005-01-27 Dai Ishikawa Method of manufacturing a semiconductor integrated circuit device
US20060267074A1 (en) * 2003-04-08 2006-11-30 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor device and semiconductor device
US20120199850A1 (en) * 2010-01-19 2012-08-09 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method of manufacturing thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5121142B2 (en) * 2003-04-30 2013-01-16 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
WO2004097922A1 (en) * 2003-04-30 2004-11-11 Fujitsu Limited Production method for semiconductor device
US7514376B2 (en) 2003-04-30 2009-04-07 Fujitsu Microelectronics Limited Manufacture of semiconductor device having nitridized insulating film
JPWO2005004224A1 (en) * 2003-07-01 2007-09-20 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP2006024895A (en) * 2004-06-07 2006-01-26 Renesas Technology Corp Semiconductor device and manufacturing method of the same
KR100521452B1 (en) * 2004-07-28 2005-10-12 동부아남반도체 주식회사 Manufacturing method of oxynitride in semiconductor device
JP4264039B2 (en) * 2004-08-25 2009-05-13 パナソニック株式会社 Semiconductor device
US7667275B2 (en) * 2004-09-11 2010-02-23 Texas Instruments Incorporated Using oxynitride spacer to reduce parasitic capacitance in CMOS devices
JP4704101B2 (en) * 2005-05-06 2011-06-15 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
US20070010103A1 (en) * 2005-07-11 2007-01-11 Applied Materials, Inc. Nitric oxide reoxidation for improved gate leakage reduction of sion gate dielectrics
JP2009088440A (en) * 2007-10-03 2009-04-23 Oki Semiconductor Co Ltd Semiconductor device and its manufacturing method
JP2009164424A (en) 2008-01-08 2009-07-23 Toshiba Corp Semiconductor device and manufacturing method therefor
JP5348898B2 (en) * 2008-01-22 2013-11-20 株式会社東芝 Semiconductor device and manufacturing method thereof
JP2009071319A (en) * 2008-10-30 2009-04-02 Renesas Technology Corp Semiconductor integrated circuit device
US8673720B2 (en) * 2009-03-27 2014-03-18 National Semiconductor Corporation Structure and fabrication of field-effect transistor having nitrided gate dielectric layer with tailored vertical nitrogen concentration profile
US8377813B2 (en) * 2010-08-27 2013-02-19 Rexchip Electronics Corporation Split word line fabrication process
EP3809451A1 (en) * 2013-11-08 2021-04-21 Renesas Electronics Corporation Semiconductor device
CN110164850B (en) * 2018-02-15 2024-10-11 松下知识产权经营株式会社 Capacitive element and method for manufacturing capacitive element
CN114388529A (en) * 2020-01-14 2022-04-22 长江存储科技有限责任公司 Channel structure including tunneling layer with adjusted nitrogen weight percentage and method of forming the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167664A (en) 1994-06-03 1996-06-25 Advanced Micro Devices Inc Method for formation of oxide film,method for formation of improved oxide film,method for formation of high-quality oxide film and method for formation of tunnel and gate oxidefilm
JP2000357688A (en) 1999-06-16 2000-12-26 Toshiba Corp Method of forming thermal oxide film
JP2001332724A (en) 2000-05-25 2001-11-30 Fujitsu Ltd Insulated gate semiconductor device and its manufacturing method
US20020072177A1 (en) * 2000-10-19 2002-06-13 Grider Douglas T. Method for transistor gate dielectric layer with uniform nitrogen concentration
US20020111000A1 (en) * 1999-03-10 2002-08-15 Satoru Kawakami Semiconductor manufacturing apparatus
US6649538B1 (en) * 2002-10-09 2003-11-18 Taiwan Semiconductor Manufacturing Co. Ltd. Method for plasma treating and plasma nitriding gate oxides

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3222404B2 (en) * 1997-06-20 2001-10-29 科学技術振興事業団 Method and apparatus for forming insulating film on semiconductor substrate surface
US6773999B2 (en) * 2001-07-18 2004-08-10 Matsushita Electric Industrial Co., Ltd. Method for treating thick and thin gate insulating film with nitrogen plasma
US20030141560A1 (en) * 2002-01-25 2003-07-31 Shi-Chung Sun Incorporating TCS-SiN barrier layer in dual gate CMOS devices
US20030211672A1 (en) * 2002-05-10 2003-11-13 June-Min Yao Method of improving quality of interface between gate and gate oxide
JP2004023008A (en) * 2002-06-20 2004-01-22 Renesas Technology Corp Semiconductor integrated circuit device and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167664A (en) 1994-06-03 1996-06-25 Advanced Micro Devices Inc Method for formation of oxide film,method for formation of improved oxide film,method for formation of high-quality oxide film and method for formation of tunnel and gate oxidefilm
US5591681A (en) 1994-06-03 1997-01-07 Advanced Micro Devices, Inc. Method for achieving a highly reliable oxide film
US20020111000A1 (en) * 1999-03-10 2002-08-15 Satoru Kawakami Semiconductor manufacturing apparatus
JP2000357688A (en) 1999-06-16 2000-12-26 Toshiba Corp Method of forming thermal oxide film
JP2001332724A (en) 2000-05-25 2001-11-30 Fujitsu Ltd Insulated gate semiconductor device and its manufacturing method
US20020072177A1 (en) * 2000-10-19 2002-06-13 Grider Douglas T. Method for transistor gate dielectric layer with uniform nitrogen concentration
US6649538B1 (en) * 2002-10-09 2003-11-18 Taiwan Semiconductor Manufacturing Co. Ltd. Method for plasma treating and plasma nitriding gate oxides

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020018A1 (en) * 2002-06-20 2005-01-27 Dai Ishikawa Method of manufacturing a semiconductor integrated circuit device
US20060275991A1 (en) * 2002-06-20 2006-12-07 Dai Ishikawa Method of manufacturing a semiconductor integrated circuit device
US7262101B2 (en) * 2002-06-20 2007-08-28 Renesas Technology Corp. Method of manufacturing a semiconductor integrated circuit device
US20060267074A1 (en) * 2003-04-08 2006-11-30 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor device and semiconductor device
US20120199850A1 (en) * 2010-01-19 2012-08-09 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method of manufacturing thereof
US8872188B2 (en) * 2010-01-19 2014-10-28 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method of manufacturing thereof

Also Published As

Publication number Publication date
US20060275991A1 (en) 2006-12-07
US20030235962A1 (en) 2003-12-25
TWI273709B (en) 2007-02-11
US7262101B2 (en) 2007-08-28
TW200403854A (en) 2004-03-01
US20050020018A1 (en) 2005-01-27
JP2004023008A (en) 2004-01-22
KR20030097682A (en) 2003-12-31

Similar Documents

Publication Publication Date Title
US20060275991A1 (en) Method of manufacturing a semiconductor integrated circuit device
JP3523093B2 (en) Semiconductor device and manufacturing method thereof
US6656789B2 (en) Capacitor for highly-integrated semiconductor memory devices and a method for manufacturing the same
TW451460B (en) Semiconductor integrated circuit device and method for making the same
US5518946A (en) Process for fabricating capacitors in dynamic RAM
TW495967B (en) Semiconductor integrated circuit device and the manufacturing method thereof
US5429979A (en) Method of forming a dram cell having a ring-type stacked capacitor
JPH07240390A (en) Manufacture of semiconductor device
JP2002124649A (en) Semiconductor integrated circuit device and the manufacturing method therefor
KR100295382B1 (en) Semiconductor memory device and fabrication method thereof
JP2633584B2 (en) Semiconductor device and manufacturing method thereof
JP3646013B2 (en) Method for manufacturing DRAM capacitor
US6436757B1 (en) Method for fabricating a capacitor having a tantalum oxide dielectrics in a semiconductor device
JP4190791B2 (en) Manufacturing method of semiconductor integrated circuit device
JPH1022467A (en) Semiconductor device and manufacture thereof
JP3152215B2 (en) Method for manufacturing semiconductor device
JPH08316474A (en) Manufacture of semiconductor device
JP2001053250A (en) Semiconductor device and its manufacture
US6306666B1 (en) Method for fabricating ferroelectric memory device
US7298002B2 (en) Hemispherical silicon grain capacitor with variable grain size
JP2001024169A (en) Semiconductor device and its manufacture
US6323098B1 (en) Manufacturing method of a semiconductor device
US6313034B1 (en) Method for forming integrated circuit device structures from semiconductor substrate oxidation mask layers
JP2009071319A (en) Semiconductor integrated circuit device
US20020119617A1 (en) Process for fabricating capacitor having dielectric layer with pervskite structure and apparatus for fabricating the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISHIKAWA, DAI;SAKAI, SATOSHI;HIRAIWA, ATSUSHI;REEL/FRAME:014203/0354

Effective date: 20030401

AS Assignment

Owner name: RENESAS TECHNOLOGY CORP., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HITACHI, LTD.;REEL/FRAME:015261/0938

Effective date: 20040331

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: RENESAS ELECTRONICS CORPORATION, JAPAN

Free format text: MERGER;ASSIGNOR:RENESAS TECHNOLOGY CORP.;REEL/FRAME:025204/0512

Effective date: 20100401

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: RENESAS ELECTRONICS CORPORATION, JAPAN

Free format text: CHANGE OF ADDRESS;ASSIGNOR:RENESAS ELECTRONICS CORPORATION;REEL/FRAME:044928/0001

Effective date: 20150806