US6626922B1 - Surgical instruments with improved traction - Google Patents

Surgical instruments with improved traction Download PDF

Info

Publication number
US6626922B1
US6626922B1 US09/355,679 US35567999A US6626922B1 US 6626922 B1 US6626922 B1 US 6626922B1 US 35567999 A US35567999 A US 35567999A US 6626922 B1 US6626922 B1 US 6626922B1
Authority
US
United States
Prior art keywords
tissue
bristles
pad
surgical instrument
traction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/355,679
Inventor
Charles C. Hart
Donald L. Gadberry
Eduardo Chi-Sing
Mark P. Ashby
Luis Urquidi
Robert T. Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Medical Resources Corp
Original Assignee
Applied Medical Resources Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Medical Resources Corp filed Critical Applied Medical Resources Corp
Priority to US09/355,679 priority Critical patent/US6626922B1/en
Assigned to APPLIED MEDICAL RESOURCES CORPORATION reassignment APPLIED MEDICAL RESOURCES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASHBY, MARK P., CHI-SING, EDUARDO, GADBERRY, DONALD L., HART, CHARLES C., JONES, ROBERT, URQUIDI, LUIS
Assigned to APPLIED MEDICAL RESOURCES CORPORATION reassignment APPLIED MEDICAL RESOURCES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASHBY, MARK P, CHI-SING, EDUARDO, GADBERRY, DONALD L, HART , CHARLES C., JONES, ROBERT, URQUIDI, LUIS
Priority to US10/438,016 priority patent/US20030236537A1/en
Application granted granted Critical
Publication of US6626922B1 publication Critical patent/US6626922B1/en
Priority to US10/664,698 priority patent/US20050192605A1/en
Assigned to CITIBANK, N.A. reassignment CITIBANK, N.A. SECURITY AGREEMENT Assignors: APPLIED MEDICAL RESOURCES CORPORATION
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: APPLIED MEDICAL RESOURCES CORPORATION
Anticipated expiration legal-status Critical
Assigned to APPLIED MEDICAL RESOURCES CORPORATION reassignment APPLIED MEDICAL RESOURCES CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A.
Assigned to APPLIED MEDICAL RESOURCES CORPORATION reassignment APPLIED MEDICAL RESOURCES CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK N.A., AS ADMINISTRATIVE AGENT
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/122Clamps or clips, e.g. for the umbilical cord
    • A61B17/1227Spring clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/122Clamps or clips, e.g. for the umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00858Material properties high friction or non-slip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00862Material properties elastic or resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B2017/0237Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for heart surgery
    • A61B2017/0243Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for heart surgery for immobilizing local areas of the heart, e.g. while it beats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/2812Surgical forceps with a single pivotal connection
    • A61B17/282Jaws
    • A61B2017/2825Inserts of different material in jaws

Definitions

  • This invention relates generally to surgical instruments, and more specifically to surgical instruments which contact tissue and require traction with the tissue to inhibit migration of the instrument.
  • various structures are proposed for increasing the traction force without significantly changing the normal or occlusive force.
  • the traction force will be greater than the occlusive force, a condition that will be particularly appreciated for some instruments.
  • the surfaces providing increased traction will be advantageous in clips and clamps where there are opposing jaws which develop the normal force. Whether the improved traction is provided along one or both of the jaws can be a matter of choice.
  • the structures providing increased traction will also be applicable to spreaders where traction is appreciated on outwardly facing surfaces of opposing jaw members.
  • Increased traction can be provided in the form of inserts for the jaws of clips, clamps, and retractors, or may take the form of webs providing a significant area of contact for the stabilization of organs. In the latter device, the normal force would be developed not between opposing jaws but relative to some other stationary stricture. For example, a stabilizer might be clamped to the sternum of the patient, or some other skeletal element, in order to provide a traction force against a beating heart in a bypass surgery.
  • FIG. 1 is a side elevation view of a vascular clip of the prior art
  • FIG. 2 is a perspective view, partially in cross section of a clip jaw and associated pad having of the present invention, having a tissue contacting service with granules
  • FIG. 3 is a perspective view similar to FIG. 2, including a pad and a mesh;
  • FIG. 4 is a perspective view partially in cross section and showing a pad with bristles providing improved traction
  • FIG. 5 is a cross-section view showing opposing pads and associated bristles engaging a vessel
  • FIG. 6 is a front elevation view showing a single bristle with a bulb or enlargement at its end;
  • FIG. 7 is a front elevation view of an embodiment wherein the bristles are slanted to oppose movement of the jaw along the vessel;
  • FIG. 8 is a front elevation view similar to FIG. 7 and illustrating intermingled bristles slanted in different directions;
  • FIG. 9 is a front elevation view partially in cross section and illustrating opposing jaws with pads having bristles in bunches
  • FIG. 10 is a perspective view of a further embodiment wherein the bristles are disposed in individual channels formed in a pad;
  • FIG. 11 is a side elevation view showing opposing jaws and the pad of FIG. 10 in a compression state
  • FIG. 12 is a front elevation view in cross section and showing a pad with a fiber surface
  • FIG. 13 is a perspective view of a jaw and pad having molded projections
  • FIG. 14 is a side elevation view of a pad with projections in a saw-tooth shape
  • FIG. 15 is a perspective view of a clip with opposing jaws and associated atraumatic pads of a hydrophilic material covered by a mesh;
  • FIG. 16 is a perspective view of a retractor having opposing jaws with improved traction
  • FIG. 17 is a perspective view of a spreader having jaws with improved traction
  • FIG. 18 is a perspective view of a stabilizer including a web having improved traction.
  • a vascular clip is illustrated,in FIG. 1 and designated by the reference numeral 10 .
  • the clip 10 is merely representative of many surgical instruments that contact tissue, instruments which can benefit from increased traction with the tissue.
  • other instruments might include occlusion devices, such as clamps, as well as retractors, stabilizers, and spreaders. In each of these cases, it is desirable to maintain the instrument and the tissue in a generally fixed relationship without damaging the tissue. Thus, traction is of particular importance.
  • the clip 10 includes telescoping barrel portions 12 and 14 , each of which is associated with one of a pair of opposing jaws 16 and 18 . These jaws 16 , 18 are biased into a proximal relationship so that a vessel 20 disposed between the jaws 16 and 18 is occluded.
  • the jaws 16 and 18 have opposing surfaces 22 and 24 , respectively, which face each other. Since these surfaces 22 , 24 will typically be formed of a hard plastic material, it is common to cover the surfaces 22 and 24 with a soft, compliant material or pad 26 and 28 having a tissue-contacting surface 30 and 32 , respectively.
  • these pads 26 , 28 have reduced trauma to the vessel 20 but due to their smooth tissue-contacting surfaces 30 , 32 have commonly provided little traction to resist, migration of the clip 10 .
  • the present invention appreciates the need to reduce trauma to the vessel 20 , but also, importantly, to resist migration of the tissue-contacting instrument.
  • the concept is well-suited to instruments that have opposing jaws such as clips, clamps, and retractors. In those instruments, the concept is advantageous whether the tissue-contacting surfaces face each other as is the case with clips, clamps, and retractors, or whether the tissue-contacting surfaces face away from each other as is the case with spreaders. the concept is also advantageous whether or only one of the opposing surfaces provides the increased traction. In some instruments, such as stabilizers, a single web providing a wide area of contact can benefit from the improved traction.
  • FIG. 2 One embodiment of a tissue-contacting instrument with improved traction is illustrated in FIG. 2 where the jaw 18 is provided with the pad 28 having the tissue-contacting surface 32 .
  • a multiplicity of granules 34 are disposed on the surface 32 in order to provide an irregular surface with increased traction.
  • These granules 34 may be formed of sand or silica, or any other material providing an abrasive surface.
  • These granules 34 are disposed to extend at least partially above the surface 32 in order to increase the coefficient of friction between the pad 28 and the tissue. It is believed that these granules 34 provide a mechanical interlock with the tissue thereby increasing the traction force and decreasing the possibility of migration.
  • the granules 34 will typically be formed of a relatively hard material, such as plastic or metal, and can be either applied by adhesive or otherwise molded into the surface 32 .
  • the granules 34 could similarly be applied directly to the jaw surface 24 in the absence of the pad 28 .
  • the irregular surface formed by the granules 34 provides a traction force which inhibits slippage of the clamping device, such as the clip 10 , relative to the tissue, such as the vessel 20 .
  • the granules 34 may be provided with a coating which is hydrophilic.
  • An anticoagulant, such as Heparin, may also be used as a coating.
  • a mesh 36 is disposed over the tissue-contacting surface 32 .
  • the soft pad 28 forms a base for the mesh 36 .
  • the filaments forming the mesh 36 provide the tissue-contacting surface 32 with a rough, irregular configuration which varies with the thickness of the filaments.
  • the surface 32 has a thickness of zero.
  • the mesh has the thickness of a single filament.
  • the mesh 36 provides a thickness equivalent to twice the filament diameter.
  • the mesh 36 can be formed of plastic or metal, and the mesh pattern can have any number of elements per square inch.
  • the filaments forming the mesh pattern can be disposed at a right angle to each other, or at any other angles as desired.
  • the mesh 36 will be attached to the pad 28 by an adhesive or by way of mechanical attachment such as an overmold procedure.
  • the mesh 36 could be similarly attached directly to the jaw 18 and coated in the manner previously discussed.
  • bristles 38 on or in the pad 28 can also improve traction as illustrated in the embodiments of FIGS. 4 and 5.
  • the bristles 38 are molded directly into the plastic jaw 18 .
  • the bristles 38 can be individually molded into the jaw 18 or clumped together in groups of bristles 38 in the manner commonly associated with a toothbrush.
  • the bristles can be upstanding in the manner best illustrated in FIG. 5 .
  • the bristles 38 contact tissue such as the vessel 20 , they tend to axially crumple to develop an occlusive force. Laterally of the vessel 20 , the bristles 38 resist slippage or movement of the vessel 20 relative to the instrument.
  • the bristles 38 can be molded into the atraumatic pads 26 and 28 .
  • the bristles 38 will commonly be formed from polyethylene or nylon. They may also be provided with bulbs or enlargements 40 on their ends as illustrated in FIG. 6 . This configuration will further reduce trauma to the tissue or vessel 20 .
  • the bristles 38 can be coated in the manner previously discussed.
  • FIG. 7 illustrates an embodiment where the bristles 38 are slanted to oppose movement of the jaw 18 along the axis of the conduit of vessel 20 .
  • the bristles 38 include a group 42 which is slanted to the right in FIG. 7 to oppose movement of the vessel 20 to the left.
  • a group 43 of the bristles 38 are slanted to the left to oppose movement of the vessel 20 to the right.
  • the two groups 42 and 43 can be intermingled along the entire surface 32 of the pad 28 as illustrated in FIG. 8 .
  • multiple clumps of the bristles 38 can be provided on the jaws 16 , 18 with or without an opposing group of the bristles 38 .
  • FIGS. 10 and 11 illustrate a further embodiment where the bristles 38 are disposed in individual channels formed in the soft pad 28 .
  • Each of these channels is preferably provided with a diameter greater than that of the associated bristles 38 so that the clamping pressure initially compresses the foam pad 28 in order to contact the bristles 38 . Further compression of the pad 28 will tend to form a mechanical interlock between the bristles 38 and the vessel 20 , as shown in FIG. 11 .
  • the bristle embodiments can be formed by overmolding the bristles 38 with the pad material.
  • FIG. 12 illustrates a further embodiment where the pad 28 is covered with a non-woven, wool-like material 53 is forming multiple loops.
  • the loops can be continuous rather than discrete as is the case with the hook-and-loop configuration of the past.
  • the wool-like material 53 is preferably provided with a soft configuration in order to enable the fiber to contour around the tissue or vessel 20 .
  • the fibers of the wool must nevertheless be sufficiently rigid to resist movement relative to the tissue or vessel 20 .
  • the resulting fibrous material can be bonded to the jaw 18 or pad 28 .
  • the pad 28 can be insert molded against the fibrous surface of the wool-like material 53 .
  • the fibrous material 53 can be coated in the manner previously described.
  • the pads or inserts 26 , 28 can also be molded to form multiple projections 55 arranged in a waffle pattern, such as that illustrated in FIGS. 13 and 14.
  • projections 55 can be the same, similar, or widely different. Some projections will have a common, cross-sectional shape throughout their entire length. Other projections may extend to a point or reduced cross-sectional area as would be the case with a pyramid shape.
  • the cross-sectional shape can also vary widely.
  • the projections 55 may have a cross-section that is circular, polygonal, or any irregular shape.
  • the projections 55 can also be angled so that in a side view, such as that illustrated in FIG. 14, they have a saw-tooth shape. With this configuration, movement of tissue against the saw teeth would be opposed with a greater force than movement of tissue along the same teeth. In this manner, slippage can be inhibited by high traction in one direction and facilitated by low traction in the opposite direction.
  • the clip 10 is illustrated with its opposing jaws 16 , 18 and associated atraumatic pads 26 , 28 .
  • the pads 26 , 28 are formed of a hydrophilic material such as expanded polyethylene. This material directly contacts the moist tissue, such as the vessel 20 , and withdraws moisture from the tissue, leaving a dryer surface and a resulting higher coefficient of friction between the tissue or vessel 20 and the pads 26 , 28 . With a higher coefficient of friction, slippage of the clip 10 on the vessel 20 is substantially inhibited without an increase in the occlusive force applied by the jaws 16 , 18 .
  • These hydrophilic properties can also be achieved by coating the pads 26 , 28 with a hydrophilic material.
  • the retractor 57 of FIG. 16 includes opposing jaws 16 A and 16 B with jaw surfaces 22 A and 24 A which face each other. These surfaces 22 A, 24 A can be provided with pads 26 A, 28 A, or otherwise coated or structured in accordance with any of the foregoing embodiments.
  • the spreader 59 also includes opposing jaws 16 B and 18 B.
  • the jaw surfaces face outwardly rather than toward each other.
  • the traction-increasing structures such as pads 26 B and 28 B, face outwardly of the respective jaws 16 B and 18 B.
  • a stabilizer is illustrated in FIG. 18 and designated by the reference numeral 61 .
  • This stabilizer 61 includes a web 63 which is stretched between opposing areas of a plastic support 64 .
  • the web 63 can be formed from any of the high-traction materials previously discussed. In operation, this web 63 is held against an organ, such as a beating heart 65 , in order to stabilize or otherwise hold the organ in a generally fixed location during surgery.
  • the surgical instrument such as the clip 10
  • the surgical instrument is provided with a structure which increases the coefficient of friction with the tissue, or otherwise develops a mechanical interlock with the tissue so that slippage of the instrument is inhibited.
  • the structure can be coated with a thrombogenic, hydrophilic, or similar materials in order to facilitate the objectives of the instrument.
  • the traction structure is provided on one or both of an opposing pair of jaws, as in the case of the clip 10 , or formed as a single element as in the case of the stabilizer 61 , it will increase traction between the instrument and the tissue in order to inhibit relative movement therebetween.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Reproductive Health (AREA)
  • Vascular Medicine (AREA)
  • Surgical Instruments (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A surgical instrument is adapted to contact tissue of a patient and to provide traction with the tissue in order to inhibit migration of the instrument relative to the tissue. The instrument may include a pair of opposing jaws with at least one of the jaws comprising a substrate having a particular surface facing the tissue, and a plurality of discrete elements disposed on the particular surface for increasing the traction of the instrument relative to the tissue. These discrete elements may include a multiplicity of granules, bristles, or projections and may be formed of materials having various properties such as hydrophilic characteristics. The discrete elements in the form of bristles can be oriented too so that the column strength of each bristle provides increased traction in a predetermined direction.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This is a Non-Provisional Application claiming the priority of Provisional Application Ser. No. 60/037,077 filed on Feb. 3, 1997, and entitled SURGICAL INSTRUMENTS WITH IMPROVED TRACTION.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to surgical instruments, and more specifically to surgical instruments which contact tissue and require traction with the tissue to inhibit migration of the instrument.
2. Discussion of the Prior Art
Most surgical instruments are intended to contact tissue, but for some instruments the traction developed between the instrument and the tissue is of particular importance. Instruments such as clips, clamps, retractors, stabilizers, and spreaders, for example, are intended to contact tissue and perform some mechanical function on the tissue. In these cases, the ability of the instrument to grip the tissue contacted is of concern. For example, when a clip is applied to a blood vessel with the intent of occluding that vessel, the occlusion is intended to occur at a predetermined location along the vessel. Although little force may be required to pinch and occlude the vessel, there may be a tendency for the clip to slide either axially or laterally along the vessel. Often this results from the back pressure of the blood in the vessel. If the clip slides radially of the vessel, it may fall off the vessel, leading to unintended blood flow. If the clip slides axially along the vessel, it will leave the predetermined location where the occlusion was intended.
The sliding of instruments relative to tissue is complicated by the fact that the tissue is typically covered with a body fluid, such as blood. As a consequence, the coefficient of friction between the tissue and the instrument tends to be relatively low.
In the past, clips and clamps have been provided with soft jaw inserts in order to reduce trauma to the conduit being occluded. For the most part, these inserts have been formed of a compliant material such as foam, and provided with a generally flat surface. The traction tending to hold the clip or clamp in place has been dictated by the well known formula for friction: F=μN, where F is the friction force resisting lateral movement, N is the normal force applied perpendicular to friction force, and μ is the coefficient of friction between the two surfaces.
In accordance with this formula, attempts have been made to increase the factor μ by providing inserts which have higher coefficients of friction with tissue. In spite of these efforts, traction has still been a problem since these coefficients cannot be increased significantly without damaging the vessel or other conduit being occluded.
Individual fibers in the form of loops have been applied to the inserts to improve traction. The traction in this case has relied, at least in part, on a mechanical interlock with the surface of the tissue, or other cohesive/adhesive phenomena.
As a practical consequence of this concern for traction, clamps have been applied to conduits such as vessels, and closed with a force sufficient to occlude the vessel. Where slippage has occurred, the tendency has been to increase the clamping force. With reference to the foregoing formula for friction, this increases the normal force N thereby increasing the friction or traction force F. Unfortunately, increases in the normal force N are not required for occlusion, which is the primary purpose of the clamp. Furthermore, high normal forces can create damage to a vessel, particularly the fragile endothelial lining of the vessel. What has been required for these surgical instruments is a structure which can provide a significant traction force without damage to the conduit or vessel.
SUMMARY OF THE INVENTION
In accordance with-the present invention, various structures are proposed for increasing the traction force without significantly changing the normal or occlusive force. In some cases, the traction force will be greater than the occlusive force, a condition that will be particularly appreciated for some instruments.
The surfaces providing increased traction will be advantageous in clips and clamps where there are opposing jaws which develop the normal force. Whether the improved traction is provided along one or both of the jaws can be a matter of choice.
The structures providing increased traction will also be applicable to spreaders where traction is appreciated on outwardly facing surfaces of opposing jaw members. Increased traction can be provided in the form of inserts for the jaws of clips, clamps, and retractors, or may take the form of webs providing a significant area of contact for the stabilization of organs. In the latter device, the normal force would be developed not between opposing jaws but relative to some other stationary stricture. For example, a stabilizer might be clamped to the sternum of the patient, or some other skeletal element, in order to provide a traction force against a beating heart in a bypass surgery.
DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side elevation view of a vascular clip of the prior art;
FIG. 2 is a perspective view, partially in cross section of a clip jaw and associated pad having of the present invention, having a tissue contacting service with granules
FIG. 3 is a perspective view similar to FIG. 2, including a pad and a mesh;
FIG. 4 is a perspective view partially in cross section and showing a pad with bristles providing improved traction;
FIG. 5 is a cross-section view showing opposing pads and associated bristles engaging a vessel;
FIG. 6 is a front elevation view showing a single bristle with a bulb or enlargement at its end;
FIG. 7 is a front elevation view of an embodiment wherein the bristles are slanted to oppose movement of the jaw along the vessel;
FIG. 8 is a front elevation view similar to FIG. 7 and illustrating intermingled bristles slanted in different directions;
FIG. 9 is a front elevation view partially in cross section and illustrating opposing jaws with pads having bristles in bunches;
FIG. 10 is a perspective view of a further embodiment wherein the bristles are disposed in individual channels formed in a pad;
FIG. 11 is a side elevation view showing opposing jaws and the pad of FIG. 10 in a compression state;
FIG. 12 is a front elevation view in cross section and showing a pad with a fiber surface;
FIG. 13 is a perspective view of a jaw and pad having molded projections;
FIG. 14 is a side elevation view of a pad with projections in a saw-tooth shape;
FIG. 15 is a perspective view of a clip with opposing jaws and associated atraumatic pads of a hydrophilic material covered by a mesh;
FIG. 16 is a perspective view of a retractor having opposing jaws with improved traction;
FIG. 17 is a perspective view of a spreader having jaws with improved traction;
FIG. 18 is a perspective view of a stabilizer including a web having improved traction.
DESCRIPTION OF PREFERRED EMBODIMENTS
A vascular clip is illustrated,in FIG. 1 and designated by the reference numeral 10. The clip 10 is merely representative of many surgical instruments that contact tissue, instruments which can benefit from increased traction with the tissue. In addition to the clip 10, other instruments might include occlusion devices, such as clamps, as well as retractors, stabilizers, and spreaders. In each of these cases, it is desirable to maintain the instrument and the tissue in a generally fixed relationship without damaging the tissue. Thus, traction is of particular importance.
The clip 10 includes telescoping barrel portions 12 and 14, each of which is associated with one of a pair of opposing jaws 16 and 18. These jaws 16, 18 are biased into a proximal relationship so that a vessel 20 disposed between the jaws 16 and 18 is occluded. In the case of the clip 10, the jaws 16 and 18 have opposing surfaces 22 and 24, respectively, which face each other. Since these surfaces 22, 24 will typically be formed of a hard plastic material, it is common to cover the surfaces 22 and 24 with a soft, compliant material or pad 26 and 28 having a tissue-contacting surface 30 and 32, respectively.
In the past, these pads 26, 28 have reduced trauma to the vessel 20 but due to their smooth tissue-contacting surfaces 30, 32 have commonly provided little traction to resist, migration of the clip 10. The present invention appreciates the need to reduce trauma to the vessel 20, but also, importantly, to resist migration of the tissue-contacting instrument. The concept is well-suited to instruments that have opposing jaws such as clips, clamps, and retractors. In those instruments, the concept is advantageous whether the tissue-contacting surfaces face each other as is the case with clips, clamps, and retractors, or whether the tissue-contacting surfaces face away from each other as is the case with spreaders. the concept is also advantageous whether or only one of the opposing surfaces provides the increased traction. In some instruments, such as stabilizers, a single web providing a wide area of contact can benefit from the improved traction.
One embodiment of a tissue-contacting instrument with improved traction is illustrated in FIG. 2 where the jaw 18 is provided with the pad 28 having the tissue-contacting surface 32. In this embodiment, a multiplicity of granules 34 are disposed on the surface 32 in order to provide an irregular surface with increased traction. These granules 34 may be formed of sand or silica, or any other material providing an abrasive surface. These granules 34 are disposed to extend at least partially above the surface 32 in order to increase the coefficient of friction between the pad 28 and the tissue. It is believed that these granules 34 provide a mechanical interlock with the tissue thereby increasing the traction force and decreasing the possibility of migration.
The granules 34 will typically be formed of a relatively hard material, such as plastic or metal, and can be either applied by adhesive or otherwise molded into the surface 32. The granules 34 could similarly be applied directly to the jaw surface 24 in the absence of the pad 28. Thus, the irregular surface formed by the granules 34 provides a traction force which inhibits slippage of the clamping device, such as the clip 10, relative to the tissue, such as the vessel 20. The granules 34 may be provided with a coating which is hydrophilic. An anticoagulant, such as Heparin, may also be used as a coating.
In the embodiment of FIG. 3, a mesh 36 is disposed over the tissue-contacting surface 32. In this case, the soft pad 28 forms a base for the mesh 36. The filaments forming the mesh 36 provide the tissue-contacting surface 32 with a rough, irregular configuration which varies with the thickness of the filaments. In the interstices of the mesh 36 where there are no filaments, the surface 32 has a thickness of zero. Where one filament overlies the surface, the mesh has the thickness of a single filament. And where the filaments overlap, the mesh 36 provides a thickness equivalent to twice the filament diameter. These variations in thickness enable the mesh 36 to grip the tissue, such as the vessel 20, to increase the traction force opposing slippage of the instrument. The mesh 36 can be formed of plastic or metal, and the mesh pattern can have any number of elements per square inch. The filaments forming the mesh pattern can be disposed at a right angle to each other, or at any other angles as desired. Typically, the mesh 36 will be attached to the pad 28 by an adhesive or by way of mechanical attachment such as an overmold procedure. The mesh 36 could be similarly attached directly to the jaw 18 and coated in the manner previously discussed.
The provision of bristles 38 on or in the pad 28 can also improve traction as illustrated in the embodiments of FIGS. 4 and 5. In the embodiment of FIG. 4, the bristles 38 are molded directly into the plastic jaw 18. In this molding process, the bristles 38 can be individually molded into the jaw 18 or clumped together in groups of bristles 38 in the manner commonly associated with a toothbrush. The bristles can be upstanding in the manner best illustrated in FIG. 5. Where the bristles 38 contact tissue such as the vessel 20, they tend to axially crumple to develop an occlusive force. Laterally of the vessel 20, the bristles 38 resist slippage or movement of the vessel 20 relative to the instrument. FIG. 5 also illustrates that the bristles 38 can be molded into the atraumatic pads 26 and 28. The bristles 38 will commonly be formed from polyethylene or nylon. They may also be provided with bulbs or enlargements 40 on their ends as illustrated in FIG. 6. This configuration will further reduce trauma to the tissue or vessel 20. The bristles 38 can be coated in the manner previously discussed.
FIG. 7 illustrates an embodiment where the bristles 38 are slanted to oppose movement of the jaw 18 along the axis of the conduit of vessel 20. Thus, the bristles 38 include a group 42 which is slanted to the right in FIG. 7 to oppose movement of the vessel 20 to the left. Similarly, a group 43 of the bristles 38 are slanted to the left to oppose movement of the vessel 20 to the right. Alternatively, the two groups 42 and 43 can be intermingled along the entire surface 32 of the pad 28 as illustrated in FIG. 8.
In the embodiment of FIG. 9, multiple clumps of the bristles 38, designated by reference numerals 45, 47, and 49, can be provided on the jaws 16, 18 with or without an opposing group of the bristles 38.
FIGS. 10 and 11 illustrate a further embodiment where the bristles 38 are disposed in individual channels formed in the soft pad 28. Each of these channels is preferably provided with a diameter greater than that of the associated bristles 38 so that the clamping pressure initially compresses the foam pad 28 in order to contact the bristles 38. Further compression of the pad 28 will tend to form a mechanical interlock between the bristles 38 and the vessel 20, as shown in FIG. 11. As was the case with the mesh embodiments, the bristle embodiments can be formed by overmolding the bristles 38 with the pad material.
FIG. 12 illustrates a further embodiment where the pad 28 is covered with a non-woven, wool-like material 53 is forming multiple loops. The loops can be continuous rather than discrete as is the case with the hook-and-loop configuration of the past. In such an embodiment, the wool-like material 53 is preferably provided with a soft configuration in order to enable the fiber to contour around the tissue or vessel 20. The fibers of the wool must nevertheless be sufficiently rigid to resist movement relative to the tissue or vessel 20. The resulting fibrous material can be bonded to the jaw 18 or pad 28. Alternatively, the pad 28 can be insert molded against the fibrous surface of the wool-like material 53. The fibrous material 53 can be coated in the manner previously described.
The pads or inserts 26, 28 can also be molded to form multiple projections 55 arranged in a waffle pattern, such as that illustrated in FIGS. 13 and 14. Within the pattern, projections 55 can be the same, similar, or widely different. Some projections will have a common, cross-sectional shape throughout their entire length. Other projections may extend to a point or reduced cross-sectional area as would be the case with a pyramid shape. The cross-sectional shape can also vary widely. For example, the projections 55 may have a cross-section that is circular, polygonal, or any irregular shape.
The projections 55 can also be angled so that in a side view, such as that illustrated in FIG. 14, they have a saw-tooth shape. With this configuration, movement of tissue against the saw teeth would be opposed with a greater force than movement of tissue along the same teeth. In this manner, slippage can be inhibited by high traction in one direction and facilitated by low traction in the opposite direction.
In FIG. 15, the clip 10 is illustrated with its opposing jaws 16, 18 and associated atraumatic pads 26, 28. In this case, the pads 26, 28 are formed of a hydrophilic material such as expanded polyethylene. This material directly contacts the moist tissue, such as the vessel 20, and withdraws moisture from the tissue, leaving a dryer surface and a resulting higher coefficient of friction between the tissue or vessel 20 and the pads 26, 28. With a higher coefficient of friction, slippage of the clip 10 on the vessel 20 is substantially inhibited without an increase in the occlusive force applied by the jaws 16, 18. These hydrophilic properties can also be achieved by coating the pads 26, 28 with a hydrophilic material.
Although the foregoing embodiments providing increased traction have been disclosed primarily with respect to clips and clamps, it will be apparent that many other embodiments of the invention can be equally advantageous as in the case of a retractor 57, illustrated in FIG. 16, and a spreader 59 illustrated in FIG. 17. As was the case with the occlusion instruments, such as the clip 10, the retractor 57 of FIG. 16 includes opposing jaws 16A and 16B with jaw surfaces 22A and 24A which face each other. These surfaces 22A, 24A can be provided with pads 26A, 28A, or otherwise coated or structured in accordance with any of the foregoing embodiments.
Referring now to FIG. 17, it will be noted that the spreader 59 also includes opposing jaws 16B and 18B. However, in this embodiment, the jaw surfaces face outwardly rather than toward each other. Thus, in the case of the spreader 59, the traction-increasing structures, such as pads 26B and 28B, face outwardly of the respective jaws 16B and 18B.
A stabilizer is illustrated in FIG. 18 and designated by the reference numeral 61. This stabilizer 61 includes a web 63 which is stretched between opposing areas of a plastic support 64. The web 63 can be formed from any of the high-traction materials previously discussed. In operation, this web 63 is held against an organ, such as a beating heart 65, in order to stabilize or otherwise hold the organ in a generally fixed location during surgery.
In all of the foregoing embodiments, the surgical instrument, such as the clip 10, is provided with a structure which increases the coefficient of friction with the tissue, or otherwise develops a mechanical interlock with the tissue so that slippage of the instrument is inhibited. In all cases, the structure can be coated with a thrombogenic, hydrophilic, or similar materials in order to facilitate the objectives of the instrument. Whether the traction structure is provided on one or both of an opposing pair of jaws, as in the case of the clip 10, or formed as a single element as in the case of the stabilizer 61, it will increase traction between the instrument and the tissue in order to inhibit relative movement therebetween.
It will be understood that many other modifications can be made to the various disclosed embodiments without departing from the spirit and scope of the concept. For example, various sizes of the surgical device are contemplated as well as various types of constructions and materials. It will also be apparent that many modifications can be made to the configuration of parts as well as their interaction. For these reasons, the above description should not be construed as limiting the invention, but should be interpreted as merely exemplary of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present invention as defined by the following claims.

Claims (21)

What is claimed is:
1. A surgical instrument adapted to contact tissue of a patient and to provide traction with the tissue so as to inhibit migration of the instrument relative to the tissue, the surgical instrument comprising:
a substrate formed of a resilient material and having a particular surface adapted to face the tissue of the patient;
a multiplicity of bristles having a column strength and extending outwardly of the particular surface in a slanted relationship with the particular surface, the bristles being adapted for disposition relative to the tissue in a contacting relationship with the tissue; and
each of the bristles having a generally straight configuration so that the force of the bristles on the tissue is enhanced by the column strength of the bristles thereby providing increased traction between the instrument and the tissue.
2. A surgical instrument adapted to contact tissue of a patient and to provide traction with the tissue so as to inhibit migration of the instrument relative to the tissue, the surgical instrument comprising:
a substrate formed of a resilient material and having a particular surface adapted to face the tissue of the patient;
a multiplicity of bristles extending outwardly of the particular surface, each of the bristles having a column strength, the bristles being adapted for disposition relative to the tissue in a contacting relationship with the tissue;
each of the bristles having a generally straight configuration so that the force of the bristles on the tissue is enhanced by the column strength of the bristles thereby providing increased traction between the instrument and the tissue;
a first group of the bristles disposed at a first angle to the particular surface of the substrate;
a second group of the bristles disposed at a second angle to the particular surface of the substrate; and
the first angle being different than the second angle.
3. The surgical instrument recited in claim 2 wherein the first group of the bristles is spaced from the second group of the bristles.
4. The surgical instrument recited in claim 3 wherein the first group of the bristles is intermingled with the second group of the bristles.
5. A surgical instrument adapted to contact tissue of a patient and to provide traction with the tissue so as to inhibit migration of the instrument relative to the tissue, the surgical instrument comprising:
a substrate formed of a resilient material and having a particular surface adapted to face the tissue of the patient;
a multiplicity of bristles extending outwardly of the particular surface, each of the bristles having a column strength, the bristles being adapted for disposition relative to the tissue in a contacting relationship with the tissue;
each of the bristles having a generally straight configuration so that the force of the bristles on the tissue is enhanced by the column strength of the bristles thereby providing increased traction between the instrument and the tissue;
a first group of the bristles forming a first discrete patch of the bristles;
a second group of the bristles forming a second discrete patch of the bristles; and
the first patch of bristles being spaced from the second patch of bristles.
6. A surgical instrument adapted to contact tissue of a patient and to provide traction with the tissue so as to inhibit migration of the instrument relative to the tissue, the surgical instrument comprising:
a substrate formed of a resilient material and having a particular surface adapted to face the tissue of the patient;
a multiplicity of bristles extending outwardly of the particular surface, each of the bristles having a column strength, the bristles being adapted or dispositioned relative to the tissue in a contacting relationship with the tissue; and
each of the bristles being embedded in the substrate and having a generally straight configuration so that the force of the bristles on the tissue is enhanced by the column strength of the bristles thereby providing increased traction between the instrument and the tissue.
7. A surgical instrument adapted to contact tissue of a patient and to provide traction with the tissue so as to inhibit migration of the instrument relative to the tissue, the surgical instrument comprising:
a substrate formed of a resilient material and having a particular surface adapted to face the tissue of the patient;
a multiplicity of bristles extending outwardly of the particular surface, each of the bristles having a column strength, the bristles being adapted for disposition relative to the tissue in a contacting relationship with the tissue;
at least one of the bristles having a fixed end and a free end; and
a bulb formed on said free end.
8. A surgical instrument adapted to contact tissue of a patient and to provide traction with the tissue so as to inhibit migration of the instrument relative to the tissue, the surgical instrument comprising:
a support formed of a generally rigid material;
a pad disposed in fixed relationship with the support and having a particular surface facing away from the support, the particular surface having first traction characteristics with the tissue; and
a multiplicity of loops formed by a single fiber arranged in random configuration and disposed outwardly of the particular surface of the pad, the loops providing a tissue-contacting surface with an irregular configuration, the tissue-contacting surface being adapted to provide the pad with second traction characteristics with the tissue.
9. The surgical instrument recited in claim 8 wherein the loops are embedded in the pad.
10. A surgical instrument adapted to contact tissue of a patient and to provide traction with the tissue, the surgical instrument comprising:
a support having a length extending in a longitudinal direction, and a width extending in a lateral direction;
a pad formed of a resilient material and disposed in fixed relationship with the support, the pad having a particular surface facing away from the support, the particular surface having first traction characteristics with the tissue;
a multiplicity of discrete elements disposed to extend outwardly of the particular surface of the pad and to provide a tissue contacting surface; and
the discrete elements forming multiple projections each having an axis which extends generally along the length of the support without any component in the lateral direction, to provide the tissue-contacting surface with second traction characteristics greater than the first traction characteristics.
11. The surgical instrument recited in claim 10 wherein the length of the support extends between a proximal end and a distal end, and the projections extend distally along the length of the support.
12. A surgical instrument adapted to contact tissue of a patient and to provide traction with the tissue, the surgical instrument comprising:
a support structure;
a resilient pad having a fixed relationship with the support structure;
portions of the pad defining an outer surface of the pad, the outer surface being adapted to contact the tissue; and
at least the portions of the pad having hydrophilic characteristics for withdrawing moisture from the tissue to increase the traction between the instrument and the tissue, wherein the outer surface of the pad has an irregular configuration and the portions of the pad include a multiplicity of granules.
13. A surgical instrument adapted to contact tissue of a patient and to provide traction with the tissue, the surgical instrument comprising:
a support structure;
a resilient pad having a fixed relationship with the support structure;
portions of the pad defining an outer surface of the pad, the outer surface being adapted to contact the tissue; and
at least the portions of the pad having hydrophilic characteristics for withdrawing moisture from the tissue to increase the traction between the instrument and the tissue, wherein the portions of the pad form a multiplicity of discrete elements adapted to contact the tissue.
14. The surgical instrument recited in claim 13 wherein the discrete elements are integral with the pad.
15. The surgical instrument recited in claim 14, wherein:
the pad has a generally planar configuration; and
the discrete elements are disposed at an angle to the plane of the pad.
16. The surgical instrument recited in claim 13 wherein the discrete elements include a multiplicity of loops formed by a single, continuous fiber.
17. The surgical instrument recited in claim 13 wherein the discrete elements include at least one fiber having a generally straight configuration throughout its length and being adapted to extend into contact with the tissue.
18. A surgical instrument adapted to function as a retractor, comprising:
a pair of elongate jaws having inner surfaces which face toward each other and outer surfaces which face away from each other;
at least one pad disposed on an inner surface of one of the jaws and being formed of a first material having resilient characteristics; and
a tissue-contacting member formed of a second material having a tissue-contacting surface with an irregular configuration for enhancing the traction between the surgical instrument and the tissue, wherein the tissue contacting member includes a plurality of discrete elements, said pad having a generally planar configuration, and the discrete elements being disposed at an angle to the plane of the pad.
19. A surgical instrument adapted to function as a spreader, comprising:
a pair of elongate jaws having inner surfaces which face toward each other and outer surfaces which face away from each other;
at least one pad disposed on an outer surface of one of the jaws and being formed of a first material having resilient characteristics; and
a tissue-contacting member formed of a second material having a tissue-contacting surface with an irregular configuration for enhancing the traction between the surgical instrument and the tissue, wherein the tissue contacting member includes a plurality of discrete elements, said pad having a generally planar configuration, and the discrete elements being disposed at an angle to the plane of the pad.
20. A surgical instrument adapted to function as an organ stabilizer, comprising:
a pair of elongate jaws having inner surfaces which face toward each other and outer surfaces which face away from each other;
at least one pad formed of a first material having resilient characteristics and being disposed on one of the inner and outer surfaces of one of the jaws;
a tissue-contacting member formed of a second material having a tissue-contacting surface with an irregular configuration for enhancing the traction between the surgical instrument and the tissue; wherein
the pad is disposed to extend between the inner surfaces of the jaws to form a web.
21. A surgical instrument adapted to contact tissue of a patient and to provide atraumatic traction with the tissue, the surgical instrument comprising:
a support structure;
a pad disposed on the support structure and being formed of a first material having a first surface adapted to have a space relationship with the tissue;
a tissue-contacting member formed of a second material and having a second surface adapted to have a contacting relationship with the tissue;
said second surface including a plurality of fibers of generally straight configuration throughout their length adapted to contact said tissue to facilitate traction with the tissue; and
the first material of the pad having resilient characteristics to inhibit trauma to the tissue.
US09/355,679 1997-02-03 1998-02-03 Surgical instruments with improved traction Expired - Lifetime US6626922B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/355,679 US6626922B1 (en) 1997-02-03 1998-02-03 Surgical instruments with improved traction
US10/438,016 US20030236537A1 (en) 1999-08-09 2003-05-15 Surgical instruments with improved traction
US10/664,698 US20050192605A1 (en) 1997-02-03 2004-02-06 Surgical instruments with improved traction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US3707797P 1997-02-03 1997-02-03
US09/355,679 US6626922B1 (en) 1997-02-03 1998-02-03 Surgical instruments with improved traction
PCT/US1998/002276 WO1998033437A1 (en) 1997-02-03 1998-02-03 Surgical instruments with improved traction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/002276 A-371-Of-International WO1998033437A1 (en) 1997-02-03 1998-02-03 Surgical instruments with improved traction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/438,016 Continuation US20030236537A1 (en) 1997-02-03 2003-05-15 Surgical instruments with improved traction

Publications (1)

Publication Number Publication Date
US6626922B1 true US6626922B1 (en) 2003-09-30

Family

ID=21892325

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/355,679 Expired - Lifetime US6626922B1 (en) 1997-02-03 1998-02-03 Surgical instruments with improved traction

Country Status (6)

Country Link
US (1) US6626922B1 (en)
EP (1) EP1011462B1 (en)
JP (1) JP2001510366A (en)
CA (1) CA2279385C (en)
DE (1) DE69832497T2 (en)
WO (1) WO1998033437A1 (en)

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030130563A1 (en) * 1998-11-04 2003-07-10 Loy Randall A. Hysteroscope port and methods
US20040167552A1 (en) * 2000-08-24 2004-08-26 Novare Surgical Systems, Inc. Surgical clamp pads having surface overlay
US20080171988A1 (en) * 2007-01-17 2008-07-17 Erblan Surgical, Inc. Double-cone sphincter introducer assembly and integrated valve assembly
US20100194060A1 (en) * 2008-11-03 2010-08-05 Erblan Surgical, Inc. Universal closure and method of lubrication
US20100204716A1 (en) * 2004-06-18 2010-08-12 Stewart Mark T Methods and devices for occlusion of an atrial appendage
US20100243706A1 (en) * 2009-03-31 2010-09-30 Cohen Matthew D Surgical Stapling Apparatus With Clamping Assembly
USD625009S1 (en) 2006-03-24 2010-10-05 Tyco Healthcare Group Lp Surgical clip applier
US7819886B2 (en) 2004-10-08 2010-10-26 Tyco Healthcare Group Lp Endoscopic surgical clip applier
USD629101S1 (en) 2006-03-24 2010-12-14 Tyco Healthcare Group Lp Surgical clip applier
US7905890B2 (en) 2004-10-08 2011-03-15 Tyco Healthcare Group Lp Endoscopic surgical clip applier
US8056565B2 (en) 2008-08-25 2011-11-15 Tyco Healthcare Group Lp Surgical clip applier and method of assembly
US8128643B2 (en) 2006-10-17 2012-03-06 Tyco Healthcare Group Lp Apparatus for applying surgical clips
US8267944B2 (en) 2008-08-29 2012-09-18 Tyco Healthcare Group Lp Endoscopic surgical clip applier with lock out
US8382773B2 (en) 2007-03-26 2013-02-26 Covidien Lp Endoscopic surgical clip applier
US8403946B2 (en) 2010-07-28 2013-03-26 Covidien Lp Articulating clip applier cartridge
US8403945B2 (en) 2010-02-25 2013-03-26 Covidien Lp Articulating endoscopic surgical clip applier
US8409223B2 (en) 2008-08-29 2013-04-02 Covidien Lp Endoscopic surgical clip applier with clip retention
US8409222B2 (en) 2004-10-08 2013-04-02 Covidien Lp Endoscopic surgical clip applier
US8465502B2 (en) 2008-08-25 2013-06-18 Covidien Lp Surgical clip applier and method of assembly
US8506580B2 (en) 2007-04-11 2013-08-13 Covidien Lp Surgical clip applier
US8545486B2 (en) 2009-12-15 2013-10-01 Covidien Lp Surgical clip applier
US8585717B2 (en) 2008-08-29 2013-11-19 Covidien Lp Single stroke endoscopic surgical clip applier
US20140107698A1 (en) * 2012-10-04 2014-04-17 Children's Hospital Medical Center Gastric traction device and method
US8734469B2 (en) 2009-10-13 2014-05-27 Covidien Lp Suture clip applier
US20140171986A1 (en) * 2013-09-13 2014-06-19 Ethicon Endo-Surgery, Inc. Surgical Clip Having Comliant Portion
US20140309671A1 (en) * 2010-04-07 2014-10-16 Miriam Mackovic Basic Instrument for occlusion of uterine blood vessels
ITFI20130101A1 (en) * 2013-05-03 2014-11-04 Fond Istituto Italiano Di Tecnologia DEVICE FOR AUTONOMOUS AND NON-DESTRUCTIVE ENVIRONMENTAL PENETRATION
US8900253B2 (en) 2003-03-11 2014-12-02 Covidien Lp Clip applying apparatus with angled jaw
US8968337B2 (en) 2010-07-28 2015-03-03 Covidien Lp Articulating clip applier
US9011464B2 (en) 2010-11-02 2015-04-21 Covidien Lp Self-centering clip and jaw
US9113892B2 (en) 2013-01-08 2015-08-25 Covidien Lp Surgical clip applier
US9186136B2 (en) 2009-12-09 2015-11-17 Covidien Lp Surgical clip applier
US9186153B2 (en) 2011-01-31 2015-11-17 Covidien Lp Locking cam driver and jaw assembly for clip applier
US20160106435A1 (en) * 2009-02-17 2016-04-21 The Board Of Trustees Of The Leland Stanford Junior University Closure device and method
US9358015B2 (en) 2008-08-29 2016-06-07 Covidien Lp Endoscopic surgical clip applier with wedge plate
US9364216B2 (en) 2011-12-29 2016-06-14 Covidien Lp Surgical clip applier with integrated clip counter
US9364239B2 (en) 2011-12-19 2016-06-14 Covidien Lp Jaw closure mechanism for a surgical clip applier
US9408610B2 (en) 2012-05-04 2016-08-09 Covidien Lp Surgical clip applier with dissector
US9414844B2 (en) 2008-08-25 2016-08-16 Covidien Lp Surgical clip appliers
US9499318B2 (en) 2014-08-21 2016-11-22 Cook Medical Technologies Llc System and method for containment and organization of medical wire
US9532787B2 (en) 2012-05-31 2017-01-03 Covidien Lp Endoscopic clip applier
US9664213B2 (en) 2014-08-21 2017-05-30 Cook Medical Technologies Llc System for containment and organization of medical wire
US9687247B2 (en) 2004-10-08 2017-06-27 Covidien Lp Apparatus for applying surgical clips
US9750500B2 (en) 2013-01-18 2017-09-05 Covidien Lp Surgical clip applier
US9763668B2 (en) 2004-10-08 2017-09-19 Covidien Lp Endoscopic surgical clip applier
US9775623B2 (en) 2011-04-29 2017-10-03 Covidien Lp Surgical clip applier including clip relief feature
US9775624B2 (en) 2013-08-27 2017-10-03 Covidien Lp Surgical clip applier
US9931124B2 (en) 2015-01-07 2018-04-03 Covidien Lp Reposable clip applier
US9968362B2 (en) 2013-01-08 2018-05-15 Covidien Lp Surgical clip applier
US10159491B2 (en) 2015-03-10 2018-12-25 Covidien Lp Endoscopic reposable surgical clip applier
US10292712B2 (en) 2015-01-28 2019-05-21 Covidien Lp Surgical clip applier with integrated cutter
US10390831B2 (en) 2015-11-10 2019-08-27 Covidien Lp Endoscopic reposable surgical clip applier
US10426489B2 (en) 2016-11-01 2019-10-01 Covidien Lp Endoscopic reposable surgical clip applier
US10492795B2 (en) 2016-11-01 2019-12-03 Covidien Lp Endoscopic surgical clip applier
US10548602B2 (en) 2017-02-23 2020-02-04 Covidien Lp Endoscopic surgical clip applier
US10582931B2 (en) 2016-02-24 2020-03-10 Covidien Lp Endoscopic reposable surgical clip applier
US10603038B2 (en) 2017-02-22 2020-03-31 Covidien Lp Surgical clip applier including inserts for jaw assembly
US10610236B2 (en) 2016-11-01 2020-04-07 Covidien Lp Endoscopic reposable surgical clip applier
US10639044B2 (en) 2016-10-31 2020-05-05 Covidien Lp Ligation clip module and clip applier
US10639032B2 (en) 2017-06-30 2020-05-05 Covidien Lp Endoscopic surgical clip applier including counter assembly
US10653429B2 (en) 2017-09-13 2020-05-19 Covidien Lp Endoscopic surgical clip applier
US10660723B2 (en) 2017-06-30 2020-05-26 Covidien Lp Endoscopic reposable surgical clip applier
US10660651B2 (en) 2016-10-31 2020-05-26 Covidien Lp Endoscopic reposable surgical clip applier
US10660725B2 (en) 2017-02-14 2020-05-26 Covidien Lp Endoscopic surgical clip applier including counter assembly
US10675043B2 (en) 2017-05-04 2020-06-09 Covidien Lp Reposable multi-fire surgical clip applier
US10675112B2 (en) 2017-08-07 2020-06-09 Covidien Lp Endoscopic surgical clip applier including counter assembly
US10702278B2 (en) 2014-12-02 2020-07-07 Covidien Lp Laparoscopic surgical ligation clip applier
US10702279B2 (en) 2015-11-03 2020-07-07 Covidien Lp Endoscopic surgical clip applier
US10702280B2 (en) 2015-11-10 2020-07-07 Covidien Lp Endoscopic reposable surgical clip applier
US10709455B2 (en) 2017-02-02 2020-07-14 Covidien Lp Endoscopic surgical clip applier
US10722236B2 (en) 2017-12-12 2020-07-28 Covidien Lp Endoscopic reposable surgical clip applier
US10722235B2 (en) 2017-05-11 2020-07-28 Covidien Lp Spring-release surgical clip
US10743887B2 (en) 2017-12-13 2020-08-18 Covidien Lp Reposable multi-fire surgical clip applier
US10758244B2 (en) 2017-02-06 2020-09-01 Covidien Lp Endoscopic surgical clip applier
US10758245B2 (en) 2017-09-13 2020-09-01 Covidien Lp Clip counting mechanism for surgical clip applier
US10765431B2 (en) 2016-01-18 2020-09-08 Covidien Lp Endoscopic surgical clip applier
US10786273B2 (en) 2018-07-13 2020-09-29 Covidien Lp Rotation knob assemblies for handle assemblies
US10786263B2 (en) 2017-08-15 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10786262B2 (en) 2017-08-09 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10806463B2 (en) 2011-11-21 2020-10-20 Covidien Lp Surgical clip applier
US10806464B2 (en) 2016-08-11 2020-10-20 Covidien Lp Endoscopic surgical clip applier and clip applying systems
US10828036B2 (en) 2017-11-03 2020-11-10 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10835341B2 (en) 2017-09-12 2020-11-17 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10835260B2 (en) 2017-09-13 2020-11-17 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10849630B2 (en) 2017-12-13 2020-12-01 Covidien Lp Reposable multi-fire surgical clip applier
US10863992B2 (en) 2017-08-08 2020-12-15 Covidien Lp Endoscopic surgical clip applier
US10905425B2 (en) 2015-11-10 2021-02-02 Covidien Lp Endoscopic reposable surgical clip applier
US10932790B2 (en) 2017-08-08 2021-03-02 Covidien Lp Geared actuation mechanism and surgical clip applier including the same
US10932793B2 (en) 2016-01-11 2021-03-02 Covidien Lp Endoscopic reposable surgical clip applier
US10932791B2 (en) 2017-11-03 2021-03-02 Covidien Lp Reposable multi-fire surgical clip applier
US10945734B2 (en) 2017-11-03 2021-03-16 Covidien Lp Rotation knob assemblies and surgical instruments including the same
US20210085330A1 (en) * 2019-09-25 2021-03-25 Lsi Solutions, Inc. Minimally invasive occlusion device and methods thereof
US10959737B2 (en) 2017-12-13 2021-03-30 Covidien Lp Reposable multi-fire surgical clip applier
US10993721B2 (en) 2018-04-25 2021-05-04 Covidien Lp Surgical clip applier
US11033256B2 (en) 2018-08-13 2021-06-15 Covidien Lp Linkage assembly for reusable surgical handle assemblies
US20210186478A1 (en) * 2018-08-29 2021-06-24 Tel Hashomer Medical Research, Infrastructure And Services Ltd. Ocular surgical instrument
US11051828B2 (en) 2018-08-13 2021-07-06 Covidien Lp Rotation knob assemblies and surgical instruments including same
US11051827B2 (en) 2018-01-16 2021-07-06 Covidien Lp Endoscopic surgical instrument and handle assemblies for use therewith
US11058432B2 (en) 2015-01-15 2021-07-13 Covidien Lp Endoscopic reposable surgical clip applier
US11071553B2 (en) 2016-08-25 2021-07-27 Covidien Lp Endoscopic surgical clip applier and clip applying systems
US11116513B2 (en) 2017-11-03 2021-09-14 Covidien Lp Modular surgical clip cartridge
US11116514B2 (en) 2017-02-06 2021-09-14 Covidien Lp Surgical clip applier with user feedback feature
US11147566B2 (en) 2018-10-01 2021-10-19 Covidien Lp Endoscopic surgical clip applier
US11219463B2 (en) 2018-08-13 2022-01-11 Covidien Lp Bilateral spring for surgical instruments and surgical instruments including the same
US11246601B2 (en) 2018-08-13 2022-02-15 Covidien Lp Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same
US11253267B2 (en) 2018-08-13 2022-02-22 Covidien Lp Friction reduction mechanisms for handle assemblies
US11259887B2 (en) 2018-08-10 2022-03-01 Covidien Lp Feedback mechanisms for handle assemblies
US11278267B2 (en) 2018-08-13 2022-03-22 Covidien Lp Latch assemblies and surgical instruments including the same
US11344316B2 (en) 2018-08-13 2022-05-31 Covidien Lp Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same
US11376015B2 (en) 2017-11-03 2022-07-05 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US20220287718A1 (en) * 2019-07-31 2022-09-15 Aesculap Ag Open-pore surgical vessel clip for closing blood vessels
US11497507B2 (en) 2017-02-19 2022-11-15 Orpheus Ventures, Llc Systems and methods for closing portions of body tissue
US11524398B2 (en) 2019-03-19 2022-12-13 Covidien Lp Gear drive mechanisms for surgical instruments
US11583291B2 (en) 2017-02-23 2023-02-21 Covidien Lp Endoscopic surgical clip applier
US11596428B2 (en) 2018-11-15 2023-03-07 Applied Medical Resources Corporation Laparoscopic grasper with force-limiting grasping mechanism
US11723669B2 (en) 2020-01-08 2023-08-15 Covidien Lp Clip applier with clip cartridge interface
US11779340B2 (en) 2020-01-02 2023-10-10 Covidien Lp Ligation clip loading device
WO2023212330A1 (en) * 2022-04-29 2023-11-02 Osheru, Inc. Wound creation for excess skin removal and closure systems and methods
US12114866B2 (en) 2020-03-26 2024-10-15 Covidien Lp Interoperative clip loading device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007552A (en) 1997-12-18 1999-12-28 Minumys Vascular clamps and surgical retractors with directional filaments for tissue engagement
US6099539A (en) * 1998-07-27 2000-08-08 Thomas J. Fogarty Surgical clamp pad with interdigitating teeth
US6299621B1 (en) 1999-06-18 2001-10-09 Novare Surgical Systems, Inc. Surgical clamp pads with elastomer impregnated mesh
US6273902B1 (en) 1999-06-18 2001-08-14 Novare Surgical Systems, Inc. Surgical clamp having replaceable pad
US6228104B1 (en) 1999-06-18 2001-05-08 Novare Surgical Systems, Inc. Surgical clamp having replaceable pad
US6387112B1 (en) 1999-06-18 2002-05-14 Novare Surgical Systems, Inc. Surgical clamp having replaceable pad
US6616683B1 (en) * 2000-05-02 2003-09-09 Duke University Method of making miniaturized surgical forceps
FR2817731B1 (en) * 2000-12-12 2003-06-13 Johnson & Johnson Internat INSTRUMENT OF SIMULATION OF THE EFFECT, ON URINARY INCONTINENCE, OF A SUPPORT UNDER URETHRO CERVICAL
US6942676B2 (en) * 2002-03-21 2005-09-13 Novare Surgical Systems, Inc. Surgical clamp pads with deflecting elements
JP2003339719A (en) * 2002-05-30 2003-12-02 Pentax Corp Clip device for endoscope
JP2004305696A (en) * 2003-03-25 2004-11-04 Takeshi Watanabe Surgical holder
US9089355B2 (en) 2003-09-16 2015-07-28 Vitalitec International, Inc. Surgical clamp inserts with hooked traction elements
US20050192610A1 (en) 2004-02-27 2005-09-01 Houser Kevin L. Ultrasonic surgical shears and tissue pad for same
US8920305B2 (en) 2007-01-19 2014-12-30 Advanced Bariatric Technology, Llc Vertically oriented band for stomach
DE202007008070U1 (en) 2007-06-08 2007-08-16 Lode, Jolanta Elzbieta Tubular blind ended cover for e.g. clip, has two strips arranged at opposite sides of open end and rollable in cover when cover is rolled, where cover is designed to be rollable by edge of open end, tubular in nature, and is made of cotton
JP2009247550A (en) * 2008-04-04 2009-10-29 Olympus Medical Systems Corp Treatment tool for endoscope and endoscope
JP5388095B2 (en) * 2008-09-30 2014-01-15 公益財団法人北九州産業学術推進機構 Pinching device
US8529585B2 (en) 2010-01-29 2013-09-10 Advanced Bariatric Technology, Llc Surgical clamp and surgical clamp installation tool
DE102010022431A1 (en) 2010-06-01 2011-12-01 Karl Storz Gmbh & Co. Kg Medical gripping tool
EP2815710A4 (en) * 2012-02-16 2016-03-02 E Med Co Ltd Tool for surgical operation using ultrasonic waves
IL305906A (en) 2012-08-09 2023-11-01 Advanced Bariatric Tech Llc Polymer overmolded bariatric clamp and method of installing
US9724120B2 (en) * 2013-12-17 2017-08-08 Ethicon Endo-Surgery, Llc Clamp arm features for ultrasonic surgical instrument
IL314499A (en) 2014-08-26 2024-09-01 Advanced Bariatric Tech Llc Bariatric clamp with suture portions, magnetic inserts and curvature
US11337839B2 (en) 2016-07-07 2022-05-24 Advanced Bariatric Technology, Llc Inflatable bariatric clamp
US10932938B2 (en) 2017-07-24 2021-03-02 Advanced Bariatric Technology, Llc Clamp installation tool

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746002A (en) * 1971-04-29 1973-07-17 J Haller Atraumatic surgical clamp
US4821719A (en) * 1984-12-03 1989-04-18 Fogarty Thomas J Cohesive-adhesive atraumatic clamp
US4955897A (en) * 1988-08-22 1990-09-11 Ship Arthur G Tissue forceps
US5171253A (en) * 1991-03-22 1992-12-15 Klieman Charles H Velcro-like closure system with absorbable suture materials for absorbable hemostatic clips and surgical strips
US5681336A (en) 1995-09-07 1997-10-28 Boston Scientific Corporation Therapeutic device for treating vien graft lesions
US5685854A (en) 1991-06-07 1997-11-11 United States Surgical Corporation Valve system for introducing objects into anatomical body portions
US5728121A (en) * 1996-04-17 1998-03-17 Teleflex Medical, Inc. Surgical grasper devices
US6126671A (en) * 1996-10-07 2000-10-03 Tfx Medical, Incorporated Grasping devices and articles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503396A (en) * 1967-09-21 1970-03-31 American Hospital Supply Corp Atraumatic surgical clamp
US3882855A (en) * 1973-11-12 1975-05-13 Heyer Schulte Corp Retractor for soft tissue for example brain tissue
US5036733A (en) * 1988-04-12 1991-08-06 Tiholiz Ivan C Co-aptive instruments with non-slip surfaces and method for their manufacture
US5250072A (en) * 1990-12-10 1993-10-05 Jain Krishna M Surgical clamp jaw cover
CA2103173C (en) * 1992-11-18 2006-05-09 Ronald D. Adams Atraumatic endoscopic apparatus
BE1006889A3 (en) * 1993-03-23 1995-01-17 Hourlay Pierre SELF-RETAINING RETRACTOR ADJUSTABLE DOUBLE EFFECT FOR SURGERY AND UNDER ENDOSCOPIC videoscopy.
GB9318587D0 (en) * 1993-09-08 1993-10-27 Surgical Innovations Ltd Surgical retractor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746002A (en) * 1971-04-29 1973-07-17 J Haller Atraumatic surgical clamp
US4821719A (en) * 1984-12-03 1989-04-18 Fogarty Thomas J Cohesive-adhesive atraumatic clamp
US4955897A (en) * 1988-08-22 1990-09-11 Ship Arthur G Tissue forceps
US5171253A (en) * 1991-03-22 1992-12-15 Klieman Charles H Velcro-like closure system with absorbable suture materials for absorbable hemostatic clips and surgical strips
US5685854A (en) 1991-06-07 1997-11-11 United States Surgical Corporation Valve system for introducing objects into anatomical body portions
US5681336A (en) 1995-09-07 1997-10-28 Boston Scientific Corporation Therapeutic device for treating vien graft lesions
US5728121A (en) * 1996-04-17 1998-03-17 Teleflex Medical, Inc. Surgical grasper devices
US6126671A (en) * 1996-10-07 2000-10-03 Tfx Medical, Incorporated Grasping devices and articles

Cited By (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030130563A1 (en) * 1998-11-04 2003-07-10 Loy Randall A. Hysteroscope port and methods
US20040167552A1 (en) * 2000-08-24 2004-08-26 Novare Surgical Systems, Inc. Surgical clamp pads having surface overlay
US8900253B2 (en) 2003-03-11 2014-12-02 Covidien Lp Clip applying apparatus with angled jaw
US9968361B2 (en) 2003-03-11 2018-05-15 Covidien Lp Clip applying apparatus with angled jaw
US20100204716A1 (en) * 2004-06-18 2010-08-12 Stewart Mark T Methods and devices for occlusion of an atrial appendage
US8357171B2 (en) 2004-10-08 2013-01-22 Covidien Lp Endoscopic surgical clip applier
US9687247B2 (en) 2004-10-08 2017-06-27 Covidien Lp Apparatus for applying surgical clips
US7819886B2 (en) 2004-10-08 2010-10-26 Tyco Healthcare Group Lp Endoscopic surgical clip applier
US9011465B2 (en) 2004-10-08 2015-04-21 Covidien Lp Endoscopic surgical clip applier
US7905890B2 (en) 2004-10-08 2011-03-15 Tyco Healthcare Group Lp Endoscopic surgical clip applier
US9364240B2 (en) 2004-10-08 2016-06-14 Covidien Lp Endoscopic surgical clip applier
US8579918B2 (en) 2004-10-08 2013-11-12 Covidien Lp Endoscopic surgical clip applier
US10485538B2 (en) 2004-10-08 2019-11-26 Covidien Lp Endoscopic surgical clip applier
US10349950B2 (en) 2004-10-08 2019-07-16 Covidien Lp Apparatus for applying surgical clips
US9763668B2 (en) 2004-10-08 2017-09-19 Covidien Lp Endoscopic surgical clip applier
US8267946B2 (en) 2004-10-08 2012-09-18 Tyco Healthcare Group Lp Endoscopic surgical clip applier
US8282655B2 (en) 2004-10-08 2012-10-09 Tyco Healthcare Group Lp Endoscopic surgical clip applier
US8409222B2 (en) 2004-10-08 2013-04-02 Covidien Lp Endoscopic surgical clip applier
USD625009S1 (en) 2006-03-24 2010-10-05 Tyco Healthcare Group Lp Surgical clip applier
USD629101S1 (en) 2006-03-24 2010-12-14 Tyco Healthcare Group Lp Surgical clip applier
US9480477B2 (en) 2006-10-17 2016-11-01 Covidien Lp Apparatus for applying surgical clips
US8128643B2 (en) 2006-10-17 2012-03-06 Tyco Healthcare Group Lp Apparatus for applying surgical clips
US8603109B2 (en) 2006-10-17 2013-12-10 Covidien Lp Apparatus for applying surgical clips
US10166027B2 (en) 2006-10-17 2019-01-01 Covidien Lp Apparatus for applying surgical clips
US20080171988A1 (en) * 2007-01-17 2008-07-17 Erblan Surgical, Inc. Double-cone sphincter introducer assembly and integrated valve assembly
US8382773B2 (en) 2007-03-26 2013-02-26 Covidien Lp Endoscopic surgical clip applier
US10363045B2 (en) 2007-03-26 2019-07-30 Covidien Lp Endoscopic surgical clip applier
US8747423B2 (en) 2007-03-26 2014-06-10 Covidien Lp Endoscopic surgical clip applier
US9398917B2 (en) 2007-03-26 2016-07-26 Covidien Lp Endoscopic surgical clip applier
US8506580B2 (en) 2007-04-11 2013-08-13 Covidien Lp Surgical clip applier
US10258346B2 (en) 2007-04-11 2019-04-16 Covidien Lp Surgical clip applier
US9498227B2 (en) 2007-04-11 2016-11-22 Covidien Lp Surgical clip applier
US10542999B2 (en) 2008-08-25 2020-01-28 Covidien Lp Surgical clip applier and method of assembly
US9414844B2 (en) 2008-08-25 2016-08-16 Covidien Lp Surgical clip appliers
US8465502B2 (en) 2008-08-25 2013-06-18 Covidien Lp Surgical clip applier and method of assembly
US8056565B2 (en) 2008-08-25 2011-11-15 Tyco Healthcare Group Lp Surgical clip applier and method of assembly
US9549741B2 (en) 2008-08-25 2017-01-24 Covidien Lp Surgical clip applier and method of assembly
US11510682B2 (en) 2008-08-25 2022-11-29 Covidien Lp Surgical clip applier and method of assembly
US8336556B2 (en) 2008-08-25 2012-12-25 Covidien Lp Surgical clip applier and method of assembly
US8409223B2 (en) 2008-08-29 2013-04-02 Covidien Lp Endoscopic surgical clip applier with clip retention
US9113893B2 (en) 2008-08-29 2015-08-25 Covidien Lp Endoscopic surgical clip applier with clip retention
US8894665B2 (en) 2008-08-29 2014-11-25 Covidien Lp Endoscopic surgical clip applier
US10682135B2 (en) 2008-08-29 2020-06-16 Covidien Lp Endoscopic surgical clip applier
US10231738B2 (en) 2008-08-29 2019-03-19 Covidien Lp Endoscopic surgical clip applier with wedge plate
US10231735B2 (en) 2008-08-29 2019-03-19 Covidien Lp Endoscopic surgical clip applier
US8267944B2 (en) 2008-08-29 2012-09-18 Tyco Healthcare Group Lp Endoscopic surgical clip applier with lock out
US10159484B2 (en) 2008-08-29 2018-12-25 Covidien Lp Endoscopic surgical clip applier with connector plate
US9089334B2 (en) 2008-08-29 2015-07-28 Covidien Lp Endoscopic surgical clip applier with connector plate
US8585717B2 (en) 2008-08-29 2013-11-19 Covidien Lp Single stroke endoscopic surgical clip applier
US11806021B2 (en) 2008-08-29 2023-11-07 Covidien Lp Endoscopic surgical clip applier with wedge plate
US8419752B2 (en) 2008-08-29 2013-04-16 Covidien Lp Endoscopic surgical clip applier with connector plate
US9545254B2 (en) 2008-08-29 2017-01-17 Covidien Lp Endoscopic surgical clip applier with connector plate
US8486091B2 (en) 2008-08-29 2013-07-16 Covidien Lp Endoscopic surgical clip applier
US11213298B2 (en) 2008-08-29 2022-01-04 Covidien Lp Endoscopic surgical clip applier with wedge plate
US9358011B2 (en) 2008-08-29 2016-06-07 Covidien Lp Endoscopic surgical clip applier with connector plate
US9358015B2 (en) 2008-08-29 2016-06-07 Covidien Lp Endoscopic surgical clip applier with wedge plate
US8491608B2 (en) 2008-08-29 2013-07-23 Covidien Lp Endoscopic surgical clip applier with clip retention
US9439654B2 (en) 2008-08-29 2016-09-13 Covidien Lp Endoscopic surgical clip applier
US20100194060A1 (en) * 2008-11-03 2010-08-05 Erblan Surgical, Inc. Universal closure and method of lubrication
US20160106435A1 (en) * 2009-02-17 2016-04-21 The Board Of Trustees Of The Leland Stanford Junior University Closure device and method
US20100243706A1 (en) * 2009-03-31 2010-09-30 Cohen Matthew D Surgical Stapling Apparatus With Clamping Assembly
US10595863B2 (en) 2009-03-31 2020-03-24 Covidien Lp Surgical stapling apparatus with clamping assembly
US8550325B2 (en) 2009-03-31 2013-10-08 Covidien Lp Surgical stapling apparatus with clamping assembly
US9498214B2 (en) 2009-03-31 2016-11-22 Covidien Lp Surgical stapling apparatus with clamping assembly
US8113409B2 (en) 2009-03-31 2012-02-14 Tyco Healthcare Group Lp Surgical stapling apparatus with clamping assembly
US8186557B2 (en) 2009-03-31 2012-05-29 Tyco Healthcare Group Lp Surgical stapling apparatus with clamping assembly
US8734469B2 (en) 2009-10-13 2014-05-27 Covidien Lp Suture clip applier
US9186136B2 (en) 2009-12-09 2015-11-17 Covidien Lp Surgical clip applier
US10004502B2 (en) 2009-12-09 2018-06-26 Covidien Lp Surgical clip applier
US10758234B2 (en) 2009-12-09 2020-09-01 Covidien Lp Surgical clip applier
US8545486B2 (en) 2009-12-15 2013-10-01 Covidien Lp Surgical clip applier
US9526501B2 (en) 2009-12-15 2016-12-27 Covidien Lp Surgical clip applier
US10470765B2 (en) 2009-12-15 2019-11-12 Covidien Lp Surgical clip applier
US11918231B2 (en) 2010-02-25 2024-03-05 Covidien Lp Articulating endoscopic surgical clip applier
US8403945B2 (en) 2010-02-25 2013-03-26 Covidien Lp Articulating endoscopic surgical clip applier
US9393024B2 (en) 2010-02-25 2016-07-19 Covidien Lp Articulating endoscopic surgical clip applier
US10271854B2 (en) 2010-02-25 2019-04-30 Covidien Lp Articulating endoscopic surgical clip applier
US11213299B2 (en) 2010-02-25 2022-01-04 Covidien Lp Articulating endoscopic surgical clip applier
US8845659B2 (en) 2010-02-25 2014-09-30 Covidien Lp Articulating endoscopic surgical clip applier
US10010345B2 (en) * 2010-04-07 2018-07-03 Miriam Mackovic Basic Instrument for occlusion of uterine blood vessels
US20140309671A1 (en) * 2010-04-07 2014-10-16 Miriam Mackovic Basic Instrument for occlusion of uterine blood vessels
US8403946B2 (en) 2010-07-28 2013-03-26 Covidien Lp Articulating clip applier cartridge
US9737310B2 (en) 2010-07-28 2017-08-22 Covidien Lp Articulating clip applier
US9717505B2 (en) 2010-07-28 2017-08-01 Covidien Lp Articulating clip applier cartridge
US8968337B2 (en) 2010-07-28 2015-03-03 Covidien Lp Articulating clip applier
US8961542B2 (en) 2010-07-28 2015-02-24 Covidien Lp Articulating clip applier cartridge
US10568635B2 (en) 2010-07-28 2020-02-25 Covidien Lp Articulating clip applier
US11517322B2 (en) 2010-07-28 2022-12-06 Covidien Lp Articulating clip applier
US9011464B2 (en) 2010-11-02 2015-04-21 Covidien Lp Self-centering clip and jaw
US9642627B2 (en) 2010-11-02 2017-05-09 Covidien Lp Self-centering clip and jaw
US10357250B2 (en) 2011-01-31 2019-07-23 Covidien Lp Locking cam driver and jaw assembly for clip applier
US9186153B2 (en) 2011-01-31 2015-11-17 Covidien Lp Locking cam driver and jaw assembly for clip applier
US9775623B2 (en) 2011-04-29 2017-10-03 Covidien Lp Surgical clip applier including clip relief feature
US10806463B2 (en) 2011-11-21 2020-10-20 Covidien Lp Surgical clip applier
US9855043B2 (en) 2011-12-19 2018-01-02 Covidien Lp Jaw closure mechanism for a surgical clip applier
US9364239B2 (en) 2011-12-19 2016-06-14 Covidien Lp Jaw closure mechanism for a surgical clip applier
US10349936B2 (en) 2011-12-29 2019-07-16 Covidien Lp Surgical clip applier with integrated clip counter
US11278287B2 (en) 2011-12-29 2022-03-22 Covidien Lp Surgical clip applier with integrated clip counter
US9364216B2 (en) 2011-12-29 2016-06-14 Covidien Lp Surgical clip applier with integrated clip counter
US9408610B2 (en) 2012-05-04 2016-08-09 Covidien Lp Surgical clip applier with dissector
US10660639B2 (en) 2012-05-04 2020-05-26 Covidien Lp Surgical clip applier with dissector
US10159492B2 (en) 2012-05-31 2018-12-25 Covidien Lp Endoscopic clip applier
US9532787B2 (en) 2012-05-31 2017-01-03 Covidien Lp Endoscopic clip applier
US11026696B2 (en) 2012-05-31 2021-06-08 Covidien Lp Endoscopic clip applier
US20160128690A1 (en) * 2012-10-04 2016-05-12 Children's Hospital Medical Center Gastric traction device and method
US20140107698A1 (en) * 2012-10-04 2014-04-17 Children's Hospital Medical Center Gastric traction device and method
US9848886B2 (en) 2013-01-08 2017-12-26 Covidien Lp Surgical clip applier
US9968362B2 (en) 2013-01-08 2018-05-15 Covidien Lp Surgical clip applier
US10743886B2 (en) 2013-01-08 2020-08-18 Covidien Lp Surgical clip applier
US9113892B2 (en) 2013-01-08 2015-08-25 Covidien Lp Surgical clip applier
US9750500B2 (en) 2013-01-18 2017-09-05 Covidien Lp Surgical clip applier
US10537329B2 (en) 2013-01-18 2020-01-21 Covidien Lp Surgical clip applier
ITFI20130101A1 (en) * 2013-05-03 2014-11-04 Fond Istituto Italiano Di Tecnologia DEVICE FOR AUTONOMOUS AND NON-DESTRUCTIVE ENVIRONMENTAL PENETRATION
US9775624B2 (en) 2013-08-27 2017-10-03 Covidien Lp Surgical clip applier
US10682146B2 (en) 2013-08-27 2020-06-16 Covidien Lp Surgical clip applier
US20170209150A1 (en) * 2013-09-13 2017-07-27 Ethicon Llc Surgical clip having compliant portion
US11304702B2 (en) 2013-09-13 2022-04-19 Cilag Gmbh International Surgical clip having compliant portion
US20160157865A1 (en) * 2013-09-13 2016-06-09 Ethicon Endo-Surgery, Llc Surgical clip having compliant portion
US20140171986A1 (en) * 2013-09-13 2014-06-19 Ethicon Endo-Surgery, Inc. Surgical Clip Having Comliant Portion
US10280955B2 (en) 2014-08-21 2019-05-07 Cook Medical Technologies Llc System for containment and organization of medical wire
US9499318B2 (en) 2014-08-21 2016-11-22 Cook Medical Technologies Llc System and method for containment and organization of medical wire
US9664213B2 (en) 2014-08-21 2017-05-30 Cook Medical Technologies Llc System for containment and organization of medical wire
US10039611B2 (en) 2014-08-21 2018-08-07 Cook Medical Technologies Llc System and method for containment and organization of medical wire
US10646299B2 (en) 2014-08-21 2020-05-12 Cook Medical Technologies Llc System and method for containment and organization of medical wire
US10702278B2 (en) 2014-12-02 2020-07-07 Covidien Lp Laparoscopic surgical ligation clip applier
US9931124B2 (en) 2015-01-07 2018-04-03 Covidien Lp Reposable clip applier
US10765435B2 (en) 2015-01-07 2020-09-08 Covidien Lp Reposable clip applier
US11058432B2 (en) 2015-01-15 2021-07-13 Covidien Lp Endoscopic reposable surgical clip applier
US10292712B2 (en) 2015-01-28 2019-05-21 Covidien Lp Surgical clip applier with integrated cutter
US11134956B2 (en) 2015-01-28 2021-10-05 Covidien Lp Surgical clip applier with integrated cutter
US10828044B2 (en) 2015-03-10 2020-11-10 Covidien Lp Endoscopic reposable surgical clip applier
US10159491B2 (en) 2015-03-10 2018-12-25 Covidien Lp Endoscopic reposable surgical clip applier
US10702279B2 (en) 2015-11-03 2020-07-07 Covidien Lp Endoscopic surgical clip applier
US10702280B2 (en) 2015-11-10 2020-07-07 Covidien Lp Endoscopic reposable surgical clip applier
US10905425B2 (en) 2015-11-10 2021-02-02 Covidien Lp Endoscopic reposable surgical clip applier
US10390831B2 (en) 2015-11-10 2019-08-27 Covidien Lp Endoscopic reposable surgical clip applier
US11298135B2 (en) 2015-11-10 2022-04-12 Covidien Lp Endoscopic reposable surgical clip applier
US10932793B2 (en) 2016-01-11 2021-03-02 Covidien Lp Endoscopic reposable surgical clip applier
US10765431B2 (en) 2016-01-18 2020-09-08 Covidien Lp Endoscopic surgical clip applier
US10582931B2 (en) 2016-02-24 2020-03-10 Covidien Lp Endoscopic reposable surgical clip applier
US11478252B2 (en) 2016-02-24 2022-10-25 Covidien Lp Endoscopic reposable surgical clip applier
US10806464B2 (en) 2016-08-11 2020-10-20 Covidien Lp Endoscopic surgical clip applier and clip applying systems
US11071553B2 (en) 2016-08-25 2021-07-27 Covidien Lp Endoscopic surgical clip applier and clip applying systems
US10639044B2 (en) 2016-10-31 2020-05-05 Covidien Lp Ligation clip module and clip applier
US10660651B2 (en) 2016-10-31 2020-05-26 Covidien Lp Endoscopic reposable surgical clip applier
US10426489B2 (en) 2016-11-01 2019-10-01 Covidien Lp Endoscopic reposable surgical clip applier
US10492795B2 (en) 2016-11-01 2019-12-03 Covidien Lp Endoscopic surgical clip applier
US10610236B2 (en) 2016-11-01 2020-04-07 Covidien Lp Endoscopic reposable surgical clip applier
US11399846B2 (en) 2016-11-01 2022-08-02 Covidien Lp Endoscopic surgical clip applier
US10709455B2 (en) 2017-02-02 2020-07-14 Covidien Lp Endoscopic surgical clip applier
US10758244B2 (en) 2017-02-06 2020-09-01 Covidien Lp Endoscopic surgical clip applier
US11116514B2 (en) 2017-02-06 2021-09-14 Covidien Lp Surgical clip applier with user feedback feature
US10660725B2 (en) 2017-02-14 2020-05-26 Covidien Lp Endoscopic surgical clip applier including counter assembly
US11497507B2 (en) 2017-02-19 2022-11-15 Orpheus Ventures, Llc Systems and methods for closing portions of body tissue
US10603038B2 (en) 2017-02-22 2020-03-31 Covidien Lp Surgical clip applier including inserts for jaw assembly
US11583291B2 (en) 2017-02-23 2023-02-21 Covidien Lp Endoscopic surgical clip applier
US10548602B2 (en) 2017-02-23 2020-02-04 Covidien Lp Endoscopic surgical clip applier
US11464521B2 (en) 2017-05-04 2022-10-11 Covidien Lp Reposable multi-fire surgical clip applier
US10675043B2 (en) 2017-05-04 2020-06-09 Covidien Lp Reposable multi-fire surgical clip applier
US10722235B2 (en) 2017-05-11 2020-07-28 Covidien Lp Spring-release surgical clip
US10639032B2 (en) 2017-06-30 2020-05-05 Covidien Lp Endoscopic surgical clip applier including counter assembly
US10660723B2 (en) 2017-06-30 2020-05-26 Covidien Lp Endoscopic reposable surgical clip applier
US10675112B2 (en) 2017-08-07 2020-06-09 Covidien Lp Endoscopic surgical clip applier including counter assembly
US10863992B2 (en) 2017-08-08 2020-12-15 Covidien Lp Endoscopic surgical clip applier
US10932790B2 (en) 2017-08-08 2021-03-02 Covidien Lp Geared actuation mechanism and surgical clip applier including the same
US10786262B2 (en) 2017-08-09 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10786263B2 (en) 2017-08-15 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10835341B2 (en) 2017-09-12 2020-11-17 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10653429B2 (en) 2017-09-13 2020-05-19 Covidien Lp Endoscopic surgical clip applier
US10758245B2 (en) 2017-09-13 2020-09-01 Covidien Lp Clip counting mechanism for surgical clip applier
US10835260B2 (en) 2017-09-13 2020-11-17 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US11116513B2 (en) 2017-11-03 2021-09-14 Covidien Lp Modular surgical clip cartridge
US11376015B2 (en) 2017-11-03 2022-07-05 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10945734B2 (en) 2017-11-03 2021-03-16 Covidien Lp Rotation knob assemblies and surgical instruments including the same
US10932791B2 (en) 2017-11-03 2021-03-02 Covidien Lp Reposable multi-fire surgical clip applier
US10828036B2 (en) 2017-11-03 2020-11-10 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10722236B2 (en) 2017-12-12 2020-07-28 Covidien Lp Endoscopic reposable surgical clip applier
US10959737B2 (en) 2017-12-13 2021-03-30 Covidien Lp Reposable multi-fire surgical clip applier
US10849630B2 (en) 2017-12-13 2020-12-01 Covidien Lp Reposable multi-fire surgical clip applier
US10743887B2 (en) 2017-12-13 2020-08-18 Covidien Lp Reposable multi-fire surgical clip applier
US11051827B2 (en) 2018-01-16 2021-07-06 Covidien Lp Endoscopic surgical instrument and handle assemblies for use therewith
US10993721B2 (en) 2018-04-25 2021-05-04 Covidien Lp Surgical clip applier
US10786273B2 (en) 2018-07-13 2020-09-29 Covidien Lp Rotation knob assemblies for handle assemblies
US11259887B2 (en) 2018-08-10 2022-03-01 Covidien Lp Feedback mechanisms for handle assemblies
US11344316B2 (en) 2018-08-13 2022-05-31 Covidien Lp Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same
US11033256B2 (en) 2018-08-13 2021-06-15 Covidien Lp Linkage assembly for reusable surgical handle assemblies
US11253267B2 (en) 2018-08-13 2022-02-22 Covidien Lp Friction reduction mechanisms for handle assemblies
US11219463B2 (en) 2018-08-13 2022-01-11 Covidien Lp Bilateral spring for surgical instruments and surgical instruments including the same
US11051828B2 (en) 2018-08-13 2021-07-06 Covidien Lp Rotation knob assemblies and surgical instruments including same
US11278267B2 (en) 2018-08-13 2022-03-22 Covidien Lp Latch assemblies and surgical instruments including the same
US11246601B2 (en) 2018-08-13 2022-02-15 Covidien Lp Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same
US20210186478A1 (en) * 2018-08-29 2021-06-24 Tel Hashomer Medical Research, Infrastructure And Services Ltd. Ocular surgical instrument
US11911018B2 (en) * 2018-08-29 2024-02-27 Tel Hashomer Medical Research, Infrastructure And Services Ltd. Ocular surgical instrument
US11147566B2 (en) 2018-10-01 2021-10-19 Covidien Lp Endoscopic surgical clip applier
US11812972B2 (en) 2018-10-01 2023-11-14 Covidien Lp Endoscopic surgical clip applier
US11596428B2 (en) 2018-11-15 2023-03-07 Applied Medical Resources Corporation Laparoscopic grasper with force-limiting grasping mechanism
US12042165B2 (en) 2018-11-15 2024-07-23 Applied Medical Resources Corporation Laparoscopic grasper with force-limiting grasping mechanism
US11524398B2 (en) 2019-03-19 2022-12-13 Covidien Lp Gear drive mechanisms for surgical instruments
US20220287718A1 (en) * 2019-07-31 2022-09-15 Aesculap Ag Open-pore surgical vessel clip for closing blood vessels
US20210085330A1 (en) * 2019-09-25 2021-03-25 Lsi Solutions, Inc. Minimally invasive occlusion device and methods thereof
US11717301B2 (en) * 2019-09-25 2023-08-08 Lsi Solutions, Inc. Minimally invasive occlusion device and methods thereof
US11779340B2 (en) 2020-01-02 2023-10-10 Covidien Lp Ligation clip loading device
US11723669B2 (en) 2020-01-08 2023-08-15 Covidien Lp Clip applier with clip cartridge interface
US12114866B2 (en) 2020-03-26 2024-10-15 Covidien Lp Interoperative clip loading device
WO2023212330A1 (en) * 2022-04-29 2023-11-02 Osheru, Inc. Wound creation for excess skin removal and closure systems and methods

Also Published As

Publication number Publication date
JP2001510366A (en) 2001-07-31
CA2279385A1 (en) 1998-08-06
CA2279385C (en) 2005-12-06
EP1011462A1 (en) 2000-06-28
EP1011462B1 (en) 2005-11-23
WO1998033437A1 (en) 1998-08-06
EP1011462A4 (en) 2001-06-13
DE69832497T2 (en) 2006-08-03
DE69832497D1 (en) 2005-12-29

Similar Documents

Publication Publication Date Title
US6626922B1 (en) Surgical instruments with improved traction
US6579304B1 (en) Surgical clamp with improved traction
JP6837127B2 (en) Surgical ligature clip
US20030236537A1 (en) Surgical instruments with improved traction
EP1039837B1 (en) Clamping members and clamps with directional gripping filaments
JP7068355B2 (en) Surgical clip
US8092473B2 (en) Surgical clamp with improved traction
JP3068157B2 (en) Surgical hemostatic clip
US3349771A (en) Nasal clamp
US6099539A (en) Surgical clamp pad with interdigitating teeth
US6299621B1 (en) Surgical clamp pads with elastomer impregnated mesh
EP2848207B1 (en) Surgical clip having compliant portion
WO1980001752A1 (en) Blood vessel clamp
CN111432737A (en) Surgical clip
WO2015038531A1 (en) Surgical clip having compliant portion
EP1547528A1 (en) Surgical instruments with improved traction
JP3819842B2 (en) Aneurysm clip
JPWO2022239827A5 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIED MEDICAL RESOURCES CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HART, CHARLES C.;GADBERRY, DONALD L.;CHI-SING, EDUARDO;AND OTHERS;REEL/FRAME:010177/0165

Effective date: 19990728

AS Assignment

Owner name: APPLIED MEDICAL RESOURCES CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HART , CHARLES C.;GADBERRY, DONALD L;CHI-SING, EDUARDO;AND OTHERS;REEL/FRAME:010301/0203

Effective date: 19980202

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CITIBANK, N.A., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:APPLIED MEDICAL RESOURCES CORPORATION;REEL/FRAME:028115/0276

Effective date: 20120417

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNOR:APPLIED MEDICAL RESOURCES CORPORATION;REEL/FRAME:042669/0725

Effective date: 20170531

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY INTEREST;ASSIGNOR:APPLIED MEDICAL RESOURCES CORPORATION;REEL/FRAME:042669/0725

Effective date: 20170531

AS Assignment

Owner name: APPLIED MEDICAL RESOURCES CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:056751/0169

Effective date: 20210625

AS Assignment

Owner name: APPLIED MEDICAL RESOURCES CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:066795/0595

Effective date: 20240129