US6530703B2 - Focal-plane shutter having resilient stopping members for shutter blades - Google Patents

Focal-plane shutter having resilient stopping members for shutter blades Download PDF

Info

Publication number
US6530703B2
US6530703B2 US10/079,156 US7915602A US6530703B2 US 6530703 B2 US6530703 B2 US 6530703B2 US 7915602 A US7915602 A US 7915602A US 6530703 B2 US6530703 B2 US 6530703B2
Authority
US
United States
Prior art keywords
opening
shutter
blades
closing
stopping members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US10/079,156
Other versions
US20020114628A1 (en
Inventor
Yoichi Nakano
Hiroshi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Precision Inc
Original Assignee
Seiko Precision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Precision Inc filed Critical Seiko Precision Inc
Publication of US20020114628A1 publication Critical patent/US20020114628A1/en
Assigned to SEIKO PRECISION INC. reassignment SEIKO PRECISION INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAKANO, YOICHI, TAKAHASHI, HIROSHI
Application granted granted Critical
Publication of US6530703B2 publication Critical patent/US6530703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/08Shutters
    • G03B9/10Blade or disc rotating or pivoting about axis normal to its plane
    • G03B9/18More than two members

Definitions

  • the present invention relates generally to focal-plane shutters, and more particularly to focal-plane shutters having resilient stopping members for absorbing shutter blade impact forces without causing undue wear of the shutter blade connector portions.
  • Japanese Utility Model Publication No. 34892/1981 discloses a known focal-plane shutter in which at least one stopping portion is mounted to a base plate to bring at least some of the closing blades and/or closure-assisting members to a stop.
  • a base plate 9 of this structure has bent portions forming stopping portions 9 b , 9 b which are brought into resilient contact with the front-end surface of a leading blade 6 a of a set of closing blades 6 a - 6 e via resilient members 10 , 10 .
  • the stopping portions 9 b , 9 b are shown to be two in number, at least one stopping portion is provided.
  • the two stopping portions 9 b , 9 b are mounted to one side (i.e., the right side) of pivotal portions 7 b and 8 b which connect the leading blade 6 a with closure-assisting members 7 , 8 for driving the blade 6 a . Therefore, when the leading blade 6 a of the set of closing blades 6 a - 6 e is moved by the spring force of a spring (not shown) and collides against the stopping portions 9 b , 9 b to close the shutter opening 2 , the resulting impact forces exert a counterclockwise force on the pivotal portions 7 b and 8 b .
  • the end surface of the blade 6 a making resilient contact with the stopping portions 9 b , 9 b is an end surface that passes over the shutter opening 2 and forms the slit, wear is produced on the end surface that makes resilient contact with the stopping portions 9 b , 9 b as a result of repeated resilient contacts.
  • a problem occurs in that the amount of exposure differs between the portions of the end surface of the blade 6 a on which wear has occurred and the other non-worn portions, resulting in so-called image nonuniformity.
  • An object of the present invention is to provide a focal-plane shutter which overcomes the aforementioned drawbacks of prior art shutters.
  • Another object of the present invention is to provide a focal-plane shutter that prevents the application of unwanted forces to the connector portions connecting the shutter blades to the arms, thereby stabilizing the amount of exposure and improving the durability of the shutter.
  • a focal-plane shutter comprises a shutter plate having a shutter opening, a set of opening blades for opening and closing the shutter opening, and arms connected via connector portions to the opening blades for driving the opening blades parallel to the shutter opening.
  • Resilient stopping members are provided for making resilient contact with the opening blades at opening positions where the opening blades are in a retracted state and open the shutter opening.
  • the resilient stopping members are plural in number and make resilient contact with the opening blades on opposite sides of the connector portions.
  • a focal-plane shutter comprises a shutter plate having a shutter opening, a set of closing blades for opening and closing the shutter opening, and arms connected via connector portions to the closing blades for driving the closing blades parallel to the shutter opening.
  • Resilient stopping members are provided for making resilient contact with the closing blades at closing positions where the closing blades close the shutter opening.
  • the resilient stopping members are plural in number and make resilient contact with the closing blades on opposite sides of the connector portions. Since the resilient stopping members make resilient contact with the blades on opposite sides of the connector portions that connect the blades with the arms, impact forces produced when the blades collide against the resilient stopping members cancel out each other at the connector portions. Therefore no extra force acts on the connector portions, thereby enhancing the durability of the shutter.
  • the set of closing blades makes resilient contact with the resilient stopping members at portions thereof that do not traverse the shutter opening. This prevents damage to the end surface of the slit-forming blade that traverses the shutter opening and forms the slit. Thus the amount of exposure is not altered because of damage to the end surface of the slit-forming blade, even if the closing blades repeatedly collide against the resilient stopping members, thereby maintaining exposure accuracy and improving durability.
  • FIG. 1 is a front elevational view of one embodiment of a focal-plane shutter according to the present invention, showing a set of opening blades covering a shutter opening;
  • FIG. 2 is a front elevational view similar to FIG. 1, but showing the opening blades in retracted positions uncovering the shutter opening;
  • FIG. 3 is a front elevational view similar to FIG. 1, showing a set of closing blades in retracted positions uncovering the shutter opening;
  • FIG. 4 is a front elevational view similar to FIG. 3, but showing the closing blades covering the shutter opening;
  • FIG. 5 is a front elevational view of a set of closing blades in a prior art shutter, showing the closing blades covering a shutter opening.
  • FIGS. 1 and 2 show a set of opening blades 2 of a parallel link type focal-plane shutter.
  • a shutter plate 1 is provided with a shutter opening 1 a .
  • the opening blades 2 are displaceable to open and close the shutter opening 1 a .
  • the set of opening blades 2 is made up of four blades including a slit-forming blade 2 a and three cover blades 2 b - 2 d supported by three opening arms 3 , 4 and 5 .
  • Shafts 6 a , 6 b and 6 c are mounted at one side (right side in FIG. 1) of the shutter plate 1 and form the centers of swinging motions of the arms 3 - 5 .
  • the arms 3 , 4 and 5 are pivotably mounted to the shafts 6 a , 6 b , and 6 c , respectively.
  • the opening blades 2 a - 2 d are connected to the arms 3 - 5 by connector portions to form a parallel link mechanism.
  • the slit-forming blade 2 a is connected by connector portions 3 a and 5 a to the arms 3 and 5 .
  • the cover blade 2 b is connected by connector portions 4 b and 5 b and the cover blade 2 c is connected by connector portions 4 c and 5 c to the arms 4 and 5 .
  • the cover blade 2 d is connected by connector portions 3 d and 4 d to the arms 3 and 4 .
  • a driving pin 7 extends upright from a driving lever (not shown) within the shutter driving mechanism and passes through a sectorial hole 8 formed in the shutter plate 1 .
  • the pin 7 has a narrowed front-end portion non-rotatably fitted in a small-sized fitting hole formed in the arm 5 .
  • the arm 5 receives a driving force from the shutter driving mechanism via the driving pin 7 , the arm 5 acts as a driving arm for driving the set of opening blades 2 .
  • a biasing member such as a spring 9 is fitted over the shaft 6 c .
  • One end of the spring 9 is fastened to the driving arm 5 , and the other end is secured to a spring fixing element mounted on the shutter plate 1 .
  • the opening blades 2 are in their expanded, fanned-out, shutter-closing positions where the blades 2 close or cover the shutter opening 1 a .
  • the arms 3 - 5 swing or pivot about the shafts 6 a - 6 c , respectively, to drive the opening blades 2 downwardly while maintaining the blades 2 parallel to the shutter opening 1 a to translate the blades 2 to their retracted, shutter-opening positions beneath-the shutter opening 1 a where the blades 2 open or uncover the shutter opening 1 a (FIG. 2 ).
  • FIG. 2 shows the state in which the opening blades 2 have been translated downward and have reached their shutter-opening positions where the opening blades 2 are retracted beneath the shutter opening 1 a .
  • Two resilient stopping members 10 a and 10 b are mounted to the lower side of the shutter plate 1 at locations to make resilient contact with the lower edges or end surfaces of the opening blades 2 when the blades are in their opening positions where they are retracted from the shutter opening 1 a.
  • the resilient stopping members 10 a and 10 b are located on opposite sides of the connector portions 3 a and 5 a in positions where the stopping members make resilient contact with the opening blades 2 . More specifically, in this embodiment the resilient stopping members 10 a and 10 b are located on opposite sides of the connector portions 3 a and 5 a (i.e., laterally spaced from the connector portions 3 a and 5 a ), with respect to imaginary planes P 1 and P 2 passing through the connector portions 3 a and 5 a and extending parallel to the displacement direction (vertical direction in FIGS. 1-2) of the opening blades 2 , when the blades 2 are in the shutter-opening position (FIG. 2 ). As shown in FIG.
  • the resilient stopping member 10 a is laterally spaced to the left of imaginary planes P 1 and P 2 and the resilient stopping member 10 b is laterally spaced to the right of imaginary planes P 1 and P 2 .
  • the connecting portions 3 a and 5 a connect the slit-forming blade 2 a with the arms 3 and 5 . Therefore, when the blades 2 move into resilient contact with the resilient stopping members 10 a and 10 b , the resilient contact with the resilient stopping member 10 a produces an impact force which exerts a clockwise (rightward) rotating force on the connector portions 3 a and 5 a .
  • FIGS. 3 and 4 show a set of closing blades 12 of the parallel link type focal-plane shutter.
  • FIG. 3 shows the state in which the closing blades 12 are retracted above the shutter opening 1 a .
  • the set of closing blades 12 is disposed on the shutter plate 1 with a partition plate (not shown) between the set of closing blades 12 and the set of opening blades 2 .
  • the set of closing blades 12 is substantially identical in structure with the set of opening blades 2 .
  • Four blades made up of a slit-forming blade 12 a and three cover blades 12 b - 12 d are supported by three closing arms 13 , 14 and 15 .
  • the arms 13 - 15 are swingably mounted to shafts 16 a , 16 b and 16 c which are mounted at one side (right side in FIG. 3) of the shutter plate 1 , in the same way as the opening arms 3 - 5 .
  • the closing blades 12 a - 12 d are connected to the arms 13 - 15 by connector portions to form a parallel link mechanism, in the same way as the opening blades 2 .
  • the slit-forming blade 12 a is connected by connector portions 13 a and 15 a to the arms 13 and 15 .
  • the cover blade 12 b is connected by connector portions 14 b and 15 b and the cover blade 12 c is connected by connector portions 14 c and 15 c to the arms 14 and 15 .
  • the cover blade 12 d is connected by connector portions 13 d and 14 d to the arms 13 and 14 .
  • a driving pin 17 extends upright from a driving lever (not shown) in the shutter drive mechanism and passes through a sectorial hole 18 formed in the shutter plate 1 .
  • the pin 17 has a narrowed front-end portion non-rotatably fitted in a small-sized fitting hole formed in the arm 15 .
  • the arm 15 receives a driving force from the shutter driving mechanism via the driving pin 17 , and the arm 15 acts as a driving arm for driving the set of closing blades 12 .
  • a spring (not shown) is fitted over the shaft 16 c . One end of the spring is fastened to the arm 15 , while the other end is secured to a spring fixing element mounted on the shutter plate 1 .
  • the closing blades 12 are in their retracted, shutter-opening positions where the blades 12 are disposed above the shutter opening 1 a to thereby open or uncover the shutter opening.
  • the arms 13 - 15 swing or pivot about the shafts 16 a - 16 c , respectively, to drive the closing blades 12 downwardly while maintaining the blades 12 parallel to the shutter opening 1 a to translate the blades 12 to their expanded, fanned-out, shutter-closing positions where the blades 12 close or cover the shutter opening 1 a (FIG. 4 ).
  • FIG. 4 shows the state in which the closing blades 12 have been translated downward and have reached their shutter-closing positions where the closing blades are expanded and fanned out to cover the shutter opening 1 a .
  • Two resilient stopping members 20 a and 20 b are mounted to the lower side of the shutter opening 1 a at positions to make resilient contact with the leading edges or end surfaces of the closing blades 12 when they move into their shutter-closing positions.
  • the resilient stopping members 20 a and 20 b are mounted on the side either of a partition plate (not shown) or of a rear plate (not shown) so as not to impede opening/closing movement of the set of opening blades 2 , and the resilient stopping members 20 a and 20 b are so positioned that they do not interfere with the traveling paths of the closing blades 2 .
  • the resilient stopping members 20 a and 20 b make resilient contact with the lower edge or end surface of the slit-forming blade 12 a on opposite sides of the connector portions 13 a and 15 a which connect the slit-forming blade 12 a with the arms 13 and 15 . More specifically, in this embodiment the resilient stopping members 20 a and 20 b are located on opposite sides of the connector portions 13 a and 15 a (i.e., laterally spaced from the connector portions 13 a and 15 a ), with respect to imaginary planes P 3 and P 4 passing through the connector portions 13 a and 15 a and extending parallel to the displacement direction (vertical direction in FIGS. 3-4) of the closing blades 12 , when the blades 12 are in the shutter-closing position (FIG. 4 ).
  • the resilient stopping member 20 a is laterally spaced to the left of imaginary planes P 3 and P 4 and the resilient stopping member 20 b is laterally spaced to the right of imaginary planes P 3 and P 4 .
  • the resilient stopping members 20 a and 20 b are positioned outside of the center portion 12 A of the lower edge or end surface of the slit-forming blade 12 a to prevent the stopping member from making resilient contact with the center portion end surface 12 A which translates over the shutter opening 1 a.
  • the lower edge or end surface of the slit-forming blade 12 a maintains a parallel relationship with the lower edge of the shutter opening 1 a to form a progressively closing slit, and the portion of the lower edge or end surface of the slit-forming blade 12 a that extends laterally across and covers the shutter opening 1 a to define the progressively closing slit is the center portion 12 A.
  • the two extremities or extremity portions of the slit-forming blade 12 a at either end of the center portion 12 A, substantially lie outside the perimeter of the shutter opening 1 a and do no participate in forming the slit.
  • the degree of linearity of the center portion 12 A greatly affects the amount of exposure. Accordingly, if the end surface center portion 12 A repeatedly collides against the resilient stopping members 20 a and 20 b , wear will be produced, creating recesses in the portions that abut against the resilient stopping members 20 a and 20 b . The amount of exposure will differ between these portions and the other portion of the end surface 12 A that does not abut against the stopping members. As a consequence, the amount of exposure will be affected thereby altering the exposure accuracy.
  • wear of the end surface center portion 12 A should be reduced to a minimum to stabilize the amount of exposure.
  • the set of opening blades 2 and the set of closing blades 12 both cover the shutter opening 1 a in the initial state.
  • double optical shielding is provided.
  • an electric motor rotates a set lever (not shown) to retract the set of closing blades 12 from the shutter opening 1 a and position the closing blades 12 at their retracted, shutter-opening positions shown in FIG. 3 .
  • the shutter opening 1 a is single shielded only by the set of opening blades 2 as shown in FIG. 1 .
  • the resilient force of the spring holding the blades 2 momentarily retracts the blades 2 from the shutter opening 1 a and displaces them downwardly into their shutter-opening positions shown in FIG. 2 . Since the movements of the opening blades 2 into the shutter-opening positions are made instantly by the resilient force of the spring, the opening blades 2 collide against the resilient stopping members 10 a and 10 b and come to a stop. As mentioned previously, the resilient stopping members 10 a and 10 b are mounted on opposite sides of the connector portions 3 a and 5 a .
  • both the closing blades 12 and opening blades 2 are retracted from the shutter opening 1 a , thus fully opening it.
  • the closing electromagnet is deenergized after a lapse of a given time.
  • the resilient force of the springs holding the closing blades 12 momentarily causes the closing blades 12 to cover the shutter blade 1 a and arrive at the shutter-closing positions shown in FIG. 4, thereby completing the exposure and ending one frame of photography. Since the movements of the closing blades 12 into the closing positions are made instantly by the resilient force of the springs, the closing blades 12 collide against the resilient stopping members 20 a and 20 b and come to a stop.
  • the resilient stopping members 20 a and 20 b are mounted on opposite sides of the connector portions 13 a and 15 a and spaced apart from each other.
  • the stopping members 20 a and 20 b are so located that they do not make resilient contact with the slit-forming end surface 12 A.
  • Reaction forces produced in response to collision of the closing blades 12 against the resilient stopping members 20 a and 20 b act on the connector portions 13 a and 15 a so as to cancel out each other. Consequently, no force that is large enough to damage the connector portions 13 a and 15 a is produced.
  • the slit-forming end surface 12 A is not damaged. The state in which the shutter opening 1 a is covered by the closing blades 12 and the opening blades 2 are retracted from the shutter opening 1 a occurs immediately after exposure.
  • the motor rotates the set lever and moves the opening blades 2 to their shutter-closing positions to again close or cover the shutter opening 1 a .
  • the initial state in which both the closing blades 12 and the opening blades 2 cover the shutter opening 1 a to provide double optical shielding is regained.
  • the illustrated embodiment shows a focal-plane shutter embodying the invention in conjunction with both the set of opening blades 2 (FIGS. 1-2) and the set of closing blades 12 (FIGS. 3 - 4 ).
  • the invention is not so limited, and a focal-plane shutter according to the present invention may embody the invention in conjunction with only the set of opening blades, or in conjunction with only the set of closing blades, and not necessarily in conjunction with both sets of blades.
  • the opening blades 2 there are provided two resilient stopping members 10 a and 10 b for the opening blades 2 .
  • the invention is not limited to this structure. More than two resilient stopping members may be provided.
  • the opening blades 2 are so positioned that, when they collide against the resilient stopping members and come to a stop, reaction forces to the impact forces act on the connector portions 3 a and 5 a , leading to the overall result that the reaction forces cancel out each other.
  • resilient stopping members are positioned to make resilient contact with blades on opposite sides of connector portions that connect the blades with the arms. Therefore, impact forces produced on collision with the resilient stopping members cancel out each other at the connector portions. No extra force acts on the connector portions. Consequently, no eccentric wear occurs on the connector portions. Hence, the durability can be enhanced. Furthermore, since the resilient stopping members for the closing blades are so located that the resilient stopping members make resilient contact with the extremity portions of the stopping members which do not pass over the shutter opening, the end surface forming a slit and affecting the amount of exposure is not damaged, even if the closing blades repeatedly collide against the resilient stopping members. The exposure accuracy can thus be maintained, and the durability can be enhanced.

Abstract

A focal-plane shutter comprises a shutter plate having a shutter opening, opening blades and closing blades for opening and closing the shutter opening, and arms connected by connector portions to the opening and closing blades for driving the blades parallel to the shutter opening to effect an exposure. Resilient stopping members are disposed to make resilient contact with the opening blades at opening positions thereof where the opening blades are retracted from the shutter opening, and other resilient stopping members are disposed to make resilient contact with the closing blades at closing positions thereof where the closing blades close the shutter opening. The resilient stopping members are positioned on opposite sides of the connector portions so that when the blades strike the stopping members, reaction forces are produced which cancel each other out thereby preventing excessive wear of the connector portions.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to focal-plane shutters, and more particularly to focal-plane shutters having resilient stopping members for absorbing shutter blade impact forces without causing undue wear of the shutter blade connector portions.
2. Description of the Related Art
Japanese Utility Model Publication No. 34892/1981 discloses a known focal-plane shutter in which at least one stopping portion is mounted to a base plate to bring at least some of the closing blades and/or closure-assisting members to a stop. As shown in FIG. 5, a base plate 9 of this structure has bent portions forming stopping portions 9 b, 9 b which are brought into resilient contact with the front-end surface of a leading blade 6 a of a set of closing blades 6 a-6 e via resilient members 10, 10. Although the stopping portions 9 b, 9 b are shown to be two in number, at least one stopping portion is provided.
In this known structure, there are provided two stopping portions 9 b, 9 b in the case shown in FIG. 5. The two stopping portions 9 b, 9 b are mounted to one side (i.e., the right side) of pivotal portions 7 b and 8 b which connect the leading blade 6 a with closure-assisting members 7, 8 for driving the blade 6 a. Therefore, when the leading blade 6 a of the set of closing blades 6 a-6 e is moved by the spring force of a spring (not shown) and collides against the stopping portions 9 b, 9 b to close the shutter opening 2, the resulting impact forces exert a counterclockwise force on the pivotal portions 7 b and 8 b. Since this action is repeated each time the shutter is used, eccentric wear occurs on the pivotal portions 7 b, 8 b, producing rattling between the blade 6 a and the pivotal portions 7 b, 8 b. This makes it impossible to hold the blade 6 a stably and, consequently, the exposure accuracy deteriorates.
Furthermore, since the end surface of the blade 6 a making resilient contact with the stopping portions 9 b, 9 b is an end surface that passes over the shutter opening 2 and forms the slit, wear is produced on the end surface that makes resilient contact with the stopping portions 9 b, 9 b as a result of repeated resilient contacts. As a result, a problem occurs in that the amount of exposure differs between the portions of the end surface of the blade 6 a on which wear has occurred and the other non-worn portions, resulting in so-called image nonuniformity.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a focal-plane shutter which overcomes the aforementioned drawbacks of prior art shutters.
Another object of the present invention is to provide a focal-plane shutter that prevents the application of unwanted forces to the connector portions connecting the shutter blades to the arms, thereby stabilizing the amount of exposure and improving the durability of the shutter.
A focal-plane shutter according to one embodiment of the present invention comprises a shutter plate having a shutter opening, a set of opening blades for opening and closing the shutter opening, and arms connected via connector portions to the opening blades for driving the opening blades parallel to the shutter opening. Resilient stopping members are provided for making resilient contact with the opening blades at opening positions where the opening blades are in a retracted state and open the shutter opening. The resilient stopping members are plural in number and make resilient contact with the opening blades on opposite sides of the connector portions.
A focal-plane shutter according to another embodiment of the present invention comprises a shutter plate having a shutter opening, a set of closing blades for opening and closing the shutter opening, and arms connected via connector portions to the closing blades for driving the closing blades parallel to the shutter opening. Resilient stopping members are provided for making resilient contact with the closing blades at closing positions where the closing blades close the shutter opening. The resilient stopping members are plural in number and make resilient contact with the closing blades on opposite sides of the connector portions. Since the resilient stopping members make resilient contact with the blades on opposite sides of the connector portions that connect the blades with the arms, impact forces produced when the blades collide against the resilient stopping members cancel out each other at the connector portions. Therefore no extra force acts on the connector portions, thereby enhancing the durability of the shutter.
According to another aspect of the present invention, the set of closing blades makes resilient contact with the resilient stopping members at portions thereof that do not traverse the shutter opening. This prevents damage to the end surface of the slit-forming blade that traverses the shutter opening and forms the slit. Thus the amount of exposure is not altered because of damage to the end surface of the slit-forming blade, even if the closing blades repeatedly collide against the resilient stopping members, thereby maintaining exposure accuracy and improving durability.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a front elevational view of one embodiment of a focal-plane shutter according to the present invention, showing a set of opening blades covering a shutter opening;
FIG. 2 is a front elevational view similar to FIG. 1, but showing the opening blades in retracted positions uncovering the shutter opening;
FIG. 3 is a front elevational view similar to FIG. 1, showing a set of closing blades in retracted positions uncovering the shutter opening;
FIG. 4 is a front elevational view similar to FIG. 3, but showing the closing blades covering the shutter opening; and
FIG. 5 is a front elevational view of a set of closing blades in a prior art shutter, showing the closing blades covering a shutter opening.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
One embodiment of the present invention is described with reference to the accompanying drawings.
FIGS. 1 and 2 show a set of opening blades 2 of a parallel link type focal-plane shutter. A shutter plate 1 is provided with a shutter opening 1 a. The opening blades 2 are displaceable to open and close the shutter opening 1 a. The set of opening blades 2 is made up of four blades including a slit-forming blade 2 a and three cover blades 2 b-2 d supported by three opening arms 3, 4 and 5. Shafts 6 a, 6 b and 6 c are mounted at one side (right side in FIG. 1) of the shutter plate 1 and form the centers of swinging motions of the arms 3-5. The arms 3, 4 and 5 are pivotably mounted to the shafts 6 a, 6 b, and 6 c, respectively. The opening blades 2 a-2 d are connected to the arms 3-5 by connector portions to form a parallel link mechanism. The slit-forming blade 2 a is connected by connector portions 3 a and 5 a to the arms 3 and 5. The cover blade 2 b is connected by connector portions 4 b and 5 b and the cover blade 2 c is connected by connector portions 4 c and 5 c to the arms 4 and 5. Similarly, the cover blade 2 d is connected by connector portions 3 d and 4 d to the arms 3 and 4.
A driving pin 7 extends upright from a driving lever (not shown) within the shutter driving mechanism and passes through a sectorial hole 8 formed in the shutter plate 1. The pin 7 has a narrowed front-end portion non-rotatably fitted in a small-sized fitting hole formed in the arm 5. Because the arm 5 receives a driving force from the shutter driving mechanism via the driving pin 7, the arm 5 acts as a driving arm for driving the set of opening blades 2. During manufacture, machining inevitably creates a slight clearance between the driving pin 7 and the fitting hole. To prevent rattling in this clearance, a biasing member such as a spring 9 is fitted over the shaft 6 c. One end of the spring 9 is fastened to the driving arm 5, and the other end is secured to a spring fixing element mounted on the shutter plate 1.
As shown in FIG. 1, the opening blades 2 are in their expanded, fanned-out, shutter-closing positions where the blades 2 close or cover the shutter opening 1 a. In response to a driving force exerted by the driving pin 7 on the arm 5, the arms 3-5 swing or pivot about the shafts 6 a-6 c, respectively, to drive the opening blades 2 downwardly while maintaining the blades 2 parallel to the shutter opening 1 a to translate the blades 2 to their retracted, shutter-opening positions beneath-the shutter opening 1 a where the blades 2 open or uncover the shutter opening 1 a (FIG. 2).
FIG. 2 shows the state in which the opening blades 2 have been translated downward and have reached their shutter-opening positions where the opening blades 2 are retracted beneath the shutter opening 1 a. Two resilient stopping members 10 a and 10 b are mounted to the lower side of the shutter plate 1 at locations to make resilient contact with the lower edges or end surfaces of the opening blades 2 when the blades are in their opening positions where they are retracted from the shutter opening 1 a.
The resilient stopping members 10 a and 10 b are located on opposite sides of the connector portions 3 a and 5 a in positions where the stopping members make resilient contact with the opening blades 2. More specifically, in this embodiment the resilient stopping members 10 a and 10 b are located on opposite sides of the connector portions 3 a and 5 a (i.e., laterally spaced from the connector portions 3 a and 5 a), with respect to imaginary planes P1 and P2 passing through the connector portions 3 a and 5 a and extending parallel to the displacement direction (vertical direction in FIGS. 1-2) of the opening blades 2, when the blades 2 are in the shutter-opening position (FIG. 2). As shown in FIG. 2, the resilient stopping member 10 a is laterally spaced to the left of imaginary planes P1 and P2 and the resilient stopping member 10 b is laterally spaced to the right of imaginary planes P1 and P2. As noted above, the connecting portions 3 a and 5 a connect the slit-forming blade 2 a with the arms 3 and 5. Therefore, when the blades 2 move into resilient contact with the resilient stopping members 10 a and 10 b, the resilient contact with the resilient stopping member 10 a produces an impact force which exerts a clockwise (rightward) rotating force on the connector portions 3 a and 5 a. On the other hand, resilient contact with the resilient stopping member 10 b produces an impact force that exerts a counterclockwise (leftward) rotating force on the connector portions 3 a and 5 a. Consequently, the rightward rotating force and the leftward rotating force cancel out each other at the connector portions 3 a and 5 a. As a result, no substantial extra force acts on the connector portions 3 a and 5 a at the conclusion of the opening movement of the opening blades 2, thereby reducing if not eliminating eccentric wear of the connector portions 3 a and 5 a which would otherwise be produced. This is useful in enhancing the durability of the connector portions 3 a and 5 a.
FIGS. 3 and 4 show a set of closing blades 12 of the parallel link type focal-plane shutter. FIG. 3 shows the state in which the closing blades 12 are retracted above the shutter opening 1 a. The set of closing blades 12 is disposed on the shutter plate 1 with a partition plate (not shown) between the set of closing blades 12 and the set of opening blades 2. The set of closing blades 12 is substantially identical in structure with the set of opening blades 2. Four blades made up of a slit-forming blade 12 a and three cover blades 12 b-12 d are supported by three closing arms 13, 14 and 15. The arms 13-15 are swingably mounted to shafts 16 a, 16 b and 16 c which are mounted at one side (right side in FIG. 3) of the shutter plate 1, in the same way as the opening arms 3-5. The closing blades 12 a-12 d are connected to the arms 13-15 by connector portions to form a parallel link mechanism, in the same way as the opening blades 2. The slit-forming blade 12 a is connected by connector portions 13 a and 15 a to the arms 13 and 15. The cover blade 12 b is connected by connector portions 14 b and 15 b and the cover blade 12 c is connected by connector portions 14 c and 15 c to the arms 14 and 15. Similarly, the cover blade 12 d is connected by connector portions 13 d and 14 d to the arms 13 and 14.
A driving pin 17 extends upright from a driving lever (not shown) in the shutter drive mechanism and passes through a sectorial hole 18 formed in the shutter plate 1. The pin 17 has a narrowed front-end portion non-rotatably fitted in a small-sized fitting hole formed in the arm 15. In use of the shutter, the arm 15 receives a driving force from the shutter driving mechanism via the driving pin 17, and the arm 15 acts as a driving arm for driving the set of closing blades 12. To prevent rattling of the driving pin 17 in the fitting hole of the arm 15 in the same way as in the case of the driving pin 7, a spring (not shown) is fitted over the shaft 16 c. One end of the spring is fastened to the arm 15, while the other end is secured to a spring fixing element mounted on the shutter plate 1.
As shown in FIG. 3, the closing blades 12 are in their retracted, shutter-opening positions where the blades 12 are disposed above the shutter opening 1 a to thereby open or uncover the shutter opening. In response to a driving force exerted by the driving pin 17 on the arm 15, the arms 13-15 swing or pivot about the shafts 16 a-16 c, respectively, to drive the closing blades 12 downwardly while maintaining the blades 12 parallel to the shutter opening 1 a to translate the blades 12 to their expanded, fanned-out, shutter-closing positions where the blades 12 close or cover the shutter opening 1 a (FIG. 4).
FIG. 4 shows the state in which the closing blades 12 have been translated downward and have reached their shutter-closing positions where the closing blades are expanded and fanned out to cover the shutter opening 1 a. Two resilient stopping members 20 a and 20 b are mounted to the lower side of the shutter opening 1 a at positions to make resilient contact with the leading edges or end surfaces of the closing blades 12 when they move into their shutter-closing positions. The resilient stopping members 20 a and 20 b are mounted on the side either of a partition plate (not shown) or of a rear plate (not shown) so as not to impede opening/closing movement of the set of opening blades 2, and the resilient stopping members 20 a and 20 b are so positioned that they do not interfere with the traveling paths of the closing blades 2.
The resilient stopping members 20 a and 20 b make resilient contact with the lower edge or end surface of the slit-forming blade 12 a on opposite sides of the connector portions 13 a and 15 a which connect the slit-forming blade 12 a with the arms 13 and 15. More specifically, in this embodiment the resilient stopping members 20 a and 20 b are located on opposite sides of the connector portions 13 a and 15 a (i.e., laterally spaced from the connector portions 13 a and 15 a), with respect to imaginary planes P3 and P4 passing through the connector portions 13 a and 15 a and extending parallel to the displacement direction (vertical direction in FIGS. 3-4) of the closing blades 12, when the blades 12 are in the shutter-closing position (FIG. 4). As shown in FIG. 4, the resilient stopping member 20 a is laterally spaced to the left of imaginary planes P3 and P4 and the resilient stopping member 20 b is laterally spaced to the right of imaginary planes P3 and P4. Moreover, the resilient stopping members 20 a and 20 b are positioned outside of the center portion 12A of the lower edge or end surface of the slit-forming blade 12 a to prevent the stopping member from making resilient contact with the center portion end surface 12A which translates over the shutter opening 1 a.
More particularly, when the closing blades 12 translate from their retracted, shutter-open positions (FIG. 3) to their expanded, shutter-closing positions (FIG. 4), the lower edge or end surface of the slit-forming blade 12 a maintains a parallel relationship with the lower edge of the shutter opening 1 a to form a progressively closing slit, and the portion of the lower edge or end surface of the slit-forming blade 12 a that extends laterally across and covers the shutter opening 1 a to define the progressively closing slit is the center portion 12A. The two extremities or extremity portions of the slit-forming blade 12 a, at either end of the center portion 12A, substantially lie outside the perimeter of the shutter opening 1 a and do no participate in forming the slit. Thus the degree of linearity of the center portion 12A greatly affects the amount of exposure. Accordingly, if the end surface center portion 12A repeatedly collides against the resilient stopping members 20 a and 20 b, wear will be produced, creating recesses in the portions that abut against the resilient stopping members 20 a and 20 b. The amount of exposure will differ between these portions and the other portion of the end surface 12A that does not abut against the stopping members. As a consequence, the amount of exposure will be affected thereby altering the exposure accuracy. Therefore, wear of the end surface center portion 12A should be reduced to a minimum to stabilize the amount of exposure. This is achieved according to the present invention by mounting the resilient stopping members 20 a and 20 b outside of the center portion 12A of the lower end surface of the slit-forming blade 12 a to prevent the stopping members from making resilient contact with the slit-forming end surface 12A when the closing blades 12 are in their shutter-closing positions.
By this structure, when the closing blades 12 move into their shutter-closing positions and make resilient contact with the resilient stopping members 20 a and 20 b, the members 20 a and 20 b collide with the outer extremities of the lower end surface of the slit-forming blade 12 a and do not collide with the slit-forming end surface center portion 12A. The impact force produced by resilient contact with the resilient stopping member 20 a exerts a clockwise (rightward) force on the connector portions 13 a and 15 a, whereas the impact force produced by resilient contact with the resilient stopping member 20 b exerts a counterclockwise (leftward) force on the connector portions 13 a and 15 a. Therefore, the rotating force directed to the right and the rotating force directed to the left cancel out each other. As a consequence, no substantial extra force acts on the connector portions 13 a and 15 a, thereby reducing if not eliminating eccentric wear of the connector portions 13 a and 15 which would otherwise be produced. Accordingly, the slit-forming end surface 12A is prevented from being damaged. Also, this structure is useful in enhancing the durability of the connector portions 13 a and 15 a.
If the focal-plane shutter of the construction described above is a double-shielding type, the set of opening blades 2 and the set of closing blades 12 both cover the shutter opening 1 a in the initial state. Thus, double optical shielding is provided. Under this condition, when the camera release switch (not shown) is depressed, an electric motor rotates a set lever (not shown) to retract the set of closing blades 12 from the shutter opening 1 a and position the closing blades 12 at their retracted, shutter-opening positions shown in FIG. 3. At this time, the shutter opening 1 a is single shielded only by the set of opening blades 2 as shown in FIG. 1. Under this condition, the set of closing blades 12 and the set of opening blades 2 are attracted to closing and opening electromagnets, respectively, and held stationary. This is a pre-exposure state in which the shutter is cocked or charged in readiness for taking an exposure.
Under this condition, when the opening electromagnet attracting the set of opening blades 2 is deenergized, the resilient force of the spring holding the blades 2 momentarily retracts the blades 2 from the shutter opening 1 a and displaces them downwardly into their shutter-opening positions shown in FIG. 2. Since the movements of the opening blades 2 into the shutter-opening positions are made instantly by the resilient force of the spring, the opening blades 2 collide against the resilient stopping members 10 a and 10 b and come to a stop. As mentioned previously, the resilient stopping members 10 a and 10 b are mounted on opposite sides of the connector portions 3 a and 5 a. Therefore, reaction forces produced in response to collision of the opening blades 2 against the resilient stopping members 10 a and 10 b act on the connector portions 3 a and 5 a so as to cancel out each other. Consequently, a force large enough to damage the connector portions 3 a and 5 a is not produced.
At this moment, both the closing blades 12 and opening blades 2 are retracted from the shutter opening 1 a, thus fully opening it. Under this exposure condition, the closing electromagnet is deenergized after a lapse of a given time. The resilient force of the springs holding the closing blades 12 momentarily causes the closing blades 12 to cover the shutter blade 1 a and arrive at the shutter-closing positions shown in FIG. 4, thereby completing the exposure and ending one frame of photography. Since the movements of the closing blades 12 into the closing positions are made instantly by the resilient force of the springs, the closing blades 12 collide against the resilient stopping members 20 a and 20 b and come to a stop. As mentioned previously, the resilient stopping members 20 a and 20 b are mounted on opposite sides of the connector portions 13 a and 15 a and spaced apart from each other. The stopping members 20 a and 20 b are so located that they do not make resilient contact with the slit-forming end surface 12A. Reaction forces produced in response to collision of the closing blades 12 against the resilient stopping members 20 a and 20 b act on the connector portions 13 a and 15 a so as to cancel out each other. Consequently, no force that is large enough to damage the connector portions 13 a and 15 a is produced. Also, the slit-forming end surface 12A is not damaged. The state in which the shutter opening 1 a is covered by the closing blades 12 and the opening blades 2 are retracted from the shutter opening 1 a occurs immediately after exposure.
Then, the motor rotates the set lever and moves the opening blades 2 to their shutter-closing positions to again close or cover the shutter opening 1 a. In this way, the initial state in which both the closing blades 12 and the opening blades 2 cover the shutter opening 1 a to provide double optical shielding is regained.
The illustrated embodiment shows a focal-plane shutter embodying the invention in conjunction with both the set of opening blades 2 (FIGS. 1-2) and the set of closing blades 12 (FIGS. 3-4). However, the invention is not so limited, and a focal-plane shutter according to the present invention may embody the invention in conjunction with only the set of opening blades, or in conjunction with only the set of closing blades, and not necessarily in conjunction with both sets of blades.
In the illustrated embodiment, there are provided two resilient stopping members 10 a and 10 b for the opening blades 2. The invention is not limited to this structure. More than two resilient stopping members may be provided. In such case, the opening blades 2 are so positioned that, when they collide against the resilient stopping members and come to a stop, reaction forces to the impact forces act on the connector portions 3 a and 5 a, leading to the overall result that the reaction forces cancel out each other.
As described thus far, in the focal-plane shutter of this invention, resilient stopping members are positioned to make resilient contact with blades on opposite sides of connector portions that connect the blades with the arms. Therefore, impact forces produced on collision with the resilient stopping members cancel out each other at the connector portions. No extra force acts on the connector portions. Consequently, no eccentric wear occurs on the connector portions. Hence, the durability can be enhanced. Furthermore, since the resilient stopping members for the closing blades are so located that the resilient stopping members make resilient contact with the extremity portions of the stopping members which do not pass over the shutter opening, the end surface forming a slit and affecting the amount of exposure is not damaged, even if the closing blades repeatedly collide against the resilient stopping members. The exposure accuracy can thus be maintained, and the durability can be enhanced.

Claims (20)

What is claimed is:
1. A focal-plane shutter comprising:
a shutter plate having a shutter opening;
a plurality of opening blades for opening and closing the shutter opening;
arms connected by connector portions to the opening blades for driving the opening blades parallel to the shutter opening; and
resilient stopping members disposed to make resilient contact with the opening blades at opening positions thereof where the opening blades are retracted from the shutter opening, the resilient stopping members being plural in number and being positioned to make resilient contact with the opening blades on opposite sides of the connector portions.
2. A focal-plane shutter comprising:
a shutter plate having a shutter opening;
a plurality of closing blades for opening and closing the shutter opening;
arms connected by connector portions to the closing blades for driving the closing blades parallel to the shutter opening; and
resilient stopping members disposed to make resilient contact with the closing blades at closing positions thereof where the closing blades close the shutter opening, the resilient stopping members being plural in number and being positioned to make resilient contact with the closing blades on opposite sides of the connector portions.
3. A focal-plane shutter according to claim 2; wherein the closing blades make resilient contact with the resilient stopping members at portions of the closing blades that do not pass over the shutter opening.
4. A focal-plane shutter comprising: a shutter plate having a shutter opening; a plurality of opening blades displaceable in an opening direction to a shutter-opening position wherein the opening blades do not cover the shutter opening and displaceable in a closing direction to a shutter-closing position wherein the opening blades cover the shutter opening, the plurality of opening blades including a slit-forming blade and one or more cover blades; arms pivotally connected to the opening blades by connector portions for displacing the opening blades to the shutter-opening and shutter-closing positions; and at least two resilient stopping members disposed to make resilient contact with the opening blades when the opening blades are displaced to the shutter-opening position, the at least two resilient stopping members being positioned on opposite sides of the particular connector portions connecting the slit-forming blade to the arms when the opening blades are in the shutter-opening position.
5. A focal-plane shutter according to claim 4; wherein the number of resilient stopping members is two.
6. A focal-plane shutter according to claim 5; wherein the two resilient stopping members are positioned on opposite sides of the particular connector portions with respect to imaginary planes which pass through respective ones of the particular connector portions and which extend parallel to the opening direction of displacement of the opening blades.
7. A focal-plane shutter according to claim 4; wherein the at least two resilient stopping members are positioned on opposite sides of the particular connector portions with respect to imaginary planes which pass through respective ones of the particular connector portions and which extend parallel to the opening direction of displacement of the opening blades.
8. A focal-plane shutter comprising: a shutter plate having a shutter opening; a plurality of closing blades displaceable in a closing direction to a shutter-closing position wherein the closing blades cover the shutter opening and displaceable in an opening direction to a shutter-opening position wherein the closing blades do not cover the shutter opening, the closing blades including a slit-forming blade and one or more cover blades; arms pivotally connected to the closing blades by connector portions for displacing the closing blades to the shutter-closing and shutter-opening positions; and at least two resilient stopping members disposed to make resilient contact with the closing blades when the closing blades are displaced to the shutter-closing position, the at least two resilient stopping members being positioned on opposite sides of the particular connector portions connecting the slit-forming blade to the arms when the closing blades are in the shutter-closing position.
9. A focal-plane shutter according to claim 8; wherein the number of resilient stopping members is two.
10. A focal-plane shutter according to claim 9; wherein the two resilient stopping members are positioned on opposite sides of the particular connector portions with respect to imaginary planes passing through respective ones of the particular connector portions and extending parallel to the closing direction of displacement of the closing blades.
11. A focal-plane shutter according to claim 8; wherein the at least two resilient stopping members are positioned on opposite sides of the particular connector portions with respect to imaginary planes passing through respective ones of the particular connector portions and extending parallel to the closing direction of displacement of the closing blades.
12. A focal-plane shutter according to claim 11; wherein the slit-forming blade has a lower edge center portion which passes over the shutter opening during displacement of the closing blades and two lower edge extremity portions on opposite sides of the lower edge center portion and which do not pass over the shutter opening during displacement of the closing blades; and wherein the at least two resilient stopping members are positioned to make resilient contact with the lower edge extremity portions but not the lower edge center portion of the slit-forming blade.
13. A focal-plane shutter according to claim 8; wherein the slit-forming blade has a lower edge center portion which passes over the shutter opening during displacement of the closing blades and two lower edge extremity portions on opposite sides of the lower edge center portion and which do not pass over the shutter opening during displacement of the closing blades; and wherein the at least two resilient stopping members are positioned to make resilient contact with the lower edge extremity portions but not the lower edge center portion of the slit-forming blade.
14. A focal-plane shutter comprising: a shutter plate having a shutter opening; a plurality of opening blades displaceable in an opening direction to a shutter-opening position wherein the opening blades do not cover the shutter opening and displaceable in a closing direction to a shutter-closing position wherein the opening blades cover the shutter opening, the plurality of opening blades including a slit-forming blade and one or more cover blades; first arms pivotally connected to the opening blades by first connector portions for displacing the opening blades to the shutter-opening and shutter-closing positions; at least two first resilient stopping members disposed to make resilient contact with the opening blades when the opening blades are displaced to the shutter-opening position, the at least two first resilient stopping members being positioned on opposite sides of the particular first connector portions connecting the slit-forming blade to the first arms when the opening blades are in the shutter-opening position; a plurality of closing blades displaceable in a closing direction to a shutter-closing position wherein the closing blades cover the shutter opening and displaceable in an opening direction to a shutter-opening position wherein the closing blades do not cover the shutter opening, the closing blades including a slit-forming blade and one or more cover blades; second arms pivotally connected to the closing blades by second connector portions for displacing the closing blades to the shutter-closing and shutter-opening positions; and at least two second resilient stopping members disposed to make resilient contact with the closing blades when the closing blades are displaced to the shutter-closing position, the at least two second resilient stopping members being positioned on opposite sides of the particular second connector portions connecting the slit-forming blade to the second arms when the closing blades are in the shutter-closing position.
15. A focal-plane shutter according to claim 4; wherein the at least two first resilient stopping members are positioned on opposite sides of the particular first connector portions with respect to imaginary planes which pass through respective ones of the particular first connector portions and which extend parallel to the opening direction of displacement of the opening blades.
16. A focal-plane shutter according to claim 15; wherein the at least two second resilient stopping members are positioned on opposite sides of the particular second connector portions with respect to imaginary planes passing through respective ones of the particular second connector portions and extending parallel to the closing direction of displacement of the closing blades.
17. A focal-plane shutter according to claim 16; wherein the closing slit-forming blade has a lower edge center portion which passes over the shutter opening during displacement of the closing blades and two lower edge extremity portions on opposite sides of the lower edge center portion and which do not pass over the shutter opening during displacement of the closing blades; and wherein the at least two second resilient stopping members are positioned to make resilient contact with the lower edge extremity portions but not the lower edge center portion of the closing slit-forming blade.
18. A focal-plane shutter according to claim 14; wherein the closing slit-forming blade has a lower edge center portion which passes over the shutter opening during displacement of the closing blades and two lower edge extremity portions on opposite sides of the lower edge center portion and which do not pass over the shutter opening during displacement of the closing blades; and wherein the at least two second resilient stopping members are positioned to make resilient contact with the lower edge extremity portions but not the lower edge center portion of the closing slit-forming blade.
19. A focal-plane shutter according to claim 14; wherein the number of first resilient stopping members is two.
20. A focal-plane shutter according to claim 14; wherein the number of second resilient stopping members is two.
US10/079,156 2001-02-20 2002-02-20 Focal-plane shutter having resilient stopping members for shutter blades Expired - Fee Related US6530703B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001042622A JP2002244178A (en) 2001-02-20 2001-02-20 Focal plane shutter
JP2001-042622 2001-02-20

Publications (2)

Publication Number Publication Date
US20020114628A1 US20020114628A1 (en) 2002-08-22
US6530703B2 true US6530703B2 (en) 2003-03-11

Family

ID=18904890

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/079,156 Expired - Fee Related US6530703B2 (en) 2001-02-20 2002-02-20 Focal-plane shutter having resilient stopping members for shutter blades

Country Status (2)

Country Link
US (1) US6530703B2 (en)
JP (1) JP2002244178A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835009B2 (en) * 2001-01-31 2004-12-28 Canon Kabushiki Kaisha Shutter apparatus
US20070032169A1 (en) * 2005-07-29 2007-02-08 Ron Neely Method for aligning and assembling two lens pieces, and a machine to accomplish this task
US20080058010A1 (en) * 2006-08-31 2008-03-06 Wicky Lee Discreetly positionable camera housing
US20080267615A1 (en) * 2006-08-29 2008-10-30 Canon Kabushiki Kaisha Shutter device and image pickup apparatus
US20080279545A1 (en) * 2007-05-07 2008-11-13 Flextronics Ap, Llc. Miniature camera shutter and filter/aperture
US20090015706A1 (en) * 2007-04-24 2009-01-15 Harpuneet Singh Auto focus/zoom modules using wafer level optics
US20090021624A1 (en) * 2007-07-19 2009-01-22 Lothar Westerweck Camera module back-focal length adjustment method and ultra compact components packaging
US20090167926A1 (en) * 2005-09-08 2009-07-02 Lothar Westerweck Auto-focus and zoom module
US20100053423A1 (en) * 2007-04-24 2010-03-04 Harpuneet Singh Small form factor modules using wafer level optics with bottom cavity and flip-chip assembly
US20110052183A1 (en) * 2007-05-07 2011-03-03 Flextronics Ap, Llc Af/zoom shutter with two blades function
US8488046B2 (en) 2007-12-27 2013-07-16 Digitaloptics Corporation Configurable tele wide module
US8545114B2 (en) 2011-03-11 2013-10-01 Digitaloptics Corporation Auto focus-zoom actuator or camera module contamination reduction feature with integrated protective membrane
US8851768B1 (en) 2013-06-14 2014-10-07 Melles-Griot Shutter with power-free blade return
US8956059B1 (en) 2014-06-26 2015-02-17 Melles-Griot Shutter with power-free magnetic detent
US8982267B2 (en) 2011-07-27 2015-03-17 Flextronics Ap, Llc Camera module with particle trap
US9274329B2 (en) 2013-04-08 2016-03-01 Melles-Griot Shutter with blade damping
US20160195796A1 (en) * 2015-01-07 2016-07-07 Seiko Precision Inc. Blade drive device and optical apparatus
CN106468844A (en) * 2015-08-21 2017-03-01 精工精密株式会社 Focal-plane shutter and optical device
US10009528B2 (en) 2011-02-24 2018-06-26 Nan Chang O-Film Optoelectronics Technology Ltd Autofocus camera module packaging with circuitry-integrated actuator system
US10101635B2 (en) * 2015-03-27 2018-10-16 Seiko Precision Inc. Blade drive device and optical apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5506293B2 (en) * 2009-08-28 2014-05-28 キヤノン株式会社 Shutter device and imaging device
JP5216034B2 (en) * 2010-02-22 2013-06-19 セイコープレシジョン株式会社 Focal plane shutter and optical equipment
JP2017037168A (en) * 2015-08-10 2017-02-16 セイコープレシジョン株式会社 Focal plane shutter and optical apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692009A (en) * 1983-10-18 1987-09-08 Canon Kabushiki Kaisha Braking device for shutter
US4847649A (en) * 1987-07-24 1989-07-11 Canon Kabushiki Kaisha Brake device for shutter
US4975722A (en) * 1989-02-10 1990-12-04 Copal Company Limited Focal plane shutter
US5034765A (en) * 1989-07-28 1991-07-23 Seikosha Co., Ltd. Focal-plane shutter
US5594521A (en) * 1994-08-24 1997-01-14 Nikon Corporation Brake apparatus for a shutter
US5664247A (en) * 1995-06-15 1997-09-02 Nikon Corporation Shutter brake mechanism

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692009A (en) * 1983-10-18 1987-09-08 Canon Kabushiki Kaisha Braking device for shutter
US4847649A (en) * 1987-07-24 1989-07-11 Canon Kabushiki Kaisha Brake device for shutter
US4975722A (en) * 1989-02-10 1990-12-04 Copal Company Limited Focal plane shutter
US5034765A (en) * 1989-07-28 1991-07-23 Seikosha Co., Ltd. Focal-plane shutter
US5594521A (en) * 1994-08-24 1997-01-14 Nikon Corporation Brake apparatus for a shutter
US5664247A (en) * 1995-06-15 1997-09-02 Nikon Corporation Shutter brake mechanism

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835009B2 (en) * 2001-01-31 2004-12-28 Canon Kabushiki Kaisha Shutter apparatus
US20070032169A1 (en) * 2005-07-29 2007-02-08 Ron Neely Method for aligning and assembling two lens pieces, and a machine to accomplish this task
US8018528B2 (en) 2005-09-08 2011-09-13 Flextronics Ap, Llc Backlash prevention system and method
US8564715B2 (en) 2005-09-08 2013-10-22 Lothar Westerweck System for stabilizing an optics assembly during translation
US20090167926A1 (en) * 2005-09-08 2009-07-02 Lothar Westerweck Auto-focus and zoom module
US7722265B2 (en) * 2006-08-29 2010-05-25 Canon Kabushiki Kaisha Shutter device and image pickup apparatus
US20080267615A1 (en) * 2006-08-29 2008-10-30 Canon Kabushiki Kaisha Shutter device and image pickup apparatus
US8874178B2 (en) 2006-08-31 2014-10-28 Flextronics Ap, Llc Discreetly positional camera housing
US8112128B2 (en) 2006-08-31 2012-02-07 Flextronics Ap, Llc Discreetly positionable camera housing
US20080058010A1 (en) * 2006-08-31 2008-03-06 Wicky Lee Discreetly positionable camera housing
US20100053423A1 (en) * 2007-04-24 2010-03-04 Harpuneet Singh Small form factor modules using wafer level optics with bottom cavity and flip-chip assembly
US8605208B2 (en) 2007-04-24 2013-12-10 Digitaloptics Corporation Small form factor modules using wafer level optics with bottom cavity and flip-chip assembly
US20090015706A1 (en) * 2007-04-24 2009-01-15 Harpuneet Singh Auto focus/zoom modules using wafer level optics
US20080279544A1 (en) * 2007-05-07 2008-11-13 Flextronics Ap, Llc. Camera blade shutter module
US7798730B2 (en) * 2007-05-07 2010-09-21 Flextronics Ap, Llc Camera blade shutter module
US7806606B2 (en) 2007-05-07 2010-10-05 Flextronics Ap, Llc Miniature camera shutter and filter/aperture
US20080279545A1 (en) * 2007-05-07 2008-11-13 Flextronics Ap, Llc. Miniature camera shutter and filter/aperture
US8083421B2 (en) 2007-05-07 2011-12-27 Flextronics Ap, Llc AF/zoom shutter with two blades function
US20110052183A1 (en) * 2007-05-07 2011-03-03 Flextronics Ap, Llc Af/zoom shutter with two blades function
US7825985B2 (en) 2007-07-19 2010-11-02 Flextronics Ap, Llc Camera module back-focal length adjustment method and ultra compact components packaging
US8937681B2 (en) 2007-07-19 2015-01-20 Digitaloptics Corporation Camera module back-focal length adjustment method and ultra compact components packaging
US20100325883A1 (en) * 2007-07-19 2010-12-30 Flextronics Ap, Llc Camera module back-focal length adjustment method and ultra compact components packaging
US20090021624A1 (en) * 2007-07-19 2009-01-22 Lothar Westerweck Camera module back-focal length adjustment method and ultra compact components packaging
US8488046B2 (en) 2007-12-27 2013-07-16 Digitaloptics Corporation Configurable tele wide module
US10009528B2 (en) 2011-02-24 2018-06-26 Nan Chang O-Film Optoelectronics Technology Ltd Autofocus camera module packaging with circuitry-integrated actuator system
US8545114B2 (en) 2011-03-11 2013-10-01 Digitaloptics Corporation Auto focus-zoom actuator or camera module contamination reduction feature with integrated protective membrane
US8982267B2 (en) 2011-07-27 2015-03-17 Flextronics Ap, Llc Camera module with particle trap
US9274329B2 (en) 2013-04-08 2016-03-01 Melles-Griot Shutter with blade damping
US8851768B1 (en) 2013-06-14 2014-10-07 Melles-Griot Shutter with power-free blade return
US8956059B1 (en) 2014-06-26 2015-02-17 Melles-Griot Shutter with power-free magnetic detent
US20160195796A1 (en) * 2015-01-07 2016-07-07 Seiko Precision Inc. Blade drive device and optical apparatus
US9658516B2 (en) * 2015-01-07 2017-05-23 Seiko Precision Inc. Blade drive device and optical apparatus
US10101635B2 (en) * 2015-03-27 2018-10-16 Seiko Precision Inc. Blade drive device and optical apparatus
CN106468844A (en) * 2015-08-21 2017-03-01 精工精密株式会社 Focal-plane shutter and optical device

Also Published As

Publication number Publication date
US20020114628A1 (en) 2002-08-22
JP2002244178A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
US6530703B2 (en) Focal-plane shutter having resilient stopping members for shutter blades
TWI425307B (en) Focal plane shutter for cameras
JP3965314B2 (en) Focal plane shutter for camera
US4231650A (en) Blade type focal plane shutter
US20040042787A1 (en) Focal-plane shutter for cameras
JP2016126246A (en) Blade drive device and optical instrument
JP5753070B2 (en) Focal plane shutter and optical apparatus having the same
JP3196128B2 (en) Focal plane shutter
JP4060671B2 (en) Focal plane shutter for camera
JP3822955B2 (en) Focal plane shutter
JP4017749B2 (en) Focal plane shutter for camera
JPH10282544A (en) Focal plane shutter
JPH07333684A (en) Focal plane shutter for camera
JP4216620B2 (en) Focal plane shutter for camera
JP4276004B2 (en) Picture frame opening and closing device
JP3705854B2 (en) Focal plane shutter for camera
US4775872A (en) Shutter mechanism
JP2003330063A (en) Shutter device
JP2917226B2 (en) Focal plane shutter
US6350069B1 (en) Focal-plane shutter for camera
JP4034432B2 (en) Focal plane shutter for camera
JP4105804B2 (en) Focal plane shutter for camera
JP3220823B2 (en) Blade support device for focal plane shutter for camera
JP4413370B2 (en) Focal plane shutter
JP2000250095A (en) Double light shield system focal plane shutter for camera

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEIKO PRECISION INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAKANO, YOICHI;TAKAHASHI, HIROSHI;REEL/FRAME:013630/0398

Effective date: 20021023

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20150311