US6423426B1 - High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof - Google Patents

High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof Download PDF

Info

Publication number
US6423426B1
US6423426B1 US09/720,139 US72013901A US6423426B1 US 6423426 B1 US6423426 B1 US 6423426B1 US 72013901 A US72013901 A US 72013901A US 6423426 B1 US6423426 B1 US 6423426B1
Authority
US
United States
Prior art keywords
steel sheet
temperature
mass
cooling
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/720,139
Other languages
English (en)
Inventor
Takashi Kobayashi
Kei Sakata
Akio Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Assigned to KAWASAKI STEEL CORPORATION reassignment KAWASAKI STEEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAKATA, KEI, SHINOHARA, AKIO, KOBAYASHI, TAKASHI
Application granted granted Critical
Publication of US6423426B1 publication Critical patent/US6423426B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a high-strength galvanized steel sheet and in particular to an improvement in ductility of a high-strength galvanized steel sheet produced in a continuous galvanizing line.
  • a structure strengthening type steel sheet with a composite structure of ferrite and a low-temperature transformation phase As a high-strength steel sheet excellent in ductility, there is suggested a structure strengthening type steel sheet with a composite structure of ferrite and a low-temperature transformation phase.
  • a dual phase type steel sheet having a composite structure of ferrite and martensite is typical of this structure strengthening type steel sheet.
  • a high-ductility steel sheet using transformation-inducing plasticity resulting from retained austenite has become practicable.
  • An example of a method for producing a structure strengthening type high-strength galvanized steel sheet in a continuous galvanizing line is a method that makes it easy to produce a low-temperature transformation phase, such as martensite by adding an alloying element causing a rise in hardenability, such as Cr or Mo, in a great amount to the steel.
  • an alloying element causing a rise in hardenability, such as Cr or Mo in a great amount to the steel.
  • Japanese Patent Application Publication No. 62-40405 suggests a manufacturing method of a structure strengthening type alloyed galvanized steel sheet having high-strength, using a continuous galvanizing line for heating sheet steel comprising C: 0.005-0.15%, Mn: 0.3-2.0%, and Cr: 0.03-0.8% to a temperature between Ac 1 transformation temperature and Ac 3 transformation temperature, subjecting the steel sheet to galvanizing treatment in the middle of cooling the steel sheet, subjecting the steel sheet to alloying treatment wherein the steel sheet is heated to a temperature between 500° C. and Ac 1 transformation temperature, and subsequently cooling the steel sheet to 300° C.
  • This manufacturing method of alloyed galvanized steel sheet having high-strength is characterized in that the cooling after the heating to a temperature between Ac 1 transformation temperature and Ac 3 transformation temperature, and the cooling to 300° C. after the alloying treatment are performed at cooling rates that are not less than a critical cooling-rate defined by an equation related to the Cr and Mn content.
  • a dual phase type steel sheet comprising, in a ferrite base, a low-temperature transformation structure made mainly of martensite is thereby prepared and a steel sheet having an alloyed galvanized layer thereon is produced.
  • Japanese Patent Application Laid-Open No. 6-93340 suggests a manufacturing method of a high-strength, alloyed, galvanized steel sheet comprising heating and holding at not less than recrystallization temperature and not less than Ac 1 transformation temperature, subsequent rapid cooling to not more than Ms point temperature, heating at a temperature that is not less than the Ms point temperature and that is not less than galvanizing-bath temperature and alloying-furnace temperature, and subsequent immersion into a galvanizing-tank.
  • Japanese Patent Application Laid-Open No. 6-108152 suggests a manufacturing method of a high-strength, alloyed, galvanized steel sheet excellent in bendability, comprising a recrystallization annealing step involving holding at a temperature from (Ac 3 transformation temperature ⁇ 50° C. ) to 900° C. for at least 1 second or more, a step of performing galvanization, and a subsequent step of conducting reheating treatment at a temperature from Ac 1 transformation temperature to 250° C.
  • cooling is performed from a temperature higher than Ms point temperature to the Ms point temperature or lower at a cooling rate that is not less than a critical cooling rate, which depends on the amounts of alloying elements, after the recrystallization annealing step and before the reheating treatment step.
  • Both of the techniques described in the Japanese Patent Application Laid-Open No. 6-93340 and the Japanese Patent Application Laid-Open No. 6-108152 are manufacturing methods of a high-strength, alloyed, galvanized steel sheet in which the steel sheet is quenched from an austenite temperature range to a temperature not more than Ms point temperature before galvanizing or alloying treatment to produce a steel sheet having martensite structure and then this is reheated to produce tempered martensite.
  • the present invention provides a high-strength galvanized steel sheet which has sufficient ductility for a raw material of car parts and well-balanced strength and elongation and a manufacturing method thereof, solving the above-mentioned problems in the prior art.
  • the high-strength galvanized steel sheet of the present invention is desirably produced using a continuous galvanizing line.
  • the structure of steel sheet in order to make the structure of steel sheet up to a composite structure comprising tempered martensite, retained austenite, and the balance of ferrite and a low-temperature transformation phase, the structure of steel sheet whose chemical composition is adjusted within a given range is first made to a microstructure having lath-like martensite and then the steel sheet is subjected to reheating and galvanizing treatments under given conditions in a continues galvanizing line.
  • the steel sheet can be made to have the above-mentioned composite structure comprising tempered martensite, retained austenite, and the balance of ferrite and the low-temperature transformation phase, thereby coming to a high-strength galvanized steel sheet that is very good in ductility.
  • the present invention has been made on the basis of the above-mentioned findings.
  • a first present invention is a galvanized steel sheet having excellent ductility, characterized by comprising, as a topmost layer of the steel sheet, a galvanized layer or an alloyed galvanized layer, the steel sheet having a composition comprising C: 0.05-0.20 mass %, Si: 0.3-1.8 mass %, Mn: 1.0-3.0 mass %, Fe of the balance and inevitable impurities, and comprising a composite structure having tempered martensite, retained austenite, ferrite and a low-temperature transformation phase, the tempered martensite being contained in an amount of 20% or more by volume, and the retained austenite being contained in an amount of 2% or more by volume.
  • the first present invention not only the above-mentioned composition but also one or more groups selected from the following groups (a)-(d) may be comprised:
  • a second present invention is a method for manufacturing a galvanized steel sheet characterized by performing successively a primary step of subjecting steel sheet having a composition comprising C: 0.05-0.20 mass %, Si: 0.3-1.8 mass %, Mn: 1.0-3.0 mass %, Fe of the balance and inevitable impurities to primary heat treatment in which the steel sheet is held at a temperature of (Ac 3 transformation temperature ⁇ 50° C.) or higher for 5 seconds or more, and then cooling the steel sheet to a temperature that is not more than Ms point temperature at a cooling rate of 10° C./sec. or more; a secondary step of subjecting the steel sheet to secondary heat treatment in which the steel sheet is held within a temperature range between Ac 1 transformation temperature and Ac 3 transformation temperature for 5-120 sec.
  • the tertiary step is preferably a step of subjecting the steel sheet to galvanizing treatment to form the galvanized layer on the surface of the steel sheet, reheating the steel sheet to a temperature range of 450 to 550° C. so as to subject the galvanized layer to alloying treatment and, after the alloying treatment, cooling the steel sheet to 300° C. at a cooling rate of 5° C./sec. or more.
  • the steel sheet is made to hot-rolled steel sheet that has been subjected to final hot rolling at a temperature that is (Ar 3 transformation temperature ⁇ 50° C.) or higher, and the primary step is replaced by a hot-rolled steel sheet structure adjusting step of cooling the steel sheet rapidly to a temperature that is Ms point temperature or lower at a cooling rate of 10° C./sec. or more after the final hot rolling.
  • the high-strength galvanized steel sheet of the present invention is a galvanized steel sheet having, as a topmost layer thereof, a galvanized layer or an alloyed galvanized layer.
  • % in the composition means mass %.
  • C is an essential element for making the strength of any steel sheet high and has an effect for producing retained austenite and the low-temperature transformation phase.
  • C is an indispensable element.
  • the C content is below 0.05%, desired high-strength cannot be obtained.
  • it is over 0.20% weldability comes to deteriorate. Therefore, the C content is limited within a range of 0.05 to 0.20%.
  • Mn has effects for strengthening steel by solid-solution hardening, improving hardenability of steel, and promoting the production of retained austenite and the low-temperature transformation phase. Such effects can be recognized if the Mn content is 1.0% or more. On the other hand, if Mn is contained in an amount over 3.0%, the effects are saturated and the effects matching with the content cannot be expected. Thus, costs rise. Therefore, the Mn content is limited within a range of 1.0-3.0%.
  • Si has effects for strengthening steel by solid-solution hardening, and stabilizing austenite to promote the production of retained austenite. Such effects can be recognized if the Si content is 0.3% or more. On the other hand, if Si is contained in an amount over 1.8%, capability of being galvanized deteriorates remarkably. Therefore, the Si content is limited within a range of 0.3-1.8%.
  • the steel sheet of the present invention may comprise not only the above-mentioned composition but also one or more selected from the following groups (a)-(d).
  • Cr and Mo are elements having effects for improving hardenability of steel and promoting the production of the low-temperature transformation phase. Such effects can be recognized if one or two selected from Cr and Mo are contained in a total amount of 0.05% or more. On the other hand, if they are contained in a total amount over 1.0%, the effects are saturated and the effects matching with the content cannot be expected. Thus, economical disadvantage is caused. Therefore, the total amount of one or two selected from Cr and Mo is desirably limited within a range of 0.05-1.0%.
  • B is an element having an effect for improving hardenability of steel. If necessary, B is contained. However, if the B content is over 0.003%, the effect is saturated. Therefore, the B content is desirably limited to 0.003% or less. More desirable content is 0.001-0.002%.
  • Ti, Nb and V have effects for making carbide, nitride and attaining high strength of steel by precipitation hardening. If necessary, these may be added. Such effects are recognized in the case that the total amount of one or more selected from Ti, Nb and V is 0.01% or more. On the other hand, if they are contained in a total amount of more than 0.1%, too high strength is attained so that ductility deteriorates. Therefore, the total amount of one or more selected from Ti, Nb and V is preferably limited within a range of 0.01-0.1%.
  • Ca and REM have an effect for controlling the shape of sulfide inclusion, thereby having an effect for improving stretch-flanging property of any steel sheet. Such an effect is saturated if the total amount of one or two selected from Ca and REM is over 0.01%. Therefore, the total amount of one or two selected from Ca and REM is preferably limited to 0.01% or less.
  • the steel sheet used in the present invention comprises Fe of the balance and inevitable impurities as other than the above-mentioned chemical components.
  • the inevitable impurities may be as follows: Al: 0.1% or less, P: 0.05% or less and S: 0.02% or less.
  • the steel sheet of the present invention is a steel sheet having the above-mentioned chemical composition and comprising a composite structure of tempered martensite, retained austenite, ferrite and a low-temperature transformation phase.
  • the tempered martensite in the present invention means a phase produced when lath-like martensite is heated and held within a temperature range (from Ac 1 transformation temperature to Ac 3 transformation temperature) for a short time.
  • the tempered martensite is a phase having microstructure which inherits the shape of the lath-like martensite before tempering.
  • the tempered martensite is made soft by tempering to have sufficient plastic deformation ability. Therefore, it is a phase effective for an improvement in ductility of any high-strength steel sheet.
  • the steel sheet of the present invention comprises 20% or more by volume of such a tempered martensite phase. If the amount of the tempered martensite is below 20%, remarkable effect of improving ductility cannot be expected. Therefore, the amount of the tempered martensite in the composite structure is limited to 20% or more. If the amount of the tempered martensite is over 80%, it becomes difficult to make the strength of the steel sheet high. Thus, the amount is preferably set to 80% or less.
  • Retained austenite is transformed to martensite by strain induction upon working and has an effect for dispersing locally-applied working strain widely to improve ductility of a steel sheet.
  • the steel sheet of the present invention comprises 2% or more by volume of such retained austenite. If the amount of retained austenite is below 2%, a remarkable improvement in ductility cannot be expected. Therefore, the amount of retained austenite is limited to 2% or more.
  • the amount of retained austenite is preferably 5% or more. A larger amount of retained austenite is more preferable. However, in the steel sheet of the present invention produced through the heat history in a continuous galvanizing line, the amount is practically 10% or less.
  • tempered martensite and retained austenite are ferrite and a low-temperature transformation phase.
  • Ferrite is a soft phase containing no iron carbide, and has a high deformation ability to improve ductility of a steel sheet.
  • the steel sheet of the present invention preferably comprises 30% or more by volume of ferrite. If the amount is below 30%, the improvement in ductility is a little. On the other hand, if the amount is over 70%, it becomes difficult to make the strength of the steel sheet high. Therefore, the amount of ferrite is preferably set to 70% or less.
  • the low-temperature transformation phase referred to in the present invention means martensite that is not tempered or bainite. These low-temperature transformation phases are produced in the cooling stage in or after the secondary step in the manufacturing method of the present invention. Both of martensite and bainite are hard phases to increase the strength of a steel sheet. The amount of the low-temperature transformation phase is not especially limited. This phase is appropriately distributed in accordance with the strength of the steel sheet. In order to increase the strength sufficiently, the low-temperature transformation phase is preferably martensite, which is hard.
  • Ferrite which is a soft phase
  • the low-temperature transformation phase which is a hard phase
  • the tempered martensite and retained austenite constitute a composite structure, so that microstructure is made wherein soft phases and hard phases are mixed.
  • the high-strength galvanized steel sheet of the present invention is a galvanized steel sheet wherein a galvanized layer or an alloyed galvanized layer is formed on the topmost layer of the steel sheet having the above-mentioned composition and the above-mentioned composite structure.
  • the coating-weight of the galvanized layer may be appropriately decided in accordance with the demand degree of corrosion resistance for use parts, and is not especially defined.
  • the thickness (the coating-weight) of the galvanized layer is preferably 30-60 g/m 2 .
  • molten steel having the above-mentioned chemical composition is produced, and is cast in a usual known manner.
  • the resultant slab is hot rolled, or further cold rolled in a usual known manner to prepare steel sheet. If necessary, the steel sheet is subjected to pickling, annealing or the like step.
  • the steel sheet having the above-mentioned chemical composition is subjected to a primary step ( ⁇ circle around (1) ⁇ )of subjecting to primary heat treatment and subsequent cooling to make the structure of the steel sheet into a structure comprising martensite; a secondary step ( ⁇ circle around (2) ⁇ )of performing secondary heat treatment in a continuous galvanizing line, so as to temper martensite made by the primary heat treatment, and again austenitize a part of the structure of the steel sheet in order to generate retained austenite and a low-temperature transformation phase after cooling; and a subsequent tertiary step ( ⁇ circle around (3) ⁇ )of performing galvanization, thereby coming to a high-strength galvanized steel sheet excellent in ductility.
  • a primary step ⁇ circle around (1) ⁇ )of subjecting to primary heat treatment and subsequent cooling to make the structure of the steel sheet into a structure comprising martensite
  • a secondary step ( ⁇ circle around (2) ⁇ )of performing secondary heat treatment in a continuous galvanizing line so as to temper mar
  • the steel sheet is subjected to primary heat treatment in which the steel sheet is held at a temperature of (Ac 3 transformation temperature ⁇ 50° C.) or higher for at least 5 seconds or more, and then the steel sheet is rapidly cooled to a temperature that is not more than Ms point temperature at a cooling rate of 10° C./sec. or more.
  • This primary step causes production of 20% or more (by volume) of lath-like martensite in the steel sheet.
  • the heating and holding temperature in the primary heat treatment is below (Ac 3 transformation temperature ⁇ 50° C.), or the holding time is below 5 sec., the amount of austenite produced in the heating and holding is small so that the amount of lath-like martensite obtained after cooling becomes insufficient.
  • the cooling rate after the primary heat treatment is below 10° C./sec., the structure of the steel sheet after the cooling cannot be made to a structure comprising lath-like martensite.
  • the upper limit of cooling rate after the primary heat treatment is preferably set to 100° C./sec. or less.
  • the holding time is preferably set to from not less than 5 sec. to not more than 120 sec.
  • this primary step may be replaced by a step in which the cooling after the final hot rolling is set up to rapid cooling to not more than Ms point temperature at a cooling rate of 10° C./sec. or more.
  • the primary step it is preferred to perform the primary step as an independent step after the hot rolling.
  • the steel sheet in which 20% or more of lath-like martensite has been produced by the primary step is subjected to secondary heat treatment in which the steel sheet is held within a temperature range (between Ac 1 transformation temperature and Ac 3 transformation temperature) for 5 to 120 sec., and then the steel sheet is cooled to a temperature that is 500° C. or lower at a cooling rate of 5° C./sec. or more.
  • the lath-like martensite produced by the primary step is made to the tempered martensite and further a part of the structure of the steel sheet is again austenitized in order to produce retained austenite and the low-temperature transformation phase finally.
  • This secondary step is preferably performed in a continuous galvanizing line having both of annealing equipment and galvanizing equipment.
  • the heating and holding temperature in the secondary heat treatment is below Ac 1 transformation temperature, austenite is not regenerated and retained austenite or the low-temperature transformation phase cannot be obtained after the cooling. If the holding temperature is over Ac 3 transformation, the tempered martensite is again austenitized.
  • the cooling rate until 500° C. after the secondary heat treatment is below 5° C./sec., the cooling rate is slow so that the austenite produced in the secondary heat treatment is not turned to retained austenite or the low-temperature transformation phase but is transformed to ferrite, perlite or the like.
  • the cooling rate after the secondary heat treatment is preferably from not less than 5° C./sec. to not more than 50° C./sec.
  • This secondary step is preferably performed in a continuous galvanizing line having both of annealing equipment and galvanizing equipment.
  • the present process can be shifted to a tertiary step immediately after the secondary step.
  • productivity is improved.
  • the steel sheet that has been subjected to the secondary step is subjected to galvanizing treatment and then cooled to 300° C. at a cooling rate of 5° C./sec. or more.
  • the galvanizing treatment may be performed under usual treatment conditions in a continuous galvanizing line. The conditions are not especially limited. However, in galvanizing treatment at extremely high temperatures, it becomes difficult to keep a necessary amount of retained austenite. For this reason, the galvanization is preferably performed at 500° C. or lower. When the cooling rate after the galvanization is extremely small, it becomes difficult to keep a necessary amount of retained austenite. Therefore, the cooling rate within a temperature range from a temperature after the galvanizing treatment to 300° C. is preferably limited to 5° C./sec. or more. Preferably, the cooling rate is 50° C./sec. or less. Of course, after the galvanizing treatment, wiping for adjusting the coating-weight may be performed if necessary.
  • alloying treatment may be conducted.
  • the steel sheet after the galvanizing treatment is again heated to a temperature range of 450 to 550° C. and then the galvanized layer is alloyed.
  • cooling is preferably conducted to 300° C. at a cooling rate of 5° C./sec. or more. Alloying treatment at high temperatures makes it difficult to keep a necessary amount of retained austenite, so that the ductility of the steel sheet deteriorates. Therefore, the upper limit of alloying temperature is preferably limited to 550° C. If the alloying temperature is below 450° C., the alloying advances slowly so that productivity drops.
  • the cooling rate after the alloying treatment is extremely low, it becomes difficult to keep necessary retained austenite. Therefore, it is preferred to limit the cooling rate for a temperature range from a temperature after the alloying treatment to 300° C. to 5° C./sec. or more.
  • the steel sheet after the galvanizing treatment or the alloying treatment may be subjected to temper rolling in order to reform its shape or adjust surface-roughness or the like. If the steel sheet is subjected to such treatment as resin coating, oil and grease coating or any one of various coatings, no inconvenience arises.
  • the present invention is carried out on the assumption that the secondary heating, the galvanizing treatment and the alloying treatment of steel sheet are performed in a continuous galvanizing line having annealing equipment, galvanizing equipment and alloying equipment.
  • each of the steps may be carried out in independent equipment or an independent step.
  • Molten steels having the compositions shown in Table 1 were manufactured to in a steel converter. They were made into slabs by continuous casting. The resultant slabs were hot rolled to have a thickness of 2.6 mm. Next, they were pickled and then cold rolled to obtain steel sheets having a thickness of 1.0 mm.
  • these cold-rolled steel sheets were subjected to a primary step wherein heating and holding and then cooling were performed under primary step conditions shown in Table 2 in a continuous annealing line. After the primary step, their structures were examined to measure the amount of lath-like martensite. Further, these steel sheets that had been subjected to the primary step were subjected to a secondary step wherein heating and holding and then cooling were performed under secondary step conditions shown in Table 2 in a continuous galvanizing line, and subsequently the steel sheets were subjected to tertiary step wherein galvanizing treatment and cooling were performed, and some of the steel sheets were subjected to the alloying treatment of their galvanized layers, in which reheating was performed after the galvanizing treatment. The resultant steel sheets were examined about their microstructure and mechanical properties. The results are shown in Table 3.
  • the galvanizing treatment was conducted by immersing the steel sheets in a galvanizing tank whose bath temperature was 475° C. The steel sheets were pulled up and then their coating-weight was adjusted by gas-wiping in the manner that their coating-weight on their single surface would be 50 g/m 2 . In the case that their galvanized layer was subjected to the alloying treatment, after the wiping, the temperature of the steel sheets was raised to 500° C. at a heating rate of 10° C./sec. The holding time upon the alloying treatment was adjusted in the manner that the iron content in each galvanized layer would be 9-11%.
  • Intensity ratios of diffracted X-ray at ⁇ 111 ⁇ , ⁇ 200 ⁇ , ⁇ 220 ⁇ and ⁇ 311 ⁇ planes of the retained austenite phase in the specimens were obtained respectively, and the average value thereof was defined as the volume ratio of retained austenite.
  • yield strength (yield point) YP Yield point
  • tensile strength TS tensile strength TS
  • elongation El were measured with JIS No. 5 tensile test pieces taken out, in the direction perpendicular to the rolling direction, from the steel sheets.
  • Examples of the present invention were high-ductility and high-strength galvanized steel sheets with well-balanced strength and elongation, having a tensile strength TS of 590 MPa or more, an elongation El of 30% or more, and a strength-elongation balance (TS ⁇ El) of 21000 MPa % or more.
  • Comparative Examples which were out of the scope of the present invention, had insufficient ductility and low strength-elongation balance.
  • Molten steel B having the composition shown in Table 1 was produced to in a steel converter.
  • the steel was made into slabs by continuous casting.
  • the resultant slabs were subjected to a hot rolling step for making their thickness to 2.3 mm.
  • a hot-rolled steel sheet structure adjusting step in which they were rapidly cooled under conditions shown in Table 4 and wound into a coil form.
  • This hot-rolled steel sheet structure adjusting step was performed instead of the primary step in the manufacturing method of the present invention.
  • the microstructure of the steel sheet was examined to measure the amount of lath-like martensite.
  • this hot-rolled steel sheet was subjected to a secondary step wherein heating and holding and then cooling were performed under secondary step conditions shown in Table 4 in a continuous galvanizing line. Subsequently, the steel sheet was subjected to a tertiary step of performing galvanizing treatment, alloying treatment of the galvanized layer, and cooling.
  • the galvanizing treatment was performed in the same manner as in Example 1.
  • About the resultant steel sheet, its microstructure and mechanical properties were examined in the same manner as in Example 1. The results are shown in Table 5.
  • the galvanized steel sheet of the present invention was a high-strength galvanized steel sheet excellent in ductility, having a tensile strength TS of 590 MPa or more and a strength-elongation balance (TS ⁇ El) of 23000 MPa % or more.
  • any high-strength galvanized steel sheet thereof has very good ductility. It is possible to produce cheaply and stably a high-strength galvanized steel sheet which is very suitable for a raw material of forming products, typical examples of which are car parts. Thus, the present invention has remarkably advantageous effect for industries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
US09/720,139 1999-04-21 2000-04-19 High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof Expired - Lifetime US6423426B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11328899 1999-04-21
JP11-113288 1999-04-21
PCT/JP2000/002547 WO2000065119A1 (fr) 1999-04-21 2000-04-19 Tole d'acier recouverte de zinc par immersion a chaud, a haute resistance ayant une excellente ductilite, et procede de production correspondant

Publications (1)

Publication Number Publication Date
US6423426B1 true US6423426B1 (en) 2002-07-23

Family

ID=14608392

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/720,139 Expired - Lifetime US6423426B1 (en) 1999-04-21 2000-04-19 High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof

Country Status (7)

Country Link
US (1) US6423426B1 (de)
EP (1) EP1096029B1 (de)
KR (1) KR100638543B1 (de)
AU (1) AU3987400A (de)
CA (1) CA2334672C (de)
DE (1) DE60025711T2 (de)
WO (1) WO2000065119A1 (de)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040228679A1 (en) * 2003-05-16 2004-11-18 Lone Star Steel Company Solid expandable tubular members formed from very low carbon steel and method
US20050019601A1 (en) * 2001-06-06 2005-01-27 Jfe Steel Corporation, A Corporation Of Japan High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
US20060108035A1 (en) * 2004-11-24 2006-05-25 Weiping Sun Cold rolled, dual phase, steel sheet and method of manufacturing same
US20060144483A1 (en) * 2002-11-19 2006-07-06 Jean Beguinot Method for making an abrasion-resistant steel plate and plate obtained
US20070190353A1 (en) * 2004-03-11 2007-08-16 Hirokazu Taniguchi Hot dip galvanized composite high strength steel sheet excellent in shapeability and hole enlargement ability and method of production of same
US20070228729A1 (en) * 2003-03-06 2007-10-04 Grimmett Harold M Tubular goods with threaded integral joint connections
US20080000555A1 (en) * 2004-10-06 2008-01-03 Toshiki Nonaka High Strength Thin-Gauge Steel Sheet Excellent in Elongation and Hole Expandability and Method of Production of Same
US20080075971A1 (en) * 2006-09-27 2008-03-27 Weiping Sun High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
US20080178972A1 (en) * 2006-10-18 2008-07-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd) High strength steel sheet and method for producing the same
US20090007999A1 (en) * 2005-03-31 2009-01-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing hot-formed steel product
US20090071574A1 (en) * 2004-11-24 2009-03-19 Nucor Corporation Cold rolled dual phase steel sheet having high formability and method of making the same
US20090071575A1 (en) * 2004-11-24 2009-03-19 Nucor Corporation Hot rolled dual phase steel sheet, and method of making the same
US20090098408A1 (en) * 2007-10-10 2009-04-16 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
US20090236067A1 (en) * 2008-03-19 2009-09-24 Nucor Corporation Strip casting apparatus with casting roll positioning
US20090236068A1 (en) * 2008-03-19 2009-09-24 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
US20090288798A1 (en) * 2008-05-23 2009-11-26 Nucor Corporation Method and apparatus for controlling temperature of thin cast strip
US20110139317A1 (en) * 2004-01-14 2011-06-16 Nippon Steel Corporation Hot dip galvanized high strength steel sheet excellent in plating adhesion and hole expandability and method of production of same
US20110252856A1 (en) * 2010-04-14 2011-10-20 Honda Motor Co., Ltd. Hot press forming method
CN104561775A (zh) * 2013-10-10 2015-04-29 鞍钢股份有限公司 一种经济型高强度热轧基板镀锌板及其制造方法
CN104561775B (zh) * 2013-10-10 2016-11-30 鞍钢股份有限公司 一种经济型高强度热轧基板镀锌板及其制造方法
US20170321297A1 (en) * 2014-12-12 2017-11-09 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same
US10385419B2 (en) 2016-05-10 2019-08-20 United States Steel Corporation High strength steel products and annealing processes for making the same
US11155902B2 (en) 2006-09-27 2021-10-26 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
US11193180B2 (en) 2016-04-14 2021-12-07 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090731B2 (en) * 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
JP4085583B2 (ja) 2001-02-27 2008-05-14 Jfeスチール株式会社 高強度冷延溶融亜鉛メッキ鋼板およびその製造方法
EP1288322A1 (de) 2001-08-29 2003-03-05 Sidmar N.V. Ultrahochfester Stahl, Produkt aus diesem Stahl und Verfahren zu seiner Herstellung
FR2830260B1 (fr) 2001-10-03 2007-02-23 Kobe Steel Ltd Tole d'acier a double phase a excellente formabilite de bords par etirage et procede de fabrication de celle-ci
CN1306047C (zh) * 2002-03-18 2007-03-21 杰富意钢铁株式会社 延展性和耐疲劳特性优良的高强度热镀锌钢板的制造方法
EP1431406A1 (de) 2002-12-20 2004-06-23 Sidmar N.V. Stahlzusammensetzung zur Herstellung von mehrphasigen kaltgewalzten Stahlprodukten
US7314532B2 (en) * 2003-03-26 2008-01-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength forged parts having high reduction of area and method for producing same
DE102004007071B4 (de) * 2004-02-13 2006-01-05 Audi Ag Verfahren zur Herstellung eines Bauteils durch Umformen einer Platine und Vorrichtung zur Durchführung des Verfahrens
DE102006001198A1 (de) * 2006-01-10 2007-07-12 Sms Demag Ag Verfahren und Vorrichtung zur Einstellung gezielter Eigenschaftskombinationen bei Mehrphasenstählen
DE102006019567B3 (de) * 2006-04-27 2007-11-08 Daimlerchrysler Ag Verfahren zum Herstellen umgeformter Stahlbauteile
CN101460647B (zh) * 2006-07-14 2015-05-20 株式会社神户制钢所 高强度钢板及其制造方法
DE102006054300A1 (de) * 2006-11-14 2008-05-15 Salzgitter Flachstahl Gmbh Höherfester Dualphasenstahl mit ausgezeichneten Umformeigenschaften
JP5223360B2 (ja) * 2007-03-22 2013-06-26 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2009054539A1 (ja) * 2007-10-25 2009-04-30 Jfe Steel Corporation 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
DE102007058222A1 (de) * 2007-12-03 2009-06-04 Salzgitter Flachstahl Gmbh Stahl für hochfeste Bauteile aus Bändern, Blechen oder Rohren mit ausgezeichneter Umformbarkeit und besonderer Eignung für Hochtemperatur-Beschichtungsverfahren
JP5369663B2 (ja) * 2008-01-31 2013-12-18 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4737319B2 (ja) 2009-06-17 2011-07-27 Jfeスチール株式会社 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
DE102009053368A1 (de) * 2009-11-14 2011-05-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Fertigungsanlage zum Herstellen eines Blechformteils mit einer Korrosionsschutzbeschichtung
JP4893844B2 (ja) * 2010-04-16 2012-03-07 Jfeスチール株式会社 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5765116B2 (ja) * 2010-09-29 2015-08-19 Jfeスチール株式会社 深絞り性および伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN102952994B (zh) * 2011-08-25 2015-08-26 宝山钢铁股份有限公司 耐火抗震建筑用钢及其生产方法
DE102013010946B3 (de) * 2013-06-28 2014-12-31 Daimler Ag Verfahren und Anlage zum Herstellen eines pressgehärteten Stahlblechbauteils
MX2020010210A (es) * 2018-03-30 2020-11-09 Jfe Steel Corp Lamina de acero de alta resistencia y metodo para fabricar la misma.
WO2019188640A1 (ja) 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN111455142B (zh) * 2020-03-30 2021-09-07 常熟市精灵标准件有限公司 一种自锁螺母的热处理方法
CN114107794B (zh) * 2020-08-31 2023-08-11 宝山钢铁股份有限公司 一种980MPa级超低碳马氏体加残奥型超高扩孔钢及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240405A (ja) 1985-08-19 1987-02-21 Fujikura Ltd パワ−伝送用ライトガイドの入射端部構造
JPH02175817A (ja) 1988-12-28 1990-07-09 Kawasaki Steel Corp 複合組織を有する加工性に優れた熱延高張力鋼板の製造方法
EP0585843A2 (de) 1992-08-28 1994-03-09 Toyota Jidosha Kabushiki Kaisha Hochverformbares Stahlblech mit Möglichkeit zum erhöhen der Festigkeit durch Behandeln mit einem hochdichtem Energiestrahl
JPH0693340A (ja) 1992-09-14 1994-04-05 Kobe Steel Ltd 伸びフランジ性の優れた高強度合金化溶融亜鉛めっき鋼板の製造方法及び製造設備
JPH06108152A (ja) 1992-09-30 1994-04-19 Kobe Steel Ltd 曲げ加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JPH06145892A (ja) 1992-11-02 1994-05-27 Nippon Steel Corp プレス成形性の良好な高強度鋼板
US5332453A (en) 1992-03-06 1994-07-26 Kawasaki Steel Corporation High tensile steel sheet having excellent stretch flanging formability
JPH09263883A (ja) 1996-03-28 1997-10-07 Kobe Steel Ltd 耐孔明き腐食性および加工性に優れた高強度熱延鋼板、および高強度亜鉛系めっき鋼板並びにそれらの製造方法
US6312536B1 (en) * 1999-05-28 2001-11-06 Kabushiki Kaisha Kobe Seiko Sho Hot-dip galvanized steel sheet and production thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240405A (ja) 1985-08-19 1987-02-21 Fujikura Ltd パワ−伝送用ライトガイドの入射端部構造
JPH02175817A (ja) 1988-12-28 1990-07-09 Kawasaki Steel Corp 複合組織を有する加工性に優れた熱延高張力鋼板の製造方法
US5332453A (en) 1992-03-06 1994-07-26 Kawasaki Steel Corporation High tensile steel sheet having excellent stretch flanging formability
US5382302A (en) 1992-03-06 1995-01-17 Kawasaki Steel Corporation Method of producing a high tensile steel sheet having excellent stretch flanging formability
EP0585843A2 (de) 1992-08-28 1994-03-09 Toyota Jidosha Kabushiki Kaisha Hochverformbares Stahlblech mit Möglichkeit zum erhöhen der Festigkeit durch Behandeln mit einem hochdichtem Energiestrahl
JPH0693340A (ja) 1992-09-14 1994-04-05 Kobe Steel Ltd 伸びフランジ性の優れた高強度合金化溶融亜鉛めっき鋼板の製造方法及び製造設備
JPH06108152A (ja) 1992-09-30 1994-04-19 Kobe Steel Ltd 曲げ加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JPH06145892A (ja) 1992-11-02 1994-05-27 Nippon Steel Corp プレス成形性の良好な高強度鋼板
JPH09263883A (ja) 1996-03-28 1997-10-07 Kobe Steel Ltd 耐孔明き腐食性および加工性に優れた高強度熱延鋼板、および高強度亜鉛系めっき鋼板並びにそれらの製造方法
US6312536B1 (en) * 1999-05-28 2001-11-06 Kabushiki Kaisha Kobe Seiko Sho Hot-dip galvanized steel sheet and production thereof

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050019601A1 (en) * 2001-06-06 2005-01-27 Jfe Steel Corporation, A Corporation Of Japan High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
US20080253921A1 (en) * 2002-11-19 2008-10-16 Industeel Creusot Method for Making an Abrasion-Resistant Steel Plate and Plate Obtained
US7998285B2 (en) 2002-11-19 2011-08-16 Industeel Creusot Abrasion-resistant steel plate
US20060144483A1 (en) * 2002-11-19 2006-07-06 Jean Beguinot Method for making an abrasion-resistant steel plate and plate obtained
US7462251B2 (en) * 2002-11-19 2008-12-09 Usinor Method for making an abrasion-resistant steel plate
US20070228729A1 (en) * 2003-03-06 2007-10-04 Grimmett Harold M Tubular goods with threaded integral joint connections
US20080289814A1 (en) * 2003-05-16 2008-11-27 Reavis Gary M Solid Expandable Tubular Members Formed From Very Low Carbon Steel and Method
US20040228679A1 (en) * 2003-05-16 2004-11-18 Lone Star Steel Company Solid expandable tubular members formed from very low carbon steel and method
US9150946B2 (en) * 2004-01-14 2015-10-06 Nippon Steel & Sumitomo Metal Corporation Hot dip galvanized high strength steel sheet excellent in plating adhesion and hole expandability and method of production of same
US20110139317A1 (en) * 2004-01-14 2011-06-16 Nippon Steel Corporation Hot dip galvanized high strength steel sheet excellent in plating adhesion and hole expandability and method of production of same
US20070190353A1 (en) * 2004-03-11 2007-08-16 Hirokazu Taniguchi Hot dip galvanized composite high strength steel sheet excellent in shapeability and hole enlargement ability and method of production of same
CN101035921B (zh) * 2004-10-06 2012-07-04 新日本制铁株式会社 延伸率和扩孔性优良的高强度薄钢板及其制造方法
US8137487B2 (en) 2004-10-06 2012-03-20 Nippon Steel Corporation Method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability
US20090314395A1 (en) * 2004-10-06 2009-12-24 Nippon Steel Corporation High strength thin-gauge steel sheet excellent in elongation and hole expandability and method of production of same
US20080000555A1 (en) * 2004-10-06 2008-01-03 Toshiki Nonaka High Strength Thin-Gauge Steel Sheet Excellent in Elongation and Hole Expandability and Method of Production of Same
US7959747B2 (en) 2004-11-24 2011-06-14 Nucor Corporation Method of making cold rolled dual phase steel sheet
US8337643B2 (en) 2004-11-24 2012-12-25 Nucor Corporation Hot rolled dual phase steel sheet
US20060108035A1 (en) * 2004-11-24 2006-05-25 Weiping Sun Cold rolled, dual phase, steel sheet and method of manufacturing same
US8366844B2 (en) 2004-11-24 2013-02-05 Nucor Corporation Method of making hot rolled dual phase steel sheet
US20090071575A1 (en) * 2004-11-24 2009-03-19 Nucor Corporation Hot rolled dual phase steel sheet, and method of making the same
US7442268B2 (en) 2004-11-24 2008-10-28 Nucor Corporation Method of manufacturing cold rolled dual-phase steel sheet
US20080289726A1 (en) * 2004-11-24 2008-11-27 Nucor Corporation Cold rolled, dual phase, steel sheet and method of manufacturing same
US20090071574A1 (en) * 2004-11-24 2009-03-19 Nucor Corporation Cold rolled dual phase steel sheet having high formability and method of making the same
US7879160B2 (en) 2004-11-24 2011-02-01 Nucor Corporation Cold rolled dual-phase steel sheet
US20090007999A1 (en) * 2005-03-31 2009-01-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing hot-formed steel product
US11155902B2 (en) 2006-09-27 2021-10-26 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
US7608155B2 (en) 2006-09-27 2009-10-27 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
US20080075971A1 (en) * 2006-09-27 2008-03-27 Weiping Sun High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
US20100043925A1 (en) * 2006-09-27 2010-02-25 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
US20080178972A1 (en) * 2006-10-18 2008-07-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd) High strength steel sheet and method for producing the same
US8435363B2 (en) 2007-10-10 2013-05-07 Nucor Corporation Complex metallographic structured high strength steel and manufacturing same
US9157138B2 (en) 2007-10-10 2015-10-13 Nucor Corporation Complex metallographic structured high strength steel and method of manufacturing
US20090098408A1 (en) * 2007-10-10 2009-04-16 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
US8875777B2 (en) 2008-03-19 2014-11-04 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
US8631853B2 (en) 2008-03-19 2014-01-21 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
US20090236068A1 (en) * 2008-03-19 2009-09-24 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
US9120147B2 (en) 2008-03-19 2015-09-01 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
US8002016B2 (en) 2008-03-19 2011-08-23 Nucor Corporation Strip casting apparatus with casting roll positioning
US20090236067A1 (en) * 2008-03-19 2009-09-24 Nucor Corporation Strip casting apparatus with casting roll positioning
US20090288798A1 (en) * 2008-05-23 2009-11-26 Nucor Corporation Method and apparatus for controlling temperature of thin cast strip
US20110252856A1 (en) * 2010-04-14 2011-10-20 Honda Motor Co., Ltd. Hot press forming method
CN104561775A (zh) * 2013-10-10 2015-04-29 鞍钢股份有限公司 一种经济型高强度热轧基板镀锌板及其制造方法
CN104561775B (zh) * 2013-10-10 2016-11-30 鞍钢股份有限公司 一种经济型高强度热轧基板镀锌板及其制造方法
US20170321297A1 (en) * 2014-12-12 2017-11-09 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same
US10590504B2 (en) * 2014-12-12 2020-03-17 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same
US11193180B2 (en) 2016-04-14 2021-12-07 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
US10385419B2 (en) 2016-05-10 2019-08-20 United States Steel Corporation High strength steel products and annealing processes for making the same
US11268162B2 (en) 2016-05-10 2022-03-08 United States Steel Corporation High strength annealed steel products
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
US11993823B2 (en) 2019-08-19 2024-05-28 United States Steel Corporation High strength annealed steel products and annealing processes for making the same

Also Published As

Publication number Publication date
EP1096029B1 (de) 2006-01-25
CA2334672C (en) 2009-09-22
AU3987400A (en) 2000-11-10
DE60025711T2 (de) 2006-09-14
EP1096029A4 (de) 2004-09-15
KR100638543B1 (ko) 2006-10-26
EP1096029A1 (de) 2001-05-02
CA2334672A1 (en) 2000-11-02
KR20010043874A (ko) 2001-05-25
WO2000065119A1 (fr) 2000-11-02
DE60025711D1 (de) 2006-04-13

Similar Documents

Publication Publication Date Title
US6423426B1 (en) High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof
JP6686035B2 (ja) 高強度鋼製品の製造方法およびこれによって得られる鋼製品
JP5042232B2 (ja) 成形性及びメッキ特性に優れた高強度冷延鋼板、これを用いた亜鉛系メッキ鋼板及びその製造方法
KR100608555B1 (ko) 연성 및 내피로특성에 우수한 고장력 용융 아연도금강판의제조방법
JP3840864B2 (ja) 高張力溶融亜鉛めっき鋼板およびその製造方法
US20030129444A1 (en) Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
US10889873B2 (en) Complex-phase steel sheet having excellent formability and method of manufacturing the same
US9598755B2 (en) High strength galvanized steel sheet having excellent deep drawability and stretch flangeability and method for manufacturing the same
WO2016031165A1 (ja) 伸びフランジ性、伸びフランジ性の面内安定性および曲げ性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法
WO2016001703A1 (en) Method for manufacturing a high strength steel sheet and sheet obtained by the method
JP4608822B2 (ja) プレス成形性と歪時効硬化特性に優れた高延性溶融亜鉛めっき鋼板およびその製造方法
JP3587126B2 (ja) 延性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法
JP3820868B2 (ja) 延性に優れる高張力溶融亜鉛めっき鋼板の製造方法
JP3587115B2 (ja) 成形性に優れた高張力溶融亜鉛めっき鋼板の製造方法
JP3972551B2 (ja) 高張力溶融亜鉛めっき鋼板およびその製造方法
JP3912181B2 (ja) 深絞り性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき冷延鋼板およびその製造方法
JP4826694B2 (ja) 薄鋼板の耐疲労特性改善方法
JP2005206920A (ja) 伸びフランジ性に優れた複合組織型低降伏比高張力溶融亜鉛めっき熱延鋼板及びその製造方法
US11655517B2 (en) Ultrahigh-strength and high-ductility steel sheet having excellent cold formability
JP3587114B2 (ja) 高張力溶融亜鉛めっき鋼板およびその製造方法
JP4715637B2 (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JPH0372032A (ja) 薄鋼板の製造方法
JP2005206919A (ja) 延性と伸びフランジ性に優れた複合組織型高張力溶融亜鉛めっき熱延鋼板及びその製造方法
JP7323094B1 (ja) 高強度鋼板およびその製造方法
JP4599768B2 (ja) プレス成形性と歪時効硬化特性に優れた高延性冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: KAWASAKI STEEL CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOBAYASHI, TAKASHI;SAKATA, KEI;SHINOHARA, AKIO;REEL/FRAME:011599/0422;SIGNING DATES FROM 20001109 TO 20001117

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12