US6406391B1 - Chain tensioner - Google Patents

Chain tensioner Download PDF

Info

Publication number
US6406391B1
US6406391B1 US09/402,605 US40260500A US6406391B1 US 6406391 B1 US6406391 B1 US 6406391B1 US 40260500 A US40260500 A US 40260500A US 6406391 B1 US6406391 B1 US 6406391B1
Authority
US
United States
Prior art keywords
pivot axle
base element
tensioning device
elements
tension shoe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/402,605
Inventor
Thomas Ullein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INA Waelzlager Schaeffler OHG
Original Assignee
INA Waelzlager Schaeffler OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7827672&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US6406391(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by INA Waelzlager Schaeffler OHG filed Critical INA Waelzlager Schaeffler OHG
Assigned to INA WALZLAGER SCHAEFFLER OHG reassignment INA WALZLAGER SCHAEFFLER OHG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ULLEIN, THOMAS
Application granted granted Critical
Publication of US6406391B1 publication Critical patent/US6406391B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/0806Compression coil springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0889Path of movement of the finally actuated member
    • F16H2007/0891Linear path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0889Path of movement of the finally actuated member
    • F16H2007/0893Circular path

Definitions

  • the present invention concerns a tensioning device for traction means, particularly chains.
  • chain tensioners are used, for example, for tensioning the timing chain and for tensioning the chain of auxiliary units of diesel and Otto engines.
  • a chain tensioner of the pre-cited type is known, for example, from DE-A 195 36 643.
  • a tension shoe is mounted on a pivot axle for pivoting relative to a base element.
  • a spring means is arranged between the tension shoe and the base element to urge the tension shoe against the chain.
  • the tension shoe comprises a closed mounting eye into which the pivot axle fixed to the base element is axially inserted.
  • a perfect centering of the mounting eye with the pivot axle is required for the assembly of the base element and the tension shoe. Centering is achieved by a relative displacement of the base element and the tension shoe. After the centering operation, the pivot axle can be inserted into the mounting eye by an axial displacement of the base element and the tension shoe relative to each other.
  • one of the elements comprises at least one mounting eye having a radial mounting aperture for radially receiving the pivot axle arranged on the respective other element.
  • the assembly of the two elements is effected in one plane or in parallel planes.
  • the base element and the tension shoe must be aligned to each other only in such a way that as a result of relative radial displacement between the elements, the pivot axle engages into the radial mounting aperture and thus into the mounting eye. If the radial mounting aperture has a flared mouth, the introduction of the pivot axle is further simplified.
  • the tensioning device of the invention for a traction means is comprised of a tensioning shoe ( 1 ), that tensions the traction means, and comprising a further base element ( 3 ), on which the tensioning element ( 1 ) is mounted for pivoting on a pivot axle ( 2 ), a spring means ( 4 ) arranged between the elements ( 1 , 3 ) urging the tensioning element ( 1 ) against the traction means, wherein one of the two elements ( 1 , 3 ) comprises two horseshoe-shaped spaced-apart fork arms ( 5 , 10 ) each of which comprises a mounting eye ( 6 , 11 ) having a radial mounting aperture ( 7 , 12 ) for radially receiving the pivot axle ( 2 ), and the other of the elements ( 1 , 3 ) comprises a radial projection ( 1 , 3 ) which engages between the forks ( 5 , 10 ) and is overlapped by the forks ( 5 , 10 ) on both the elements ( 1 , 3
  • one of the two elements comprises two spaced-apart fork arms and each of these fork arms comprises a mounting eye having the radial mounting aperture
  • the respective other element comprises a radial projection which is arranged between these fork arms and overlapped by both fork arms.
  • the pivot axle may be fixed, for example, on the base element and have ends projecting from both sides of the base element. Each of these ends then engages into one of the radial mounting apertures of one of the fork arms which are fixed on the tension shoe.
  • the pivot axle may be made, for example, in one piece with the base element out of plastic.
  • An equivalent solution consists in that the pivot axle is fixed on the tension shoe and has ends projecting from both sides of the tension shoe. Each of these ends then engages into one of the radial mounting apertures of one of the fork arms which are fixed on the base element.
  • the tension shoe and the pivot axle can be made without any problem in one piece, for example, out of plastic.
  • retention surfaces which extend coaxially with the pivot axle and which, within an operation-dependent pivoting range of the tensioning device, are situated opposite each other and face each other. A radial displacement of the pivot axle out of the radial mounting aperture is prevented by a contact of the retention surfaces with each other.
  • the retention surfaces can be made by providing a convex retention surface on the tension shoe and a concave retention surface on the base element. Outside of the operation-dependent pivoting range of the tensioning device, the tension shoe can take a position of pivot relative to the base element in which the convex retention surface is disengaged from the concave retention surface.
  • the pivot axle In this position of pivot, the pivot axle can be removed without any problem in radial direction out of the mounting eye. It is also possible to assemble the tension shoe and the base element in the said position of pivot. When the pivot axle has come into its pre-defined position in the mounting eye, the tension shoe can be pivoted about its pivot axle till the retention surfaces come to be situated opposite each other. In this arrangement, the pivot axle is retained perfectly in the mounting eye.
  • an additional securing device may become necessary for preventing the pivot axle from slipping radially out of the mounting eye. This is the case, for example, when the chain tensioner, pre-assembled in the above manner, has to be transported. It is adequate, in this case, to provide a constriction on the radial mounting aperture with a clear width smaller than the diameter of the pivot axle.
  • the pivot axle snaps into the mounting eye and a radial slipping out of the mounting eye is only possible by application of a higher force.
  • FIG. 1 is a view of a chain tensioner according to the invention
  • FIG. 2 is a top view of the chain tensioner according to the invention shown in FIG. 1,
  • FIG. 3 is a view of a further chain tensioner according to the invention.
  • FIG. 4 is a partial top view of the chain tensioner shown in FIG. 3, and
  • FIG. 5 shows the assembly of the chain tensioner according to the invention shown in FIG. 1 .
  • a tension shoe 1 is mounted on a pivot axle 2 for pivoting relative to a base element 3 .
  • a spring element 4 which is supported at one end on the base element 3 and, at the other end, urges the tension shoe 1 against a chain, not represented.
  • the pivot axle 2 is made in one piece with the base element 3 .
  • the pivot axle 2 projects from the base element 3 on both sides.
  • the tension shoe 1 comprises two spaced-apart fork arms 5 each of which comprises a mounting eye 6 .
  • Each mounting eye 6 comprises a radial mounting aperture 7
  • the base element 3 is arranged between the fork arms 5 .
  • the fork arms 5 overlap the base element 3 radially and receive the ends of the pivot axle 2 in their mounting eyes 6 . In this way, an axial fixing of the tension shoe 1 relative to the base element 3 is obtained.
  • the base element 3 comprises a concave retention surface 8 and the tension shoe 1 comprises a convex retention surface 8 .
  • Both the retention surfaces 8 , 9 are arranged coaxially with the pivot axle 2 and are situated opposite each other. From FIG. 1 it can be seen that, in the shown position of pivot, the pivot axle 2 which is fixed on the base element 3 cannot be displaced out of the mounting eye 6 because the retention surfaces 8 , 9 are pressed against each other in this direction of movement.
  • the tensioning device according to the invention represented in FIGS. 3 and 4 differs from that of FIGS. 1 and 2 mainly by the following features:
  • the pivot axle 2 is fixed on the tension shoe 1 and projects from the tension shoe 1 on both sides.
  • the base element 3 comprises fork arms 10 between which the tension shoe 1 is arranged.
  • Each of the fork arms 10 comprises a mounting eye 11
  • each mounting eye 11 comprises a radial mounting aperture 12 .
  • the mounting eyes 11 receive the projecting ends of the pivot axle 2 . It can be seen from FIG. 3 that, in the shown position of pivot, a radial outward displacement of the pivot axle 2 which is fixed on the tension shoe 1 is impossible because the retention surfaces 8 , 9 are pressed against each other in this direction of movement. From FIG. 4 it can be seen that the tension shoe 1 is secured against axial displacement relative to the base element 3 .
  • FIG. 5 again shows the tensioning device according to the invention represented in FIG. 1, with the tension shoe 1 pivoted relative to the base element 3 so that the retention surfaces 8 , 9 are disengaged from each other. In this position, the tension shoe 1 can be pushed without any problem onto the pivot axle 2 .
  • the representation also shows that, in the region of the mounting aperture 7 , the tension shoe 1 comprises a constriction 13 whose clear width is smaller than the diameter of the pivot axle 2 .
  • the fork arms 5 are deformed elastically so that the pivot axle 2 can pass the constriction 13 and come to be situated in the mounting eye 6 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

A tensioning device for traction device, particularly chains, comprises an element, particularly a tension shoe (1) that tensions the traction device. The tension shoe (1) is mounted on a pivot axle (2) for pivoting relative to a base element (3), and a spring element (4) acting between the tension shoe (1) and the base element (3) urges the tension shoe (1) against the traction device. To simplify the assembly of the tension shoe (1) and the base element (3), it is proposed that one of the elements (1, 3) comprises at least one mounting eye (6, 11) having a radial mounting aperture (7, 12) for radially receiving the pivot axle (2) arranged on the respective other element (1, 3).

Description

FIELD OF THE INVENTION
The present invention concerns a tensioning device for traction means, particularly chains. Such chain tensioners are used, for example, for tensioning the timing chain and for tensioning the chain of auxiliary units of diesel and Otto engines.
BACKGROUND OF THE INVENTION
A chain tensioner of the pre-cited type is known, for example, from DE-A 195 36 643. A tension shoe is mounted on a pivot axle for pivoting relative to a base element. A spring means is arranged between the tension shoe and the base element to urge the tension shoe against the chain. The tension shoe comprises a closed mounting eye into which the pivot axle fixed to the base element is axially inserted. A perfect centering of the mounting eye with the pivot axle is required for the assembly of the base element and the tension shoe. Centering is achieved by a relative displacement of the base element and the tension shoe. After the centering operation, the pivot axle can be inserted into the mounting eye by an axial displacement of the base element and the tension shoe relative to each other. Thus, for assembling these elements, it is necessary to operate in different planes, and this is particularly disadvantageous in automated mounting.
SUMMARY OF THE INVENTION
It is therefore the object of the present invention to simplify the assembly of the two elements. The invention achieves this object by the fact that one of the elements comprises at least one mounting eye having a radial mounting aperture for radially receiving the pivot axle arranged on the respective other element. In the tensioning device according to the invention, the assembly of the two elements is effected in one plane or in parallel planes. The base element and the tension shoe must be aligned to each other only in such a way that as a result of relative radial displacement between the elements, the pivot axle engages into the radial mounting aperture and thus into the mounting eye. If the radial mounting aperture has a flared mouth, the introduction of the pivot axle is further simplified. In particular, radial displacements in a plane perpendicular to the one plane are not required. It is understood that the invention also applies to tensioning devices in which a tension roller is used in place of a tension shoe and is mounted for rotation on a lever which comprises the mounting eye according to the invention for receiving the pivot axle.
In other words, the tensioning device of the invention for a traction means is comprised of a tensioning shoe (1), that tensions the traction means, and comprising a further base element (3), on which the tensioning element (1) is mounted for pivoting on a pivot axle (2), a spring means (4) arranged between the elements (1, 3) urging the tensioning element (1) against the traction means, wherein one of the two elements (1, 3) comprises two horseshoe-shaped spaced-apart fork arms (5, 10) each of which comprises a mounting eye (6, 11) having a radial mounting aperture (7, 12) for radially receiving the pivot axle (2), and the other of the elements (1, 3) comprises a radial projection (1, 3) which engages between the forks (5, 10) and is overlapped by the forks (5, 10) on both the elements (1, 3) for snap engagement without a separate fastener, there are corresponding arranged retention surfaces (8, 9) which extend coaxially with the pivot axle (2) and which, within an operation-dependent pivoting range of the tensioning device, are situated opposite each other and face each other, a radial displacement of the pivot axle (2) out of the radial mounting aperture (7, 12) being prevented by a contact of the retention surfaces (8, 9) with each other.
Further embodiments of the invention offer other special advantages over prior art solutions. If one of the two elements comprises two spaced-apart fork arms and each of these fork arms comprises a mounting eye having the radial mounting aperture, the respective other element comprises a radial projection which is arranged between these fork arms and overlapped by both fork arms. Thus, after the assembly of the two elements, an axial slipping-apart of these elements is reliably prevented. In the prior art chain tensioner, it is necessary in some cases to use additional securing elements, for example a locking ring, which can be mounted only after the assembly of the two elements.
The pivot axle may be fixed, for example, on the base element and have ends projecting from both sides of the base element. Each of these ends then engages into one of the radial mounting apertures of one of the fork arms which are fixed on the tension shoe. The pivot axle may be made, for example, in one piece with the base element out of plastic. An equivalent solution consists in that the pivot axle is fixed on the tension shoe and has ends projecting from both sides of the tension shoe. Each of these ends then engages into one of the radial mounting apertures of one of the fork arms which are fixed on the base element. The tension shoe and the pivot axle can be made without any problem in one piece, for example, out of plastic.
Making the pivot axle in one piece with one of the two elements offers further advantages over prior art solutions. In prior art solutions, a separate pivot axle made of a metal is pressed into the base element. This necessitates the machining of a reception bore in the base element. Besides this, means have to be provided for securing the pin from falling out of the reception bore. This can happen if the pin and the base element are made of different materials having different thermal expansion properties and the tensioning device is subjected to high temperatures. All of these measures can be avoided if the pivot axle and the element concerned, i.e. the base element or the tension element, are made in one piece with each other. It goes without saying that these advantages are also obtained if, as in the prior art, the mounting eye for receiving the pivot axle has a closed configuration in peripheral direction.
To prevent the pivot axle from being displaced radially out of the mounting eye, it is proposed to arrange on both the elements, retention surfaces which extend coaxially with the pivot axle and which, within an operation-dependent pivoting range of the tensioning device, are situated opposite each other and face each other. A radial displacement of the pivot axle out of the radial mounting aperture is prevented by a contact of the retention surfaces with each other. The retention surfaces can be made by providing a convex retention surface on the tension shoe and a concave retention surface on the base element. Outside of the operation-dependent pivoting range of the tensioning device, the tension shoe can take a position of pivot relative to the base element in which the convex retention surface is disengaged from the concave retention surface. In this position of pivot, the pivot axle can be removed without any problem in radial direction out of the mounting eye. It is also possible to assemble the tension shoe and the base element in the said position of pivot. When the pivot axle has come into its pre-defined position in the mounting eye, the tension shoe can be pivoted about its pivot axle till the retention surfaces come to be situated opposite each other. In this arrangement, the pivot axle is retained perfectly in the mounting eye.
In the position of pivot intended for the assembly of the base element and the tension shoe, an additional securing device may become necessary for preventing the pivot axle from slipping radially out of the mounting eye. This is the case, for example, when the chain tensioner, pre-assembled in the above manner, has to be transported. It is adequate, in this case, to provide a constriction on the radial mounting aperture with a clear width smaller than the diameter of the pivot axle. In this embodiment of the invention, the pivot axle snaps into the mounting eye and a radial slipping out of the mounting eye is only possible by application of a higher force.
The embodiments of the invention described herein create tensioning devices for traction means which do not require additional securing means after the assembly of the base element and the tension shoe; the pivot axle is reliably retained in the mounting eye in a simple manner.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a view of a chain tensioner according to the invention,
FIG. 2 is a top view of the chain tensioner according to the invention shown in FIG. 1,
FIG. 3 is a view of a further chain tensioner according to the invention,
FIG. 4 is a partial top view of the chain tensioner shown in FIG. 3, and
FIG. 5 shows the assembly of the chain tensioner according to the invention shown in FIG. 1.
DETAILED DESCRIPTION OF THE DRAWINGS
In the chain tensioner according to the invention represented in FIG. 1, a tension shoe 1 is mounted on a pivot axle 2 for pivoting relative to a base element 3. Between the tension shoe 1 and the base element 3 is arranged a spring element 4 which is supported at one end on the base element 3 and, at the other end, urges the tension shoe 1 against a chain, not represented.
As can be clearly seen in FIG. 2, the pivot axle 2 is made in one piece with the base element 3. The pivot axle 2 projects from the base element 3 on both sides. The tension shoe 1 comprises two spaced-apart fork arms 5 each of which comprises a mounting eye 6. Each mounting eye 6 comprises a radial mounting aperture 7, and the base element 3 is arranged between the fork arms 5. The fork arms 5 overlap the base element 3 radially and receive the ends of the pivot axle 2 in their mounting eyes 6. In this way, an axial fixing of the tension shoe 1 relative to the base element 3 is obtained.
The base element 3 comprises a concave retention surface 8 and the tension shoe 1 comprises a convex retention surface 8. Both the retention surfaces 8, 9 are arranged coaxially with the pivot axle 2 and are situated opposite each other. From FIG. 1 it can be seen that, in the shown position of pivot, the pivot axle 2 which is fixed on the base element 3 cannot be displaced out of the mounting eye 6 because the retention surfaces 8, 9 are pressed against each other in this direction of movement.
The tensioning device according to the invention represented in FIGS. 3 and 4 differs from that of FIGS. 1 and 2 mainly by the following features: The pivot axle 2 is fixed on the tension shoe 1 and projects from the tension shoe 1 on both sides.
The base element 3 comprises fork arms 10 between which the tension shoe 1 is arranged. Each of the fork arms 10 comprises a mounting eye 11, and each mounting eye 11 comprises a radial mounting aperture 12. The mounting eyes 11 receive the projecting ends of the pivot axle 2. It can be seen from FIG. 3 that, in the shown position of pivot, a radial outward displacement of the pivot axle 2 which is fixed on the tension shoe 1 is impossible because the retention surfaces 8, 9 are pressed against each other in this direction of movement. From FIG. 4 it can be seen that the tension shoe 1 is secured against axial displacement relative to the base element 3.
Finally, FIG. 5 again shows the tensioning device according to the invention represented in FIG. 1, with the tension shoe 1 pivoted relative to the base element 3 so that the retention surfaces 8, 9 are disengaged from each other. In this position, the tension shoe 1 can be pushed without any problem onto the pivot axle 2. The representation also shows that, in the region of the mounting aperture 7, the tension shoe 1 comprises a constriction 13 whose clear width is smaller than the diameter of the pivot axle 2. During the insertion of the pivot axle 2 into the mounting eye 6, the fork arms 5 are deformed elastically so that the pivot axle 2 can pass the constriction 13 and come to be situated in the mounting eye 6.
LIST OF REFERENCE NUMERALS
1 Tension shoe
2 Pivot axle
3 Base element
4 Spring element
5 Fork arms
6 Mounting eye
7 Mounting aperture
8 Retention surface
9 Retention surface
10 Fork arms
11 Mounting eye
12 Mounting aperture
13 Constriction

Claims (7)

What is claimed is:
1. Tensioning device for a traction means, comprising a tensioning shoe (1), that tensions the traction means,and comprising a further base element (3), on which the tensioning element (1) is mounted for pivoting on a pivot axle (2), a spring means (4) arranged between the elements (1, 3) urging the tensioning element (1) against the traction means, wherein one of the two elements (1, 3) comprises two horseshoe-shaped spaced-apart fork arms (5, 10) each of which comprises a mounting eye (6, 11) having a radial mounting aperture (7, 12) for radially receiving the pivot axle (2), and the other of the elements (1, 3) comprises a radial projection (1, 3) which engages between the forks (5, 10) and is overlapped by the forks (5, 10) on both the elements (1, 3) for snap engagement without a separate fastener, there are corresponding arranged retention surfaces (8, 9) which extend coaxially with the pivot axle (2) and which, within an operation-dependent pivoting range of the tensioning device, are situated opposite each other and face each other, a radial displacement of the pivot axle (2) out of the radial mounting aperture (7, 12) being prevented by a contact of the retention surfaces (8, 9) with each other.
2. Tensioning device according to claim 1 wherein the pivot axle (2) is fixed on the base element (3) and has ends projecting from both sides of the base element (3), each of which ends engages into one of the radial mounting apertures ((7) of one of the fork arms (5) which are fixed on the tension shoe (1).
3. Tensioning device according to claim 1 wherein the pivot axle (2) is fixed on the tension shoe (1) and has ends projecting from both sides of the tension shoe (1), each of which ends engages into one of the radial mounting apertures (12) of one of the fork arms (10) which are fixed on the base element (3).
4. Tensioning device according to claim 1 wherein the retention surface (9) on tension shoe (1) has a convex shape and the corresponding retention surface (8) on the base has a concave shape.
5. Tensioning device according to claim 1 wherein the radial mounting aperture (7) comprises a constriction (13) whose width is smaller than the diameter of the pivot axle (2).
6. Tensioning device according to claim 1 wherein the pivot axle (2) is made in one piece with one of the two elements (1, 3).
7. Tensioning device according to claim 1 wherein the pivot axle (2) is made in one piece with one of the two elements (1, 3).
US09/402,605 1997-04-25 1998-03-16 Chain tensioner Expired - Lifetime US6406391B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19717409A DE19717409A1 (en) 1997-04-25 1997-04-25 Chain tensioner
DE19717409 1997-04-25
PCT/EP1998/001508 WO1998049463A1 (en) 1997-04-25 1998-03-16 Chain tensioner

Publications (1)

Publication Number Publication Date
US6406391B1 true US6406391B1 (en) 2002-06-18

Family

ID=7827672

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/402,605 Expired - Lifetime US6406391B1 (en) 1997-04-25 1998-03-16 Chain tensioner

Country Status (3)

Country Link
US (1) US6406391B1 (en)
DE (3) DE19717409A1 (en)
WO (1) WO1998049463A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6575858B2 (en) * 2000-03-17 2003-06-10 Heidelberger Druckmaschinen Ag Compensating drive belt tensioner
US20050054467A1 (en) * 2003-09-10 2005-03-10 Van T. Le Tensioning rail applied by injection molding
US20050202913A1 (en) * 2002-12-07 2005-09-15 Ina-Schaeffler Kg Tensioning device for an internal combustion engine
US20060100048A1 (en) * 2004-11-08 2006-05-11 Borgwarner Inc. Tensioning device
US20100022338A1 (en) * 2008-07-23 2010-01-28 Schaeffler Kg Pivot type tensioner for timing chain systems
US20110003657A1 (en) * 2009-07-02 2011-01-06 Ford Global Technologies, Llc Chain tensioner
US20110105257A1 (en) * 2009-10-30 2011-05-05 Schaeffler Technologies Gmbh & Co. Kg Mechanical tensioner with damping feature
US8672785B2 (en) 2010-08-30 2014-03-18 Cloyes Gear And Products, Inc. Blade tensioner and bracket for blade tensioner including pocket pivot feature
CN104251291A (en) * 2013-06-26 2014-12-31 株式会社椿本链条 Chain tensioner
US20160252167A1 (en) * 2015-02-27 2016-09-01 Iwis Motorsysteme Gmbh & Co. Kg Tensioning rail with bayonet catch
US10030743B2 (en) 2015-03-09 2018-07-24 Cloyes Gear And Products, Inc. Chain tensioner plastic blade with improved structural rigidity at the spring-end reaction surfaces of the blade
US11326669B2 (en) * 2018-10-16 2022-05-10 Tsubakimoto Chain Co. Chain tensioner and tensioner body
US20230068785A1 (en) * 2021-08-24 2023-03-02 Schaeffler Technologies AG & Co. KG Tensioner with stamped pivot pin

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB155646A (en) 1919-09-23 1920-12-23 John Weller Improvements in or relating to means for transmitting motion
DE908694C (en) 1952-07-15 1954-04-08 Daimler Benz Ag Tensioning device for a chain drive with rollers provided for each link
US3069835A (en) 1957-06-21 1962-12-25 Skf Kugellagerfabriken Gmbh Spindle drive arrangement for textile machines
US3358522A (en) 1965-08-16 1967-12-19 Morse Chain Co Cam chain tensioner
US3402617A (en) 1966-01-12 1968-09-24 Westinghouse Electric Corp Clothes dryer drive arrangement
US4395250A (en) * 1980-09-29 1983-07-26 Borg-Warner Limited Tensioning devices
EP0113685A1 (en) * 1983-01-11 1984-07-18 REGINA INDUSTRIA S.r.l. Mechanical chain-adjusting mechanism providing a constant and/or increasing bias
US4505691A (en) * 1980-01-18 1985-03-19 Sedis Compagnie Des Transmissions Mecaniques Universal tightener for a transmission chain or belt
EP0195945A1 (en) * 1985-02-26 1986-10-01 Joh. Winklhofer & Söhne Chain tensioner
US4764157A (en) 1986-04-10 1988-08-16 Skf Gmbh Tensioning device for drive belt assemblies
JPH0379842A (en) * 1989-04-28 1991-04-04 Nhk Spring Co Ltd Tensioner
EP0581219A1 (en) * 1992-07-27 1994-02-02 JOH. WINKLHOFER & SÖHNE GmbH & Co KG Chain tensioner apparatus
EP0656464A1 (en) 1993-12-02 1995-06-07 Ford-Werke Aktiengesellschaft Internal combustion engine comprising cartridge-type camshaft drive
US5425680A (en) * 1994-07-19 1995-06-20 Cloyes Gear & Products, Inc. Snap-fit chain tensioner apparatus and method
US5484340A (en) 1994-03-21 1996-01-16 Ingersoll-Rand Company Universal mount for a compressor prime mover
DE4437926C1 (en) 1994-10-24 1996-02-08 Daimler Benz Ag Tensioning device for chain of IC engine, esp. oil pump chain
DE19536643A1 (en) 1995-09-30 1997-04-03 Schaeffler Waelzlager Kg Clamping device for a control drive
DE29700735U1 (en) 1997-01-16 1998-05-20 Winklhofer & Soehne Gmbh Chain drive

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814255B2 (en) * 1987-02-06 1996-02-14 ヤマハ発動機株式会社 Camshaft drive mechanism for motorcycle engine

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB155646A (en) 1919-09-23 1920-12-23 John Weller Improvements in or relating to means for transmitting motion
DE908694C (en) 1952-07-15 1954-04-08 Daimler Benz Ag Tensioning device for a chain drive with rollers provided for each link
US3069835A (en) 1957-06-21 1962-12-25 Skf Kugellagerfabriken Gmbh Spindle drive arrangement for textile machines
US3358522A (en) 1965-08-16 1967-12-19 Morse Chain Co Cam chain tensioner
US3402617A (en) 1966-01-12 1968-09-24 Westinghouse Electric Corp Clothes dryer drive arrangement
US4505691A (en) * 1980-01-18 1985-03-19 Sedis Compagnie Des Transmissions Mecaniques Universal tightener for a transmission chain or belt
US4395250A (en) * 1980-09-29 1983-07-26 Borg-Warner Limited Tensioning devices
EP0113685A1 (en) * 1983-01-11 1984-07-18 REGINA INDUSTRIA S.r.l. Mechanical chain-adjusting mechanism providing a constant and/or increasing bias
EP0195945A1 (en) * 1985-02-26 1986-10-01 Joh. Winklhofer & Söhne Chain tensioner
US4764157A (en) 1986-04-10 1988-08-16 Skf Gmbh Tensioning device for drive belt assemblies
JPH0379842A (en) * 1989-04-28 1991-04-04 Nhk Spring Co Ltd Tensioner
EP0581219A1 (en) * 1992-07-27 1994-02-02 JOH. WINKLHOFER & SÖHNE GmbH & Co KG Chain tensioner apparatus
EP0656464A1 (en) 1993-12-02 1995-06-07 Ford-Werke Aktiengesellschaft Internal combustion engine comprising cartridge-type camshaft drive
US5484340A (en) 1994-03-21 1996-01-16 Ingersoll-Rand Company Universal mount for a compressor prime mover
US5425680A (en) * 1994-07-19 1995-06-20 Cloyes Gear & Products, Inc. Snap-fit chain tensioner apparatus and method
DE4437926C1 (en) 1994-10-24 1996-02-08 Daimler Benz Ag Tensioning device for chain of IC engine, esp. oil pump chain
US5662540A (en) * 1994-10-24 1997-09-02 Mercedes-Benz Ag Tensioning device for a chain of an internal combustion engine
DE19536643A1 (en) 1995-09-30 1997-04-03 Schaeffler Waelzlager Kg Clamping device for a control drive
DE29700735U1 (en) 1997-01-16 1998-05-20 Winklhofer & Soehne Gmbh Chain drive

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6575858B2 (en) * 2000-03-17 2003-06-10 Heidelberger Druckmaschinen Ag Compensating drive belt tensioner
US20050202913A1 (en) * 2002-12-07 2005-09-15 Ina-Schaeffler Kg Tensioning device for an internal combustion engine
US7204773B2 (en) 2002-12-07 2007-04-17 Ina-Schaeffler Kg Tensioning device for an internal combustion engine
US20050054467A1 (en) * 2003-09-10 2005-03-10 Van T. Le Tensioning rail applied by injection molding
US7473197B2 (en) * 2003-09-10 2009-01-06 Joh. Winklhofer & Söhne GmbH und Co. KG Tensioning rail applied by injection molding
US20060100048A1 (en) * 2004-11-08 2006-05-11 Borgwarner Inc. Tensioning device
US20100022338A1 (en) * 2008-07-23 2010-01-28 Schaeffler Kg Pivot type tensioner for timing chain systems
US8523720B2 (en) 2009-07-02 2013-09-03 Ford Global Technologies, Llc Chain tensioner
US20110003657A1 (en) * 2009-07-02 2011-01-06 Ford Global Technologies, Llc Chain tensioner
US8529388B2 (en) 2009-10-30 2013-09-10 Schaeffler Technologies AG & Co, KG Mechanical tensioner with damping feature
US20110105257A1 (en) * 2009-10-30 2011-05-05 Schaeffler Technologies Gmbh & Co. Kg Mechanical tensioner with damping feature
US8672785B2 (en) 2010-08-30 2014-03-18 Cloyes Gear And Products, Inc. Blade tensioner and bracket for blade tensioner including pocket pivot feature
CN104251291A (en) * 2013-06-26 2014-12-31 株式会社椿本链条 Chain tensioner
US20150005120A1 (en) * 2013-06-26 2015-01-01 Tsubakimoto Chain Co. Chain tensioner
US9523413B2 (en) * 2013-06-26 2016-12-20 Tsubakimoto Chain Co. Chain tensioner
CN104251291B (en) * 2013-06-26 2017-05-17 株式会社椿本链条 Chain tensioner
US20160252167A1 (en) * 2015-02-27 2016-09-01 Iwis Motorsysteme Gmbh & Co. Kg Tensioning rail with bayonet catch
US10030743B2 (en) 2015-03-09 2018-07-24 Cloyes Gear And Products, Inc. Chain tensioner plastic blade with improved structural rigidity at the spring-end reaction surfaces of the blade
US11326669B2 (en) * 2018-10-16 2022-05-10 Tsubakimoto Chain Co. Chain tensioner and tensioner body
US20230068785A1 (en) * 2021-08-24 2023-03-02 Schaeffler Technologies AG & Co. KG Tensioner with stamped pivot pin
US11815180B2 (en) * 2021-08-24 2023-11-14 Schaeffler Technologies AG & Co. KG Tensioner with stamped pivot pin

Also Published As

Publication number Publication date
DE19880560D2 (en) 1999-11-11
WO1998049463A1 (en) 1998-11-05
DE19880560C1 (en) 2002-09-12
DE19717409A1 (en) 1998-10-29
DE19880560C5 (en) 2005-12-08

Similar Documents

Publication Publication Date Title
US6406391B1 (en) Chain tensioner
JP3016487B2 (en) Chain tensioner
US6238311B1 (en) Blade tensioner with retaining pin and bracket
CA2243360C (en) Belt tensioner
US6435992B2 (en) Tensioner with plunger stopper pin
US6524202B1 (en) Blade-type chain tensioner
US6428435B1 (en) Tensioner lever for chain drive
US5704860A (en) Transport locking system for a chain tensioner
US3626776A (en) Chain tensioning device
US20100022338A1 (en) Pivot type tensioner for timing chain systems
EP0493951B1 (en) Pulley encased tensioner and system
EP1655510A2 (en) Tensioning device
US6447415B1 (en) Tensioner with plunger stopper mechanism
JPH0681915A (en) Tensioner
US20070021247A1 (en) Pivotal Connection Of A Bicycle Derailleur
KR20180113920A (en) Chain guide mechanism
WO2000061406A2 (en) Reversible tensioner
JPS58174727A (en) Clutch removing sleeve device
US3885445A (en) Master link assembly
US4488520A (en) Valve rocker assembly
CA2587052A1 (en) Installation shaft assembly
US5722521A (en) Roller type one-way clutch
US6354972B1 (en) Chain tensioner assembly having a single-fastener mounting arrangement
JP3932613B2 (en) Timing chain mechanism
JP4221787B2 (en) Condensing structure of condenser lens

Legal Events

Date Code Title Description
AS Assignment

Owner name: INA WALZLAGER SCHAEFFLER OHG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ULLEIN, THOMAS;REEL/FRAME:010530/0204

Effective date: 19990930

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12