US6210811B1 - Epoxy resin composition, laminate film using the same, and semiconductor device - Google Patents

Epoxy resin composition, laminate film using the same, and semiconductor device Download PDF

Info

Publication number
US6210811B1
US6210811B1 US09/404,301 US40430199A US6210811B1 US 6210811 B1 US6210811 B1 US 6210811B1 US 40430199 A US40430199 A US 40430199A US 6210811 B1 US6210811 B1 US 6210811B1
Authority
US
United States
Prior art keywords
epoxy resin
resin composition
weight
nucleus
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/404,301
Inventor
Tsuyoshi Honda
Miyuki Wakao
Hisashi Shimizu
Toshio Shiobara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Assigned to SHIN-ETSU CHEMICAL CO., LTD. reassignment SHIN-ETSU CHEMICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHIMIZU, HISASHI, HONDA, TSUYOSHI, WAKAO, MIYUKI, SHIOBARA, TOSHIO
Application granted granted Critical
Publication of US6210811B1 publication Critical patent/US6210811B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12528Semiconductor component

Definitions

  • This invention relates to an epoxy resin composition of self-polymerization type or phenolic curing type, a laminate film using the same and suited for semiconductor packaging, and a semiconductor device sealed with the laminate film.
  • Epoxy resins are widely used in constructing semiconductor packages because of their good adhesion, heat resistance and moisture resistance. As the package system is diversified as mentioned above, epoxy resins are now used not only as the encapsulants well known in the art, but also as coating, die bonding and under-filling materials. Most such materials are diluted with solvents or in paste form.
  • the solvent-diluted materials require an attention to carefully remove the solvent that volatilizes off on use, from the standpoints of the health maintenance and safety of workers, undesirably adding to the cost.
  • Coating materials are used in several ways.
  • One proposed method is to cover the surface of a semiconductor chip solely with a thin film of an epoxy resin composition to effect sealing. It is also proposed to screen print an epoxy resin composition in paste form.
  • These materials include paste-like epoxy resin compositions such as those of the acid anhydride curing type and the amine curing type which are well known in the art. Alternatively, these paste-like epoxy resin compositions may take the form of a film which has been converted to B-stage.
  • epoxy resin compositions of the self-polymerization type especially those using imidazoles as the curing catalyst
  • epoxy resin compositions of the phenolic curing type are satisfactory in the storage of uncured compositions and the moisture resistance and high-temperature performance of cured compositions, but are difficult to control the progress of reaction and hence, to form B-staged (or semi-cured state) films.
  • the softening point of an epoxy resin base and a phenolic resin curing agent must be lowered. Undesirably, this is done at the expense of the heat resistance of cured compositions.
  • An object of the invention is to provide an epoxy resin composition of the self-polymerization type or the phenolic curing type which has a low glass transition temperature in an uncured state while maintaining the heat resistance, moisture resistance and low stress of a cured composition.
  • Another object of the invention is to provide a laminate film comprising a flexible, easy-to-work thin layer of the epoxy resin composition.
  • a further object of the invention is to provide a semiconductor device in which the gap between a semiconductor chip and a substrate or the surface of a semiconductor chip is sealed with the laminate film.
  • an epoxy resin composition comprising an epoxy resin containing up to 10% by weight of a 2-nucleus (two-nucleus) compound and at least 50% by weight of 3 to 5-nucleus (five-nucleus) compounds combined and having a weight average molecular weight/number average molecular weight ratio (referred to as a dispersity, hereinafter) of up to 1.7, an inorganic filler, and a curing catalyst, and having a glass transition temperature (often abbreviated as Tg) of lower than 15° C. in an uncured state is effective in forming a film which is very easy to work at room temperature by virtue of its good elasticity and flexibility.
  • Tg glass transition temperature
  • composition is of the self-polymerization type wherein an imidazole is used as the curing catalyst or when the composition is of the phenolic curing type wherein a phenolic resin having a Tg of lower than 15° C. and free of a monomer is added.
  • the invention provides an epoxy resin composition of the self-polymerization type or phenolic curing type, comprising (A) an epoxy resin containing up to 10% by weight of a 2-nucleus compound and at least 50% by weight of 3 to 5-nucleus compounds combined and having a dispersity of up to 1.7, (B) an inorganic filler, (C) a curing catalyst, and optionally, (D) a phenolic resin.
  • the epoxy resin composition in an uncured state has a glass transition temperature Tg of lower than 15° C.
  • the epoxy resin composition is of the self-polymerization type wherein the curing catalyst (C) is preferably an imidazole.
  • the epoxy resin composition is of the phenolic curing type.
  • the phenolic resin preferably has a glass transition temperature of lower than 15° C. and is free of a monomer.
  • the epoxy resin composition may further contain (E) a copolymer obtained by reacting an aromatic polymer with an organopolysiloxane of the following compositional formula (1):
  • R represents hydrogen, an amino, epoxy, hydroxyl or carboxyl-bearing monovalent hydrocarbon group or an alkoxy group
  • R′ represents a substituted or unsubstituted monovalent hydrocarbon group
  • a is a positive number from 0.001 to 1
  • b is a positive number from 0.9 to 2
  • the sum of a and b is from 1 to 3
  • the number of silicon atoms in one molecule is from 2 to 1,000
  • the number of functional groups R directly attached to silicon atoms in one molecule is at least 1.
  • the epoxy resin composition in an uncured state has a volatile content of up to 0.1% by weight.
  • the invention provides a laminate film comprising at least two layers, at least one layer being formed of the epoxy resin composition to a thickness of 20 to 150 ⁇ m.
  • the invention provides a semiconductor device comprising a semiconductor chip having a surface sealed with the laminate film in a cured state.
  • FIG. 1 illustrates in cross section a semiconductor package used in tests.
  • the epoxy resin used herein is any one of epoxy resins containing up to 10% by weight (i.e., 0 to 10% by weight) of a 2-nucleus (two-nucleus) or binuclear compound and at least 50% by weight (i.e., 50 to 100% by weight) of 3 to 5-nucleus (five-nucleus) compounds combined and having a dispersity of up to 1.7 (i.e., 1.0 to 1.7).
  • the dispersity is defined as a weight average molecular weight divided by a number average molecular weight. Since the epoxy resin used herein has one epoxy group in each nucleus, an n-nucleus compound has n epoxy groups in one molecule.
  • Appropriate epoxy resins include novolac type epoxy resins represented by the following formula (2), such as phenol novolac type epoxy resins, cresol novolac type epoxy resins, and phenol and cresol co-condensed novolac type epoxy resins, and trishydroxyphenylalkane type epoxy resins represented by the following formula (3), such as trishydroxyphenylmethane type epoxy resins and trishydroxyphenylpropane type epoxy resins.
  • novolac type epoxy resins represented by the following formula (2), such as phenol novolac type epoxy resins, cresol novolac type epoxy resins, and phenol and cresol co-condensed novolac type epoxy resins
  • trishydroxyphenylalkane type epoxy resins represented by the following formula (3), such as trishydroxyphenylmethane type epoxy resins and trishydroxyphenylpropane type epoxy resins.
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen or bromine
  • G is
  • n is 0 or a natural number, preferably an integer of 0 to 5, more preferably 1, 2 or 3.
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen or bromine
  • G is
  • m is 0 or a natural number, preferably an integer of 0 to 5, more preferably 0 or 1.
  • epoxy resins especially phenol novolac type epoxy resins or cresol novolac type epoxy resins, in which the content of 3 to 5-nucleus compounds combined is at least 60% by weight (i.e., 60 to 100% by weight), the proportion of the 3-nucleus compound in the total amount of 3 to 5-nucleus compounds is at least 60% by weight (i.e., 60 to 100% by weight), the dispersity is up to 1.5 (i.e., 1.0 to 1.5), and the softening temperature is lower than 15° C., especially lower than 10° C. If the content of the 2-nucleus compound relative to the entire epoxy resin is too high, the cured composition has a lower Tg and poor heat resistance.
  • the uncured composition has a higher Tg which deprives the film of its flexibility at room temperature, with a possibility of failure of the film.
  • any conventional well-known epoxy resin may be used.
  • Such conventional epoxy resins include bisphenol type epoxy resins such as bisphenol A type epoxy resins and bisphenol F type epoxy resins, biphenyl type epoxy resins, naphthalene type epoxy resins, cyclopentadiene type epoxy resins, phenol aralkyl type epoxy resins, and biphenyl aralkyl type epoxy resins.
  • the conventional epoxy resin is blended with the above-described epoxy resin in such amounts that the resulting epoxy resin composition may have a Tg of lower than 15° C.
  • epoxy resins should preferably have a total chlorine content of up to 1,500 ppm, more preferably up to 1,000 ppm.
  • the epoxy resins should preferably have an extracted chlorine content of up to 5 ppm. If the total chlorine content and the water extracted chlorine content are above the respective limits, the packaged semiconductor would have less reliable moisture resistance.
  • the inorganic filler used herein may be selected from various types of fillers depending on a particular application.
  • Exemplary fillers include natural silicas such as crystalline silica and amorphous silica, synthetic high-purity silica, synthetic spherical silica, talc, mica, silicon nitride, boron nitride, alumina, and conductive particles such as silver powder, alone or in admixture of two or more.
  • the shape of the inorganic filler is not critical, and spherical, ground and irregular shapes may be used, with the spherical one being preferred.
  • An appropriate amount of the inorganic filler blended is about 50 to 1,000 parts, more preferably about 100 to 400 parts by weight per 100 parts by weight of the entire resin content (that is, the epoxy resin content plus the content of a phenolic resin and/or an aromatic polymer-organopolysiloxane copolymer to be described later, if blended).
  • the particle size of the inorganic filler is limited by the thickness of a laminate film. Desirably, the maximum particle size of the inorganic filler is less than the laminate film thickness, and the mean particle size is less than 1 ⁇ 2 of the laminate film thickness. Usually, the inorganic filler having a maximum particle size of less than 150 ⁇ m, preferably less than 75 ⁇ m, and a mean particle size of about 0.1 to 70 ⁇ m, more preferably about 1 to 30 ⁇ m is used.
  • the mean particle size can be determined as a weight average value (or median diameter) by means of a particle size distribution meter using laser light diffractometry and similar analysis means.
  • the epoxy resin composition may be formulated to either the self-polymerization where no curing agent is blended or the phenolic curing type where a phenolic resin is blended as the curing agent. In either case, the curing catalyst is blended as an essential component.
  • any curing catalyst that allows the epoxy resin to polymerize by itself may be used without a need to limit its type.
  • imidazoles i.e., imidazole compounds
  • tertiary amines may be used alone or in admixture of two or more. Of these, imidazoles are desirable when the shelf stability of uncured compositions is taken into account.
  • Exemplary imidazoles include 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-hydroxymethylimidazole, and 2-phenyl-4,5-di(hydroxymethyl)imidazole.
  • Exemplary tertiary amines include triethylamine, benzyldimethylamine, ⁇ -methylbenzyldimethylamine, as well as cycloamidines such as 1,8-diazabicyclo(5.4.0)undecene-7.
  • organic phosphorus compounds may be used as the curing catalyst as well as the above-described imidazoles and tertiary amines.
  • exemplary organic phosphorus compounds include organic phosphine compounds and salts thereof such as triphenylphosphine, tributylphosphine, tri(p-toluyl)phosphine, tri(p-methoxyphenyl)phosphine, tri(p-ethoxyphenyl)phosphine, and triphenylphosphine-triphenyl borane, and quaternary phosphonium compounds and salts thereof such as tetraphenylphosphonium-tetraphenyl borate.
  • An appropriate amount of the curing catalyst blended is about 0.01 to 10 parts, more preferably about 0.1 to 5 parts by weight per 100 parts by weight of the epoxy resin (or the epoxy resin plus the phenolic resin, if the phenolic resin is blended). If the amount of the curing catalyst is too small, heat molding would result in undesirable undercure. Too large amounts of the curing catalyst can detract from the shelf stability.
  • phenolic resins are blended as the curing agent.
  • any phenolic resin having at least one phenolic hydroxyl group, preferably at least two phenolic hydroxyl groups in a molecule may be used herein.
  • the molecular weight distribution of the phenolic resin is not critical.
  • the phenolic resin should desirably have a Tg of lower than 15° C., especially lower than 10° C.
  • the phenolic resin should desirably be free of monomers (i.e., single-nucleus compounds).
  • the preferred phenolic resins are those phenolic resins in which no monomers (i.e., single-nucleus compounds) are present, the total content of 2- to 4-nucleus compounds is at least 80% by weight (i.e., 80 to 100% by weight), the proportion of the 2-nucleus compound in the total content of 2 to 4-nucleus compounds is from 40% to less than 70% by weight, and Tg is lower than 15° C., especially lower than 10° C., and especially phenol novolac resins or cresol novolac resins of the following structural formula (4) satisfying these conditions.
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen or bromine
  • n is 0 or a natural number, preferably an integer of 0 to 5, more preferably 0, 1 or 2. Since the phenolic resin used herein has one phenolic hydroxyl group in each nucleus, an n-nucleus compound has n phenolic hydroxyl groups in one molecule. If the proportion of the 2-nucleus compound in the total content of 2 to 4-nucleus compounds is more than 70% by weight, the cured composition would have a lower Tg and poor heat resistance.
  • the uncured composition has a higher Tg which deprives the film of its flexibility at room temperature, with a possibility of failure of the film.
  • any conventional well-known phenolic resin may be used within such an amount that the glass transition temperature of the epoxy resin composition does not become 15° C. or over.
  • Such conventional phenolic resins include bisphenol type phenolic resins such as bisphenol A type resins and bisphenol F type resins, phenol and cresol co-condensed novolac resins, trishydroxyphenylalkane type resins such as trishydroxyphenylmethane type resins and trishydroxyphenylpropane type resins, naphthalene type phenolic resins, cyclopentadiene type phenolic resins, phenolaralkyl resins, and biphenylaralkyl type phenolic resins.
  • the phenolic resin is blended with the epoxy resin in such amounts that the equivalent ratio of the phenolic resin to the epoxy resin (that is, the molar ratio of phenolic hydroxyl groups in the phenol resin to epoxy resins in the epoxy resin) may range from 0.5 to 2.0, more desirably from 0.8 to 1.2. If the phenolic resin is blended with the epoxy resin in such amounts that the equivalent ratio may be less than 0.5 or more than 2.0, then the resin composition would not fully cure and hence, lose heat resistance.
  • the equivalent ratio of the phenolic resin to the epoxy resin that is, the molar ratio of phenolic hydroxyl groups in the phenol resin to epoxy resins in the epoxy resin
  • additives such as pigments (e.g., carbon black), dyes, flame retardants, coupling agents, and thermoplastic resins may be blended in the epoxy resin composition depending on its particular application.
  • the epoxy resin composition in an uncured state is soft and rubbery at room temperature (about 25° C.) and has a glass transition temperature (Tg) of lower than 15° C., preferably lower than 10° C. If the Tg of the uncured composition is 15° C. or higher, there is the risk that the film thereof is deprived of its flexibility at room temperature and thus fails.
  • Tg glass transition temperature
  • a copolymer obtained by reacting an aromatic polymer with a specific organopolysiloxane is blended in the epoxy resin composition in order to improve the low stress property thereof.
  • aromatic polymers used herein include a variety of compounds, for example, epoxy resins and phenolic resins of the following structural formulae (5) and (6).
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen or bromine
  • R 3 is hydrogen or
  • n is 0 or a natural number, preferably an integer of 0 to 50, more preferably an integer of 1 to 20, and m is 0 or a natural number, preferably an integer of 0 to 5, more preferably 0 or 1.
  • aromatic polymers are alkenyl group-bearing compounds (epoxy resins or phenolic resins) having the following structural formulae (7) to (9).
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen or bromine
  • R 3 is hydrogen or
  • n and m are natural numbers, preferably the sum of n+m is from 2 to 50, more preferably from 2 to 20.
  • the organopolysiloxane is of the following compositional formula (1).
  • R represents hydrogen, an amino, epoxy, hydroxyl or carboxyl-bearing monovalent hydrocarbon group or an alkoxy group.
  • R′ represents a substituted or unsubstituted monovalent hydrocarbon group.
  • the letters a and b are positive numbers satisfying 0.001 ⁇ a ⁇ 1, 0.9b ⁇ 2, and 1 ⁇ a+b ⁇ 3.
  • the number of silicon atoms in one molecule is from 2 to 1,000, preferably 10 to 400, and the number of functional groups R directly attached to silicon atoms in one molecule is at least 1, preferably 2 to 5, more prefereably 2.
  • R is a functional group capable of reacting with epoxy, phenolic hydroxyl or alkenyl groups in the aromatic polymer to form a copolymer.
  • n is an integer of 1 to 3;
  • n is an integer of 1 to 3; the hydroxy-bearing monovalent hydrocarbon groups are exemplified by
  • n is an integer of 1 to 3
  • the carboxyl-bearing monovalent hydrocarbon groups are exemplified by —C x H 2x COOH wherein x is an integer of 0 to 10
  • the alkoxy groups are exemplified by those of 1 to 4 carbon atoms such as methoxy, ethoxy, and n-propoxy.
  • the substituted or unsubstituted monovalent hydrocarbon groups represented by R′ are preferably those of 1 to 10 carbon atoms, for example, alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, cyclohexyl, octyl and decyl; alkenyl groups such as vinyl, allyl, propenyl and butenyl; aryl groups such as phenyl and tolyl; aralkyl groups such as benzyl and phenylethyl; and halo-substituted monovalent hydrocarbon groups obtained by substituting halogen atoms for some or all of the hydrogen atoms on the foregoing hydrocarbon groups.
  • alkyl groups such as methyl, ethyl, n-propyl, isopropy
  • letters a and b satisfy 0.01 ⁇ a ⁇ 0.1, 1.8 ⁇ b ⁇ 2, and 1.85 ⁇ a+b ⁇ 2.1, and the number of silicon atoms is from 10 to 400, more preferably from 20 to 210.
  • organopolysiloxane is compounds of the following structures.
  • R′ represents a substituted or unsubstituted monovalent hydrocarbon group as in formula (1), preferably methyl or phenyl;
  • X represents an amino, epoxy, hydroxyl or carboxyl-bearing monovalent hydrocarbon group;
  • p is an integer of 0 to 1,000, preferably 8 to 400; and
  • q is an integer of 0 to 20, preferably 0 to 5.
  • the organopolysiloxane has a molecular weight of 100 to 70,000 though not critical.
  • a copolymer obtained from an organopolysiloxane having a molecular weight of 100 to 70,000 is blended in an epoxy resin composition, the copolymer is not compatible with the matrix and rather forms a fine island-in-sea structure. If the molecular weight is less than 100, the resulting copolymer would become compatible with the matrix so that the island-in-sea structure disappears. If the molecular weight is greater than 70,000, an enlarged island-in-sea structure would form. In either case, the cured composition would lose the desired low stress property.
  • Any well-known method may be used in reacting the aromatic polymer with the organopolysiloxane to form a copolymer.
  • An appropriate amount of the copolymer blended is 0 to about 100 parts, more preferably about 1 to 50 parts by weight per 100 parts by weight of the epoxy resin (or the epoxy resin plus the phenolic resin, if the phenolic resin is blended).
  • the ratio of the total content of phenolic hydroxyl groups to the total content of epoxy groups in the entirety of the epoxy resin, phenolic resin and copolymer is desirably from 0.5 to 2.0, more desirably from 0.8 to 1.2. If the total phenolic hydroxyl group content relative to the total epoxy group content is outside this range, the resin composition would not fully cure and hence, lose heat resistance.
  • the epoxy resin composition can be obtained by uniformly agitating and mixing the predetermined amounts of the above-described components, working the mixture in a roll mill, kneader or continuous kneader preheated at 70 to 90° C., cooling the mixture below its Tg, and grinding the mixture.
  • the order of blending the components is not critical.
  • the epoxy resin composition is advantageously used in film form.
  • the pressure applied to the composition is very low as compared with the transfer molding of conventional solid resins, and the composition has a more chance to be abruptly exposed to high temperatures as compared with the potting and under-filling of liquid materials. Therefore, volatile components in the uncured composition tend to be left as voids at the end of curing. It is thus desired to minimize the volatile content.
  • the volatile content is 0.1% by weight or lower, and more preferably 0.01% by weight or lower.
  • the epoxy resin composition of the invention is effectively used in semiconductor packaging, preferably after the composition is formed into a film. More preferably, a laminate film comprising at least two layers is contemplated wherein the epoxy resin composition is used as at least one layer thereof.
  • the film or layer made of the epoxy resin composition preferably has a thickness of 20 to 150 ⁇ m. The material and thickness of the remaining layers are selected in accordance with the particular application of the laminate film.
  • One specific example is a laminate film consisting of a layer of the epoxy resin composition and a protective sheet which is bonded to one surface or each surface of the layer for the purpose of protecting the layer, examples of the protective sheet being a silicone sheet, Teflon® sheet, or polyethylene terephthalate (PET) sheet having parting silicone or Teflon® coated on its surface.
  • Another exemplary laminate film has a layer of adhesive between the layer of the epoxy resin composition and the protective sheet or sheets, the adhesive layer serving to providing a quick bond to a substrate or semiconductor chip at room temperature.
  • the laminate film is manufactured by means of a coater/laminator as used in the manufacture of conventional rubber sheets. More specifically, the epoxy resin composition is stretched under heat and pressure, cut into strips or sliced into tapes (which are wound) depending on the particular application of the laminate film. Depending on the application, the strip or tape is further cut to the desired shape, which is used after the protective sheet is removed.
  • the laminate film is applicable to any semiconductor device although it is advantageously applied to small, thin semiconductor devices such as CSP.
  • the laminate film is effective in establishing a bond in the narrow gap between a chip and a substrate.
  • the inventive composition is effective in forming a reliable bond.
  • the manner of using the laminate film is not critical. One typical procedure involves cutting the laminate film to a suitable size, moderately pressing the film to a substrate, mounting a chip on the film, and applying heat and pressure to the assembly (or effecting thermocompression). The film may be preheated before the mounting of the chip.
  • an epoxy resin composition in which the molecular weight distribution of the epoxy resin (and preferably the phenolic resin curing agent) is controlled so that the Tg of the uncured composition may be made low without sacrificing the heat resistance and moisture resistance of the cured composition.
  • the epoxy resin composition there is obtained a film which is flexible and easy to work.
  • a laminate film comprising at least one layer of the epoxy resin composition and optionally at least one layer of another material.
  • Mw is a weight average molecular weight
  • Mn is a number average molecular weight
  • Tg is a glass transition temperature
  • Epoxy resins A to F having a molecular weight distribution, epoxy equivalent, and Tg as shown in Table 1 phenolic resins A to D having a molecular weight distribution, phenolic hydroxyl equivalent, and Tg as shown in Table 2, an inorganic filler (spherical silica having a maximum particle size of less than 24 ⁇ m and a mean particle size of 4 ⁇ m), 2-phenylimidazole (2PZ) and triphenylphosphine (TPP) curing catalysts, a silane coupling agent ( ⁇ -glycidoxypropyltrimethoxysilane, KBM403, Shin-Etsu Chemical Co., Ltd.), and a copolymer of the formula shown below (aromatic polymer-organopolysiloxane copolymer having an epoxy equivalent of 291 and a siloxane content of 31.2% by weight) were blended as shown in Tables 3 and 4.
  • an inorganic filler spherical silica having a
  • the blends were uniformly melt milled in a hot twin-roll mill, yielding epoxy resin compositions. It is noted that the epoxy resin, phenolic resin and copolymer were blended in such amounts as to provide an epoxy group/phenolic hydroxyl group ratio of 1/1 (molar ratio) and a polysiloxane content of 8% by weight based on the entire resin components.
  • Comparative Examples 6 and 7 used a liquid bisphenol A type epoxy resin (epoxy resin G, epoxy equivalent 179) as the epoxy resin.
  • the curing agent was 4,4′-diamino-diphenylmethane (DDM, equivalent 99) in Comparative Example 6 and 4-methyltetrahydrophthalic anhydride (4-MTHPA, equivalent 166) in Comparative Example 7. They were blended in a formulation as shown in Table 5 (such that the functional groups might be equal in equivalent).
  • the resulting epoxy resin compositions were B-staged at about 60° C. so as to have a Tg as shown in Table 5 before they were formed into films or otherwise worked.
  • DSC differential scanning colorimetry
  • An uncured composition was formed into film strips of 10 mm ⁇ 50 mm ⁇ 0.1 mm. Each strip was folded at 25° C. such that the short sides (10 mm) coincided with each other. The number of broken strips was reported per the total number of tested strips.
  • a composition was molded at 150° C. and 50 kgf/cm 2 for 3 minutes into a specimen of 5 mm ⁇ 5 mm ⁇ 15 mm, which was postcured at 150° C. for 4 hours.
  • Tg was measured by means of TMA (Thermal Mechanical Analysis) by heating the specimen at a rate of 5° C./min.
  • a semiconductor package as shown in FIG. 1 was allowed to stand for 24 and 48 hours in an atmosphere of 121° C., RH 100% and 2 atm. Some package samples showed abnormal values because of line disconnection. The number of failed samples per the total number of tested samples is reported.
  • a composition was molded at 150° C. and 50 kgf/cm 2 for 3 minutes into a disk having a diameter of 50 mm and a thickness of 3 mm, which was postcured at 150° C. for 4 hours.
  • the disk was allowed to stand for 24 hours in an atmosphere of 121° C., RH 100% and 2 atm. A weight change was determined.
  • a semiconductor package as shown in FIG. 1 was allowed to stand for 24 hours in an atmosphere of 121° C., RH 100% and 2 atm. It was immersed for 10 seconds in a solder bath at 240° C. The number of cracked samples per the total number of tested samples is reported.
  • a semiconductor package as shown in FIG. 1 was inspected to determine the void area per the total area of the package.
  • FIG. 1 there is illustrated a semiconductor device package comprising a BT substrate 1, gold terminals 2, copper leads 3, an epoxy resin composition film 4, solder bumps 5, and a silicon chip 6.
  • the epoxy resin composition film of 10 mm ⁇ 10 mm ⁇ 0.1 mm was placed on the BT substrate, moderately pressed thereto, and preheated at 120° C. for 10 seconds.
  • the silicon chip of 10 mm ⁇ 10 mm ⁇ 0.3 mm having aluminum wiring and solder bumps formed thereon was positioned on the film.
  • the film was heat molded at 180° C. and 10 kgf/cm 2 for 10 seconds and postcured at 150° C. for one hour, completing the semiconductor package.
  • E5 E6 E7 E8 E9 E10 Components (parts by weight) Epoxy resin A 40.8 40.4 0 0 0 0 0 Epoxy resin B 0 0 41.0 40.6 0 0 Epoxy resin E 0 0 0 0 40.2 0 Epoxy resin F 0 0 0 0 0 40.8 Phenolic resin A 33.6 0 33.4 0 0 0 Phenolic resin B 0 34.0 0 33.8 0 0 Phenolic resin D 0 0 0 0 34.2 33.6 Copolymer 25.6 25.6 25.6 25.6 25.6 25.6 Spherical silica 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300

Abstract

An epoxy resin composition comprising an epoxy resin containing 0-10% by weight of a 2-nucleus compound and 50-100% by weight of 3 to 5-nucleus compounds combined and having a dispersity (Mw/Mn) of 1.0-1.7, an inorganic filler, a curing catalyst, and optionally a phenolic resin, and having a Tg of lower than 15° C. in an uncured state is effective in forming a flexible film which is easy to work at room temperature. A laminate film includes a layer of the epoxy resin composition and a protective layer. By sealing a semiconductor chip with the film, there is obtained a semiconductor package having improved heat resistance, improved moisture resistance, low stress property.

Description

This invention relates to an epoxy resin composition of self-polymerization type or phenolic curing type, a laminate film using the same and suited for semiconductor packaging, and a semiconductor device sealed with the laminate film.
BACKGROUND OF THE INVENTION
The recent trend of electronic equipment is characterized by high speeds of size and weight reduction. Under the circumstances, it is desired to reduce the size and weight of semiconductor devices serving as the brain of electronic equipment. The ultimate target is to reduce the packaging area to the chip size, realizing a chip size package (CSP).
Epoxy resins are widely used in constructing semiconductor packages because of their good adhesion, heat resistance and moisture resistance. As the package system is diversified as mentioned above, epoxy resins are now used not only as the encapsulants well known in the art, but also as coating, die bonding and under-filling materials. Most such materials are diluted with solvents or in paste form.
Of these, the solvent-diluted materials require an attention to carefully remove the solvent that volatilizes off on use, from the standpoints of the health maintenance and safety of workers, undesirably adding to the cost.
Coating materials are used in several ways. One proposed method is to cover the surface of a semiconductor chip solely with a thin film of an epoxy resin composition to effect sealing. It is also proposed to screen print an epoxy resin composition in paste form. These materials include paste-like epoxy resin compositions such as those of the acid anhydride curing type and the amine curing type which are well known in the art. Alternatively, these paste-like epoxy resin compositions may take the form of a film which has been converted to B-stage.
Most of the prior art die bonding and under-filling materials were paste-like epoxy resin compositions. Recently, films formed from paste-like die bonding materials are widely utilized. On use, a film is pressed against a lead frame or substrate, and a semiconductor chip is joined onto the film whereupon the film is cured. Most of these die bonding materials are epoxy resin compositions of the acid anhydride curing type and the amine curing type which are well known in the art.
These B-staged films are easier to handle than paste-like materials and provide a very promising system that contributes to the simplification of a semiconductor device assembling process. However, the epoxy resin compositions of the acid anhydride curing type and the amine curing type are insufficient in the storage of uncured compositions and the moisture resistance and high-temperature performance of cured compositions. They are unsatisfactory in directly covering the semiconductor chip surface with a thin film.
As compared with the epoxy resin compositions of the acid anhydride curing type and the amine curing type, epoxy resin compositions of the self-polymerization type, especially those using imidazoles as the curing catalyst, and epoxy resin compositions of the phenolic curing type are satisfactory in the storage of uncured compositions and the moisture resistance and high-temperature performance of cured compositions, but are difficult to control the progress of reaction and hence, to form B-staged (or semi-cured state) films. To obtain flexible, easy-to-work films, the softening point of an epoxy resin base and a phenolic resin curing agent must be lowered. Undesirably, this is done at the expense of the heat resistance of cured compositions.
An object of the invention is to provide an epoxy resin composition of the self-polymerization type or the phenolic curing type which has a low glass transition temperature in an uncured state while maintaining the heat resistance, moisture resistance and low stress of a cured composition. Another object of the invention is to provide a laminate film comprising a flexible, easy-to-work thin layer of the epoxy resin composition. A further object of the invention is to provide a semiconductor device in which the gap between a semiconductor chip and a substrate or the surface of a semiconductor chip is sealed with the laminate film.
SUMMARY OF THE INVENTION
We have found that an epoxy resin composition comprising an epoxy resin containing up to 10% by weight of a 2-nucleus (two-nucleus) compound and at least 50% by weight of 3 to 5-nucleus (five-nucleus) compounds combined and having a weight average molecular weight/number average molecular weight ratio (referred to as a dispersity, hereinafter) of up to 1.7, an inorganic filler, and a curing catalyst, and having a glass transition temperature (often abbreviated as Tg) of lower than 15° C. in an uncured state is effective in forming a film which is very easy to work at room temperature by virtue of its good elasticity and flexibility. This is especially true when the composition is of the self-polymerization type wherein an imidazole is used as the curing catalyst or when the composition is of the phenolic curing type wherein a phenolic resin having a Tg of lower than 15° C. and free of a monomer is added. By enclosing a semiconductor chip with the film, there is obtained a semiconductor device having improved heat resistance, improved moisture resistance, low stress property, and a minimized void content.
In a first aspect, the invention provides an epoxy resin composition of the self-polymerization type or phenolic curing type, comprising (A) an epoxy resin containing up to 10% by weight of a 2-nucleus compound and at least 50% by weight of 3 to 5-nucleus compounds combined and having a dispersity of up to 1.7, (B) an inorganic filler, (C) a curing catalyst, and optionally, (D) a phenolic resin. The epoxy resin composition in an uncured state has a glass transition temperature Tg of lower than 15° C.
When the phenolic resin (D) is omitted, the epoxy resin composition is of the self-polymerization type wherein the curing catalyst (C) is preferably an imidazole. When the phenolic resin (D) is included, the epoxy resin composition is of the phenolic curing type. The phenolic resin preferably has a glass transition temperature of lower than 15° C. and is free of a monomer. The epoxy resin composition may further contain (E) a copolymer obtained by reacting an aromatic polymer with an organopolysiloxane of the following compositional formula (1):
RaR′bSiO(4−a−b)/2  (1)
wherein R represents hydrogen, an amino, epoxy, hydroxyl or carboxyl-bearing monovalent hydrocarbon group or an alkoxy group, R′ represents a substituted or unsubstituted monovalent hydrocarbon group, a is a positive number from 0.001 to 1, b is a positive number from 0.9 to 2, the sum of a and b is from 1 to 3, the number of silicon atoms in one molecule is from 2 to 1,000, and the number of functional groups R directly attached to silicon atoms in one molecule is at least 1. Further preferably, the epoxy resin composition in an uncured state has a volatile content of up to 0.1% by weight.
In a second aspect, the invention provides a laminate film comprising at least two layers, at least one layer being formed of the epoxy resin composition to a thickness of 20 to 150 μm.
In a third aspect, the invention provides a semiconductor device comprising a semiconductor chip having a surface sealed with the laminate film in a cured state.
BRIEF DESCRIPTION OF THE DRAWING
The only FIGURE, FIG. 1 illustrates in cross section a semiconductor package used in tests.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Epoxy Resin
The epoxy resin used herein is any one of epoxy resins containing up to 10% by weight (i.e., 0 to 10% by weight) of a 2-nucleus (two-nucleus) or binuclear compound and at least 50% by weight (i.e., 50 to 100% by weight) of 3 to 5-nucleus (five-nucleus) compounds combined and having a dispersity of up to 1.7 (i.e., 1.0 to 1.7). The dispersity is defined as a weight average molecular weight divided by a number average molecular weight. Since the epoxy resin used herein has one epoxy group in each nucleus, an n-nucleus compound has n epoxy groups in one molecule.
Appropriate epoxy resins include novolac type epoxy resins represented by the following formula (2), such as phenol novolac type epoxy resins, cresol novolac type epoxy resins, and phenol and cresol co-condensed novolac type epoxy resins, and trishydroxyphenylalkane type epoxy resins represented by the following formula (3), such as trishydroxyphenylmethane type epoxy resins and trishydroxyphenylpropane type epoxy resins.
Figure US06210811-20010403-C00001
Herein, R1 is hydrogen or methyl, R2 is hydrogen or bromine, G is
Figure US06210811-20010403-C00002
and n is 0 or a natural number, preferably an integer of 0 to 5, more preferably 1, 2 or 3.
Figure US06210811-20010403-C00003
Herein, R1 is hydrogen or methyl, R2 is hydrogen or bromine, G is
Figure US06210811-20010403-C00004
and m is 0 or a natural number, preferably an integer of 0 to 5, more preferably 0 or 1.
Most preferred among these are those epoxy resins, especially phenol novolac type epoxy resins or cresol novolac type epoxy resins, in which the content of 3 to 5-nucleus compounds combined is at least 60% by weight (i.e., 60 to 100% by weight), the proportion of the 3-nucleus compound in the total amount of 3 to 5-nucleus compounds is at least 60% by weight (i.e., 60 to 100% by weight), the dispersity is up to 1.5 (i.e., 1.0 to 1.5), and the softening temperature is lower than 15° C., especially lower than 10° C. If the content of the 2-nucleus compound relative to the entire epoxy resin is too high, the cured composition has a lower Tg and poor heat resistance. Even within an appropriate content of the 2-nucleus compound, if the total amount of 3 to 5-nucleus compounds is too small, indicating a greater proportion of 6 or poly-nucleus compounds, the uncured composition has a higher Tg which deprives the film of its flexibility at room temperature, with a possibility of failure of the film.
In combination with the above-described epoxy resins, any conventional well-known epoxy resin may be used. Such conventional epoxy resins include bisphenol type epoxy resins such as bisphenol A type epoxy resins and bisphenol F type epoxy resins, biphenyl type epoxy resins, naphthalene type epoxy resins, cyclopentadiene type epoxy resins, phenol aralkyl type epoxy resins, and biphenyl aralkyl type epoxy resins. The conventional epoxy resin is blended with the above-described epoxy resin in such amounts that the resulting epoxy resin composition may have a Tg of lower than 15° C.
These epoxy resins should preferably have a total chlorine content of up to 1,500 ppm, more preferably up to 1,000 ppm. When chlorine extraction with water is effected at 120° C. and an epoxy resin concentration of 50% for 20 hours, the epoxy resins should preferably have an extracted chlorine content of up to 5 ppm. If the total chlorine content and the water extracted chlorine content are above the respective limits, the packaged semiconductor would have less reliable moisture resistance.
Filler
The inorganic filler used herein may be selected from various types of fillers depending on a particular application. Exemplary fillers include natural silicas such as crystalline silica and amorphous silica, synthetic high-purity silica, synthetic spherical silica, talc, mica, silicon nitride, boron nitride, alumina, and conductive particles such as silver powder, alone or in admixture of two or more. The shape of the inorganic filler is not critical, and spherical, ground and irregular shapes may be used, with the spherical one being preferred. An appropriate amount of the inorganic filler blended is about 50 to 1,000 parts, more preferably about 100 to 400 parts by weight per 100 parts by weight of the entire resin content (that is, the epoxy resin content plus the content of a phenolic resin and/or an aromatic polymer-organopolysiloxane copolymer to be described later, if blended).
The particle size of the inorganic filler is limited by the thickness of a laminate film. Desirably, the maximum particle size of the inorganic filler is less than the laminate film thickness, and the mean particle size is less than ½ of the laminate film thickness. Usually, the inorganic filler having a maximum particle size of less than 150 μm, preferably less than 75 μm, and a mean particle size of about 0.1 to 70 μm, more preferably about 1 to 30 μm is used. The mean particle size can be determined as a weight average value (or median diameter) by means of a particle size distribution meter using laser light diffractometry and similar analysis means.
Curing Catalyst
The epoxy resin composition may be formulated to either the self-polymerization where no curing agent is blended or the phenolic curing type where a phenolic resin is blended as the curing agent. In either case, the curing catalyst is blended as an essential component.
For the epoxy resin compositions of the self-polymerization type, any curing catalyst that allows the epoxy resin to polymerize by itself may be used without a need to limit its type. For example, imidazoles (i.e., imidazole compounds) and tertiary amines may be used alone or in admixture of two or more. Of these, imidazoles are desirable when the shelf stability of uncured compositions is taken into account. Exemplary imidazoles include 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-hydroxymethylimidazole, and 2-phenyl-4,5-di(hydroxymethyl)imidazole. Exemplary tertiary amines include triethylamine, benzyldimethylamine, α-methylbenzyldimethylamine, as well as cycloamidines such as 1,8-diazabicyclo(5.4.0)undecene-7.
For the epoxy resin compositions of the phenolic curing type, organic phosphorus compounds may be used as the curing catalyst as well as the above-described imidazoles and tertiary amines. Exemplary organic phosphorus compounds include organic phosphine compounds and salts thereof such as triphenylphosphine, tributylphosphine, tri(p-toluyl)phosphine, tri(p-methoxyphenyl)phosphine, tri(p-ethoxyphenyl)phosphine, and triphenylphosphine-triphenyl borane, and quaternary phosphonium compounds and salts thereof such as tetraphenylphosphonium-tetraphenyl borate.
An appropriate amount of the curing catalyst blended is about 0.01 to 10 parts, more preferably about 0.1 to 5 parts by weight per 100 parts by weight of the epoxy resin (or the epoxy resin plus the phenolic resin, if the phenolic resin is blended). If the amount of the curing catalyst is too small, heat molding would result in undesirable undercure. Too large amounts of the curing catalyst can detract from the shelf stability.
Phenolic Resin
For the phenolic curing type epoxy resin composition, phenolic resins are blended as the curing agent.
Any phenolic resin having at least one phenolic hydroxyl group, preferably at least two phenolic hydroxyl groups in a molecule may be used herein. As opposed to the epoxy resin, the molecular weight distribution of the phenolic resin is not critical. In order that the (uncured) epoxy resin composition have a Tg of lower than 15° C., the phenolic resin should desirably have a Tg of lower than 15° C., especially lower than 10° C. Also, in order to avoid the cured composition from losing heat resistance, the phenolic resin should desirably be free of monomers (i.e., single-nucleus compounds). With these requirements taken into account, the preferred phenolic resins are those phenolic resins in which no monomers (i.e., single-nucleus compounds) are present, the total content of 2- to 4-nucleus compounds is at least 80% by weight (i.e., 80 to 100% by weight), the proportion of the 2-nucleus compound in the total content of 2 to 4-nucleus compounds is from 40% to less than 70% by weight, and Tg is lower than 15° C., especially lower than 10° C., and especially phenol novolac resins or cresol novolac resins of the following structural formula (4) satisfying these conditions.
Figure US06210811-20010403-C00005
Herein R1 is hydrogen or methyl, R2 is hydrogen or bromine, n is 0 or a natural number, preferably an integer of 0 to 5, more preferably 0, 1 or 2. Since the phenolic resin used herein has one phenolic hydroxyl group in each nucleus, an n-nucleus compound has n phenolic hydroxyl groups in one molecule. If the proportion of the 2-nucleus compound in the total content of 2 to 4-nucleus compounds is more than 70% by weight, the cured composition would have a lower Tg and poor heat resistance. If the proportion of the 2-nucleus compound in the total content of 2 to 4-nucleus compounds is less than 40% by weight or the total content of 2 to 4-nucleus compounds is less than 80% by weight, indicating a greater proportion of 3- or poly-nucleus compounds, the uncured composition has a higher Tg which deprives the film of its flexibility at room temperature, with a possibility of failure of the film.
In combination with the above-described phenolic resins, any conventional well-known phenolic resin may be used within such an amount that the glass transition temperature of the epoxy resin composition does not become 15° C. or over. Such conventional phenolic resins include bisphenol type phenolic resins such as bisphenol A type resins and bisphenol F type resins, phenol and cresol co-condensed novolac resins, trishydroxyphenylalkane type resins such as trishydroxyphenylmethane type resins and trishydroxyphenylpropane type resins, naphthalene type phenolic resins, cyclopentadiene type phenolic resins, phenolaralkyl resins, and biphenylaralkyl type phenolic resins.
Desirably, the phenolic resin is blended with the epoxy resin in such amounts that the equivalent ratio of the phenolic resin to the epoxy resin (that is, the molar ratio of phenolic hydroxyl groups in the phenol resin to epoxy resins in the epoxy resin) may range from 0.5 to 2.0, more desirably from 0.8 to 1.2. If the phenolic resin is blended with the epoxy resin in such amounts that the equivalent ratio may be less than 0.5 or more than 2.0, then the resin composition would not fully cure and hence, lose heat resistance.
Various additives such as pigments (e.g., carbon black), dyes, flame retardants, coupling agents, and thermoplastic resins may be blended in the epoxy resin composition depending on its particular application.
The epoxy resin composition in an uncured state is soft and rubbery at room temperature (about 25° C.) and has a glass transition temperature (Tg) of lower than 15° C., preferably lower than 10° C. If the Tg of the uncured composition is 15° C. or higher, there is the risk that the film thereof is deprived of its flexibility at room temperature and thus fails.
Copolymer
In one preferred embodiment, a copolymer obtained by reacting an aromatic polymer with a specific organopolysiloxane is blended in the epoxy resin composition in order to improve the low stress property thereof.
The aromatic polymers used herein include a variety of compounds, for example, epoxy resins and phenolic resins of the following structural formulae (5) and (6).
Figure US06210811-20010403-C00006
Herein, R1 is hydrogen or methyl, R2 is hydrogen or bromine, R3 is hydrogen or
Figure US06210811-20010403-C00007
n is 0 or a natural number, preferably an integer of 0 to 50, more preferably an integer of 1 to 20, and m is 0 or a natural number, preferably an integer of 0 to 5, more preferably 0 or 1.
Other useful aromatic polymers are alkenyl group-bearing compounds (epoxy resins or phenolic resins) having the following structural formulae (7) to (9).
Figure US06210811-20010403-C00008
Herein, R1 is hydrogen or methyl, R2 is hydrogen or bromine, R3 is hydrogen or
Figure US06210811-20010403-C00009
n and m are natural numbers, preferably the sum of n+m is from 2 to 50, more preferably from 2 to 20.
The organopolysiloxane is of the following compositional formula (1).
RaR′bSiO(4−a−b)/2  (1)
Herein R represents hydrogen, an amino, epoxy, hydroxyl or carboxyl-bearing monovalent hydrocarbon group or an alkoxy group. R′ represents a substituted or unsubstituted monovalent hydrocarbon group. The letters a and b are positive numbers satisfying 0.001≦a≦1, 0.9b≦2, and 1≦a+b≦3. The number of silicon atoms in one molecule is from 2 to 1,000, preferably 10 to 400, and the number of functional groups R directly attached to silicon atoms in one molecule is at least 1, preferably 2 to 5, more prefereably 2. Differently stated, R is a functional group capable of reacting with epoxy, phenolic hydroxyl or alkenyl groups in the aromatic polymer to form a copolymer.
Of the groups represented by R, the amino-bearing monovalent hydrocarbon groups are exemplified by
Figure US06210811-20010403-C00010
wherein n is an integer of 1 to 3; the epoxy-bearing monovalent hydrocarbon groups are exemplified by
Figure US06210811-20010403-C00011
wherein n is an integer of 1 to 3; the hydroxy-bearing monovalent hydrocarbon groups are exemplified by
Figure US06210811-20010403-C00012
wherein m is an integer of 0 to 3 and n is an integer of 1 to 3; the carboxyl-bearing monovalent hydrocarbon groups are exemplified by —CxH2xCOOH wherein x is an integer of 0 to 10; and the alkoxy groups are exemplified by those of 1 to 4 carbon atoms such as methoxy, ethoxy, and n-propoxy.
The substituted or unsubstituted monovalent hydrocarbon groups represented by R′ are preferably those of 1 to 10 carbon atoms, for example, alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, cyclohexyl, octyl and decyl; alkenyl groups such as vinyl, allyl, propenyl and butenyl; aryl groups such as phenyl and tolyl; aralkyl groups such as benzyl and phenylethyl; and halo-substituted monovalent hydrocarbon groups obtained by substituting halogen atoms for some or all of the hydrogen atoms on the foregoing hydrocarbon groups. Among them, preferred are methyl group, ethyl group, propyl group and phenyl group.
Preferably, letters a and b satisfy 0.01≦a≦0.1, 1.8≦b≦2, and 1.85≦a+b≦2.1, and the number of silicon atoms is from 10 to 400, more preferably from 20 to 210.
Illustrative examples of the organopolysiloxane are compounds of the following structures.
Figure US06210811-20010403-C00013
In formulae (10) and (11), R′ represents a substituted or unsubstituted monovalent hydrocarbon group as in formula (1), preferably methyl or phenyl; X represents an amino, epoxy, hydroxyl or carboxyl-bearing monovalent hydrocarbon group; p is an integer of 0 to 1,000, preferably 8 to 400; and q is an integer of 0 to 20, preferably 0 to 5.
Specific examples are diorganopolysiloxane as given below.
Figure US06210811-20010403-C00014
Desirably the organopolysiloxane has a molecular weight of 100 to 70,000 though not critical. When a copolymer obtained from an organopolysiloxane having a molecular weight of 100 to 70,000 is blended in an epoxy resin composition, the copolymer is not compatible with the matrix and rather forms a fine island-in-sea structure. If the molecular weight is less than 100, the resulting copolymer would become compatible with the matrix so that the island-in-sea structure disappears. If the molecular weight is greater than 70,000, an enlarged island-in-sea structure would form. In either case, the cured composition would lose the desired low stress property.
Any well-known method may be used in reacting the aromatic polymer with the organopolysiloxane to form a copolymer.
An appropriate amount of the copolymer blended is 0 to about 100 parts, more preferably about 1 to 50 parts by weight per 100 parts by weight of the epoxy resin (or the epoxy resin plus the phenolic resin, if the phenolic resin is blended). Especially for the phenolic curing type epoxy resin compositions, the ratio of the total content of phenolic hydroxyl groups to the total content of epoxy groups in the entirety of the epoxy resin, phenolic resin and copolymer is desirably from 0.5 to 2.0, more desirably from 0.8 to 1.2. If the total phenolic hydroxyl group content relative to the total epoxy group content is outside this range, the resin composition would not fully cure and hence, lose heat resistance.
The epoxy resin composition can be obtained by uniformly agitating and mixing the predetermined amounts of the above-described components, working the mixture in a roll mill, kneader or continuous kneader preheated at 70 to 90° C., cooling the mixture below its Tg, and grinding the mixture. The order of blending the components is not critical.
The epoxy resin composition is advantageously used in film form. As to the conditions under which the composition is heat molded into a film, the pressure applied to the composition is very low as compared with the transfer molding of conventional solid resins, and the composition has a more chance to be abruptly exposed to high temperatures as compared with the potting and under-filling of liquid materials. Therefore, volatile components in the uncured composition tend to be left as voids at the end of curing. It is thus desired to minimize the volatile content. Preferably, the volatile content is 0.1% by weight or lower, and more preferably 0.01% by weight or lower.
The epoxy resin composition of the invention is effectively used in semiconductor packaging, preferably after the composition is formed into a film. More preferably, a laminate film comprising at least two layers is contemplated wherein the epoxy resin composition is used as at least one layer thereof. The film or layer made of the epoxy resin composition preferably has a thickness of 20 to 150 μm. The material and thickness of the remaining layers are selected in accordance with the particular application of the laminate film.
One specific example is a laminate film consisting of a layer of the epoxy resin composition and a protective sheet which is bonded to one surface or each surface of the layer for the purpose of protecting the layer, examples of the protective sheet being a silicone sheet, Teflon® sheet, or polyethylene terephthalate (PET) sheet having parting silicone or Teflon® coated on its surface. Another exemplary laminate film has a layer of adhesive between the layer of the epoxy resin composition and the protective sheet or sheets, the adhesive layer serving to providing a quick bond to a substrate or semiconductor chip at room temperature.
The laminate film is manufactured by means of a coater/laminator as used in the manufacture of conventional rubber sheets. More specifically, the epoxy resin composition is stretched under heat and pressure, cut into strips or sliced into tapes (which are wound) depending on the particular application of the laminate film. Depending on the application, the strip or tape is further cut to the desired shape, which is used after the protective sheet is removed.
The laminate film is applicable to any semiconductor device although it is advantageously applied to small, thin semiconductor devices such as CSP. The laminate film is effective in establishing a bond in the narrow gap between a chip and a substrate. As compared with conventional acid anhydride curing type or amine curing type compositions, the inventive composition is effective in forming a reliable bond. The manner of using the laminate film is not critical. One typical procedure involves cutting the laminate film to a suitable size, moderately pressing the film to a substrate, mounting a chip on the film, and applying heat and pressure to the assembly (or effecting thermocompression). The film may be preheated before the mounting of the chip.
There has been described an epoxy resin composition in which the molecular weight distribution of the epoxy resin (and preferably the phenolic resin curing agent) is controlled so that the Tg of the uncured composition may be made low without sacrificing the heat resistance and moisture resistance of the cured composition. Using the epoxy resin composition, there is obtained a film which is flexible and easy to work. There is also obtained a laminate film comprising at least one layer of the epoxy resin composition and optionally at least one layer of another material. By enclosing a semiconductor chip with the film, a semiconductor package having improved heat resistance, moisture resistance and low stress property is obtained.
EXAMPLE
Examples of the invention are given below by way of illustration and not by way of limitation. Mw is a weight average molecular weight, Mn is a number average molecular weight, and Tg is a glass transition temperature.
Examples & Comparative Examples
Epoxy resins A to F having a molecular weight distribution, epoxy equivalent, and Tg as shown in Table 1, phenolic resins A to D having a molecular weight distribution, phenolic hydroxyl equivalent, and Tg as shown in Table 2, an inorganic filler (spherical silica having a maximum particle size of less than 24 μm and a mean particle size of 4 μm), 2-phenylimidazole (2PZ) and triphenylphosphine (TPP) curing catalysts, a silane coupling agent (γ-glycidoxypropyltrimethoxysilane, KBM403, Shin-Etsu Chemical Co., Ltd.), and a copolymer of the formula shown below (aromatic polymer-organopolysiloxane copolymer having an epoxy equivalent of 291 and a siloxane content of 31.2% by weight) were blended as shown in Tables 3 and 4. The blends were uniformly melt milled in a hot twin-roll mill, yielding epoxy resin compositions. It is noted that the epoxy resin, phenolic resin and copolymer were blended in such amounts as to provide an epoxy group/phenolic hydroxyl group ratio of 1/1 (molar ratio) and a polysiloxane content of 8% by weight based on the entire resin components.
Comparative Examples 6 and 7 used a liquid bisphenol A type epoxy resin (epoxy resin G, epoxy equivalent 179) as the epoxy resin. The curing agent was 4,4′-diamino-diphenylmethane (DDM, equivalent 99) in Comparative Example 6 and 4-methyltetrahydrophthalic anhydride (4-MTHPA, equivalent 166) in Comparative Example 7. They were blended in a formulation as shown in Table 5 (such that the functional groups might be equal in equivalent). The resulting epoxy resin compositions were B-staged at about 60° C. so as to have a Tg as shown in Table 5 before they were formed into films or otherwise worked.
Figure US06210811-20010403-C00015
TABLE 1
Molecular weight distribution, epoxy
equivalent, Tg of epoxy resin
6 and
poly- Epoxy
2- 3- 4- 5- nu- Mw/ equiv- Tg
nucleus nucleus nucleus nucleus cleus Mn alent (° C.)
A  9 40 13  9 29 1.5 187  9
B 10 32 13 10 35 1.7 190 11
C 13 13 12 10 52 2.1 199 13
D  4  7 29 12 48 1.7 191 25
E  9 38 12  9 32 1.6 180  8
F 52 19 29 1.7 164 11
A to D: cresol novolac type epoxy resins
E: phenol novolac type epoxy resin
F: trishydroxyphenylmethane type epoxy resin
Unit: % by weight for 2 to 5-nucleus compounds and 6 and poly-nucleus compounds
TABLE 2
Molecular weight distribution, phenol
equivalent, Tg of phenolic resin
5 and Phenol
2- 3- 4- poly- Mw/ equiv- Tg
nucleus nucleus nucleus nucleus Mn alent (° C.)
A 60 28  9  3 1.2 110  9
B 35 29 17 19 1.4 112 14
C  6 25 25 44 1.2 113 22
D 37 27 16 20 1.3 110  8
A to C: cresol novolac resins
D: phenol novolac resin
Unit: % by weight for 2 to 4-nucleus compounds and 5 and poly-nucleus compounds
These epoxy resin compositions were examined by the following tests (a) to (h). The results are shown in Tables 3 to 5.
(a) Tg of uncured composition
By differential scanning colorimetry (DSC), 10 mg of an uncured composition was heated at a rate of 5° C./min and the maximum of specific heat was measured.
(b) Film handling
An uncured composition was formed into film strips of 10 mm×50 mm×0.1 mm. Each strip was folded at 25° C. such that the short sides (10 mm) coincided with each other. The number of broken strips was reported per the total number of tested strips.
(c) Tg of cured composition
A composition was molded at 150° C. and 50 kgf/cm2 for 3 minutes into a specimen of 5 mm×5 mm×15 mm, which was postcured at 150° C. for 4 hours. Tg was measured by means of TMA (Thermal Mechanical Analysis) by heating the specimen at a rate of 5° C./min.
(d) Moisture resistance
A semiconductor package as shown in FIG. 1 was allowed to stand for 24 and 48 hours in an atmosphere of 121° C., RH 100% and 2 atm. Some package samples showed abnormal values because of line disconnection. The number of failed samples per the total number of tested samples is reported.
(e) Water absorption
A composition was molded at 150° C. and 50 kgf/cm2 for 3 minutes into a disk having a diameter of 50 mm and a thickness of 3 mm, which was postcured at 150° C. for 4 hours. The disk was allowed to stand for 24 hours in an atmosphere of 121° C., RH 100% and 2 atm. A weight change was determined.
(f) Solder cracking resistance after moisture absorption
A semiconductor package as shown in FIG. 1 was allowed to stand for 24 hours in an atmosphere of 121° C., RH 100% and 2 atm. It was immersed for 10 seconds in a solder bath at 240° C. The number of cracked samples per the total number of tested samples is reported.
(g) Volatile content of uncured composition
After 5 g of an uncured composition was heated at 180° C. for one hour, a weight change was determined.
(h) Voids of cured composition
Using an ultrasonic flaw detector, a semiconductor package as shown in FIG. 1 was inspected to determine the void area per the total area of the package.
Referring to FIG. 1, there is illustrated a semiconductor device package comprising a BT substrate 1, gold terminals 2, copper leads 3, an epoxy resin composition film 4, solder bumps 5, and a silicon chip 6. The epoxy resin composition film of 10 mm×10 mm×0.1 mm was placed on the BT substrate, moderately pressed thereto, and preheated at 120° C. for 10 seconds. The silicon chip of 10 mm×10 mm×0.3 mm having aluminum wiring and solder bumps formed thereon was positioned on the film. The film was heat molded at 180° C. and 10 kgf/cm2 for 10 seconds and postcured at 150° C. for one hour, completing the semiconductor package.
TABLE 3
E1 E2 E3 E4 CE1 CE2
Components
(parts by weight)
Epoxy resin A 74.4 0 0 0 0 0
Epoxy resin B 0 74.4 0 0 0 0
Epoxy resin C 0 0 0 0 74.4 0
Epoxy resin D 0 0 0 0 0 74.4
Epoxy resin E 0 0 74.4 0 0 0
Epoxy resin F 0 0 0 74.4 0 0
Copolymer 25.6 25.6 25.6 25.6 25.6 25.6
Spherical silica 300 300 300 300 300 300
2PZ 2.0 2.0 2.0 2.0 2.0 2.0
KBM403 1.0 1.0 1.0 1.0 1.0 1.0
(a) Tg of uncured 9 10 8 12 12 20
composition, ° C.
(b) Film handling 0/5  0/5  0/5  0/5  0/5  5/5
(c) Tg of cured 146 142 144 156 136
composition, ° C.
(d) Moisture resistance
24 hr. 0/20 0/20 0/20 0/20 0/20
48 hr. 0/20 0/20 0/20 0/20 0/20
(e) Water absorption, 0.66 0.68 0.69 0.68 0.72
% by weight
(f) Solder cracking 0/20 0/20 0/20 0/20 2/20
resistance after
moisture absorption
(g) Volatile content 0.01 0.02 0.02 0.03 0.11
of uncured
composition,
% by weight
(h) Voids of cured 0.05 0.07 0.08 0.12 0.50
composition, area %
(% by area)
TABLE 4
E5 E6 E7 E8 E9 E10
Components
(parts by weight)
Epoxy resin A 40.8 40.4 0 0 0 0
Epoxy resin B 0 0 41.0 40.6 0 0
Epoxy resin E 0 0 0 0 40.2 0
Epoxy resin F 0 0 0 0 0 40.8
Phenolic resin A 33.6 0 33.4 0 0 0
Phenolic resin B 0 34.0 0 33.8 0 0
Phenolic resin D 0 0 0 0 34.2 33.6
Copolymer 25.6 25.6 25.6 25.6 25.6 25.6
Spherical silica 300 300 300 300 300 300
TPP 1.2 1.2 1.2 1.2 1.2 1.2
KBM403 1.0 1.0 1.0 1.0 1.0 1.0
(a) Tg of uncured 9 11 10 13 9 11
composition, ° C.
(b) Film handling 0/5  0/5  0/5  0/5  0/5  0/5 
(c) Tg of cured 132 131 131 130 131 142
composition, ° C.
(d) Moisture resistance
24 hr. 0/20 0/20 0/20 0/20 0/20 0/20
48 hr. 0/20 0/20 0/20 0/20 0/20 0/20
(e) Water absorption, 0.61 0.60 0.60 0.61 0.66 0.68
% by weight
(f) Solder cracking 0/20 0/20 0/20 0/20 0/20 0/20
resistance after
moisture absorption
(g) Volatile content 0.01 0.03 0.02 0.03 0.07 0.05
of uncured composition,
% by weight
(h) Voids of cured 0.05 0.12 0.07 0.10 0.20 0.15
composition, area %
(% by area)
TABLE 5
CE3 CE4 CE5 CE6 CE7
Components
(parts by weight)
Epoxy resin A 40.2 0 0 0 0
Epoxy resin C 0 41.7 0 0 0
Epoxy resin D 0 0 41.1 0 0
Epoxy resin G 0 0 0 42.3 31.0
Phenolic resin A 0 32.7 33.3 0 0
Phenolic resin C 34.2 0 0 0 0
DDM 0 0 0 32.1 0
4-MTHPA 0 0 0 0 43.4
Copolymer 25.6 25.6 25.6 25.6 25.6
Spherical silica 300 300 300 300 300
TPP 1.0 1.0 1.0 0 0
KBM403 1.0 1.0 1.0 1.0 1.0
(a) Tg of uncured 15 11 16 10 9
composition, ° C.
(b) Film handling 5/5 0/5  5/5 0/5 0/5
(c) Tg of cured 115 158 121
composition, ° C.
(d) Moisture resistance
24 hr. 0/20 12/20  9/20
48 hr. 0/20 20/20 20/20
(d) Water absorption, 0.61 1.10 1.03
% by weight
(f) Solder cracking 2/20  0/20  0/20
resistance after
moisture absorption
(g) Volatile content 0.12 0.45 0.40
of uncured composition,
% by weight
(h) Voids of cured 0.5 10 9
composition, area %
(% by area)
Japanese Patent Application Nos. 10-270834 and 10-350932 are incorporated herein by reference.
Although some preferred embodiments have been described, many modifications and variations may be made thereto in light of the above teachings. It is therefore to be understood that the invention may be practiced otherwise than as specifically described without departing from the scope of the appended claims.

Claims (8)

What is claimed is:
1. An epoxy resin composition comprising
(A) an epoxy resin containing up to 10% by weight of a 2-nucleus compound and at least 50% by weight of 3 to 5-nucleus compounds combined and having a dispersity of up to 1.7,
(B) an inorganic filler, and
(C) a curing catalyst,
said epoxy resin composition in an uncured state having a glass transition temperature of lower than 15° C.
2. The epoxy resin composition of claim 1 wherein the curing catalyst (C) is an imidazole compound.
3. The epoxy resin composition of claim 1 further comprising (D) a phenolic resin.
4. The epoxy resin composition of claim 3 wherein the phenolic resin (D) has a glass transition temperature of lower than 15° C. and is free of a monomer.
5. The epoxy resin composition of claim 1 further comprising (E) a copolymer obtained by reacting an aromatic polymer with an organopolysiloxane of the following compositional formula (1):
RaR′bSiO(4−a−b)/2  (1)
wherein R represents hydrogen, an amino, epoxy, hydroxyl or carboxyl-bearing monovalent hydrocarbon group or an alkoxy group, R′ represents a substituted or unsubstituted monovalent hydrocarbon group, a is a positive number from 0.001 to 1, b is a positive number from 0.9 to 2, the sum of a and b is from 1 to 3, the number of silicon atoms in one molecule is from 2 to 1,000, and the number of functional groups R directly attached to silicon atoms in one molecule is at least 1.
6. The epoxy resin composition of claim 1 which in an uncured state has a volatile content of up to 0.1% by weight.
7. A laminate film comprising at least two layers, at least one layer being formed of the epoxy resin composition of any one of claims 1 to 6 to a thickness of 20 to 150 μm.
8. A semiconductor device comprising a semiconductor chip having a surface sealed with the laminate film of claim 7 in a cured state.
US09/404,301 1998-09-25 1999-09-24 Epoxy resin composition, laminate film using the same, and semiconductor device Expired - Lifetime US6210811B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP27083498 1998-09-25
JP10-270834 1998-12-10
JP10-350932 1998-12-10
JP35093298 1998-12-10

Publications (1)

Publication Number Publication Date
US6210811B1 true US6210811B1 (en) 2001-04-03

Family

ID=26549396

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/404,301 Expired - Lifetime US6210811B1 (en) 1998-09-25 1999-09-24 Epoxy resin composition, laminate film using the same, and semiconductor device

Country Status (2)

Country Link
US (1) US6210811B1 (en)
KR (1) KR100563509B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010011732A1 (en) * 2000-02-07 2001-08-09 Ikuo Kohashi Semiconductor laser apparatus and method of producing the same
US6383659B1 (en) * 1999-04-14 2002-05-07 Shin-Etsu Chemical Co., Ltd. Epoxy resin composition, laminate film using the same, and semiconductor device
US6467676B1 (en) * 1999-09-24 2002-10-22 Advanpack Solutions Pte Ltd. Fluxing adhesive
US6512031B1 (en) * 1999-04-15 2003-01-28 Shin-Etsu Chemical Co., Ltd. Epoxy resin composition, laminate film using the same, and semiconductor device
US20030096191A1 (en) * 2001-10-12 2003-05-22 Hideto Kato Hybrid compound, resist, and patterning process
US6645632B2 (en) 2000-03-15 2003-11-11 Shin-Etsu Chemical Co., Ltd. Film-type adhesive for electronic components, and electronic components bonded therewith
US6713571B2 (en) * 2000-12-18 2004-03-30 Nitto Denki Corporation Process for producing epoxy resin composition for photosemiconductor element encapsulation
US6933179B1 (en) * 2000-01-19 2005-08-23 Oki Electric Industry Co., Ltd. Method of packaging semiconductor device
US20060223933A1 (en) * 2005-04-05 2006-10-05 General Electric Company Cure system, adhesive system, electronic device
US20060219757A1 (en) * 2005-04-05 2006-10-05 General Electric Company Method for producing cure system, adhesive system, and electronic device
US20090133833A1 (en) * 2005-09-02 2009-05-28 Shin-Etsu Chemical Co., Ltd. Epoxy Resin Composition and Die Bonding Material Comprising the Composition
US20120153513A1 (en) * 2007-05-17 2012-06-21 Nitto Denko Corporation Thermosetting encapsulation adhesive sheet
US20150140343A1 (en) * 2012-05-29 2015-05-21 Nitto Denko Corporation Adhesive, and transparent substrate using same
US20150175858A1 (en) * 2012-05-29 2015-06-25 Nitto Denko Corporation Adhesive, and transparent substrate using same
CN105531317A (en) * 2013-09-26 2016-04-27 陶氏环球技术有限责任公司 Curable epoxy compositions
US11158594B2 (en) 2019-11-12 2021-10-26 Samsung Electronics Co., Ltd. Semiconductor packages having improved reliability in bonds between connection conductors and pads

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101304697B1 (en) * 2006-06-07 2013-09-06 삼성전자주식회사 Organic semiconductor materials using stacking-inducing compounds, composition comprising the materials, organic semiconductor thin film using the composition and organic electronic device employing the thin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335389A (en) 1997-04-02 1998-12-18 Nitto Denko Corp Semiconductor device and sheet-shaped sealing material used for the same
US5994785A (en) * 1998-05-07 1999-11-30 Mitsubishi Denki Kabushiki Kaisha Epoxy resin compositions and semiconductor devices encapsulated therewith

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381118A (en) * 1986-09-25 1988-04-12 Nippon Kayaku Co Ltd Novolak type epoxy resin of phenols
JPH1053640A (en) * 1996-08-09 1998-02-24 Nippon Kayaku Co Ltd Epoxy resin composition and its cured product
JPH10101906A (en) * 1996-10-03 1998-04-21 Shin Etsu Chem Co Ltd Production of liquid epoxy resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335389A (en) 1997-04-02 1998-12-18 Nitto Denko Corp Semiconductor device and sheet-shaped sealing material used for the same
US5994785A (en) * 1998-05-07 1999-11-30 Mitsubishi Denki Kabushiki Kaisha Epoxy resin compositions and semiconductor devices encapsulated therewith

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nitto Technical Report vol. 36, No. 1. May 1998, pp. 24-29.

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383659B1 (en) * 1999-04-14 2002-05-07 Shin-Etsu Chemical Co., Ltd. Epoxy resin composition, laminate film using the same, and semiconductor device
US6512031B1 (en) * 1999-04-15 2003-01-28 Shin-Etsu Chemical Co., Ltd. Epoxy resin composition, laminate film using the same, and semiconductor device
US6467676B1 (en) * 1999-09-24 2002-10-22 Advanpack Solutions Pte Ltd. Fluxing adhesive
US6933179B1 (en) * 2000-01-19 2005-08-23 Oki Electric Industry Co., Ltd. Method of packaging semiconductor device
US20010011732A1 (en) * 2000-02-07 2001-08-09 Ikuo Kohashi Semiconductor laser apparatus and method of producing the same
US6677184B2 (en) 2000-02-07 2004-01-13 Sharp Kabushiki Kaisha Semiconductor laser apparatus and method of producing the same
US6888865B2 (en) * 2000-02-07 2005-05-03 Sharp Kabushiki Kaisha Semiconductor laser apparatus and method of producing the same
US6645632B2 (en) 2000-03-15 2003-11-11 Shin-Etsu Chemical Co., Ltd. Film-type adhesive for electronic components, and electronic components bonded therewith
US6713571B2 (en) * 2000-12-18 2004-03-30 Nitto Denki Corporation Process for producing epoxy resin composition for photosemiconductor element encapsulation
US20030096191A1 (en) * 2001-10-12 2003-05-22 Hideto Kato Hybrid compound, resist, and patterning process
US6790581B2 (en) * 2001-10-12 2004-09-14 Shin-Etsu Chemical Company, Limited Hybrid compound, resist, and patterning process
US20060219757A1 (en) * 2005-04-05 2006-10-05 General Electric Company Method for producing cure system, adhesive system, and electronic device
US20060223933A1 (en) * 2005-04-05 2006-10-05 General Electric Company Cure system, adhesive system, electronic device
US7405246B2 (en) 2005-04-05 2008-07-29 Momentive Performance Materials Inc. Cure system, adhesive system, electronic device
US7446136B2 (en) 2005-04-05 2008-11-04 Momentive Performance Materials Inc. Method for producing cure system, adhesive system, and electronic device
US20090133833A1 (en) * 2005-09-02 2009-05-28 Shin-Etsu Chemical Co., Ltd. Epoxy Resin Composition and Die Bonding Material Comprising the Composition
US20120153513A1 (en) * 2007-05-17 2012-06-21 Nitto Denko Corporation Thermosetting encapsulation adhesive sheet
US8922031B2 (en) * 2007-05-17 2014-12-30 Nitto Denko Corporation Thermosetting encapsulation adhesive sheet
US20150140343A1 (en) * 2012-05-29 2015-05-21 Nitto Denko Corporation Adhesive, and transparent substrate using same
US20150175858A1 (en) * 2012-05-29 2015-06-25 Nitto Denko Corporation Adhesive, and transparent substrate using same
CN105531317A (en) * 2013-09-26 2016-04-27 陶氏环球技术有限责任公司 Curable epoxy compositions
US20160208091A1 (en) * 2013-09-26 2016-07-21 Dow Global Technologies Llc Curable epoxy compositions
US9738783B2 (en) * 2013-09-26 2017-08-22 Blue Cube Ip Llc Curable epoxy compositions
US11158594B2 (en) 2019-11-12 2021-10-26 Samsung Electronics Co., Ltd. Semiconductor packages having improved reliability in bonds between connection conductors and pads
US11676925B2 (en) 2019-11-12 2023-06-13 Samsung Electronics Co., Ltd. Semiconductor packages having improved reliability in bonds between connection conductors and pads and methods of manufacturing the same

Also Published As

Publication number Publication date
KR100563509B1 (en) 2006-03-23
KR20000023389A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
US6210811B1 (en) Epoxy resin composition, laminate film using the same, and semiconductor device
US6512031B1 (en) Epoxy resin composition, laminate film using the same, and semiconductor device
US6225704B1 (en) Flip-chip type semiconductor device
EP3098249B1 (en) Resin composition, resin film, and semiconductor device and method for manufacturing same
US6383659B1 (en) Epoxy resin composition, laminate film using the same, and semiconductor device
WO2001060938A1 (en) Adhesive composition, process for producing the same, adhesive film made with the same, substrate for semiconductor mounting, and semiconductor device
JP4892164B2 (en) Liquid epoxy resin composition and electronic component device
KR101904509B1 (en) Liquid epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device
JP3852221B2 (en) Epoxy resin molding material for sealing and electronic component device
EP3015499B1 (en) Silicone resin, resin composition, resin film, semiconductor device, and making method
US6429238B1 (en) Flip-chip type semiconductor device sealing material and flip-chip type semiconductor device
JP2024026589A (en) Encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP3796648B2 (en) Epoxy resin composition, and laminated film and semiconductor device using this epoxy resin composition
TW202122270A (en) Multi-layer sheet for mold underfill encapsulation, method for mold underfill encapsulation, electronic component mounting substrate, and production method for electronic component mounting substrate
EP3453742B1 (en) Resin composition, resin film, semiconductor laminate, method for manufacturing semiconductor laminate, and method for manufacturing seminconductor device
US6372839B1 (en) Flip-chip type semiconductor device underfill
JP3773022B2 (en) Flip chip type semiconductor device
JP5236134B2 (en) Adhesive composition, adhesive member, semiconductor mounting support member, semiconductor device, etc.
JP3672011B2 (en) Epoxy resin composition and laminated film and semiconductor device using this epoxy resin composition
JP2009057575A (en) Liquid epoxy resin composition and electronic component device
US6310120B1 (en) Flip-chip type semiconductor device sealing material
JP3890681B2 (en) Epoxy resin molding material for electronic component sealing and electronic component
JP3674675B2 (en) Underfill material for flip chip type semiconductor devices
JP2015054952A (en) Epoxy resin composition, electronic part device and production method of electronic part device
JP2009062413A (en) Adhesive composition and die bond film

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHIN-ETSU CHEMICAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HONDA, TSUYOSHI;WAKAO, MIYUKI;SHIMIZU, HISASHI;AND OTHERS;REEL/FRAME:010298/0032;SIGNING DATES FROM 19990824 TO 19990901

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12