US6137289A - MR imaging method and apparatus - Google Patents
MR imaging method and apparatus Download PDFInfo
- Publication number
- US6137289A US6137289A US09/286,256 US28625699A US6137289A US 6137289 A US6137289 A US 6137289A US 28625699 A US28625699 A US 28625699A US 6137289 A US6137289 A US 6137289A
- Authority
- US
- United States
- Prior art keywords
- pulse
- sub
- flow compensating
- phase shift
- pulse sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 title claims description 20
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 claims abstract description 29
- 230000010363 phase shift Effects 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 16
- 230000015556 catabolic process Effects 0.000 abstract description 8
- 238000006731 degradation reaction Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56572—Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of a gradient magnetic field, e.g. non-linearity of a gradient magnetic field
- G01R33/56581—Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of a gradient magnetic field, e.g. non-linearity of a gradient magnetic field due to Maxwell fields, i.e. concomitant fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56509—Correction of image distortions, e.g. due to magnetic field inhomogeneities due to motion, displacement or flow, e.g. gradient moment nulling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56563—Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0
Definitions
- the present invention relates to an MR (magnetic resonance) imaging method and apparatus which prevents image quality degradation which occurs when a flow compensating pulse is applied.
- the conventional fast spin echo technique includes a pulse sequence incorporating a flow compensating pulse constituted of fcrdep and fcrrep in the read gradient (FIG. 5).
- a pulse sequence incorporating a flow compensating pulse constituted of fcrdep and fcrrep in the read gradient By incorporating the flow compensating pulse constituted of fcrdep and fcrrep in the read gradient, image quality degradation due to flowing spins can be avoided (flow compensation).
- the incorporation of the flow compensating pulse constituted of fcrdep and fcrrep may cause ghosts.
- the ghosts negligibly degrade image quality and do not cause a significant problem.
- the present invention provides an MR imaging method wherein: a flow compensating pulse is incorporated in a read gradient of a pulse sequence according to the fast spin echo technique; and a bipolar pulse is incorporated in a slice gradient before an inversion pulse applied immediately before the flow compensating pulse, to impart a phase shift equal to a non-linear phase shift due to the flow compensating pulse.
- the reason why the ghosts are generated by incorporating the flow compensating pulse is that a non-linear spatial phase change arises in the encode axis.
- the magnetic field involves an additional term B M (x, y, z, t) as follows to satisfy the Maxwell equation:
- the non-linear phase shift arises because, as can be seen from the above equation, the Maxwell term B M (x, y, z, t) contains quadratic terms of x, y and z and cross terms of xz and yz.
- the Maxwell term has a greater weight relative to the main magnetic field B 0 , and hence, the effect thereof increases.
- the flow compensating pulse constituted of fcrdep and fcrrep is given as short time width and as great amplitude as possible in order to reduce the echo spacing (interval between inversion pulses) in the fast spin echo technique. Since the Maxwell term involves a term proportional to the square of the amplitude of a gradient pulse, the effect exerted by the Maxwell term becomes great due to the flow compensating pulse constituted of fcrdep and fcrrep.
- a bipolar pulse is employed in the slice gradient instead of the read gradient. This prevents the spins flowing in the read direction from being provided with an unnecessary phase. Moreover, the bipolar pulse is incorporated before an inversion pulse applied immediately before the flow compensating pulse. By this, a phase shift having a phase opposite to the phase shift due to the flow compensating pulse can be introduced by the bipolar pulse. Furthermore, the bipolar pulse is made to impart a phase shift equal to the non-linear phase shift due to the flow compensating pulse. This entire process cancels the non-linear phase shift due to the flow compensating pulse, thereby preventing image quality degradation which occurs when the flow compensating pulse is applied.
- the present invention provides an MR imaging apparatus comprising: pulse sequence creating means for creating a pulse sequence which incorporates a flow compensating pulse in a read gradient of a pulse sequence according to the fast spin echo technique, and incorporates a bipolar pulse in a slice gradient before an inversion pulse applied immediately before the flow compensating pulse, to impart a phase shift equal to a non-linear phase shift due to the flow compensating pulse; data acquisition means for executing the created pulse sequence to acquire data; and image producing means for reconstructing an image from the acquired data.
- the MR imaging apparatus as described regarding the second aspect can suitably implement the MR imaging method in the first aspect, and MR imaging according to the fast spin echo technique incorporating flow compensation can be conducted in a low magnetic field without image quality degradation.
- FIG. 1 is a block diagram illustrating an MR imaging apparatus in accordance with one embodiment of the present invention.
- FIG. 2 is a flow chart illustrating a Maxwell-term correcting pulse sequence creating process in the MR imaging apparatus shown in FIG. 1.
- FIG. 3 illustrates the meaning of symbols indicating the time width and amplitude of a flow compensating pulse.
- FIG. 4 illustrates the waveform of a correcting pulse.
- FIG. 5 illustrates an example of a pulse sequence in accordance with the present invention.
- FIG. 6 illustrates an example of a pulse sequence for observing the effect of the correcting pulse.
- FIG. 1 is a block diagram of an MR imaging apparatus in accordance with one embodiment of the present invention.
- a magnet assembly 1 has a space (bore) in which a subject is inserted. Surrounding the space are disposed a permanent magnet 1p for applying a constant main magnetic field to the subject, a gradient magnetic field coil 1g for generating gradient magnetic fields as the slice, read and encoding gradients, a transmitter coil 1t for applying RF pulses for exciting or inverting spins in atomic nuclei within the subject, and a receiver coil 1r for detecting an NMR signal from the subject.
- the gradient magnetic field coil 1g, the transmitter coil 1t and the receiver coil 1r are connected to a gradient magnetic field drive circuit 3, an RF power amplifier 4 and a preamplifier 5, respectively.
- a sequence memory circuit 8 operates the gradient magnetic field drive circuit 3 based on a stored pulse sequence supplied from a computer 7 to generate the gradient magnetic fields from the gradient magnetic field coil 1g in the magnet assembly 1.
- the sequence memory circuit 8 also operates a gate modulation circuit 9 to modulate a carrier output signal from an RF oscillation circuit 10 into a pulse-like signal having a predetermined timing and envelope shape.
- the pulse-like signal is supplied to the RF power amplifier 4 as an RF pulse and is power amplified in the RF power amplifier 4.
- the power-amplified signal is then applied to the transmitter coil 1t in the magnet assembly 1 to selectively excite an imaging region.
- the preamplifier 5 amplifies an NMR signal detected from the subject at the receiver coil 1r in the magnet assembly 1 and supplies it to a phase detector 12.
- the phase detector 12 phase-detects the NMR signal supplied from the preamplifier 5 using the carrier output signal from the RF oscillation circuit 10 as a reference signal, and supplies the NMR signal to an A/D (analog-to-digital) converter 11.
- the A/D converter 11 converts the phase-detected analog signal into a digital signal and supplies it to the computer 7.
- the computer 7 reads the data from the A/D converter 11 and performs an image reconstruction operation to produce an image of the imaging region.
- the image is displayed on a display device 6.
- the computer 7 also performs overall control, including receipt of information input from an operator console 13.
- the computer 7 moreover creates a pulse sequence based on commands input by the operator and supplies the pulse sequence to the sequence memory circuit 8. Therefore, the computer 7 corresponds to the pulse sequence creating means, the overall system corresponds to the pulse sequence executing means, and the computer 7 corresponds to the image producing means.
- FIG. 2 is a flow chart illustrating a non-linear phase shift correcting pulse sequence creating process executed in the computer 7. The process is executed subsequent to generation of a pulse sequence according to the fast spin echo technique incorporating a flow compensating pulse in the read direction.
- Step S1 the amount of a non-linear phase shift ⁇ .sub. ⁇ .sbsb.-- FC1 by the flow compensating pulse constituted of fcrdep and fcrrep is calculated according to the following equation:
- the slice gradient is in the Y-direction
- the read gradient is in the X-direction
- the encoding gradient is in the Z direction
- the symbols representing the pulse amplitudes and pulse widths of the read gradient are defined as shown in FIG. 3.
- Step S2 a correcting pulse constituted of gzfcf and gzmfcf which satisfies the equation below is calculated.
- the pulse amplitude and the pulse width of the correcting pulse gzfcf shown in FIG. 4 are calculated so that the equation below is satisfied.
- the correcting pulse gzmfcf is symmetrized with the correcting pulse gzfcf. Accordingly, the correcting pulse constituted of gzfcf and gzmfcf forms a bipolar pulse.
- Step S3 a pulse sequence is created which incorporates the correcting pulse constituted of gzfcf and gzmfcf in the above-mentioned pulse sequence according to the fast spin echo technique incorporating the flow compensating pulse constituted of fcrdep and fcrrep in the read gradient. The process is then terminated.
- FIG. 5 exemplarily shows the created pulse sequence.
- the pulse sequence shown incorporates the correcting pulse gzmfcf as an integral part of the fore portion of the slice selective pulse sselect.
- the non-linear phase shift by the correcting pulse constituted of gzfcf and gzmfcf is inverted by each of the following 180° pulses rf21, rf22, rf23, . . . , and is added in opposite phase to the non-linear phase shift due to the flow compensating pulse constituted of fcrdep and fcrrep, thereby canceling the non-linear phase shift and improving image quality.
- FIG. 6 shows a pulse sequence for observing the effect of the correcting pulse constituted of gzfcf and gzmfcf.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Nonlinear Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10140295A JP3028220B2 (ja) | 1998-05-21 | 1998-05-21 | Mri装置 |
JP10-140295 | 1998-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US6137289A true US6137289A (en) | 2000-10-24 |
Family
ID=15265472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/286,256 Expired - Fee Related US6137289A (en) | 1998-05-21 | 1999-04-05 | MR imaging method and apparatus |
Country Status (6)
Country | Link |
---|---|
US (1) | US6137289A (fr) |
EP (1) | EP0959366A3 (fr) |
JP (1) | JP3028220B2 (fr) |
KR (1) | KR19990088424A (fr) |
CN (1) | CN1238935A (fr) |
BR (1) | BR9902095A (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020195977A1 (en) * | 2001-06-21 | 2002-12-26 | Takao Goto | External magnetic field measuring method, static magnetic field correcting method, external magnetic field measuring apparatus, and MRI system |
US20030189425A1 (en) * | 2002-04-05 | 2003-10-09 | Patrick Le Roux | Method and apparatus for fast imaging by nuclear magnetic resonance |
US20080315876A1 (en) * | 2007-06-20 | 2008-12-25 | Mitsuharu Miyoshi | Magnetic resonance imaging apparatus and magnetic resonance image generating method |
WO2018114554A1 (fr) * | 2016-12-20 | 2018-06-28 | Koninklijke Philips N.V. | Imagerie rm à séparation eau/graisse de type dixon |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100367419B1 (ko) * | 2000-01-25 | 2003-01-10 | 주식회사 메디슨 | K공간을 공유함으로써 FSE기법에 3-포인트 Dixon기법을 적용한 방법 |
US6486667B1 (en) | 2000-03-31 | 2002-11-26 | Koninklijke Philips Electronics N.V. | Combination of fluid-attenuated inversion-recovery complex images acquired using magnetic resonance imaging |
DE10157540B4 (de) * | 2001-11-23 | 2007-01-11 | Siemens Ag | Doppelechosequenz und Magnetresonanzgerät zum Ausführen der Doppelechosequenz und Verwendung desselben in der Orthopädie |
JP2007090001A (ja) | 2005-09-30 | 2007-04-12 | Ge Medical Systems Global Technology Co Llc | Mrスキャン方法およびmri装置 |
US7557575B2 (en) * | 2006-04-04 | 2009-07-07 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging apparatus and magnetic resonance imaging method |
US7567081B2 (en) * | 2007-05-03 | 2009-07-28 | University Of Basel | Magnetic resonance non-balanced-SSFP method for the detection and imaging of susceptibility related magnetic field distortions |
CN105988098B (zh) * | 2015-01-30 | 2021-07-27 | Ge医疗系统环球技术有限公司 | 磁共振信号采集系统及方法 |
US11510655B2 (en) * | 2019-09-10 | 2022-11-29 | GE Precision Healthcare LLC | Methods and systems for motion corrected wide-band pulse inversion ultrasonic imaging |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683431A (en) * | 1985-08-16 | 1987-07-28 | Picker International, Inc. | Magnetic resonance imaging of high velocity flows |
US5007426A (en) * | 1986-11-21 | 1991-04-16 | General Electric Cgr S.A. | Method for depiction of moving parts in a body by nuclear magnetic resonance experiment |
US5592084A (en) * | 1992-12-01 | 1997-01-07 | Picker Nordstar Inc. | Method for imaging of movement of material |
US5652513A (en) * | 1996-08-01 | 1997-07-29 | Picker International, Inc. | Phase sensitive magnetic resonance technique with integrated gradient profile and continuous tunable flow |
-
1998
- 1998-05-21 JP JP10140295A patent/JP3028220B2/ja not_active Expired - Lifetime
-
1999
- 1999-04-05 US US09/286,256 patent/US6137289A/en not_active Expired - Fee Related
- 1999-05-19 EP EP99303889A patent/EP0959366A3/fr not_active Withdrawn
- 1999-05-20 BR BR9902095-5A patent/BR9902095A/pt not_active IP Right Cessation
- 1999-05-20 KR KR1019990018190A patent/KR19990088424A/ko active IP Right Grant
- 1999-05-21 CN CN99109721A patent/CN1238935A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683431A (en) * | 1985-08-16 | 1987-07-28 | Picker International, Inc. | Magnetic resonance imaging of high velocity flows |
US5007426A (en) * | 1986-11-21 | 1991-04-16 | General Electric Cgr S.A. | Method for depiction of moving parts in a body by nuclear magnetic resonance experiment |
US5592084A (en) * | 1992-12-01 | 1997-01-07 | Picker Nordstar Inc. | Method for imaging of movement of material |
US5652513A (en) * | 1996-08-01 | 1997-07-29 | Picker International, Inc. | Phase sensitive magnetic resonance technique with integrated gradient profile and continuous tunable flow |
Non-Patent Citations (1)
Title |
---|
Shading artifacts in phase contrast angiography induced by maxwell terms; analysis and correction Matt A. Bernstein, et al, source not known, copy attached. * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020195977A1 (en) * | 2001-06-21 | 2002-12-26 | Takao Goto | External magnetic field measuring method, static magnetic field correcting method, external magnetic field measuring apparatus, and MRI system |
US6707301B2 (en) | 2001-06-21 | 2004-03-16 | Ge Medical Systems Global Technology Company, Llc | External magnetic field measuring method, static magnetic field correcting method, external magnetic field measuring apparatus, and MRI system |
US20030189425A1 (en) * | 2002-04-05 | 2003-10-09 | Patrick Le Roux | Method and apparatus for fast imaging by nuclear magnetic resonance |
US6965233B2 (en) * | 2002-04-05 | 2005-11-15 | Ge Medical Systems Global Technology Company Llc | Method and apparatus for fast imaging by nuclear magnetic resonance |
US20080315876A1 (en) * | 2007-06-20 | 2008-12-25 | Mitsuharu Miyoshi | Magnetic resonance imaging apparatus and magnetic resonance image generating method |
US7759934B2 (en) | 2007-06-20 | 2010-07-20 | Ge Medical Systems Global Technology Company, Llc | Magnetic resonance imaging apparatus and magnetic resonance image generating method |
WO2018114554A1 (fr) * | 2016-12-20 | 2018-06-28 | Koninklijke Philips N.V. | Imagerie rm à séparation eau/graisse de type dixon |
Also Published As
Publication number | Publication date |
---|---|
JP3028220B2 (ja) | 2000-04-04 |
CN1238935A (zh) | 1999-12-22 |
JPH11318852A (ja) | 1999-11-24 |
KR19990088424A (ko) | 1999-12-27 |
EP0959366A3 (fr) | 2001-07-25 |
EP0959366A2 (fr) | 1999-11-24 |
BR9902095A (pt) | 2000-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3524159B2 (ja) | Mriシステムでのプレスキャン | |
US5864233A (en) | Method to reduce eddy current effects in diffusion-weighted echo planar imaging | |
US7015696B2 (en) | Magnetic resonance imaging apparatus and magnetic resonance imaging method | |
EP1089087B1 (fr) | Réduction d'artefacts dus à une erreur de phase à cause du terme Maxwell provoquée par un gradient de lecture dans l'IRM | |
EP1115006B1 (fr) | Appareil d'IRM | |
JP4030805B2 (ja) | コイル感度マップ作成方法およびmri装置 | |
JP3796446B2 (ja) | Mri装置 | |
US6483305B1 (en) | Magnetic resonance method for reducing residual magnetization and adjusting the amplitude of gradient pulses | |
US5051699A (en) | Magnetic resonance imaging system | |
US6137289A (en) | MR imaging method and apparatus | |
JP4519967B2 (ja) | 磁気共鳴イメージング・システム内の残留磁気を補償する方法及び磁気共鳴イメージング・システム | |
US20030160616A1 (en) | MRI apparatus | |
EP1143258A2 (fr) | Compensation pour la dérive du champ magnétique dans l'IRM | |
US6559643B2 (en) | Magnetic resonance method and apparatus which measures residual magnetization from two or more orderly height reduce gradient pulses, of alternately inverted polarity, applied prior to the transmitting of rf pulses | |
KR20000047701A (ko) | 엠알아이 시스템에 대한 잔류 자화 보상 방법 및 시스템 | |
US6359436B1 (en) | Selective excitation method and apparatus utilizing non-linear error in a gradient for magnetic resonance imaging | |
US6470203B2 (en) | MR imaging method, phase error measuring method and MRI system | |
US6424152B1 (en) | Method to reduce artefacts in the magnetic resonance image due to spurious magnetic signals | |
EP0955556B1 (fr) | Réduction d'artefacts fantômes dans des séquences à echo de spin pour l'IRM | |
US5726569A (en) | Method and apparatus for acquiring image data in a nuclear magnetic resonance tomography system | |
US6229309B1 (en) | MR method | |
US5685304A (en) | Diffusion sensitizing imaging method and MRI apparatus | |
US6573719B2 (en) | MR method for generating MR signal corresponding to k-space excitations along mutually offset trajectories | |
US20020050816A1 (en) | MR imaging method, phase error measuring method, and MRI apparatus | |
US6392411B1 (en) | MR imaging method, phase shift measuring method and MR imaging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GE YOKOGAWA MEDICAL SYSTEMS, LIMITED, A JAPAN CORP Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOTO, TAKAO;REEL/FRAME:009879/0987 Effective date: 19990310 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20041024 |