US6050519A - Rewinder incorporating a tail sealer - Google Patents

Rewinder incorporating a tail sealer Download PDF

Info

Publication number
US6050519A
US6050519A US09/051,772 US5177298A US6050519A US 6050519 A US6050519 A US 6050519A US 5177298 A US5177298 A US 5177298A US 6050519 A US6050519 A US 6050519A
Authority
US
United States
Prior art keywords
winding
web material
rewinder
wound roll
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/051,772
Other languages
English (en)
Inventor
Guglielmo Biagiotti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fabio Perini SpA
Original Assignee
Fabio Perini SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fabio Perini SpA filed Critical Fabio Perini SpA
Assigned to FABIO PERINI S.P.A. reassignment FABIO PERINI S.P.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIAGIOTTI, GUGLIELMO
Application granted granted Critical
Publication of US6050519A publication Critical patent/US6050519A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H19/00Changing the web roll
    • B65H19/22Changing the web roll in winding mechanisms or in connection with winding operations
    • B65H19/29Securing the trailing end of the wound web to the web roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/41Winding, unwinding
    • B65H2301/414Winding
    • B65H2301/4144Finishing winding process
    • B65H2301/41441Finishing winding process and blocking outer layers against falling apart
    • B65H2301/41442Specified by the sealing medium sealing used
    • B65H2301/414421Glue or hot-melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/41Winding, unwinding
    • B65H2301/414Winding
    • B65H2301/4144Finishing winding process
    • B65H2301/41441Finishing winding process and blocking outer layers against falling apart
    • B65H2301/41443Specified by the place to where the sealing medium is applied
    • B65H2301/414433Specified by the place to where the sealing medium is applied onto the roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/41Winding, unwinding
    • B65H2301/414Winding
    • B65H2301/4144Finishing winding process
    • B65H2301/41441Finishing winding process and blocking outer layers against falling apart
    • B65H2301/41444Specified by process phase during which sealing /securing is performed
    • B65H2301/414446Sealing or securing in a separate following station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2408/00Specific machines
    • B65H2408/20Specific machines for handling web(s)
    • B65H2408/23Winding machines
    • B65H2408/235Cradles

Definitions

  • the present invention relates to an automatic surface rewinder for the formation of rolls or logs of web material.
  • Rewinders of this type are commonly used for the production of rolls or logs of paper which are subsequently cut to produce smaller rolls of toilet paper, kitchen towels and similar.
  • Some of these rewinders for example those described in EP-A-0 580 561 and EP-A-0 611 723 also produce logs without central winding cores.
  • the logs discharged from the rewinder and collected in the accumulators or sorters following the machine are conveyed individually to a separate and subsequent section of the "converting" line in which one or more machines are provided for the gluing of the free tail edge of the material of each roll, these machines being commonly called tail sealers.
  • tail sealers are described in U.S. Pat. No. 3,044,532, U.S. Pat. No. 4,475,974, U.S. Pat. No. 4,963,223, U.S. Pat. No. 5,242,525, EP-B-0 481 929, WO-A-9515903, WO-A-9515902.
  • All the tail sealers have a station in which the free tail edge of the web material is unwound and positioned before the adhesive is applied.
  • the present invention is based on the idea of combining the winding and gluing of the free tail edge of the log in a single section of the processing line, thus eliminating not only the intermediate accumulator or receiver, but also the station for the unwinding and positioning of the free tail edge of the log.
  • the log is caused to be discharged as soon as it is formed from the winding cradle of the rewinder, with the tail edge unwound, directly onto a discharge surface along which the adhesive is applied to the roll to close the free tail edge during the rolling of the log on the discharge surface.
  • the length of the free edge and the position of the adhesive on the roll are selected in such a way that as it is rewound the edge covers the line of adhesive and extends beyond it by a few millimeters, forming a tab that can be picked up. In this way the dimensions of the processing line are reduced drastically and also the programming and operation of the line are considerably simplified.
  • the method of winding according to the invention may comprise the phases of:
  • the surface winding may be carried out by one of the conventional systems known at the present time.
  • the winding system which is used will comprise at least two winding rollers rotating in the same direction and forming between them a nip through which the web material to be wound passes. After the nip there is provided a winding area which is preferably formed by a third winding roller which is movable to permit and control the increase of the diameter of the log. If this winding system is adopted, at the end of the winding the web material is severed before the said winding cradle and the second winding roller is stopped to cause the completed roll to roll on it and to cause it to be discharged from the said winding cradle. By stopping the second winding roller, the roll can be discharged with a free edge of web material sufficiently long to allow convenient gluing, as will be shown more clearly by the following detailed description.
  • the adhesive is delivered from a delivery slit provided along the discharge surface and extending parallel to the axis of the roll.
  • the surface rewinding machine comprises winding means forming a surface winding unit for the formation of the said rolls; before the said winding unit, means of dividing the web material which, at the end of the winding of a roll, sever the web material, thus generating a free tail edge of the web material wound onto the said roll and a free leading edge of web material for starting the winding of a subsequent roll; and a discharge surface after the said winding unit, onto which the formed rolls are discharged at the end of the winding.
  • Delivery means are also disposed along the said discharge surface to deliver an adhesive to each of the said rolls when they roll on the said discharge surface, in order to glue the free tail edge of the web material wound on the roll, which is discharged by the winding unit onto the said discharge surface with the said free tail edge partially unwound.
  • the discharge surface has an adhesive delivery slit extending parallel to the axis of the roll.
  • the log collects the adhesive from the slit as it rolls over it.
  • the web material is useful for the web material to be severed at the end of the winding in such a way that a sufficiently long free tail edge is left unwound from the log. This may be achieved, for example, by providing before the nip formed by the winding rollers a rolling surface forming with the surface of the said first winding roller a channel within which the winding of each roll starts. The web material is severed in the proximity of the entrance of the channel.
  • the severance of the web material may take place in various ways, depending among other considerations on whether the winding takes place with or without a central tubular core. Some examples of means of dividing the web material are described below.
  • FIG. 1 is a side view, in partial section, of the processing line
  • FIG. 2 is a plan view through II--II in FIG. 1;
  • FIG. 2A is an enlarged detail through IIA--IIA in FIG. 2;
  • FIG. 3 is an enlargement of the winding area
  • FIGS. 4A-4D show successive phases of the winding and gluing of the free tail edge of a log:
  • FIGS. 5A-5D show schematically, in four successive instants of the operating cycle, a solution in which winding cores are used;
  • FIG. 6 shows schematically a further embodiment of the invention with a winding core
  • FIGS. 7 and 8 show a different embodiment in various phases of the operation.
  • FIGS. 1 to 4 The application of the invention to a compact processing line, in which the reel unwinding devices and the cutter which cuts the logs into smaller rolls are also present, is illustrated in the following description, and particularly with reference to FIGS. 1 to 4. This is intended to show how it is possible, by using the method and rewinder according to the present invention, to produce a line whose size is such that it can be entirely contained in a transport container.
  • the inventive concept may also be applied to lines of different structure and configuration, for example in lines for the production of industrial rolls, in other words those of greater diameter.
  • the processing line comprises an unwinding station in which a reel of large diameter, indicated by B, of web material N is unwound so that it can then be rewound into logs or rolls whose diameter is equal to the diameter of the product intended for the end user.
  • the reel B with a central supporting axle A, is supported at both ends by a corresponding pair of idle support rollers 3, 5, and is held in this position by a third upper roller 7 supported by a bracket 9.
  • the bracket 9 is hinged at 9A and has a counterweight 9B which in turn is hinged at 9A and oscillates with respect to the bracket 9.
  • the counterweight 9B in the angular position shown in FIG. 1, presses the bracket against a fixed stop 11. The stop is in such a position that when the bracket 9 presses against it the roller 7 is in such a position as to hold the core A of the reel B in the correct unwinding position.
  • the reel B is brought into this position by means of a pair of continuous parallel chains 13 which are located on the two sides of the machine, run around toothed wheels 15 and 17 and are guided by a corresponding curved guide 19.
  • Each of the continuous chains 13 carries a support 21 designed to receive the corresponding end of the axle A inserted into the core of the reel B.
  • the two supports 21 and the guides 19 are shaped in such a way that they gently discharge the support axle A of the reel B onto the cradle formed by the support rollers 3 and 5, this operation being permitted by the anticlockwise oscillation of the bracket 9 which carries the third roller 7.
  • the roller 7 is returned by the action of the counterweight 9B to the position shown in FIG. 1, thus avoiding the risk of the reel B moving backwards.
  • a forward fall is conveniently prevented by the fact that the roller 5 is disposed at a point higher than the roller 3.
  • the core of the empty reel and the corresponding support axle A are then discharged from the seat 3, 5 by means of the said supports 21 which are made to move backwards by the chains 13. This movement is possible after the axle A has been released by a manual movement of the counterweight 9B to the position indicated in broken lines in FIG. 1. This causes a sufficient anticlockwise oscillation of the bracket 9 and of the roller 7 to release the axle A.
  • the reel B is unwound by means of a set of flat unwinding belts 31 which are parallel to each other, only one of which is visible in the drawing, the others being disposed parallel to it.
  • the unwinding belt 31 is run around a powered cylinder 33 and a set of pulleys 34, 35, 36, 37, 38, 39.
  • the return pulleys 36 and 37 are mounted on a bracket 41 pivoted at 43 on the corresponding side member of the machine and connected to a cylinder and piston actuator 45. With this disposition, the tension on the unwinding belt 31 is maintained when the diameter of the reel B varies.
  • the web material N which is unwound from the reel as a result of the movement of the unwinding belts 31 and the friction between these and the external surface of the reel B, is run around the return cylinder 33 round which the belts 31 run, and passes through an embossing unit 51 comprising a pair of embossing cylinders 53, 55.
  • the cylinder 53 is supported by a pair of brackets 57 (only one of which is visible in FIG. 1) pivoted at 59 on the corresponding side member and pressed by a pneumatic actuator 61 against an adjustable stop 63.
  • the embossing cylinder 55 has a fixed axle.
  • the embossing unit 51 may be omitted, in which case the web material N runs around a roller 52 indicated in broken lines in FIG. 1.
  • the web material N (whether embossed or not) then passes through a perforator unit 71, of a known type, which in the example shown in the drawing has a rotating perforating roller 73 with a plurality of blades 74 interacting with a fixed blade 76 carried by a non-rotating roller or beam 75, whose position can be adjusted by an actuator 77.
  • the blades 74 or the blade 76 are serrated.
  • the perforator 71 makes a set of equidistant perforation lines on the web material N which, when processed in this way, is sent to a rewinding unit, indicated in a general way by the number 81.
  • the rewinding unit 81 comprises three winding rollers 83, 85 and 87, which are subsequently indicated as the first, second and third winding roller respectively, and which rotate in the same direction (anticlockwise in the example).
  • the web material is run around the first winding roller 83 and is wound to form a log L which, in the intermediate processing phase shown in FIG. 1, comes into contact with the three rollers 83, 85, 87.
  • the winding takes place in a known way and will not be described in great detail here, since reference may be made, for example, to the European Patent Application published under number EP-B-0 580 561, whose content is incorporated in the present description.
  • the increase of the diameter of the log L is permitted by the oscillation of the arm 89, which supports the third winding roller 87, about its pivot 91.
  • the oscillation is controlled by the actuator 93 which can be of any kind and is shown purely for convenience in the form of a cylinder and piston actuator.
  • the roller 87 may also be raised by the growth of the log being formed.
  • the winding of the initial core of the log takes place between the first winding roller 83 and a curved rolling surface 84 carried by an oscillating unit 86 pivoted about the axis of the second winding roller 85.
  • the oscillation of the unit 86 and consequently of the curved rolling surface 84 is caused by a cam 88 or other suitable system.
  • the discharged log L rolls on the discharge surface 101, passing over an adhesive delivery slit 103.
  • the adhesive is delivered by a delivery device indicated in a general way by the number 105 and disposed under the discharge surface 101 so that it glues the free tail edge of the log onto the external surface of the log.
  • the adhesive delivery device 105 is not described in detail, since it may be made, for example, according to one of the solutions described in EP-B-0 481 929, U.S. Pat. No. 5,242,525, U.S. Pat. No. 5,259,910, WO-A-9515903.
  • the principal characteristic of delivery devices of this type is that they interact with a log discharge surface, so that the gluing and the closing of the free tail edge take place simply by rolling on the discharge surface 101 along which the transverse adhesive delivery slit 103 is provided.
  • a log closing roller 107 is provided near the end of the discharge surface 101.
  • the position of the roller 107 is adjustable by rotation of a support arm 109 pivoted at 111 on the structure of the machine.
  • the roller 107 is rotated by a gearmotor 108 to cause the controlled rotation of the log, which passes between the roller 107 and the underlying discharge surface 101, and consequently the closure of the free tail edge.
  • the position of the roller 107 and of its pivot 111 may be adjusted in such a way that the contact between the log and the roller 107 takes place in the area of application of the adhesive.
  • the log closed in this way is discharged into a cradle 121 of a cutter indicated in a general way by the number 123 (FIG. 2).
  • the log L is made to advance by a pusher 125 towards a cutting head comprising a rotating plate 127 keyed to a driving shaft 129 which rotates it at a substantially constant velocity.
  • the pusher 125 is carried by a continuous chain 126 running around two wheels, one of which is powered by a motor 128.
  • the rotating plate 127 supports a shaft 131 of a circular blade 133 for cutting the log L into rolls of the desired width.
  • the rotation of the shaft 131 and consequently of the blade 133 is obtained by means of a pinion 135 keyed to the axle of the shaft 131 and engaging with a ring gear 137 coaxial with the axis of the plate 127 and integral with the fixed structure of the machine.
  • the rotation of the plate 127 thus also causes the circular blade 133 to rotate about its own axis.
  • the cutter described above has a more simple, more compact and more economical structure than that of normal cutters for logs.
  • the rolls cut by the blade 133 are pushed by the pusher 125 towards a conveyor consisting of a pair of small belts of circular section 141, 143, one of which extends further than the other.
  • the two small belts 141, 143 are driven by a gearmotor 145 and discharge the rolls onto a conveyor which carries them to the packaging machine or other (not shown).
  • the difference in length between the two belts permits the discharge of the trimmings, in other words of the two "slices" that are cut from the head and tail of the log.
  • the trimmings are much narrower than the rolls and normally tilt, coming to rest on the small belts 141, 143 with their axis vertical.
  • An adjustable smooth bar 147 positioned at a higher point than the small belt 141, as seen in the enlargement in FIG. 2A, is disposed after the small belt 141.
  • the difference in height between the small belt 141 and the smooth bar 147 is such that the tilted trimmings pass under the smooth bar 147, fall, and are collected in the area beneath.
  • the rolls continue to advance, being supported on one side on the smooth bar 147, which allows them to advance easily by sliding, and on the other side on the small belt 143 which continues to convey them towards the exit of the line 1.
  • the whole line described up to this point, with the sole exception of the small belts 141 and 143, the casing 140, and the guides 19 and corresponding chains 13 if present, may be housed in a transport container, having a length of 2200 mm, a height of 1950 mm and a width which in all cases is less than the largest dimension of the container.
  • FIGS. 4A-4D The operations of discharging the completed log, gluing the free tail edge and starting the winding of the next log are illustrated in FIGS. 4A-4D.
  • the procedures of this phase are as follows: the second winding roller 85 is slowed down considerably (beyond the values of deceleration normally used in conventional rewinders), to zero velocity if necessary (FIG. 4A).
  • the web material is gripped between the external surface of the roller 83 and the rolling surface 84 which is made to oscillate towards the roller 83.
  • the web material N is torn along a perforation line as a result of the gripping and the rotation of the rollers 83, 87, in a way known to those skilled in the art, and known in particular, for example, from the publications cited in the present description.
  • the break may be achieved by making a portion of roller have a surface with a low coefficient of friction, on which the material N is gripped and made to slide backwards with respect to the movement of the roller, causing the break, followed by a portion of surface with a higher coefficient of friction, as described in EP-A- 0 611 723, the content of which is incorporated in the present description.
  • the speed of the machine, and in particular the peripheral velocity of the roller 83 are preferably reduced, with a consequent reduction in the speed of the feed of the web material N.
  • the peripheral velocity of the roller 87 is also reduced proportionally, but is always kept higher than the peripheral velocity of the roller 85.
  • the difference between the peripheral velocity of the roller 87 and that of the roller 85 causes the log L to roll on the roller 85 towards the discharge surface 101, until the log L ceases to be in contact with the roller 85 and is discharged onto the surface 101 (FIG. 4B).
  • FIGS. 5A-5D show an embodiment in which the winding is done onto a tubular winding core T.
  • Identical numbers indicate parts identical or corresponding to those described with reference to the preceding figures.
  • the rolling surface before the nip between the rollers 83, 85 is indicated by 84X and is mounted on a unit 86X pivoted about the axis of the second winding roller 85.
  • the number 88X indicates the cam causing the oscillation of the unit 86X and consequently of the rolling surface 84X.
  • the distance between the rolling surface 84X and the cylindrical surface of the roller 83 is greater than in the preceding case.
  • the rolling surface 84X is associated with an elastic plate 151 which forms, together with a support 153, a holder for a tubular winding core T.
  • the oscillating unit 86X is in its lowest position.
  • a tubular core T is inserted, laterally for example, and guided by a fixed support surface 155 which temporarily forms--together with the support 153--the core insertion holder.
  • the insertion of the tubular core T may take place in a known way, for example as described in U.S. Pat. No. 4,931,130.
  • the unit 86X is raised until it reaches a position in which the tubular core T is kept at a very short distance from the surface of the winding roller 83 and is held there by the elastic plate 151 and the stop formed by the support 153.
  • the core T is brought up to the surface of the roller 83 (FIG. 5B) and then pressed against it (FIG. 5C) by the further oscillation of the unit 86X.
  • the web material N is gripped between the core T and the cylindrical surface of the roller 83 with consequent breaking of the web material N at a point intermediate between the gripping position and the completed log L.
  • the machine is synchronized in such a way that in the vicinity of the core T there is a perforation line such that the breaking takes place at a point close to the tubular core T and not close to the log L, to create a sufficiently long free tail edge LL.
  • the breaking is facilitated by the fact that four areas 83B with a high coefficient of friction (covered with abrasive cloth, for example) and, alternating with these, four areas 83A with a low coefficient of friction (made of polished steel, for example) are provided on the roller 83.
  • the machine is synchronized in such a way that the tubular core T is pressed against a polished area 83A, while the perforation line on which the tearing takes places is located preferably in the area of transition between the area 83A on which the core presses and the area 83B with a high coefficient of friction adjacent to the former and after it with respect to the direction of advance of the web material.
  • the tubular core T When the tubular core T is pressed against the roller 83, it is made to rotate by the roller 83, and rolls along the rolling surface 84.
  • the line of adhesive applied previously causes the free leading edge of the web material N to be fixed in such a way as to permit the start of the winding of a new log.
  • the elastic deformation of the plate 151 allows the core to leave its holder and to roll on the rolling surface 84X.
  • the completed log is discharged onto the discharge surface 101 and its free tail edge LL is glued by the procedure described previously with reference to FIGS. 4A-4D.
  • the core T may be free of adhesive and the winding starts with the aid of one or more sets of nozzles, in a known way.
  • FIG. 6 shows a solution for winding with a tubular core, in which the web material is broken by a member dedicated to this purpose, instead of by the pressure of the core.
  • a rolling surface 84Y which is fixed instead of oscillating, is disposed before the nip formed between the two rollers 83, 85.
  • This terminates in a holder 157 into which a tubular core T, which may have been previously provided with a line of adhesive, is inserted laterally.
  • the tubular core T is pushed against the roller 83 by a pusher 161 carried by an oscillating unit 163 pivoted at 165 on the structure of the machine and driven by a cylinder and piston or equivalent actuator 167.
  • the oscillating unit 163 also carries a presser 169 which, when the core is pushed by the pusher 161 against the external surface of the roller 83, grips the web material N between the presser 169 itself and the surface of the roller 83, causing the breaking of the web material N and consequently the generation of the free tail edge LL to be wound and glued onto the completed log L and the free leading edge which is fixed to the incoming tubular core T.
  • the roller 83 has portions of surface 83A, 83B with low and high coefficients of friction respectively.
  • the tubular core T is then made to advance by rolling along the channel formed between the cylindrical surface of the roller 83 and the rolling surface 84Y until it reaches the nip between the rollers 83 and 85.
  • FIGS. 7 and 8 show a further embodiment of the invention, in which the logs are again formed on a tubular core. Parts identical or equivalent to those in FIG. 6 are indicated by the same reference numbers.
  • the means for dividing the web material N comprise an elastic plate or a plurality of parallel elastic plates 181 carried by an oscillating system 183 hinged about an axis which, in the example illustrated, coincides with the axis of rotation of the roller 85 (but which may, obviously, be positioned differently).
  • the oscillation is caused by an actuator 185.
  • the elastic plate 181 is held in the position indicated in broken lines in FIG. 7, while a new tubular core T is brought into the holder 157 indicated in broken lines in FIGS. 7 and 8.
  • the elastic plate 181 is brought into contact with the web material N running around the roller 83, and the tubular core T is pushed by the pusher 161 towards the entrance of the channel formed between the surface 84Y and the roller 83 and against the latter.
  • the further pressure of the elastic plate 181 against the external surface of the roller 81 by means of the actuator 185 causes a flexional deformation of the plate (FIG. 8) and a consequent backward sliding of its end with respect to the direction of advance of the web material N.
  • the roller 82 is provided with portions of surface 83A and 83B with low and high coefficients of friction respectively.
  • the elastic plate 181 touches the web material N next to a portion of surface 83A with a low coefficient of friction, so that the web material N can easily slide backwards as a result of the flexing of the elastic plate 181 and form a loop NA between the elastic plate 181 and the new tubular core T.
  • the free edge formed in this way can be applied to the new tubular core T by means of an adhesive previously applied to the core itself or by means of a suitable system of nozzles which generate air blasts (not shown).
  • the severance of the web material N may take place even with the roller 83 completely halted, since the movement caused by the flexing of the elastic plate 181 is sufficient to cause the breaking of the web material.
  • the solution described here therefore enables the web material N to be broken even with the machine stopped.
US09/051,772 1996-03-05 1997-03-04 Rewinder incorporating a tail sealer Expired - Fee Related US6050519A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITFI96A0040 1996-03-05
IT96FI000040A IT1286563B1 (it) 1996-03-05 1996-03-05 Macchina ribobinatrice incorporante un incollatore per i rotoli completati e relativo metodo di avvolgimento
PCT/IT1997/000047 WO1997032804A1 (en) 1996-03-05 1997-03-04 Rewinder incorporating a tail sealer

Publications (1)

Publication Number Publication Date
US6050519A true US6050519A (en) 2000-04-18

Family

ID=11351519

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/051,772 Expired - Fee Related US6050519A (en) 1996-03-05 1997-03-04 Rewinder incorporating a tail sealer

Country Status (19)

Country Link
US (1) US6050519A (zh)
EP (1) EP0827483B1 (zh)
JP (1) JP2000513687A (zh)
KR (1) KR100307429B1 (zh)
CN (1) CN1064927C (zh)
AR (1) AR006105A1 (zh)
AT (1) ATE194584T1 (zh)
AU (1) AU2042197A (zh)
BR (1) BR9702340A (zh)
CA (1) CA2236854C (zh)
DE (1) DE69702485T2 (zh)
ES (1) ES2149576T3 (zh)
GR (1) GR3033867T3 (zh)
IL (1) IL122699A (zh)
IT (1) IT1286563B1 (zh)
PL (1) PL328718A1 (zh)
RU (1) RU2169691C2 (zh)
WO (1) WO1997032804A1 (zh)
ZA (1) ZA971562B (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264131B1 (en) * 2000-04-27 2001-07-24 Yen Sun Technology Corp. Rolling up device for wet paper towels
EP1232980A1 (en) * 2001-02-16 2002-08-21 M T C - Macchine Trasformazione Carta S.r.l. Core feeding methode in a rewinding machine for making logs of sheet material
US20020170649A1 (en) * 1999-12-13 2002-11-21 Butterworth Tad T Apparatus and method for applying adhesive in a web converting machine
US6595459B2 (en) 2001-01-30 2003-07-22 Kimberly-Clark Worldwide, Inc. Apparatus and process for winding webbed material upon cores
US6648266B1 (en) * 1993-03-24 2003-11-18 Fabio Perini S.P.A. Rewinding machine and method for the formation of logs of web material with means for severing the web material
US6738684B2 (en) 2001-03-23 2004-05-18 Fort James Corporation Method and apparatus for controlling converting rewinder lines
US20040256513A1 (en) * 2002-07-08 2004-12-23 Fabio Perini Rewinding machine and method for producing variously sized paper logs
US20050087647A1 (en) * 2002-09-27 2005-04-28 Butterworth Tad T. Rewinder apparatus and method
US20050199761A1 (en) * 2004-03-15 2005-09-15 Fort James Corporation Reduced ply separation tail seal
WO2005087639A2 (en) * 2004-03-18 2005-09-22 Fabio Perini S.P.A. Combined peripheral and central rewinding machine
US20060076451A1 (en) * 2002-12-03 2006-04-13 Fabio Perini S. P. A. Rewinder machine for the production of rolls of web material
US20060208127A1 (en) * 2005-03-16 2006-09-21 Chan Li Machinery Co., Ltd. Multiprocessing apparatus for forming logs of web material and log manufacture process
US20070295443A1 (en) * 2006-06-23 2007-12-27 The Procter & Gamble Company Process for gluing the tail of a convolutely wound web material thereto
US20070298224A1 (en) * 2006-06-23 2007-12-27 The Procter & Gamble Company Convolutely wound web material having the tail adhered thereto
US20070295270A1 (en) * 2006-06-23 2007-12-27 The Procter & Gamble Company Apparatus for gluing the tail of a convolutely wound web material thereto
US20080083521A1 (en) * 2004-12-28 2008-04-10 Mauro Gelli Device and Method for Closing the Tail End of Logs of Web Material and Relative Logs Obtained Therewith
US20080217453A1 (en) * 2005-06-08 2008-09-11 Georgia-Pacific France Roll With a Means for Holding Windings
US20090272835A1 (en) * 2006-06-09 2009-11-05 Fabio Perini S.P.A. Method and Machine for Forming Logs of Web Material, with a Mechanical Device for Forming the Initial Turn of the Logs
US20100101705A1 (en) * 2007-04-13 2010-04-29 Mauro Gelli Method and device for closing the tail end of a log web material and log of obtained
US20100101185A1 (en) * 2005-05-02 2010-04-29 Fabio Perini S.p.A. Method and device for manufacturing rolls of web material with an outer wrapping
CN104743177A (zh) * 2014-12-04 2015-07-01 淮安华创自动化设备制造有限公司 地毯全自动卷包机
EP3056458A1 (en) * 2015-02-10 2016-08-17 O.M.T. di Giannini Graziano e Damiano & C. S.N.C. Rewinding machine
US20160280500A1 (en) * 2015-03-23 2016-09-29 Cosmo Machinery Co., Ltd. Slit line making machenism for film roll/bag-on-a-roll making machine
CN106081691A (zh) * 2016-05-18 2016-11-09 太仓市中厚机械有限公司 一种多功能单轴复卷机系统
CN106586628A (zh) * 2016-12-27 2017-04-26 潍坊精诺机械有限公司 复卷机退纸机构及其使用方法
CN106743852A (zh) * 2016-12-27 2017-05-31 潍坊精诺机械有限公司 卫生纸复卷机

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1314581B1 (it) * 2000-03-03 2002-12-20 Perini Fabio Spa Ribobinatrice compatta per la produzione di rotoli di materialenastriforme avvolto e relativo metodo
ITFI20020155A1 (it) * 2002-08-09 2004-02-10 Fabio Perini Dispositivo per rifilare bastoni di carta o "logs" e metodo operativo per il trattamento dei logs
ITFI20020194A1 (it) 2002-10-16 2004-04-17 Perini Fabio Spa Metodo per la produzione di rotoli di materiale nastriforme e macchina ribobinatrice che attua detto metodo
ITFI20020227A1 (it) 2002-11-20 2004-05-21 Perini Fabio Spa Macchina ribobinatrice con un dispositivo incollatore per incollare il lembo finale del rotolo formato e relativo metodo di avvolgimento
ITFI20030318A1 (it) * 2003-12-12 2005-06-13 Perini Fabio Spa Dispositivo e metodo per l'eliminazione di rifili da
ITMI20080245A1 (it) * 2008-02-15 2009-08-16 Tocchio S R L Dispositivo di taglio trasversale di materiali in nastro
TWI396657B (zh) * 2009-05-22 2013-05-21 Chan Li Machinery Co Ltd Thin paper winding device with planetary wheel breaking mechanism and its method of dialing tissue paper
DE102009029338A1 (de) * 2009-09-10 2011-03-24 Voith Patent Gmbh Verfahren und Vorrichtung zum Wechseln von Wickelrollen
CN102762472B (zh) * 2010-01-21 2014-12-10 维美德技术有限公司 处理纤维幅材的设备和方法
IT1401881B1 (it) * 2010-09-28 2013-08-28 Perini Fabio Spa Macchina ribobinatrice e metodo per la produzione di rotoli di materiale nastriforme
RU2482911C1 (ru) * 2011-12-22 2013-05-27 Виктор Геннадиевич Сержантов Состав для получения гранулированного комбинированного наноструктурированного сорбента и способ его получения
CN102658986B (zh) * 2012-05-10 2015-11-25 金红叶纸业集团有限公司 卷筒纸及其生产工艺
JP6363108B2 (ja) 2013-02-12 2018-07-25 ランパク コーポレーション 巻取装置、自動テーピング装置、及び排出装置を備える緩衝材システム、ならびに方法
CN105016114A (zh) * 2014-04-16 2015-11-04 江西欧克科技有限公司 卷筒纸无胶封尾装置
CN106956950A (zh) * 2017-05-25 2017-07-18 山东精诺机械股份有限公司 卫生纸卷复卷机退纸用设备及其使用方法
CN109292507A (zh) * 2018-10-09 2019-02-01 山东精诺机械股份有限公司 卷筒无胶封尾装置及卷筒无胶封尾方法
EP3988484B1 (en) * 2020-10-21 2024-04-24 Fameccanica.Data S.p.A. A method and apparatus for preparing edges of reels of web material

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3044532A (en) * 1960-03-30 1962-07-17 Vita Mayer & Co Inc Tail sealing machine
US4327877A (en) * 1979-09-21 1982-05-04 Fabio Perini Winding device
US4475974A (en) * 1981-12-03 1984-10-09 Fabio Perini Apparatus and method for glueing the outer end of a stick of wound paper material
US4516735A (en) * 1976-03-12 1985-05-14 Lenox Machine Company, Inc. Method and apparatus for winding webs
US4962897A (en) * 1986-04-01 1990-10-16 Paper Converting Machine Company Web winding machine and method
US5137225A (en) * 1989-07-11 1992-08-11 Fabio Perini S.P.A. Rewinding machine for the formation of rolls or logs, and winding method
US5242525A (en) * 1991-11-08 1993-09-07 Fabio Perim S.P.A. Apparatus for glueing the tail of logs of web material
US5259910A (en) * 1990-10-17 1993-11-09 Fabio Perini S.P.A. Apparatus for glueing the tail of a web to a log formed of the web material
EP0580561A2 (en) * 1992-07-21 1994-01-26 FABIO PERINI S.p.A. Machine and method for the formation of coreless logs of web material
EP0611723A1 (en) * 1993-02-15 1994-08-24 FABIO PERINI S.p.A. Method and machine for tearing web material
WO1994021545A1 (en) * 1993-03-24 1994-09-29 Fabio Perini S.P.A. Rewinding machine and method for the formation of logs of web material with means for severing the web material
US5421536A (en) * 1993-07-19 1995-06-06 Paper Coverting Machine Company Surface winder with recycled mandrels and method
US5769352A (en) * 1994-06-16 1998-06-23 Fabio Perini S.P.A. Web rewinding machine, adaptable to different core diameters
US5853140A (en) * 1995-04-14 1998-12-29 Fabio Perini S.P.A. Re-reeling machine for rolls of band-shaped material, with control of the introduction of the winding core

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2097192U (zh) * 1990-12-08 1992-02-26 常州轻工机械厂 复卷机

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3044532A (en) * 1960-03-30 1962-07-17 Vita Mayer & Co Inc Tail sealing machine
US4516735A (en) * 1976-03-12 1985-05-14 Lenox Machine Company, Inc. Method and apparatus for winding webs
US4327877A (en) * 1979-09-21 1982-05-04 Fabio Perini Winding device
US4475974A (en) * 1981-12-03 1984-10-09 Fabio Perini Apparatus and method for glueing the outer end of a stick of wound paper material
US4962897A (en) * 1986-04-01 1990-10-16 Paper Converting Machine Company Web winding machine and method
US5137225A (en) * 1989-07-11 1992-08-11 Fabio Perini S.P.A. Rewinding machine for the formation of rolls or logs, and winding method
US5259910A (en) * 1990-10-17 1993-11-09 Fabio Perini S.P.A. Apparatus for glueing the tail of a web to a log formed of the web material
US5242525A (en) * 1991-11-08 1993-09-07 Fabio Perim S.P.A. Apparatus for glueing the tail of logs of web material
EP0580561A2 (en) * 1992-07-21 1994-01-26 FABIO PERINI S.p.A. Machine and method for the formation of coreless logs of web material
US5690296A (en) * 1992-07-21 1997-11-25 Fabio Perini, S.P.A. Machine and method for the formation of coreless logs of web material
US5839680A (en) * 1992-07-21 1998-11-24 Fabio Perini, S.P.A. Machine and method for the formation of coreless logs of web material
EP0611723A1 (en) * 1993-02-15 1994-08-24 FABIO PERINI S.p.A. Method and machine for tearing web material
WO1994021545A1 (en) * 1993-03-24 1994-09-29 Fabio Perini S.P.A. Rewinding machine and method for the formation of logs of web material with means for severing the web material
US5421536A (en) * 1993-07-19 1995-06-06 Paper Coverting Machine Company Surface winder with recycled mandrels and method
US5769352A (en) * 1994-06-16 1998-06-23 Fabio Perini S.P.A. Web rewinding machine, adaptable to different core diameters
US5853140A (en) * 1995-04-14 1998-12-29 Fabio Perini S.P.A. Re-reeling machine for rolls of band-shaped material, with control of the introduction of the winding core

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6648266B1 (en) * 1993-03-24 2003-11-18 Fabio Perini S.P.A. Rewinding machine and method for the formation of logs of web material with means for severing the web material
US20020170649A1 (en) * 1999-12-13 2002-11-21 Butterworth Tad T Apparatus and method for applying adhesive in a web converting machine
US6758923B2 (en) 1999-12-13 2004-07-06 C.G. Bretting Manufacturing Company, Inc. Apparatus and method for applying adhesive in a web converting machine
US6264131B1 (en) * 2000-04-27 2001-07-24 Yen Sun Technology Corp. Rolling up device for wet paper towels
US6595459B2 (en) 2001-01-30 2003-07-22 Kimberly-Clark Worldwide, Inc. Apparatus and process for winding webbed material upon cores
US7802748B2 (en) * 2001-02-16 2010-09-28 Macchine Trasformazione Carta Core feeding method in a rewinding machine for making logs of sheet material
EP1232980A1 (en) * 2001-02-16 2002-08-21 M T C - Macchine Trasformazione Carta S.r.l. Core feeding methode in a rewinding machine for making logs of sheet material
US20060138272A1 (en) * 2001-02-16 2006-06-29 Alessandro De Matteis Core feeding method in a rewinding machine for making logs of sheet material
US6738684B2 (en) 2001-03-23 2004-05-18 Fort James Corporation Method and apparatus for controlling converting rewinder lines
US7360738B2 (en) * 2002-07-08 2008-04-22 Fabio Perini Method for producing variously sized paper logs
US7175126B2 (en) * 2002-07-08 2007-02-13 Fabio Perini Rewinding machine for producing variously sized paper logs
US20070023562A1 (en) * 2002-07-08 2007-02-01 Fabio Perini Method for producing variously sized paper logs
US20040256513A1 (en) * 2002-07-08 2004-12-23 Fabio Perini Rewinding machine and method for producing variously sized paper logs
US20050087647A1 (en) * 2002-09-27 2005-04-28 Butterworth Tad T. Rewinder apparatus and method
US7338005B2 (en) * 2002-12-03 2008-03-04 Fabio Perini S.p.A. Rewinder machine for the production of rolls of web material
US20060076451A1 (en) * 2002-12-03 2006-04-13 Fabio Perini S. P. A. Rewinder machine for the production of rolls of web material
US7967933B2 (en) 2004-03-15 2011-06-28 Georgia-Pacific Consumer Products Lp Reduced ply separation tail seal
US7981234B2 (en) 2004-03-15 2011-07-19 Georgia-Pacific Consumer Products Lp Reduced ply separation tail seal
US7871485B2 (en) 2004-03-15 2011-01-18 Georgia-Pacific Consumer Products Lp Reduced ply separation tail seal
US20100300605A1 (en) * 2004-03-15 2010-12-02 Redmann Teresa M Reduced ply separation tail seal
US20100300607A1 (en) * 2004-03-15 2010-12-02 Redmann Teresa M Reduced ply separation tail seal
US7811648B2 (en) 2004-03-15 2010-10-12 Georgia-Pacific Consumer Products Lp Reduced ply separation tail seal
US7803442B2 (en) 2004-03-15 2010-09-28 Georgia-Pacific Consumer Products Lp Reduced ply separation tail seal
US20050199759A1 (en) * 2004-03-15 2005-09-15 Fort James Corporation Reduced ply separation tail seal
US7799402B2 (en) 2004-03-15 2010-09-21 Georgia-Pacific Consumer Products Lp Reduced ply separation tail seal
US20050199761A1 (en) * 2004-03-15 2005-09-15 Fort James Corporation Reduced ply separation tail seal
US20080053598A1 (en) * 2004-03-15 2008-03-06 Georgia-Pacific Consumer Products Lp Reduced ply separation tail seal
US7942363B2 (en) 2004-03-18 2011-05-17 Fabio Perini S.P.A. Combined peripheral and central rewinding machine
US20070176039A1 (en) * 2004-03-18 2007-08-02 Fabio Perini S.P.A. Combined peripheral and central rewinding machine
WO2005087639A3 (en) * 2004-03-18 2005-10-27 Perini Fabio Spa Combined peripheral and central rewinding machine
WO2005087639A2 (en) * 2004-03-18 2005-09-22 Fabio Perini S.P.A. Combined peripheral and central rewinding machine
CN100581962C (zh) * 2004-03-18 2010-01-20 法比奥·泼尼股份公司 联合式周向和中心复卷机及卷绕方法
US20080083521A1 (en) * 2004-12-28 2008-04-10 Mauro Gelli Device and Method for Closing the Tail End of Logs of Web Material and Relative Logs Obtained Therewith
US7846286B2 (en) 2004-12-28 2010-12-07 Fabio Perini, S.P.A. Device and method for closing the tail end of logs of web material and relative logs obtained therewith
US7222813B2 (en) * 2005-03-16 2007-05-29 Chan Li Machinery Co., Ltd. Multiprocessing apparatus for forming logs of web material and log manufacture process
AU2005218026B2 (en) * 2005-03-16 2010-06-17 Chan Li Machinery Co., Ltd. Multiprocessing apparatus for forming logs of web material and log manufacture process
CN1833863B (zh) * 2005-03-16 2010-09-08 全利机械股份有限公司 以薄片材质组成卷筒的多道处理机及制造方法
US7641142B2 (en) 2005-03-16 2010-01-05 Chan Li Machinery Co., Ltd. Multiprocessing apparatus for forming logs of web material
US20070102562A1 (en) * 2005-03-16 2007-05-10 Chan Li Machinery Co., Ltd. Multiprocessing Apparatus for Forming Logs of Web Material and Log Manufacture Process
US20070102561A1 (en) * 2005-03-16 2007-05-10 Chan Li Machinery Co., Ltd. Multiprocessing Apparatus for Forming Logs of Web Material and Log Manufacture Process
US20060208127A1 (en) * 2005-03-16 2006-09-21 Chan Li Machinery Co., Ltd. Multiprocessing apparatus for forming logs of web material and log manufacture process
US20100101185A1 (en) * 2005-05-02 2010-04-29 Fabio Perini S.p.A. Method and device for manufacturing rolls of web material with an outer wrapping
US8215086B2 (en) 2005-05-02 2012-07-10 Fabio Perini S.P.A. Method and device for manufacturing rolls of web material with an outer wrapping
US20080217453A1 (en) * 2005-06-08 2008-09-11 Georgia-Pacific France Roll With a Means for Holding Windings
US20090272835A1 (en) * 2006-06-09 2009-11-05 Fabio Perini S.P.A. Method and Machine for Forming Logs of Web Material, with a Mechanical Device for Forming the Initial Turn of the Logs
US7931226B2 (en) * 2006-06-09 2011-04-26 Fabio Perini S.P.A. Method and machine for forming logs of web material, with a mechanical device for forming the initial turn of the logs
US20070295270A1 (en) * 2006-06-23 2007-12-27 The Procter & Gamble Company Apparatus for gluing the tail of a convolutely wound web material thereto
US8511252B2 (en) 2006-06-23 2013-08-20 The Procter & Gamble Company Apparatus for gluing the tail of a convolutely wound web material thereto
US20070295443A1 (en) * 2006-06-23 2007-12-27 The Procter & Gamble Company Process for gluing the tail of a convolutely wound web material thereto
US20110155326A1 (en) * 2006-06-23 2011-06-30 Thomas Timothy Byrne Apparatus for gluing the tail of a convolutely wound web material thereto
US20070298224A1 (en) * 2006-06-23 2007-12-27 The Procter & Gamble Company Convolutely wound web material having the tail adhered thereto
US8002927B2 (en) 2006-06-23 2011-08-23 The Procter & Gamble Company Process for gluing the tail of a convolutely wound web material thereto
US7905194B2 (en) 2006-06-23 2011-03-15 The Procter & Gamble Company Apparatus for gluing the tail of a convolutely wound web material thereto
US8652283B2 (en) 2007-04-13 2014-02-18 Fabio Perini S.P.A. Method and device for closing the tail end of a log of web material and log obtained
US8585846B2 (en) 2007-04-13 2013-11-19 Fabio Perini S.P.A. Method and device for closing the tail end of a log of web material and log obtained
US20100101705A1 (en) * 2007-04-13 2010-04-29 Mauro Gelli Method and device for closing the tail end of a log web material and log of obtained
CN104743177A (zh) * 2014-12-04 2015-07-01 淮安华创自动化设备制造有限公司 地毯全自动卷包机
CN104743177B (zh) * 2014-12-04 2016-06-22 江苏华峰自然纤维制品有限公司 地毯全自动卷包机
EP3056458A1 (en) * 2015-02-10 2016-08-17 O.M.T. di Giannini Graziano e Damiano & C. S.N.C. Rewinding machine
CN105858289A (zh) * 2015-02-10 2016-08-17 詹尼尼格拉齐亚诺达米亚诺 & C.机械工场普通合伙公司 复卷机
US9988228B2 (en) 2015-02-10 2018-06-05 O.M.T. Di Giannini Graziano E Damiano & C. S.N.C. Rewinding machine
CN105858289B (zh) * 2015-02-10 2019-05-07 詹尼尼格拉齐亚诺达米亚诺 & C.机械工场普通合伙公司 复卷机
US20160280500A1 (en) * 2015-03-23 2016-09-29 Cosmo Machinery Co., Ltd. Slit line making machenism for film roll/bag-on-a-roll making machine
CN106081691A (zh) * 2016-05-18 2016-11-09 太仓市中厚机械有限公司 一种多功能单轴复卷机系统
CN106586628A (zh) * 2016-12-27 2017-04-26 潍坊精诺机械有限公司 复卷机退纸机构及其使用方法
CN106743852A (zh) * 2016-12-27 2017-05-31 潍坊精诺机械有限公司 卫生纸复卷机

Also Published As

Publication number Publication date
AR006105A1 (es) 1999-08-11
PL328718A1 (en) 1999-02-15
ITFI960040A0 (it) 1996-03-05
EP0827483A1 (en) 1998-03-11
ATE194584T1 (de) 2000-07-15
CA2236854C (en) 2005-07-05
KR100307429B1 (ko) 2001-11-15
DE69702485D1 (de) 2000-08-17
AU2042197A (en) 1997-09-22
IL122699A (en) 2001-04-30
KR19990087838A (ko) 1999-12-27
IT1286563B1 (it) 1998-07-15
BR9702340A (pt) 1999-03-16
ZA971562B (en) 1997-08-29
CA2236854A1 (en) 1997-09-12
CN1190376A (zh) 1998-08-12
GR3033867T3 (en) 2000-10-31
CN1064927C (zh) 2001-04-25
JP2000513687A (ja) 2000-10-17
RU2169691C2 (ru) 2001-06-27
EP0827483B1 (en) 2000-07-12
ITFI960040A1 (it) 1997-09-05
ES2149576T3 (es) 2000-11-01
DE69702485T2 (de) 2001-04-19
WO1997032804A1 (en) 1997-09-12

Similar Documents

Publication Publication Date Title
US6050519A (en) Rewinder incorporating a tail sealer
US9701505B2 (en) Rewinding machine and method for the production of rolls of web material
CA2158751C (en) Rewinding machine and method for the formation of logs of web material with means for severing the web material
US7318562B2 (en) Rewinding machine and method for the formation of logs of web material with means for severing the web material
US7523884B2 (en) Rewinding machine with gluing device to glue the final edge of the log formed and relative winding method
EP1877332B1 (en) Method and device for manufacturing rolls of web material with an outer wrapping
EP1551740B1 (en) Method for producing logs of web material and rewinding machine implementing said method

Legal Events

Date Code Title Description
AS Assignment

Owner name: FABIO PERINI S.P.A., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIAGIOTTI, GUGLIELMO;REEL/FRAME:010538/0190

Effective date: 19971219

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20120418