US5904630A - Transmission belt with protruding fibers - Google Patents

Transmission belt with protruding fibers Download PDF

Info

Publication number
US5904630A
US5904630A US08/915,043 US91504397A US5904630A US 5904630 A US5904630 A US 5904630A US 91504397 A US91504397 A US 91504397A US 5904630 A US5904630 A US 5904630A
Authority
US
United States
Prior art keywords
ribs
fibers
belt
elastomer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/915,043
Inventor
Marc Berthelier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hutchinson SA
Original Assignee
Hutchinson SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hutchinson SA filed Critical Hutchinson SA
Assigned to HUTCHINSON SOCIETE ANONYME reassignment HUTCHINSON SOCIETE ANONYME ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERTHELIER, MARC
Priority to US09/198,777 priority Critical patent/US6045735A/en
Application granted granted Critical
Publication of US5904630A publication Critical patent/US5904630A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D29/00Producing belts or bands
    • B29D29/10Driving belts having wedge-shaped cross-section
    • B29D29/103Multi-ribbed driving belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Definitions

  • the present invention relates to a method of manufacturing a vulcanized transmission belt referred to as a "ribbed" belt, in particular for an automobile transmission, and to a belt obtained by implementing the method.
  • a ribbed belt can have a backing layer, a cushion layer in which cords are disposed longitudinally, and a "compression" layer in which reinforcing fibers are embedded in a lateral direction of the belt, and on which the ribs of the belt are formed by machining a plane blank, generally by means of a grinding roller, which wastes a considerable amount of material, namely about 30%.
  • Such machining of the ribs uncovers the ends of the reinforcing fibers so that they protrude from the outside of the ribs, and it also nicks the surface of the ribs, thereby forming tear start lines, in particular in the convex regions where the top of each rib meets its sides.
  • European Patent Application EP 0 633 408 proposes to apply a thin layer of rubber to the top of each of the ribs so as to coat the protruding fibers and to eliminate the tear start lines. This complicates manufacturing by adding another step.
  • An object of the invention is to provide a method of manufacturing a ribbed transmission belt whose ribs have protruding fibers and which has a long life.
  • Another object of the invention is to provide a method of manufacturing a belt, which method minimizes wastage of material.
  • the invention thus provides a method of manufacturing a ribbed vulcanized transmission belt having an elastomer cushion layer in which longitudinally disposed cords are embedded, and an elastomer compression layer in which reinforcing fibers are embedded and on which longitudinally extending ribs are provided, at least a region of the surface of each of the ribs having protruding fibers protruding from it, said method comprising the following steps:
  • the nominal thickness e preferably lies substantially in the range once to twice the thickness of the layer of skin of elastomer at the surface of the ribs and preferably in the range once to 1.5 times said thickness.
  • the nominal thickness e may lie in the range 0.1 mm to 0.3 mm.
  • the length of the fibers may lie in the range 0.5 mm to 10 mm, and the proportion by weight of the fibers in the compression layer may lie in the range 2 parts to 30 parts for 100 parts of elastomer.
  • Said region having protruding fibers may be the side of each of the ribs.
  • the entire surface of each of the ribs has protruding fibers.
  • the invention also provides a ribbed transmission belt having an elastomer cushion layer in which longitudinally disposed cords are embedded, and an elastomer compression layer in which reinforcing fibers are embedded and on which longitudinally extending ribs are provided, said fibers protruding from at least a region of the surface of each of the ribs, wherein, at least in said region and in the vicinity of the surfaces of the ribs, the mean direction of the reinforcing fibers is substantially tangential to the surfaces of the ribs.
  • the ribs advantageously have lines of movement of the folds of the elastomer that follow the outline of the ribs during a molding operation, and the mean direction of the fibers follows said lines of movement.
  • FIG. 1 is a cross-section view through a belt machined using a prior art method
  • FIGS. 2a and 2b are cross-section views through a belt molded and machined using the method of the invention, the views being respectively before and after machining;
  • FIGS. 3a to 3c show the method of the invention.
  • the machined belt shown in FIG. 1 comprises a backing layer 11, in which a woven reinforcement is optionally embedded, a cushion layer 12 of elastomer material in which cords 14 are embedded, the cords being made of, for example, polyester, polyamide, or aramid fibers, and a compression layer 15 in which reinforcing fibers 17 are embedded.
  • Manufacturing such a belt involves making up a plane blank formed of a stack of layers, and vulcanizing said blank in an autoclave at a pressure approximately in the range 6 bars to 8 bars.
  • the ribs 16 are machined by grinding to produce the belt shown in FIG. 1, in which protruding fibers 18 protrude from the sides 19 of the ribs 16.
  • the general direction of the fibers 17 is the transverse direction (i.e. parallel to the cross-section plane), and parallel to the faces 2 and 3 of the belt. After machining, the protruding fibers 18 naturally remain in the general direction of the fibers 17.
  • the belt of the invention shown in FIG. 2a after it has been molded and vulcanized, and in FIG. 2b after it has been machined, comprises a backing layer 21 in which a woven reinforcement is optionally embedded, a cushion layer 22 in which cords 24 are embedded, the cords being made of, for example, polyester, polyamide, or aramid fibers, etc., and a compression layer 25 in which fibers 27 are embedded, the fibers being, for example, natural or synthetic fibers of length in the range 0.5 mm to 10 mm, and present in the compression layer 25 in a proportion by weight in the range 2 parts to 30 parts for 100 parts of elastomer, for example.
  • Manufacturing a belt of the invention involves making up a plane blank formed of a stack of layers, molding said blank, e.g. in a hydraulic mold at a pressure of 20 bars, and then vulcanizing it so as to obtain the belt shown in FIG. 2a.
  • This belt is provided with ribs 26 whose outline is molded, each of the ribs 26 having a top 33 and sides 31, but this outline not being molded to the final dimensions of the ribs 26.
  • the subsequent machining step gives the final belt shown in FIG. 2b.
  • the general direction of the fibers 27 is very different from that of the fibers shown in FIG. 1.
  • the fibers 27 tend to be aligned with the lines of movement of the folds of the rubber, which lines follow the outline of the ribs 26. The closer the lines of movement are to the surfaces of the ribs 26 the more faithfully they follow said outline of the ribs.
  • the general direction of the fibers 27 is almost parallel to the surface of each rib 26 on the sides 31 and on the top 33. In the regions 35 where the top meets the sides 31, and in the grooves 36 between the ribs 26, the general direction changes progressively.
  • a layer of skin or limit layer 34 of thickness d exists at the surface (31, 33) of each of the ribs 26, in which layer the fibers 27 are not present (see detail in FIG. 2a).
  • This layer has a depth of about 0.1 mm.
  • the machining step of the invention consists in removing the layer of skin 34, and in setting the machining depth preferably so that it is just enough to uncover the ends of the fibers 27 bordering on the layer of skin 34.
  • Such machining to a depth that is only slightly greater than the depth of the layer 34 prevents nicks from being formed in the surface of the elastomer of the ribs 26, and thereby prevents tear start lines from forming in said surface, which would reduce the life of the belt.
  • the preferred direction of the fibers 27 is substantially parallel to said wall, it can be observed that there is a significant dispersion in the directions of the fibers 27, which dispersion is much greater than that of the fibers 17 in FIG. 1. This dispersion improves the cushion effect procured by the fibers 27, in particular on the sides 31 of the ribs.
  • This example corresponds to an accelerated ageing test implemented by equipping a Diesel engine successively with three belts of the same type (6 ribs having a pitch of 3.56 mm), but manufactured using different methods, namely:
  • belt No. 1 a belt machined using a prior art method
  • belt No. 2 a belt molded using a prior art method
  • belt No. 3 a belt molded and machined using a method of the invention.
  • the machined belt had the shortest life. It should be noted that the test implemented was a delamination test for which the vulcanization pressure or the molding pressure was very significant.
  • FIGS. 3a to 3c show the method of the invention.
  • FIG. 3a shows how a blank 40 is made comprising the layers 21, 22, and 25.
  • the general direction of the fibers 27 is transverse and is parallel to the faces of the blank.
  • FIG. 3b shows how the blank is molded under pressure in a hydraulic mold 50 having an imprint 51 whose outline corresponds to that of the ribs 26 prior to machining (FIG. 2a).
  • the vulcanization step is generally performed in the hydraulic mold 50, at a pressure of about 20 bars.
  • FIG. 3c shows how the machining step is performed using a grinding roller 60 having the imprint 61 of the ribs 26 in their final dimensions.
  • the vulcanized blank is mounted to rotate on pulleys 62 and 63, and the grinding roller 60 is brought towards the blank to rectify it to the desired depth, as indicated above, to obtain the belt shown in FIG. 2b.
  • the belt is generally cut up in known manner into a plurality of individual belts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

The invention concerns a method of manufacturing a ribbed vulcanized transmission belt having an elastomer cushion layer and an elastomer compression layer in which reinforcing fibers are embedded. The method comprises the following steps:
a) forming a blank having at least the cushion layer and the compression layer;
b) molding said blank under pressure in a mold provided with an imprint of the ribs;
c) vulcanizing said blank;
d) machining off surplus material so as to uncover protruding ends of the fibers.
In the belt of the invention, in the vicinity of the surfaces of the ribs, the mean direction of the reinforcing fibers is substantially tangential to the surfaces of the ribs, and, in at least one region of each of said ribs, said fibers have protruding ends.

Description

The present invention relates to a method of manufacturing a vulcanized transmission belt referred to as a "ribbed" belt, in particular for an automobile transmission, and to a belt obtained by implementing the method.
BACKGROUND OF THE INVENTION
It is already known, in particular from European Patent Application EP-642 886 (Mitsuboshi), that a ribbed belt can have a backing layer, a cushion layer in which cords are disposed longitudinally, and a "compression" layer in which reinforcing fibers are embedded in a lateral direction of the belt, and on which the ribs of the belt are formed by machining a plane blank, generally by means of a grinding roller, which wastes a considerable amount of material, namely about 30%. Such machining of the ribs uncovers the ends of the reinforcing fibers so that they protrude from the outside of the ribs, and it also nicks the surface of the ribs, thereby forming tear start lines, in particular in the convex regions where the top of each rib meets its sides.
European Patent Application EP 0 633 408 proposes to apply a thin layer of rubber to the top of each of the ribs so as to coat the protruding fibers and to eliminate the tear start lines. This complicates manufacturing by adding another step.
The solution proposed in Application EP-642 886, which consists in not machining the tops of the ribs and in creating a concave recessed zone between the flat top of each rib and each of its sides, the recessed zone not making contact with the pulley, makes it possible to solve the problem only where it is at its worst, without remedying the problem of the tear start lines that machining can cause, or the problem of wastage of material.
In practice, the life of machined belts is generally shorter than that of other types of belt.
It is however desirable to have belts whose ribs have protruding fibers because such fibers tend to reduce the operating noise of the belt in certain applications.
OBJECTS AND SUMMARY OF THE INVENTION
An object of the invention is to provide a method of manufacturing a ribbed transmission belt whose ribs have protruding fibers and which has a long life.
Another object of the invention is to provide a method of manufacturing a belt, which method minimizes wastage of material.
The invention thus provides a method of manufacturing a ribbed vulcanized transmission belt having an elastomer cushion layer in which longitudinally disposed cords are embedded, and an elastomer compression layer in which reinforcing fibers are embedded and on which longitudinally extending ribs are provided, at least a region of the surface of each of the ribs having protruding fibers protruding from it, said method comprising the following steps:
a) forming a blank having at least said cushion layer and said compression layer;
b) molding said blank under pressure in a mold provided with an imprint of the ribs, said imprint having an outline such that each of the ribs on the belt has surplus material of nominal thickness e in said region;
c) vulcanizing said blank;
d) machining the ribs on the belt to their final dimensions by removing said surplus material so as to uncover protruding ends of the fibers.
The nominal thickness e preferably lies substantially in the range once to twice the thickness of the layer of skin of elastomer at the surface of the ribs and preferably in the range once to 1.5 times said thickness.
For example, the nominal thickness e may lie in the range 0.1 mm to 0.3 mm.
In the method the length of the fibers may lie in the range 0.5 mm to 10 mm, and the proportion by weight of the fibers in the compression layer may lie in the range 2 parts to 30 parts for 100 parts of elastomer.
Said region having protruding fibers may be the side of each of the ribs. In a variant, the entire surface of each of the ribs has protruding fibers.
The invention also provides a ribbed transmission belt having an elastomer cushion layer in which longitudinally disposed cords are embedded, and an elastomer compression layer in which reinforcing fibers are embedded and on which longitudinally extending ribs are provided, said fibers protruding from at least a region of the surface of each of the ribs, wherein, at least in said region and in the vicinity of the surfaces of the ribs, the mean direction of the reinforcing fibers is substantially tangential to the surfaces of the ribs.
In cross-section, the ribs advantageously have lines of movement of the folds of the elastomer that follow the outline of the ribs during a molding operation, and the mean direction of the fibers follows said lines of movement.
BRIEF DESCRIPTION OF THE DRAWINGS
Other characteristics and advantages of the invention appear more clearly on reading the following description given by way of non-limiting example and with reference to the accompanying drawings, in which:
FIG. 1 is a cross-section view through a belt machined using a prior art method;
FIGS. 2a and 2b are cross-section views through a belt molded and machined using the method of the invention, the views being respectively before and after machining; and
FIGS. 3a to 3c show the method of the invention.
MORE DETAILED DESCRIPTION
The machined belt shown in FIG. 1 comprises a backing layer 11, in which a woven reinforcement is optionally embedded, a cushion layer 12 of elastomer material in which cords 14 are embedded, the cords being made of, for example, polyester, polyamide, or aramid fibers, and a compression layer 15 in which reinforcing fibers 17 are embedded.
Manufacturing such a belt involves making up a plane blank formed of a stack of layers, and vulcanizing said blank in an autoclave at a pressure approximately in the range 6 bars to 8 bars.
After vulcanization, the ribs 16 are machined by grinding to produce the belt shown in FIG. 1, in which protruding fibers 18 protrude from the sides 19 of the ribs 16. As shown in FIG. 1, the general direction of the fibers 17 is the transverse direction (i.e. parallel to the cross-section plane), and parallel to the faces 2 and 3 of the belt. After machining, the protruding fibers 18 naturally remain in the general direction of the fibers 17.
In addition to involving considerable wastage of material (about 30%), such machining by removing material also weakens to a certain extent the machined surfaces of the ribs 16, i.e. the sides 19 of the ribs in this example, as shown by above-mentioned European Patent Application EP-633 408.
The belt of the invention, shown in FIG. 2a after it has been molded and vulcanized, and in FIG. 2b after it has been machined, comprises a backing layer 21 in which a woven reinforcement is optionally embedded, a cushion layer 22 in which cords 24 are embedded, the cords being made of, for example, polyester, polyamide, or aramid fibers, etc., and a compression layer 25 in which fibers 27 are embedded, the fibers being, for example, natural or synthetic fibers of length in the range 0.5 mm to 10 mm, and present in the compression layer 25 in a proportion by weight in the range 2 parts to 30 parts for 100 parts of elastomer, for example.
Manufacturing a belt of the invention involves making up a plane blank formed of a stack of layers, molding said blank, e.g. in a hydraulic mold at a pressure of 20 bars, and then vulcanizing it so as to obtain the belt shown in FIG. 2a. This belt is provided with ribs 26 whose outline is molded, each of the ribs 26 having a top 33 and sides 31, but this outline not being molded to the final dimensions of the ribs 26. The subsequent machining step gives the final belt shown in FIG. 2b.
As shown in FIG. 2a, the general direction of the fibers 27 is very different from that of the fibers shown in FIG. 1. During molding, the fibers 27 tend to be aligned with the lines of movement of the folds of the rubber, which lines follow the outline of the ribs 26. The closer the lines of movement are to the surfaces of the ribs 26 the more faithfully they follow said outline of the ribs. In the vicinity of the surfaces of the ribs, the general direction of the fibers 27 is almost parallel to the surface of each rib 26 on the sides 31 and on the top 33. In the regions 35 where the top meets the sides 31, and in the grooves 36 between the ribs 26, the general direction changes progressively. Furthermore, it can be observed that, after molding, a layer of skin or limit layer 34 of thickness d exists at the surface (31, 33) of each of the ribs 26, in which layer the fibers 27 are not present (see detail in FIG. 2a). This layer has a depth of about 0.1 mm.
The machining step of the invention consists in removing the layer of skin 34, and in setting the machining depth preferably so that it is just enough to uncover the ends of the fibers 27 bordering on the layer of skin 34. Such machining to a depth that is only slightly greater than the depth of the layer 34, prevents nicks from being formed in the surface of the elastomer of the ribs 26, and thereby prevents tear start lines from forming in said surface, which would reduce the life of the belt. Furthermore, although, in the vicinity of the wall 31, the preferred direction of the fibers 27 is substantially parallel to said wall, it can be observed that there is a significant dispersion in the directions of the fibers 27, which dispersion is much greater than that of the fibers 17 in FIG. 1. This dispersion improves the cushion effect procured by the fibers 27, in particular on the sides 31 of the ribs.
COMPARATIVE EXAMPLE
This example corresponds to an accelerated ageing test implemented by equipping a Diesel engine successively with three belts of the same type (6 ribs having a pitch of 3.56 mm), but manufactured using different methods, namely:
belt No. 1: a belt machined using a prior art method;
belt No. 2: a belt molded using a prior art method; and
belt No. 3: a belt molded and machined using a method of the invention.
The test was continued until the layers 12 and 15 (or 22 and 25) were observed to separate.
For a life equal to 100 for belt No. 1, a life equal to 142 was observed for belt No. 2, and a life equal to 173 was observed for belt No. 3.
The machined belt had the shortest life. It should be noted that the test implemented was a delamination test for which the vulcanization pressure or the molding pressure was very significant.
Comparing the lives of belt No. 3 and of belt No. 2, which belts were molded at the same pressure, shows that the additional machining step of the invention significantly increases the life of the belt, which is particularly surprising in view of the teaching of above-mentioned Patent Application JP-59 4196 and of European Patent Application EP-633 408. In addition, the life of belt No. 3 is much longer than that of belt No. 1, even though the method of manufacturing it is much more economical because the machining step of the invention involves removing a marginal thickness of material resulting in removing a few percent of the material (as compared with the removal of about 30% of the material in a machined belt).
FIGS. 3a to 3c show the method of the invention.
FIG. 3a shows how a blank 40 is made comprising the layers 21, 22, and 25. The general direction of the fibers 27 is transverse and is parallel to the faces of the blank.
FIG. 3b shows how the blank is molded under pressure in a hydraulic mold 50 having an imprint 51 whose outline corresponds to that of the ribs 26 prior to machining (FIG. 2a). The vulcanization step is generally performed in the hydraulic mold 50, at a pressure of about 20 bars.
FIG. 3c shows how the machining step is performed using a grinding roller 60 having the imprint 61 of the ribs 26 in their final dimensions. For this purpose, the vulcanized blank is mounted to rotate on pulleys 62 and 63, and the grinding roller 60 is brought towards the blank to rectify it to the desired depth, as indicated above, to obtain the belt shown in FIG. 2b. After machining, the belt is generally cut up in known manner into a plurality of individual belts.

Claims (5)

I claim:
1. A ribbed transmission belt having an elastomer cushion layer in which longitudinally disposed cords are embedded, and an elastomer compression layer in which reinforcing fibers are embedded and on which longitudinally extending ribs are provided, said fibers protruding from at least a region of the surface of each of the ribs, wherein, at least in said region and in the vicinity of the surfaces of the ribs, the mean direction of the reinforcing fibers is substantially tangential to the surfaces of the ribs.
2. A belt according to claim 1, wherein said region is the side of each of said ribs.
3. A belt according to claim 1, wherein each rib has reinforcing fibers having protruding ends over its entire surface.
4. A belt according to claim 1, wherein, in cross-section, the ribs have lines of movement of the folds of the elastomer that follow the outline of the ribs, and wherein the mean direction of the fibers follows said lines of movement.
5. A belt according to claim 1, wherein the reinforcing fibers are of length lying in the range 0.5 mm to 10 mm, and are present in the compression layer in a proportion by weight lying in the range 2 parts to 30 parts for 100 parts of elastomer.
US08/915,043 1996-09-10 1997-08-20 Transmission belt with protruding fibers Expired - Fee Related US5904630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/198,777 US6045735A (en) 1996-09-10 1998-11-24 Method of manufacturing a transmission belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9611018A FR2753248B1 (en) 1996-09-10 1996-09-10 METHOD FOR MANUFACTURING A TRANSMISSION BELT AND BELT OBTAINED THEREBY
FR9611018 1996-09-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/198,777 Division US6045735A (en) 1996-09-10 1998-11-24 Method of manufacturing a transmission belt

Publications (1)

Publication Number Publication Date
US5904630A true US5904630A (en) 1999-05-18

Family

ID=9495602

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/915,043 Expired - Fee Related US5904630A (en) 1996-09-10 1997-08-20 Transmission belt with protruding fibers
US09/198,777 Expired - Fee Related US6045735A (en) 1996-09-10 1998-11-24 Method of manufacturing a transmission belt

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/198,777 Expired - Fee Related US6045735A (en) 1996-09-10 1998-11-24 Method of manufacturing a transmission belt

Country Status (6)

Country Link
US (2) US5904630A (en)
EP (1) EP0829658B1 (en)
JP (1) JPH1086236A (en)
DE (2) DE69718730T2 (en)
ES (1) ES2115576T3 (en)
FR (1) FR2753248B1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075330A1 (en) 2000-04-03 2001-10-11 Contitech Antriebssysteme Gmbh Frictionally engaged driving belt
US6435997B1 (en) * 1999-05-24 2002-08-20 Bando Chemical Industries, Ltd. Power transmission belt and method for fabricating the same
US6482118B1 (en) * 1999-05-24 2002-11-19 Bando Chemical Industries, Ltd. Power transmission belt and method for fabricating the same
US20020183153A1 (en) * 2001-04-10 2002-12-05 Phil Patterson Power transmission belt
US6511394B2 (en) * 2000-09-08 2003-01-28 Bando Chemical Industries, Ltd. Power transmission belt
US6561937B1 (en) 1999-08-26 2003-05-13 The Goodyear Tire & Rubber Company Power transmission belt
US6695735B2 (en) 1999-05-24 2004-02-24 Bando Chemical Industries, Ltd. Power transmission belt and method for fabricating the same
EP1396659A1 (en) 2002-09-07 2004-03-10 ContiTech Antriebssysteme GmbH Driving belt
US20040058767A1 (en) * 2002-06-28 2004-03-25 Hirotaka Hara Method of making a power transmission belt/belt sleeve and belt/belt sleeve made according to the method
EP1593875A2 (en) 2004-05-03 2005-11-09 Arntz Beteiligungs GmbH & Co. KG Driving belt
US20060154770A1 (en) * 2004-12-27 2006-07-13 Mitsuboshi Belting Ltd. Power transmission belt and method of forming a power transmission belt
US20080026897A1 (en) * 2006-07-28 2008-01-31 Bando Chemical Industries, Ltd. V-ribbed belt
US20090149289A1 (en) * 2007-12-05 2009-06-11 The Gates Corporation Power transmission belt
US20090291796A1 (en) * 2008-05-26 2009-11-26 Mitsuboshi Belting Ltd. Power transmission belt
US20140274520A1 (en) * 2013-03-14 2014-09-18 Dayco Ip Holdings, Llc V-ribbed belt with spaced rib flank reinforcement

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008341B2 (en) * 2001-06-27 2006-03-07 The Goodyear Tire & Rubber Company Reduced noise multi-ribbed power transmission belt
US6949211B2 (en) 2003-04-16 2005-09-27 The Goodyear & Rubber Company Means of manufacturing plural optimized cogged drive belts

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818741A (en) * 1972-11-16 1974-06-25 Goodyear Tire & Rubber Power transmission belt and method of making
EP0317316A1 (en) * 1987-11-19 1989-05-24 The Gates Rubber Company Power transmission belt and method
US4931118A (en) * 1988-01-23 1990-06-05 Mitsuboshi Belting Ltd. Method of manufacturing multiribbed belts
EP0429299A2 (en) * 1989-11-20 1991-05-29 Mitsuboshi Belting Ltd. V-ribbed belt and method of fabricating the same
US5120281A (en) * 1990-05-02 1992-06-09 Mitsubishi Belting Ltd. Power transmission belt
US5127886A (en) * 1990-05-14 1992-07-07 Bando Chemical Industries, Ltd. Power transmission belt
US5427637A (en) * 1990-11-19 1995-06-27 Mitsuboshi Belting Ltd. V-ribbed belt and method of fabricating the same
JPH07280040A (en) * 1994-03-31 1995-10-27 Mitsuboshi Belting Ltd V-ribbed belt and its manufacture
EP0694710A2 (en) * 1994-07-27 1996-01-31 Mitsuboshi Belting Ltd. Double V-ribbed belt
US5498212A (en) * 1993-10-06 1996-03-12 Mitsuboshi Belting Ltd. Power transmission belt with reinforcing fibers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329192A (en) * 1981-01-19 1982-05-11 Dayco Corporation Apparatus and method for making a belt construction
JPS62113940A (en) * 1985-11-11 1987-05-25 Bando Chem Ind Ltd V-ribbed belt and manufacturing method thereof
US4956036A (en) * 1987-11-19 1990-09-11 The Gates Rubber Company Method of making a power transmission belt including moisturizing and grinding
JP2562112B2 (en) 1993-07-07 1996-12-11 三ツ星ベルト株式会社 V-ribbed belt and grinder wheel for V-ribbed belt
EP0642886B1 (en) 1993-09-09 2000-02-16 Mitsuboshi Belting Ltd. Apparatus and method for forming ribs on a belt/belt sleeve

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818741A (en) * 1972-11-16 1974-06-25 Goodyear Tire & Rubber Power transmission belt and method of making
EP0317316A1 (en) * 1987-11-19 1989-05-24 The Gates Rubber Company Power transmission belt and method
US4931118A (en) * 1988-01-23 1990-06-05 Mitsuboshi Belting Ltd. Method of manufacturing multiribbed belts
EP0429299A2 (en) * 1989-11-20 1991-05-29 Mitsuboshi Belting Ltd. V-ribbed belt and method of fabricating the same
US5120281A (en) * 1990-05-02 1992-06-09 Mitsubishi Belting Ltd. Power transmission belt
US5127886A (en) * 1990-05-14 1992-07-07 Bando Chemical Industries, Ltd. Power transmission belt
US5427637A (en) * 1990-11-19 1995-06-27 Mitsuboshi Belting Ltd. V-ribbed belt and method of fabricating the same
US5498212A (en) * 1993-10-06 1996-03-12 Mitsuboshi Belting Ltd. Power transmission belt with reinforcing fibers
JPH07280040A (en) * 1994-03-31 1995-10-27 Mitsuboshi Belting Ltd V-ribbed belt and its manufacture
EP0694710A2 (en) * 1994-07-27 1996-01-31 Mitsuboshi Belting Ltd. Double V-ribbed belt

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Database WPI, Publication No. JP 07 280040, Section Ch, Week 9601, Derwent Publications Ltd., London, GB. *
Patent Abstracts of Japan, Publication No. JP 62 113940, vol. 011, No. 333 (M 637), Oct. 30, 1987. *
Patent Abstracts of Japan, Publication No. JP 62 113940, vol. 011, No. 333 (M-637), Oct. 30, 1987.

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6435997B1 (en) * 1999-05-24 2002-08-20 Bando Chemical Industries, Ltd. Power transmission belt and method for fabricating the same
US6482118B1 (en) * 1999-05-24 2002-11-19 Bando Chemical Industries, Ltd. Power transmission belt and method for fabricating the same
US6695735B2 (en) 1999-05-24 2004-02-24 Bando Chemical Industries, Ltd. Power transmission belt and method for fabricating the same
US6561937B1 (en) 1999-08-26 2003-05-13 The Goodyear Tire & Rubber Company Power transmission belt
WO2001075330A1 (en) 2000-04-03 2001-10-11 Contitech Antriebssysteme Gmbh Frictionally engaged driving belt
US7128674B2 (en) 2000-04-03 2006-10-31 Contitech Antriebssysteme Gmbh Frictionally engaged driving belt
US20030139242A1 (en) * 2000-04-03 2003-07-24 Reinhard Teves Frictionally engaged driving belt
US6511394B2 (en) * 2000-09-08 2003-01-28 Bando Chemical Industries, Ltd. Power transmission belt
US6991692B2 (en) 2001-04-10 2006-01-31 The Gates Corporation Power transmission belt
US6793599B2 (en) * 2001-04-10 2004-09-21 The Gates Corporation Power transmission belt
US20020183153A1 (en) * 2001-04-10 2002-12-05 Phil Patterson Power transmission belt
US20040058767A1 (en) * 2002-06-28 2004-03-25 Hirotaka Hara Method of making a power transmission belt/belt sleeve and belt/belt sleeve made according to the method
US7135082B2 (en) 2002-06-28 2006-11-14 Mitsuboshi Belting Ltd. Method of making a power transmission belt/belt sleeve and belt/belt sleeve made according to the method
EP1396659A1 (en) 2002-09-07 2004-03-10 ContiTech Antriebssysteme GmbH Driving belt
EP1593875A2 (en) 2004-05-03 2005-11-09 Arntz Beteiligungs GmbH & Co. KG Driving belt
EP1593875A3 (en) * 2004-05-03 2006-03-15 Arntz Beteiligungs GmbH & Co. KG Driving belt
US20060154770A1 (en) * 2004-12-27 2006-07-13 Mitsuboshi Belting Ltd. Power transmission belt and method of forming a power transmission belt
US9388879B2 (en) * 2004-12-27 2016-07-12 Mitsuboshi Belting Ltd. Power transmission belt and method of forming a power transmission belt
US20080026897A1 (en) * 2006-07-28 2008-01-31 Bando Chemical Industries, Ltd. V-ribbed belt
US7896767B2 (en) * 2006-07-28 2011-03-01 Bando Chemical Industries, Ltd. V-ribbed belt
US20090149289A1 (en) * 2007-12-05 2009-06-11 The Gates Corporation Power transmission belt
US9039554B2 (en) 2007-12-05 2015-05-26 Gates Corporation Power transmission belt
US20090291796A1 (en) * 2008-05-26 2009-11-26 Mitsuboshi Belting Ltd. Power transmission belt
US9273756B2 (en) * 2008-05-26 2016-03-01 Mitsuboshi Belting Ltd. Power transmission belt
US20140274520A1 (en) * 2013-03-14 2014-09-18 Dayco Ip Holdings, Llc V-ribbed belt with spaced rib flank reinforcement
US9157503B2 (en) * 2013-03-14 2015-10-13 Dayco Ip Holdings, Llc V-ribbed belt with spaced rib flank reinforcement
US20160010723A1 (en) * 2013-03-14 2016-01-14 Dayco Ip Holdings, Llc V-ribbed belt with spaced rib flank reinforcement
US9791020B2 (en) * 2013-03-14 2017-10-17 Dayco Ip Holdings, Llc V-ribbed belt with spaced rib flank reinforcement

Also Published As

Publication number Publication date
ES2115576T3 (en) 2003-09-16
DE69718730D1 (en) 2003-03-06
ES2115576T1 (en) 1998-07-01
EP0829658A1 (en) 1998-03-18
DE69718730T2 (en) 2003-11-27
DE829658T1 (en) 1998-08-13
JPH1086236A (en) 1998-04-07
FR2753248A1 (en) 1998-03-13
EP0829658B1 (en) 2003-01-29
US6045735A (en) 2000-04-04
FR2753248B1 (en) 1998-11-06

Similar Documents

Publication Publication Date Title
US5904630A (en) Transmission belt with protruding fibers
JP3604687B2 (en) Moving handrail
RU2209140C2 (en) Tread pattern and method of its making
JP4813098B2 (en) Power transmission belt manufacturing method and bias cut device
CA2170797C (en) Vehicle tyre that can be elastically fitted with studs
EP0492048A2 (en) Contoured replacement tread
EP0239334B1 (en) Fabric-covered cogged belt
US4617075A (en) Method of making a belt
JPH0573934B2 (en)
US4931118A (en) Method of manufacturing multiribbed belts
EP0291568A2 (en) Patches for repairing or retreading radial-ply tires
US4231826A (en) Process for forming V-belts and belt sleeves
CA1238561A (en) Unvulcanized tread strip for pneumatic vehicle tires
US5643378A (en) Belt construction and method of making the same
US4277296A (en) Pneumatic tire and method of making same
US3193425A (en) Edge bonding of conveyor belts
EP0034225B1 (en) Process for manufacturing v-belts
US4470500A (en) Belt construction and method of making the same
US1701507A (en) Process for manufacturing v-type belts
US11378157B2 (en) Drive belt having a profiled belt rear side
CN111164331A (en) Transmission belt and method for manufacturing same
JP4772518B2 (en) Manufacturing method of power transmission belt
KR0125396Y1 (en) A tire
JP2007051765A (en) Power transmission belt and its manufacturing method
JPS59208245A (en) Multirib belt and manufacture thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: HUTCHINSON SOCIETE ANONYME, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BERTHELIER, MARC;REEL/FRAME:008767/0659

Effective date: 19970715

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20070518