US5855771A - Pyrite depressant useful in floation separation - Google Patents
Pyrite depressant useful in floation separation Download PDFInfo
- Publication number
- US5855771A US5855771A US08/877,320 US87732097A US5855771A US 5855771 A US5855771 A US 5855771A US 87732097 A US87732097 A US 87732097A US 5855771 A US5855771 A US 5855771A
- Authority
- US
- United States
- Prior art keywords
- pyrite
- tepa
- sub
- group
- ore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 229910052683 pyrite Inorganic materials 0.000 title claims abstract description 43
- 239000011028 pyrite Substances 0.000 title claims abstract description 43
- 230000000994 depressogenic effect Effects 0.000 title claims abstract description 14
- 238000000926 separation method Methods 0.000 title abstract description 8
- 239000003245 coal Substances 0.000 claims abstract description 20
- 238000005188 flotation Methods 0.000 claims abstract description 19
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 9
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 6
- 125000000320 amidine group Chemical group 0.000 claims 1
- 239000012141 concentrate Substances 0.000 abstract description 21
- 150000001875 compounds Chemical class 0.000 abstract description 10
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 6
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical group [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 abstract description 5
- 230000000881 depressing effect Effects 0.000 abstract description 5
- 239000007787 solid Substances 0.000 abstract description 5
- 125000000217 alkyl group Chemical group 0.000 abstract description 4
- 125000004432 carbon atom Chemical group C* 0.000 abstract description 4
- 150000001409 amidines Chemical class 0.000 abstract description 3
- 239000001257 hydrogen Substances 0.000 abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract description 3
- 229910052948 bornite Inorganic materials 0.000 abstract description 2
- 150000004763 sulfides Chemical class 0.000 abstract description 2
- 239000012991 xanthate Substances 0.000 abstract description 2
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 abstract 1
- 101150035983 str1 gene Proteins 0.000 abstract 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- 239000010949 copper Substances 0.000 description 13
- 229910052717 sulfur Inorganic materials 0.000 description 13
- 239000011593 sulfur Substances 0.000 description 13
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- 238000012360 testing method Methods 0.000 description 10
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000001143 conditioned effect Effects 0.000 description 8
- 238000007792 addition Methods 0.000 description 7
- ZNEWHQLOPFWXOF-UHFFFAOYSA-N coenzyme M Chemical compound OS(=O)(=O)CCS ZNEWHQLOPFWXOF-UHFFFAOYSA-N 0.000 description 6
- DOGJSOZYUGJVKS-UHFFFAOYSA-N glyceryl monothioglycolate Chemical compound OCC(O)COC(=O)CS DOGJSOZYUGJVKS-UHFFFAOYSA-N 0.000 description 6
- 229960004635 mesna Drugs 0.000 description 6
- 238000011084 recovery Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- YIBBMDDEXKBIAM-UHFFFAOYSA-M potassium;pentoxymethanedithioate Chemical compound [K+].CCCCCOC([S-])=S YIBBMDDEXKBIAM-UHFFFAOYSA-M 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910052569 sulfide mineral Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910001779 copper mineral Inorganic materials 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002000 scavenging effect Effects 0.000 description 2
- 241000784732 Lycaena phlaeas Species 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- UOJYYXATTMQQNA-UHFFFAOYSA-N Proxan Chemical compound CC(C)OC(S)=S UOJYYXATTMQQNA-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002802 bituminous coal Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052951 chalcopyrite Inorganic materials 0.000 description 1
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- GATNOFPXSDHULC-UHFFFAOYSA-N ethylphosphonic acid Chemical compound CCP(O)(O)=O GATNOFPXSDHULC-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910001608 iron mineral Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/004—Organic compounds
- B03D1/014—Organic compounds containing phosphorus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2201/00—Specified effects produced by the flotation agents
- B03D2201/06—Depressants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2203/00—Specified materials treated by the flotation agents; Specified applications
- B03D2203/02—Ores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2203/00—Specified materials treated by the flotation agents; Specified applications
- B03D2203/02—Ores
- B03D2203/04—Non-sulfide ores
- B03D2203/08—Coal ores, fly ash or soot
Definitions
- the present invention relates to a depressant that is surprisingly effective in depressing pyrite during flotation separation of sulfide ores and coal and more particularly to surprisingly useful depressant that diverts surprisingly large amounts of pyrite on a normalized basis during removal of useful minerals of such ores and/or removal of contaminants (that includes, of course, pyrite) from coal.
- TEPA 2-S thiouronium-ethane phosphonate
- the present invention relates to a process for separating pyrite from sulfide ores and coal during flotation separation which comprises the depressing of pyrite with from about 0.05 to 0.75 kilograms per ton of concentrate solids, using a pyrite depressant compounds selected from the group consisting of
- n is between 2 and 4
- R1 is selected from a group consisting of hydrogen (H) and amidine, and ##STR2## where Ro is a lower alkyl having carbon atoms in a range of 3 to 8 with 3 to 6 being preferred and a final pH in a range of 4 to 9 depending on the ore being processed, and therafter recovering the flotation concentrate thus obtained.
- 2-S thiouronium-ethane phosphonate (TEPA) as a pyrite depressant is surprisingly effective in pyrite removal, being substantially independent of the pH values of the treated ore or coal, compatible with conventional collector reagents such as xanthates in the case of copper sulfide bearing ores as well as being substantially unobtrusive in not depressing other useful ore sulfides, including but limited to chalcopyrite, bornite, chalcosite, etc.
- Group (II) are more pH sensitive.
- TEPA 2-S thiouronium-ethane phosphonate
- TEPA 2-S thiouronium-ethane phosphonate
- the resulting 2-S thiouoronium-ethane phosphonate is about 98% pure.
- FIGS. 1-3 and 5-11 illustrate the results of the use of 2-S thiouroniuum-ethane-sulfonate to depress pyrites.
- FIG. 4 illustrates the results of the use of conventional depressants.
- Two step batch flotation tests for high-sulfur bituminous coal samples were conducted in a conventional floatation machine with a two-paddle flotation cell.
- the first step was performed while maintaining the pulp level to a predetermined mark on the cell, using manual controls. Mechanical scrappers were adjusted to a speed between 0 and 40 rpm. Air flow was controlled by a diaphragm pump connected to a three-way valve and flowmeter assembly.
- Table 1 shows the standard floatation test conditions in more detail. Note that purified dodecane was selected as the collector rather than kerosene to gain source independence. The frother was conventional MIBC (methylisobutylcarbinol or 4-methyl-2-penanol). The tailings were filtered, dried, weighed and analyzed.
- MIBC methylisobutylcarbinol or 4-methyl-2-penanol
- the concentrate from first step was then re-floated.
- the pulp was conditioned for about 1 minute, with additional frother (MIBC) being added and conditioned for about 3 minutes (0.58 kg per ton; 0.07 kilograms per ton; and 0.07 kilograms per ton MIBC being added as frother for ILLINOIS NO. 6, PITTSBURGH NO. 8 and UPPER FREEPORT coal samples, respectively).
- MIBC frother
- No collector added After release of air, the froth was collected at different time intervals, viz. at 0.5, 1, 3 and 5 minutes after initialization had been completed.
- FIG. 1 shows that the presence of 2-S thiouronium-ethane phosphonate (TEPA) improved the pyritic sulfur rejection significantly (that is, with respect to results obtained in the absence of TEPA for this sample). Furthermore, separation efficiencies depicted, are also much better than those obtained by a conventional procedure (called “release or tree analysis”) normalized to common collector and frother dosages.
- TEPA 2-S thiouronium-ethane phosphonate
- the tailings fractions associated with initial concentrate are also subjected to further cleaning steps. Both concentrates and tailing are kept separate for individual cleaning and scavenging. Mechanical floatation variables including floatation time are kept constant. Tree analysis is aimed at identifying best possible separation by floatation. A curve thus generated has a locus that represents (a) products of maximum coal matrix content (but minimum ash and pyritic sulfur content), (b) products of the minimum coal matrix content (but maximum ash and pyritic sulfur content) and all other intermediate products in between (a) and (b), supra. Of course collector and frother concentration for each coal sample correspond to that level used in the standard floatation test.)
- TEPA adsorbs onto the pyrite surface by complexing iron, making the latter highly hydrophilic.
- TEPA also appears to act as a amphoteric surfactant to modify the surface of both coal and pyrite increasing their positive charge at low TEPA dosages, dispersing the system and improving pyrite rejection as demonstrated by electrokentic, Hallimond tube floatation and rheological studies.
- FIG. 2 shows that the presence of 2-S thironium-ethane phosphonate (TEPA) improved the pyritic sulfur rejection significantly (that is, with respect to results obtained in the absence of TEPA for this sample). Furthermore, separation efficiencies depicted, are also much better than those obtained by release analysis normalized to common collector and frother dosages.
- TEPA 2-S thironium-ethane phosphonate
- FIG. 3 shows that the presence of 2-S thironium-ethane phosphonate (TEPA) improved the pyritic sulfur rejection even though the UPPER FREEPORT coal sample is most hydrophobic of the three samples.
- TEPA 2-S thironium-ethane phosphonate
- a collector such as potassium amyl xanthate is added to a slurry of the copper-bearing ore.
- Purpose to allow the copper sulfide mineral to become hydrophobic.
- iron sulfide minerals may also adsorb the collector and float with the copper minerals.
- the present invention relates to depressant for such iron sulfide minerals during the flotation of copper sulfide ores without adversely affecting the effectiveness of the latter.
- 1 ⁇ 10-3 molar solution of potassium nitrate was prepared, adjusting the pH by additions of hydrogen nitrate and potassium hydroxide.
- a 65 ⁇ 200 mesh sample of a pyrite from Arizona was added to the solution and the resulting system conditioned for 7 minutes using a magnetic stirrer. After 4 minutes of conditioning, potassium amyl xanthate (KAX) was added and then the resulting suspension conditioned for three more minutes.
- KAX potassium amyl xanthate
- TEPA was added to the suspension in amounts indicated in FIG. 4. After the suspension was conditioned to a pH of 4, a 2 ⁇ 10-4 molar solution of KAX was added.
- Temagami copper ore was prepared in a similar manner as the pyrite of EXAMPLE I, for comparison purposes. With TEPA added, the ore was floated and the tests shown in FIG. 6 obtained.
- FIG. 6 indicates that TEPA does not affect the flotation behavior of the copper since no depression of the system is indicated. The selectivity of TEPA for pyrite only, is thus assured.
- a Southwestern U.S. copper ore (-10 mesh) was prepared by crushing. After blending and splitting the sample was divided in 500 gram subsamples (dry basis). Argon was used as purging gas. The subsample was then reground to 67 weight per cent solids content. For the evaluation of TEPA, 0.092 kilograms per ton of TEPA were added. After further conditioning lime was added (0.2 to 0.4 kilograms per ton) to attain a pH of 9.5. A conventional collector was added (0.04 kilograms per ton Minerec M200).
- FIG. 7 indicates that TEPA does not affect the flotation behavior of the copper since no depression of the system is indicated. The selectivity of TEPA for pyrite only, is thus assured.
- a South American copper ore was prepared in a manner akin to that set forth in EXAMPLE III, with the following differences.
- a 500 gram subsample was ground to a 80 per cent 200 mesh subsample.
- the pH was modified by the addition of lime at a rate of 0.2 kilograms per ton.
- No collector was used.
- the flotation tests were performed using 0.02 kilograms per ton of isopropyl xanthate (NaIPX).
- a larger amount of MIBC was used (0.25 kilograms per ton).
- the system was floated for two minutes.
- 0.01 kilograms per ton of NaIPX was added and conditioned for about 4 minutes.
- 0.0125 kilograms per ton of MIBC was added and the slurry conditioned.
- Comparisons with MESA and/or GMTG as reagents were made as depicted in FIGS. 8-10.
- FIG. 8 and 9 indicate that TEPA at the concentrations and pH's indicated, does not affect the flotation behavior of the copper since no depression of the system is indicated. The selectivity of TEPA for pyrite only, is thus assured.
- FIG. 10 indicates that TEPA at the concentrations indicated, is a better pyrite depressant than a conventional standard such as set forth above.
- a conventional standard such as set forth above.
- FIG. 10 indicates that at 80% copper recovery the iron rejection is only about 50 per cent. The reason is based on the character of the ore which are termed "locked particle" wherein the pyrite and copper are interlaced in varying amounts. If such particle is floated, then the grade of the copper concentrate is reduced. Similarly, if the particle is depressed, then copper recovery is reduced. In practice, the rougher concentrate represents a smaller portion of the ore and regranting the former leads to increased effectiveness and lower costs. Regrinding liberates more copper and iron minerals.
- n is between 2 and 4
- R1 is selected from a group consisting of hydrogen (H) and amidine.
- the compound GHB-2 is a compound containing in the molecule one or more nitrilodiacetate groups and nitrolotriacetic acid (NTA) of the following general formula: ##STR4## where Ro is a lower alkyl having carbon atoms in a range of 3 to 8 with 3 to 6 being preferred and a final pH in a range of 4 to 9 depending on the ore being processed. Note in FIG. 11, the compound GHB-2 in which Ro is a lower alkyl having six carbon atoms, provides superior results in comparison with TEPA.
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
The present invention relates to a process for separating pyrite from sulfide ores and coal during flotation separation which comprises the depressing of pyrite with from about 0.05 to 0.75 kilograms per ton of concentrate solids, using a pyrite depressant compounds selected from the group consisting of
R1--S (CH.sub.2').sub.n PO (OH).sub.2 (I)
where
n is between 2 and 4, and
R1 is selected from a group consisting of hydrogen (H) and amidine, and ##STR1## where Ro is a lower alkyl having carbon atoms in a range of 3 to 8 with 3 to 6 being preferred and a final pH in a range of 4 to 9 depending on the ore being processed, and therafter recovering the flotation concentrate thus obtained. As to group (I) compounds, 2-S thironium-ethane phosphonate (TEPA) as a pyrite depressant is surprisingly effective in pyrite removal, being substantially independent of the pH values of the treated ore or coal, compatible with conventional collector reagents such as xanthates in the case of copper sulfide bearing ores as well as being substantially unobtrusive in not depressing other useful ore sulfides, including but limited to chalcopyritoe, bornite, chalcosite, etc. Group (II) are more pH sensitive.
Description
This is a continuation of Ser. No. 60/019,877 filed Jun. 17, 1996.
This is a continuation of Ser. No. 60/019,877 filed Jun. 17, 1996.
The present invention relates to a depressant that is surprisingly effective in depressing pyrite during flotation separation of sulfide ores and coal and more particularly to surprisingly useful depressant that diverts surprisingly large amounts of pyrite on a normalized basis during removal of useful minerals of such ores and/or removal of contaminants (that includes, of course, pyrite) from coal.
The need to depress pyrite during flotation of sulfide ores and/or coal is well-known. With particular regard to the former, diverting the pyrite into waste material, significantly upgrade; the concentrates of the result in ores as well as reduces smelting costs since there less sulfur dioxide and sulfuric acid produced as byproducts. With particular regard to the need to depress pyrite in coal, calorific content is improved with its removal, as well as proving a concomitant reduction in sulfur emissions, enabling the user to more easily meet Federal and State regulations.
While a vast array of reagents for pyrite depression have been proposed and reported, we are unaware of use of 2-S thiouronium-ethane phosphonate (TEPA) as a pyrite depressant during both coal and copper sulfide flotation operations, and moreover, we are surprised by the effectiveness thereof in such operations.
The present invention relates to a process for separating pyrite from sulfide ores and coal during flotation separation which comprises the depressing of pyrite with from about 0.05 to 0.75 kilograms per ton of concentrate solids, using a pyrite depressant compounds selected from the group consisting of
R1--S (CH.sub.2).sub.n PO (OH).sub.2 (I)
where
n is between 2 and 4, and
R1 is selected from a group consisting of hydrogen (H) and amidine, and ##STR2## where Ro is a lower alkyl having carbon atoms in a range of 3 to 8 with 3 to 6 being preferred and a final pH in a range of 4 to 9 depending on the ore being processed, and therafter recovering the flotation concentrate thus obtained. As to group (I) compounds, 2-S thiouronium-ethane phosphonate (TEPA) as a pyrite depressant is surprisingly effective in pyrite removal, being substantially independent of the pH values of the treated ore or coal, compatible with conventional collector reagents such as xanthates in the case of copper sulfide bearing ores as well as being substantially unobtrusive in not depressing other useful ore sulfides, including but limited to chalcopyrite, bornite, chalcosite, etc. Group (II) are more pH sensitive.
2-S thiouronium-ethane phosphonate (TEPA) has the following structural formula:
2-isothiouronium-ethane phosphonic acid (TEPA) ##STR3##
The pKa 's of ethyl phosphonic acid are: pKa1 =2.43, pKa2 =8.05
2-S thiouronium-ethane phosphonate (TEPA) is obtained as follows. A commercially available aqueous solution of o-chloroethane phosphonic acid is heated to 110 to 116 degrees centigrade for four hours. The pH is adjusted to 3.8 and results in the precipitation of
(H.sub.2 N).sup.+ C--S--C.sub.2 H.sub.4 PO(OH)O.sup.-.
The resulting 2-S thiouoronium-ethane phosphonate is about 98% pure.
FIGS. 1-3 and 5-11 illustrate the results of the use of 2-S thiouroniuum-ethane-sulfonate to depress pyrites.
FIG. 4 illustrates the results of the use of conventional depressants.
Two step batch flotation tests for high-sulfur bituminous coal samples (ILLNOIS NO. 6, PITTSBURGH NO. 8 and UPPER FREEPORT) were conducted in a conventional floatation machine with a two-paddle flotation cell. The first step was performed while maintaining the pulp level to a predetermined mark on the cell, using manual controls. Mechanical scrappers were adjusted to a speed between 0 and 40 rpm. Air flow was controlled by a diaphragm pump connected to a three-way valve and flowmeter assembly.
Table 1 shows the standard floatation test conditions in more detail. Note that purified dodecane was selected as the collector rather than kerosene to gain source independence. The frother was conventional MIBC (methylisobutylcarbinol or 4-methyl-2-penanol). The tailings were filtered, dried, weighed and analyzed.
The concentrate from first step was then re-floated. The pulp was conditioned for about 1 minute, with additional frother (MIBC) being added and conditioned for about 3 minutes (0.58 kg per ton; 0.07 kilograms per ton; and 0.07 kilograms per ton MIBC being added as frother for ILLINOIS NO. 6, PITTSBURGH NO. 8 and UPPER FREEPORT coal samples, respectively). No collector added. After release of air, the froth was collected at different time intervals, viz. at 0.5, 1, 3 and 5 minutes after initialization had been completed.
Filtering, drying, weighing and analyze of the concentrates and tailings been occurred as shown in Table 2 for the above coal sample in per cent of pyritic sulfur rejection as a function of per cent of combustible material recovery (CMR)
In the case of the ILLINOIS NO. 6 sample, FIG. 1 shows that the presence of 2-S thiouronium-ethane phosphonate (TEPA) improved the pyritic sulfur rejection significantly (that is, with respect to results obtained in the absence of TEPA for this sample). Furthermore, separation efficiencies depicted, are also much better than those obtained by a conventional procedure (called "release or tree analysis") normalized to common collector and frother dosages.
In FIG. 1, note that an addition of 0.062 kilograms per ton concentrate solids, of TEPA increases the pyritic rejection at 60 per cent CMR by about 9 per cent with respect to results obtained in the absence of TEPA, and by 4 per cent with respect to results generated by tree analysis (equivalent to 15 per cent to 30 per cent of the remaining pyrite in the concentrates respectively)., Although the improvements noted above in pyritic sulfur rejection is seen to decrease with TEPA dosages over 0.125 kilograms per ton, the results are still superior to those obtained (i) in the absence of TEPA or (ii) by tree analysis.
(Release or tree analysis is a standard procedure to determine best possible separation with standard test conditions. In this procedure the initial feed is floated for 5 minutes in a standard floatation cell but with 1/4 of the collector and frother dosages. This assures that most hydrophobic materials is floated first. The tailings are then subjected to a sequence of three more scavenging floatation steps. Each step requires an additional 1/4 of both the collector and frother until the final tailings product is obtained. The concentrates generated by the successive floatation of the first, second and third tailings are estimated to have a mass of more than 1% of the initial feed. These concentrates are then submitted to further cleaning. The initial floatation concentrate is also repeatedly floated until all entrapped mineral matter is removed. The tailings fractions associated with initial concentrate are also subjected to further cleaning steps. Both concentrates and tailing are kept separate for individual cleaning and scavenging. Mechanical floatation variables including floatation time are kept constant. Tree analysis is aimed at identifying best possible separation by floatation. A curve thus generated has a locus that represents (a) products of maximum coal matrix content (but minimum ash and pyritic sulfur content), (b) products of the minimum coal matrix content (but maximum ash and pyritic sulfur content) and all other intermediate products in between (a) and (b), supra. Of course collector and frother concentration for each coal sample correspond to that level used in the standard floatation test.)
It is believed TEPA adsorbs onto the pyrite surface by complexing iron, making the latter highly hydrophilic. In addition, TEPA also appears to act as a amphoteric surfactant to modify the surface of both coal and pyrite increasing their positive charge at low TEPA dosages, dispersing the system and improving pyrite rejection as demonstrated by electrokentic, Hallimond tube floatation and rheological studies.
In the case of the PITTSBURGH NO. 8 sample, FIG. 2 shows that the presence of 2-S thironium-ethane phosphonate (TEPA) improved the pyritic sulfur rejection significantly (that is, with respect to results obtained in the absence of TEPA for this sample). Furthermore, separation efficiencies depicted, are also much better than those obtained by release analysis normalized to common collector and frother dosages.
In FIG. 2, note that an addition of 0.062 kilograms per ton of TEPA (over that required for the ILLINOIS NO. 6 sample) is required to improve the level of pyritic sulfur rejection to that obtained by release analysis. This improvement associated with an addition 0.125 kilograms per ton of TEPA corresponds to an increase in 5 per cent pyritic sulfur rejection at 60 per cent CMR with respect to that obtained for floatation tests where there is an absence of TEPA (equivalent to 20 per cent rejection of the remaining pyrite in the concentrate) at the same CMR. The results also match those obtained in the tree analysis tests. Since the pyrite in the PITTSBURGH NO. 8 sample is the believed to be least liberated of the samples, the aforementioned limitations in pyritic sulfur rejection can be so attributed.
In the case of the UPPER FREEPORT sample, FIG. 3 shows that the presence of 2-S thironium-ethane phosphonate (TEPA) improved the pyritic sulfur rejection even though the UPPER FREEPORT coal sample is most hydrophobic of the three samples.
In FIG. 3, note that an addition of 0.5 kilograms per ton of concentrate solids, of TEPA increases the pyritic rejection at 80 per cent CMR by about 12 per cent with respect to results obtained in the absence of TEPA, and by 6 per cent with respect to results generated by tree analysis (the latter being equivalent to 30 per cent of the remaining pyrite in the concentrate). Further increases in the TEPA dosage not does appear to add significantly to pyritic sulfur rejection than that provided by tree analysis test. This floatation behavior seems to be related to both the decrease in the hydrophobicity of pyrite and the dispersion of the system since coal and pyrite zeta potentials usually become more positive with additions of TEPA.
OVERVIEW: In the flotation of copper-bearing ores, a collector such as potassium amyl xanthate is added to a slurry of the copper-bearing ore. Purpose: to allow the copper sulfide mineral to become hydrophobic. But iron sulfide minerals (pyrite) may also adsorb the collector and float with the copper minerals. The present invention relates to depressant for such iron sulfide minerals during the flotation of copper sulfide ores without adversely affecting the effectiveness of the latter.
1×10-3 molar solution of potassium nitrate was prepared, adjusting the pH by additions of hydrogen nitrate and potassium hydroxide. A 65×200 mesh sample of a pyrite from Arizona was added to the solution and the resulting system conditioned for 7 minutes using a magnetic stirrer. After 4 minutes of conditioning, potassium amyl xanthate (KAX) was added and then the resulting suspension conditioned for three more minutes. For the evaluation of TEPA, TEPA was added to the suspension in amounts indicated in FIG. 4. After the suspension was conditioned to a pH of 4, a 2×10-4 molar solution of KAX was added. After final conditioning, the pH was recorder and the suspension was transferred to a modified Hallimond tube where the material was floated for one minute using a nitrogen flow of 50 cubic centimeters per minute. Both the concentrate and tailings were filtered, dried and weighted. Thereafter the tests were repeated using conventional pyrite depressants, viz., mercapto-ethane sulfonic acid (MESA) and glyceryl-monothioglycolate (GMTG). The results are shown in FIG. 4 and 5. Note that TEPA is shown to react surprisingly strongly with surface of pyrite as compared to MESA and GMTG, requiring 20 times less reagent for maximum depression of the system (less than 20% recovery) while the latter only provide for depression efficiency slightly under 40% recovery. It is believed that the strongly negative functional group in TEPA complexes iron on the surface of the pyrite, rendering the surface hydrophilic.
A Temagami copper ore was prepared in a similar manner as the pyrite of EXAMPLE I, for comparison purposes. With TEPA added, the ore was floated and the tests shown in FIG. 6 obtained.
FIG. 6 indicates that TEPA does not affect the flotation behavior of the copper since no depression of the system is indicated. The selectivity of TEPA for pyrite only, is thus assured.
A Southwestern U.S. copper ore (-10 mesh) was prepared by crushing. After blending and splitting the sample was divided in 500 gram subsamples (dry basis). Argon was used as purging gas. The subsample was then reground to 67 weight per cent solids content. For the evaluation of TEPA, 0.092 kilograms per ton of TEPA were added. After further conditioning lime was added (0.2 to 0.4 kilograms per ton) to attain a pH of 9.5. A conventional collector was added (0.04 kilograms per ton Minerec M200).
The slurry was then transferred to a conventional flotation machine. The pH was measured. Then, 0.012 kilogram per ton MIBC was added for 3 minutes. The sample was then floated. More collector and MIBC were added and conditioned. The sample was again floated. There was a repeat of the last mentioned step to obtain the final tailings. Three rougher concentrates collected separately and tailing were filtered, dried, weighed and analyzed for copper and iron using a spectrophotomer. Metallurgical calculations were performed. Comparisons with MESA and/or GMTG as reagents were made as depicted in FIG. 7. An additional run at a pH of 11 for MESA and/or GMTG was also made and those results are also shown in FIG. 7.
FIG. 7 indicates that TEPA does not affect the flotation behavior of the copper since no depression of the system is indicated. The selectivity of TEPA for pyrite only, is thus assured.
A South American copper ore was prepared in a manner akin to that set forth in EXAMPLE III, with the following differences. In the grinding step, a 500 gram subsample was ground to a 80 per cent 200 mesh subsample. The pH was modified by the addition of lime at a rate of 0.2 kilograms per ton. No collector was used. The flotation tests were performed using 0.02 kilograms per ton of isopropyl xanthate (NaIPX). A larger amount of MIBC was used (0.25 kilograms per ton). The system was floated for two minutes. At the next stages, 0.01 kilograms per ton of NaIPX was added and conditioned for about 4 minutes. Then 0.0125 kilograms per ton of MIBC was added and the slurry conditioned. Comparisons with MESA and/or GMTG as reagents were made as depicted in FIGS. 8-10.
FIG. 8 and 9 indicate that TEPA at the concentrations and pH's indicated, does not affect the flotation behavior of the copper since no depression of the system is indicated. The selectivity of TEPA for pyrite only, is thus assured.
FIG. 10 indicates that TEPA at the concentrations indicated, is a better pyrite depressant than a conventional standard such as set forth above. Note in FIG. 10 that at 80% copper recovery the iron rejection is only about 50 per cent. The reason is based on the character of the ore which are termed "locked particle" wherein the pyrite and copper are interlaced in varying amounts. If such particle is floated, then the grade of the copper concentrate is reduced. Similarly, if the particle is depressed, then copper recovery is reduced. In practice, the rougher concentrate represents a smaller portion of the ore and regranting the former leads to increased effectiveness and lower costs. Regrinding liberates more copper and iron minerals.
Whereas there are here specifically set forth certain preferred procedures which are presently regarded as the best mode for carrying out the invention, it should be understood by one skilled in the art, that various changes, modifications and improvements can be made and other procedures adapted without departing from the scope of the invention particularly pointed out and claimed hereinbelow.
For example, a family of compounds having the same characteristics as set forth above of the following general formula, are of likewise extreme value in the prior amounts for use in the processes set forth above:
R1--S (CH.sub.2).sub.n' PO (OH).sub.2
where
n is between 2 and 4, and
R1 is selected from a group consisting of hydrogen (H) and amidine.
The compound GHB-2 is a compound containing in the molecule one or more nitrilodiacetate groups and nitrolotriacetic acid (NTA) of the following general formula: ##STR4## where Ro is a lower alkyl having carbon atoms in a range of 3 to 8 with 3 to 6 being preferred and a final pH in a range of 4 to 9 depending on the ore being processed. Note in FIG. 11, the compound GHB-2 in which Ro is a lower alkyl having six carbon atoms, provides superior results in comparison with TEPA.
Preparation of the compound GH-2 is a set forth in the article entitled "THE DIRECT SYNTHESIS OF ALPHA-AMINOMETHYLPHOSPHONIC ACIDS. MANNISH-TYPE REACTIONS WITH ORTHOPHOSPHOROUS ACID", Kurt Moedritzer et al, Journal of Organic Chemistry, May, 1966.
Claims (2)
1. Process for separating pyrite from sulfide ores and coal which comprises subjecting said sulfide ore or coal containing said pyrite to flotation in the presence of a depressant for pyrite, said depressant comprises about 0.05 to 0.75 pounds per ton of a pyrite depressant selected from the group consisting of
R1--S (CH.sub.2).sub.n PO (OH).sub.2 (I)
where
n is between 2 and 4 and
R1 is amidine.
2. The process of claim 1 in which group (I) is 2-S thiouronium-ethane phosphonate (TEPA).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/877,320 US5855771A (en) | 1996-06-17 | 1997-06-17 | Pyrite depressant useful in floation separation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1987796P | 1996-06-17 | 1996-06-17 | |
US08/877,320 US5855771A (en) | 1996-06-17 | 1997-06-17 | Pyrite depressant useful in floation separation |
Publications (1)
Publication Number | Publication Date |
---|---|
US5855771A true US5855771A (en) | 1999-01-05 |
Family
ID=26692709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/877,320 Expired - Fee Related US5855771A (en) | 1996-06-17 | 1997-06-17 | Pyrite depressant useful in floation separation |
Country Status (1)
Country | Link |
---|---|
US (1) | US5855771A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050235754A1 (en) * | 2004-04-23 | 2005-10-27 | Kurtz Anthony D | Low pass filter semiconductor structures for use in transducers for measuring low dynamic pressures in the presence of high static pressures |
CN109261370A (en) * | 2018-08-17 | 2019-01-25 | 昆明理工大学 | A kind of composite restrainer of pyrite |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2336868A (en) * | 1941-09-06 | 1943-12-14 | American Cyanamid Co | Concentration of acidic minerals |
US3093666A (en) * | 1957-04-01 | 1963-06-11 | Armour & Co | Isothiouronium compounds |
US3220839A (en) * | 1961-08-25 | 1965-11-30 | Eastman Kodak Co | Photographic emulsions containing isothiourea derivatives |
US3414128A (en) * | 1965-09-24 | 1968-12-03 | Armour Ind Chem Co | Nitrogenous material fractions obtained from gilsonite in froth flotation |
US3426896A (en) * | 1965-08-20 | 1969-02-11 | Armour Ind Chem Co | Flotation of bulk concentrates of molybdenum and copper sulfide minerals and separation thereof |
JPS57136957A (en) * | 1981-02-18 | 1982-08-24 | Dowa Mining Co Ltd | Priority flotation method |
JPS5992045A (en) * | 1982-11-19 | 1984-05-28 | Dowa Mining Co Ltd | Flotation of nonsulfide mineral |
US5560814A (en) * | 1992-12-15 | 1996-10-01 | Basf Aktiengesellschaft | Use of thiouronium salts as brighteners for aqueous acidic electronickelization baths |
-
1997
- 1997-06-17 US US08/877,320 patent/US5855771A/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2336868A (en) * | 1941-09-06 | 1943-12-14 | American Cyanamid Co | Concentration of acidic minerals |
US3093666A (en) * | 1957-04-01 | 1963-06-11 | Armour & Co | Isothiouronium compounds |
US3220839A (en) * | 1961-08-25 | 1965-11-30 | Eastman Kodak Co | Photographic emulsions containing isothiourea derivatives |
US3426896A (en) * | 1965-08-20 | 1969-02-11 | Armour Ind Chem Co | Flotation of bulk concentrates of molybdenum and copper sulfide minerals and separation thereof |
US3414128A (en) * | 1965-09-24 | 1968-12-03 | Armour Ind Chem Co | Nitrogenous material fractions obtained from gilsonite in froth flotation |
JPS57136957A (en) * | 1981-02-18 | 1982-08-24 | Dowa Mining Co Ltd | Priority flotation method |
JPS5992045A (en) * | 1982-11-19 | 1984-05-28 | Dowa Mining Co Ltd | Flotation of nonsulfide mineral |
US5560814A (en) * | 1992-12-15 | 1996-10-01 | Basf Aktiengesellschaft | Use of thiouronium salts as brighteners for aqueous acidic electronickelization baths |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050235754A1 (en) * | 2004-04-23 | 2005-10-27 | Kurtz Anthony D | Low pass filter semiconductor structures for use in transducers for measuring low dynamic pressures in the presence of high static pressures |
US7188528B2 (en) | 2004-04-23 | 2007-03-13 | Kulite Semiconductor Products, Inc. | Low pass filter semiconductor structures for use in transducers for measuring low dynamic pressures in the presence of high static pressures |
US20100139408A1 (en) * | 2004-04-23 | 2010-06-10 | Kurtz Anthony D | Low pass filter semiconductor structures for use in transducers for measuring low dynamic pressures in the presence of high static pressures |
US7823455B2 (en) | 2004-04-23 | 2010-11-02 | Kulite Semiconductor Products, Inc. | Low pass filter semiconductor structures for use in transducers for measuring low dynamic pressures in the presence of high static pressures |
US20110061467A1 (en) * | 2004-04-23 | 2011-03-17 | Kulite Semiconductor Products, Inc. | Low pass filter semiconductor structures for use in transducers for measuring low dynamic pressures in the presence of high static pressures |
US8307713B2 (en) | 2004-04-23 | 2012-11-13 | Kulite Semiconductor Products, Inc. | Low pass filter semiconductor structures for use in transducers for measuring low dynamic pressures in the presence of high static pressures |
US9360385B2 (en) | 2004-04-23 | 2016-06-07 | Kulite Semiconductor Products, Inc. | Low pass filter semiconductor structures for use in transducers for measuring low dynamic pressures in the presence of high static pressures |
CN109261370A (en) * | 2018-08-17 | 2019-01-25 | 昆明理工大学 | A kind of composite restrainer of pyrite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5411148A (en) | Selective flotation process for separation of sulphide minerals | |
AU649175B2 (en) | Flotation separation of arsenopyrite from pyrite | |
US5049612A (en) | Depressant for flotation separation of polymetallic sulphidic ores | |
WO2008019451A1 (en) | Collectors and flotation methods | |
US4877517A (en) | Depressant for flotation separation of polymetallic sulphidic ores | |
US4549959A (en) | Process for separating molybdenite from a molybdenite-containing copper sulfide concentrate | |
US5693692A (en) | Depressant for flotation separation of polymetallic sulphide ores | |
US4584097A (en) | Neutral hydrocarboxycarbonyl thionocarbamate sulfide collectors | |
US4595493A (en) | Process for the flotation of base metal sulfide minerals in acid, neutral or mildly alkaline circuits | |
US4556482A (en) | Process for the flotation of base metal sulfide minerals in acid, neutral or mildly alkaline circuits | |
CA1118119A (en) | Froth flotation process | |
US4556483A (en) | Neutral hydrocarboxycarbonyl thiourea sulfide collectors | |
US5855771A (en) | Pyrite depressant useful in floation separation | |
US2312387A (en) | Froth flotation of acidic minerals | |
US5853571A (en) | Pyrite depressant useful in flotation separation | |
CA2066426A1 (en) | Ore flotation process using carbamate compounds | |
US2321186A (en) | Froth flotation of acidic minerals | |
US3847357A (en) | Separation of copper minerals from pyrite | |
CA1265263A (en) | Modified alcohol frothers for froth floation of sulfide ore | |
MXPA05003708A (en) | Process for the beneficiation of sulfide minerals. | |
EP0116616B1 (en) | Process for the selective separation of base metal sulfides and oxides contained in an ore | |
EP0339856B1 (en) | Pyrite depressants useful in the separation of pyrite from coal | |
FI77169C (en) | SAMLARREAGENS FOER FLOTATION AV SULFIDMINERALIER OCH FOERFARANDE FOER ANRIKNING AV SULFIDMINERALIER. | |
GB2067098A (en) | Flotation of molybdenite | |
CA1162663A (en) | Process for separating copper and iron minerals from molybdenite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REMI | Maintenance fee reminder mailed | ||
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20070105 |