US5773033A - Fibrinogen/chitosan hemostatic agents - Google Patents

Fibrinogen/chitosan hemostatic agents Download PDF

Info

Publication number
US5773033A
US5773033A US08/636,247 US63624796A US5773033A US 5773033 A US5773033 A US 5773033A US 63624796 A US63624796 A US 63624796A US 5773033 A US5773033 A US 5773033A
Authority
US
United States
Prior art keywords
fibrinogen
agent
plasma
hemostatic
chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/636,247
Inventor
Kent C. Cochrum
Harold R. Parker
Maggie M. C. Chiu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Priority to US08/636,247 priority Critical patent/US5773033A/en
Assigned to REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE reassignment REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIU, MAGGIE M.C., COCHRUM, KENT C., PARKER, HAROLD R.
Application granted granted Critical
Publication of US5773033A publication Critical patent/US5773033A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/39Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/16Blood plasma; Blood serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/043Mixtures of macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/04Materials for stopping bleeding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/22Blood coagulation

Definitions

  • This invention concerns hemostatic adhesive agents comprising autologous isolated and purified fibrinogen in combination with a biocompatible polymer.
  • this invention concerns the fibrinogen and polymer containing hemostatic agents containing fibrinogen isolated from autologous plasma and purified of other plasma proteins, and a biocompatible chitosan.
  • the agent has strong hemostatic properties when applied to a bleeding wound or vessel where it facilitates a rapid formation of a polymer clot by activation of a patient's platelets and conversion of prothrombin to thrombin.
  • the polymer component of the agent triggers and enhances the normal clotting mechanism.
  • Surgical biological glues have recently been used in a variety of surgical procedures. Among those most known and used are a fibrin glue or a gelatin-resorcin-formalin glue.
  • Fibrin glue is based on the basic physiological fibrinogen and thrombin functions. In the presence of calcium ions, activation of fibrinogen and fibrin-stabilizing factor XIII with thrombin produces a stable fibrin clot. Fibrin itself adheres to collagen, and factor XIII stimulates increased collagen biosynthesis by activating fibroblasts.
  • the application of fibrin glue in wound healing allows restoration of the structural properties of the wound by the glue and stimulation of repair by the components that comprise the glue. Fibronectin and cold insoluble globulin also enhance fibroblast proliferation.
  • fibrin glue The most common method of preparation of fibrin glue is by the simultaneous mixing of concentrated fibrinogen complex obtained from pooled human blood, bovine thrombin and ionic calcium immediately before use.
  • Hemostasis abnormalities caused by antibodies to bovine proteins, such as bovine thrombin, which cross-react with human proteins including thrombin and factor V, have been reported in J. Thorac. Cardiovac. Surg., 105:892 (1993).
  • foreign body reactions following the use of these fibrin bovine thrombin containing glues have been detected and described in Eur. J. Pediatr. Surg., 2:285 (1992).
  • the described fibrin adhesive comprises a highly concentrated fibrinogen obtained by cryo-precipitation or by precipitation of fibrinogen with ethanol, centrifugation, or ammonium sulfate using saturated solution of purified ammonium sulfate. The precipitated fibrinogen is then combined with bovine thrombin and calcium chloride.
  • Laryngoscope, 97:1141 (1987) describes degradation studies of autologous fibrin tissue adhesive by the fibrinolysis inhibitor ⁇ -amino caprotic acid.
  • the adhesive utilizes fibrinogen precipitated with ammonium sulfate as one component and bovine thrombin as the second component.
  • the glue consists of fibrinogen, factor XIII and aprotin (a bovine-derived fibrinolysis antifibrinolytic inhibitor) in combination with bovine thrombin and calcium chloride. Fibrinogen is precipitated with saturated solution of ammonium sulphate.
  • hemostatic adhesive agents for surgical and other medical purposes which agents would be prepared from autologous blood and would eliminate or strongly reduce the risk of disease transmission or immunoreactions caused by introduction of foreign thrombin.
  • the hemostatic adhesive agents would be prepared from the isolated and purified fibrinogen obtained from the patient's own blood, combined with biocompatible polymers and would avoid the use of foreign proteins such as thrombin.
  • the new agents would eliminate or strongly reduce the risk of immunogenic reactions, would significantly promote healing of tissues and would be, additionally, less expensive than currently available glues.
  • One aspect of the invention is a hemostatic adhesive agent comprising a purified isolated fibrinogen in combination with a biocompatible polymer.
  • Another aspect of the invention is a hemostatic adhesive agent comprising an autologous purified isolated fibrinogen in combination with a biocompatible chitosan.
  • Another aspect of the invention is a method for isolation of fibrinogen from other plasma protein by using slow precipitation with ammonium sulphate added in small increments for extended periods of time.
  • Another aspect of the invention is a hemostatic adhesive agent comprising a purified isolated fibrinogen in combination with a cationic or anionic chitosan.
  • Another aspect of the invention is a method for use of the hemostatic adhesive agent comprising administering to a site of injury or bleeding an admixture of purified isolated fibrinogen and chitosan.
  • Another aspect of the invention is a method for use of the hemostatic adhesive agent, comprising administering separately to a site of injury or bleeding a purified isolated fibrinogen and chitosan.
  • Another aspect of this invention is a process for isolation and purification of fibrinogen, comprising steps:
  • An additional aspect of this invention is a process for preparation of purified isolated fibrinogen wherein ammonium sulphate is dissolved in an aqueous solvent in the amount of 65-73 g/100 ml, and is added in increments of about 0.50-0.62 ml/minute for about 15-20 minutes.
  • FIG. 1 is a scheme illustrating the physiological process of coagulation.
  • FIG. 2 is a scheme illustrating the hemostatic process using a fibrinogen/polymer hemostatic adhesive agent.
  • Hemostatic adhesive agent also called “fibrinogen polymer” means a solution or other preparation which contains essentially two components: a purified isolated fibrinogen and a physiologically acceptable biocompatible and FDA-approved chitosan.
  • “Cascade-like effect” means a sequence of reactions beginning with applying the hemostatic agent of the invention to the wound or incision, where the fibrinogen initiates conversion of prothrombin to thrombin and the polymer contained in the hemostatic agent enhances a formation of a polymer clot by trapping endogenous or exogenous platelets. This clot rapidly triggers release of factors Va, Xa and thromboplastins from the platelets added to the fibrinogen component of the hemostatic agent. The release of thromboplastins from the platelets initiates the physiological clotting process.
  • Exogenous platelets are platelets, autologous or not, added to the fibrinogen component.
  • Endogenous platelets are platelets present in the circulating blood of the patient.
  • the current invention concerns a novel type of hemostatic adhesive agents comprised of isolated and purified fibrinogen and a biocompatible chitosan polymer.
  • the hemostatic adhesive agents are prepared from, and contain, a purified fibrinogen isolated from plasma, using a novel process for fibrinogen isolation and purification, combined with a physiologically acceptable biocompatible polymer.
  • the combination of the purified isolated fibrinogen with the polymer forms, in the presence of endogenous or exogenous added platelets, an adhesive which has very strong adhesive properties and a very rapid onset of hemostatic action. Adhesivity strength and the speed with which the hemostatic action sets depend on the fibrinogen concentration and on the type and amount of the chitosan polymer.
  • the invention utilizes certain aspects of the natural physiological process of blood coagulation, such as activation of platelets, release of thromboplastins and other coagulation factors and cofactors, conversion of prothrombin to thrombin, conversion of fibrinogen to fibrin monomers and formation of a fibrin clot. These aspects of the natural coagulation process are enhanced by adding the biocompatible chitosan polymer.
  • fibrinogen One of the two primary components of the hemostatic adhesive agent is fibrinogen.
  • the second component is the chitosan polymer.
  • the fibrinogen is isolated and purified in such a way that the presence of other proteins, such as euglobulins, pseudoglobulins and albumin, is eliminated. Isolation of fibrinogen from other proteins greatly enhances its response to endogenous thrombin, by forming long fibrin monomers which spontaneously associate and form a stable insoluble fibrin polymer clot, when the fibrinogen is applied in combination with chitosan and in presence of platelets added separately, to a site of bleeding or injury. This fibrin polymer clot initiates a hemostatic process which then continues in a cascade-like fashion.
  • Cascade-like hemostasis is achieved by rapid and continuous trapping, activation and disruption of the platelets initially added to the fibrinogen and polymer agent followed by trapping, activation and disruption of platelets present in the patient's own blood.
  • the disruption of the platelets leads to a release of coagulating factors from the platelets and to a fast conversion of prothrombin to thrombin.
  • Due to this cascade-like effect the hemostatic clot forms quicker and the adhesive strength of the hemostatic clot increases more rapidly than during normal physiological coagulation, where the coagulation time is about 3-5 minutes and during which the maximal adhesive strength of the clot is obtained physiologically or from other known fibrin glues.
  • the cascade effect continues until complete hemostasis occurs.
  • the current invention provides several advantages over the fibrin glues known previously.
  • the fibrinogen is prepared from the patient's own blood, thereby eliminating possible immunogenic reactions as well as the possibility of transmission of infectious diseases, toxins or parasites.
  • Another advantage is that by using the hemostatic adhesive of the invention, the use of exogenous (typically bovine) thrombin is eliminated.
  • the agent of the invention activates endogenous platelets, and promotes and enhances conversion of endogenous prothrombin to thrombin in an amount sufficient to convert the fibrinogen to fibrin clot, eliminating the need for exogenous thrombin.
  • the presence of thrombin in all other known fibrin glues is necessary.
  • the absence of need to use exogenous thrombin prevents transmission of infectious diseases such as HIV and hepatitis, or parasites.
  • the physiological mechanism of blood coagulation and clotting is based on properties of plasma proteins and platelets. These two blood components contain all the factors required for clotting.
  • FIG. 1 Processes involved in normal physiological blood clotting are seen in FIG. 1.
  • fibrinogen Two major plasma proteins involved in blood clotting are fibrinogen and prothrombin.
  • the essential reaction in coagulation of the blood is the enzymatic conversion of the soluble protein fibrinogen into the insoluble protein fibrin by thrombin.
  • Fibrinogen exists in the circulating blood as such and can be precipitated from plasma.
  • Thrombin is formed from an inactive circulating precursor, prothrombin, during tissue injury, bleeding or blood loss.
  • the activation of prothrombin depends on the presence of calcium ions (Ca ++ ) and thromboplastins which are released or derived from damaged tissues, disintegrating platelets or plasma itself. This process, or certain aspects of it are advantageously utilized in the current invention.
  • thromboplastin is a substance that assists in the clotting of blood by initiating the conversion of the inactive prothrombin (plasma factor II) to the active thrombin. Such conversion occurs in the presence of calcium ions (plasma factor IV).
  • Thrombin is a very potent serine protease that causes clotting by converting fibrinogen (plasma factor I) to fibrin. Thrombin is so potent that it can coagulate at least 600 times its weight of fibrinogen. The velocity of the thrombin-fibrinogen reaction is further accelerated by increased concentration of thrombin. Thrombin, which can act in the absence of Ca ++ , enzymatically splits off a highly acidic fibrinopeptide from the fibrinogen by hydrolysing arginine-glycin peptide bonds in the fibrinogen, thereby generating fibrin monomers. The remainder of the fibrinogen then polymerizes to form fibrin.
  • Fibrin is an elastic, thread-like insoluble protein monomer which forms the network of the hemostatic clot.
  • the insoluble fibrin monomers spontaneously associate in a regularly staggered array to form the insoluble fibrin polymer clot.
  • the initial fibrin clot formed within first 3-5 seconds of bleeding is a rather weak structure, held together only by a noncovalent array of the fibrin monomers.
  • Factor XIIIa is an enzyme transglutaminase which covalently cross-links fibrin monomers by forming specific isopeptide bonds thereby strengthening the fibrin clot.
  • the freshly formed threads are extremely adhesive, sticking to each other, to the blood cells, to the tissues, and to certain foreign surfaces. This adhesiveness makes the clot an effective hemostatic agent. All these enzymatic reactions, of course, take certain time, typically between 3-5 minutes, within which the final hemostatic clot forms. The time of clot formation also depends on the extent of the bleeding.
  • Plasma factor V proaccelerin
  • VII proconvertin
  • VIII antihemophilic globulin
  • IIX Christmas factor
  • XI Stuart-Prower factor
  • XI plasma thromboplastin antecedent
  • XII Hageman factor
  • XIII fibrin stabilizing factor
  • Plasma factor V acts, when activated to factor Va, as a cofactor for the activated enzyme factor Xa that activates prothrombin.
  • Calcium ions are essential for clotting. They are necessary for the formation of active thromboplastin and for the conversion of prothrombin to thrombin in the first phase of the coagulation process. They are not necessary and do not influence the action of thrombin on fibrinogen in the second phase of the coagulation. Consequently, the current invention does not require additional calcium ions.
  • prothrombin occurs on the platelets and requires platelet anionic phospholipids, activated factor Va, activated factor Xa and calcium ions.
  • the platelet anionic phospholipids which are normally situated on the internal side of the platelet plasma membrane, are exposed as a result of the platelet disruption. These phospholipids bind Ca ++ and prothrombin.
  • Prothrombin activates factor V, normally present in the platelets which is activated by Va factor.
  • the activated Va factor binds to the specific receptor on the platelet membrane and by itself the Va factor acts as a receptor for factor Xa.
  • Factor Xa binds to the prothrombin and being a serine protease, cleaves the inactive amino portion of the prothrombin, thereby activating prothrombin to thrombin. This step is advantageously utilized when the platelets are trapped within the fibrinogen/polymer hemostatic agent according to the invention.
  • fibrin glues are typically prepared from fibrinogen obtained from bovine or pooled human blood in combination with bovine or human thrombin. These foreign proteins may lead to the development of recipients' immunoreactions in case of use of fibrinogen or thrombin of different species, or to transmission of infections between individuals caused by the use of fibrinogen and/or thrombin of the same species but of different individuals.
  • Hemostatic adhesive agents of the invention and their hemostatic actions differ from the prior fibrin glues in that they are completely autologous, and all their components are of autologous origin and are either present endogenously in sufficient amount to achieve hemostasis according to the invention or are added exogenously after being first isolated from the autologous blood. Therefore, the invention does not require addition of foreign cells, such as platelets, foreign proteins, such as thrombin, or other components, such as calcium ions.
  • the hemostatic agent according to the invention is typically prepared from purified and isolated fibrinogen, in combination with a physiologically acceptable and biocompatible chitosan polymer.
  • the hemostatic adhesive agent consists of fibrinogen which is isolated from plasma and purified to remove other plasma proteins.
  • the hemostatic agent additionally contains a physiologically acceptable biocompatible polymer which is highly positively charged.
  • the preferred polymer is chitosan added in ratio from about 0.1-10% of the polymer to about 90-99.9% of fibrinogen.
  • the polymer causes rapid activation and aggregation of platelets, exogenous or endogenous, and thereby induces and increases hemostatic adhesive action of the hemostatic agent of the invention in a cascade-like manner.
  • the polymer is either a component of the hemostatic adhesive agent administered in admixture with fibrinogen or the polymer can be used separately from fibrinogen and administered to the site of injury either before or after fibrinogen is added, as the hemostatic adhesive agent.
  • Hemostatic agents of the invention therefore consist essentially of fibrinogen and a biocompatible chitosan polymer, preferably cationic chitosan.
  • the agent For initiation of its hemostatic action, the agent additionally utilizes either exogenous or endogenous, preferably autologous, platelets.
  • exogenous or endogenous, preferably autologous, platelets The combination of fibrinogen and platelets promotes clotting, adhesion and healing as described below.
  • the hemostatic adhesive agent is autologous, that is, it is prepared from the patient's own blood combined with the pure physiologically acceptable and biocompatible chitosans approved by the Food and Drug Administration for use in humans.
  • Autologous fibrinogen is prepared from patient's own blood which is separated into plasma, platelets and blood cells.
  • the plasma is further processed as described below to yield purified fibrinogen isolated from other plasma proteins.
  • the platelets which are also separated from the whole blood are preserved and combined with purified fibrinogen and the polymer immediately before administration to initiate a clotting process or they are added separately to the site of bleeding after the hemostatic agent is administered.
  • the hemostatic agent of the invention is preferably prepared in the operating room at the time of surgery or treatment.
  • FIG. 2 The method for achieving hemostasis according to the invention using hemostatic adhesive agents of the invention, is illustrated in FIG. 2.
  • the hemostatic plasma/polymer agent has a high ratio of fibrinogen to the polymer.
  • the agent is composed of about 90% to about 99.9% of isolated and purified fibrinogen and from about 0.1% to about 10% of the polymer.
  • the polymer component when in combination with fibrinogen, triggers the normal clotting mechanism upon contact with the bleeding wound and aggregates and activates the exogenous and/or endogenous platelets.
  • Activated platelets release thromboplastin and promote conversion of prothrombin to thrombin in the presence of endogenous Ca ++ .
  • calcium solution may be added, if for any reason the endogenous calcium would not be present in a sufficient amount.
  • Highly positively charged chitosan in combination with the fibrinogen, forms an array of fibers trapping and disrupting the platelets, and collagen exposed at the site of injury acts as an attractant binding site for the platelets.
  • the platelet activation resulting from their contact with the hemostatic agent, followed by their disruption, leads to a release of factors Va and Xa and ADP, and initiation of conversion of prothrombin to thrombin. Meanwhile, additional platelets adhere to the factors released from the disrupted platelets, and prothrombin adheres to the chitosan polymer and to the platelets' membranes. As more and more endogenous platelets are activated in a cascade-like fashion, the original polymer clot is enlarged and, as it forms a clot matrix, it is also strengthened.
  • Such clot matrix is, under normal physiological conditions, formed only after the chain of reactions happens, as seen in FIG. 1, including the activation of platelets leading to the activation of prothrombin to thrombin, the activation of fibrinogen by thrombin, the conversion of fibrinogen to initial fibrin monomers, the formation of the weak fibrin clot and the strengthening of fibrin by cross-linking with factor XIIIa.
  • the clot formed in response to the platelet activation then converts soluble fibrinogen to a stable fibrin clot.
  • factor XIIIa a fibrin stabilizing factor, that catalyzes formation of peptide bonds between fibrin molecules, and in this way stabilizes the clot.
  • the clot matrix is formed quickly following the application of the hemostatic agent of the invention which delivers purified and isolated fibrinogen in combination with chitosan and separated platelets able to release coagulation factors, thereby instantly triggering the coagulation process at the site of the injury or bleeding, as illustrated in FIG. 2.
  • the hemostasis according to the invention is much faster.
  • Strength of the hemostatic polymer clot can be further increased by higher concentration of fibrinogen, by increased production of thrombin, or by addition of platelets during the entire time the adhesive is being applied.
  • the new hemostatic agent forms a clot within five seconds and the process proceeds in controlled manner until complete hemostasis is achieved.
  • Adhesivity of the agent is also controlled by the higher or lower concentration of the added polymer. When the concentration of the polymer is from 0.1-2%, the tensile strength of the fibrin monomers is lesser. When the polymer concentration is between 2-10%, the tensile strength of the fibrin monomers of the hemostatic clot is greater and the coagulation proceeds faster.
  • fibrinogen and platelets are prepared from plasma as described below and in the Examples.
  • a chosen polymer preferably positively charged chitosan, is then added to the fibrinogen.
  • adhesive is applied to the site of injury, such as the wound, venous incision, cut or rupture, or to the damaged tissue.
  • the polymer acts rapidly as an extraneous impulse trapping and activating exogenously supplied or endogenously present platelets.
  • platelets Upon applying the fibrinogen-polymer agent to the site of injury, platelets activate conversion of prothrombin to thrombin in the presence of Ca++ and the physiological clotting begins rapidly and on a large scale, having readily available all the necessary clotting factors in high concentrations.
  • chitosan and collagen exposed at the site of injury act as a binding site for platelets, which are disrupted and release thromboxane and coagulation factors Va, Xa and ADP. Additionally, endogenous platelets adhere to the released factors and prothrombin adheres to the polymer and to platelets' membranes, further promoting conversion of prothrombin to thrombin. Endogenously formed thrombin hydrolyses the fibrinogen arginine-glycine peptide bonds resulting in formation of long fibrin monomers. These monomers spontaneously associate and form a stable insoluble fibrin polymer clot.
  • the polymer which forms the initial clot becomes substantially strengthened by the platelets and platelets debris and its adhesivity is further enhanced by the presence of purified fibrinogen.
  • the fibrinogen/polymer agent activates more and more platelets in cascade-like fashion so that the size and strength of the clot is much greater than that of the normal clot.
  • the polymer allows extension of time for the hemostatic polymer clot formation and for increase of the strength of the clot. Since the natural coagulation is endogenously regulated and controlled and is a subject to time-related lysis, such regulation mechanisms limit strength of the adhesivity of the normal clot to that formed within 3-5 minutes. After that time the strength of the normal clot cannot be increased.
  • the polymer is not subject to lysis or to the other physiological regulatory mechanisms and can therefore proceed unhindered for more than 30 minutes and up to several hours.
  • Hemostatic adhesive agents containing fibrinogen/chitosan have many advantages over other currently available fibrin glues. They provide rapid hemostasis, adhere and glue the damaged tissues together with great strength, and seal ruptures, leaks or punctures of the tissues.
  • the presence of chitosan in the hemostatic agent allows sizable increase in the speed with which the clot is formed or adhesion is achieved, increasing the clot size and strength in cascade-like manner.
  • the hemostatic adhesive also allows time control with respect to when to stop the clotting and clot formation. Since the autologous hemostatic plasma/polymer agents contain the patient's own viable platelets, they actually promote the healing process. Other advantages of the plasma/polymer were discussed above and are the absence of need for addition of foreign proteins, such as bovine and human fibrinogen, thrombin, or other additives.
  • the fibrinogen/chitosan polymer agent is prepared from plasma obtained from whole blood either of the patient to be treated (autologous plasma) or from human plasma obtained from blood other than of the patient (non-autologous plasma). In the latter case, care is taken to utilize only healthy and uncontaminated full blood. In case of planned surgery, the patient may provide his own blood before the operation so that the plasma is obtained in advance and fibrinogen and platelets are isolated and preserved.
  • the hemostatic adhesive agent of this invention is prepared at the time of operation or treatment.
  • the agent may be prepared from blood available from a blood bank, if necessary.
  • the current adhesive can be prepared quickly from the patient's own plasma without any risk that the patient may encounter immune reactions or become infected from another individual's blood.
  • the hemostatic adhesive agent is prepared from whole blood by separating red blood cells from plasma and by further isolating and separating isolated platelets.
  • whole blood is drawn into a buffered anticoagulant agent, such as sodium citrate, and centrifuged to separate the platelets and plasma from the red blood cells.
  • the plasma is removed and centrifuged for a second time, at high speed, to separate the platelets and the plasma.
  • the hemostatic fibrinogen/chitosan is preferably prepared from about 100 ml of the patient's own blood.
  • the plasma (40 ml) is separated from the patient's own blood, as described above, and utilized as a source of highly purified fibrinogen.
  • the platelets are also separated and preserved separately. Ammonium sulfate is used for the precipitation, isolation and purification of the fibrinogen.
  • ammonium sulfate containing about 65-73, preferably 71 g/100 ml H 2 O
  • ammonium sulfate containing about 65-73, preferably 71 g/100 ml H 2 O
  • Most preferred rate of addition of the ammonium sulphate is lower than 0.58 ml/minute. Care is taken that the concentration of ammonium sulfate never exceeds 25% saturation in any portion of the plasma.
  • the process for production of isolated and purified fibrinogen by treatment of plasma with addition of small increments of ammonium sulphate is new.
  • an initial solution of ammonium sulphate in concentration preferably about 71 g/100 ml of water is prepared.
  • About 10 ml of this solution is used for precipitation of fibrinogen from 40 ml of plasma by adding this solution continually for about 17 minutes to 40 ml of plasma in such a way that preferably about 0.58 ml containing about 0.38 g of ammonium sulphate is added to 40 ml plasma volume in one minute.
  • This process assures that only fibrinogen and no other plasma proteins are precipitated. This slow precipitation of fibrinogen constitutes a difference and improvement against previously known methods.
  • the fibrinogen produced by the novel process for isolation of fibrinogen from other plasma proteins produces the only precipitate which is fully soluble in plasma or other aqueous media. There are no insoluble precipitates present in the fibrinogen purified and isolated according to the new process.
  • the isolated and purified fibrinogen thus obtained possesses a superior adhesive strength.
  • the current invention utilizes this superior isolated purified fibrinogen in combination with polymers, preferably chitosan.
  • Chitosan may be added to the purified fibrinogen before or after it is added to the tissue.
  • the admixture of fibrinogen and chitosan may be added to the site of bleeding; the chitosan may be applied directly to the injured tissue followed by fibrinogen; or fibrinogen may be added first, followed by chitosan.
  • the purified fibrinogen and polymer agent traps platelets to activate the conversion of prothrombin to thrombin in the presence of endogenous Ca++, and the platelets undergo disruption and release thromboxans and ADP as already described. This release induces additional platelets to adhere with the clotting factors Va, Xa, Ca++ and prothrombin to the polymer and platelet plasma membranes.
  • hemostatic fibrinogen/chitosan was prepared from a pig's blood.
  • the pig's plasma was separated from the blood by centrifugation and utilized as a source of highly purified fibrinogen using ammonium sulphate precipitation according to the invention.
  • the hemostatic agent was then tested for its hemostatic properties on the same pig.
  • Hemostatic properties of the fibrinogen/chitosan hemostatic agents were additionally prepared and tested on human, pig and rat splenic incisions; arterial incisions; liver wounds, cuts and lacerations; splenic ruptures; and sealing of leaks and fistulas.
  • the hemostatic agents of this invention are thus useful for stopping bleeding from tissue and internal organs, from ruptured vessels, for sealing of common bile duct, and for control of pulmonary leaks and other similar injuries.
  • the polymer added to the isolated purified fibrinogen is a highly positively charged polymer, preferably a chitosan, such as chitosan-anionic or more preferably chitosan-cationic, which forms strong and clear bonds and gels when brought in contact with endogenous calcium ions.
  • the chitosan polymers are biodegradable and non-toxic. Chitosan is added in concentration from about 0.1% to about 10%. Addition of chitosan accelerates wound healing and having by itself certain bioadhesive properties, increases adhesivity of the fibrinogen/chitosan hemostatic adhesive agent and also increases adhesivity of separated tissues in gluing them together.
  • the polymer is dissolved in a small volume, about 0.5-1 ml, of citrate autologous plasma and then added to the fibrinogen.
  • the hemostatic adhesive agent of the invention is prepared by mixing together fibrinogen and the chitosan polymer forming the fibrinogen/chitosan hemostatic agent.
  • Platelets preferably autologous, isolated from the same volume of plasma from which the fibrinogen is isolated and purified, are added to the fibrinogen and polymer agent.
  • the mixture of the fibrinogen/chitosan forms the basic hemostatic adhesive agent of the invention.
  • exogenous, but preferably autologous, platelets are added either to the basic hemostatic agent or to the site of injury at the same time as the agent is added.
  • the agent may additionally contain other therapeutically active pharmaceutically acceptable agents or pharmaceutically acceptable additives such as a calcium solution, thrombin, antibiotics or enzymes.
  • these agents are not necessary as the agent achieves hemostasis solely with the combination of fibrinogen and chitosan.
  • the agent of the invention is able to stop extensive and large area bleeding from a surface wound, or from the surface of a deep tissue wound, or from an arterial or venous rupture, without addition of exogenous thrombin or any other agent.
  • the hemostatic agent is applied over the wound, incision, cut, bleeding surface or other injury.
  • the polymer which activates and aggregates the exogenous platelets over the site of injury forms the initial clot and enhances the coagulation activity of the platelets and their normal hemostatic properties and forms a binding surface for endogenous platelets present in the subject's blood.
  • the presence of exogenous and endogenous platelets and high concentrations of readily available plasma proteins in the circulating blood at the bleeding site needed for coagulation allows fast hemostatic action and clotting build-up on and over the initial hemostatic polymer clot.
  • the autologous platelet-fibrinogen is used whenever possible
  • the non-autologous platelets or fibrinogen from other humans is equally useful in cases of emergency and profuse bleeding, when it is impossible or dangerous to obtain autologous blood, and is prepared by the same process and under the same conditions.
  • the fibrinogen and platelets are stored separately in the refrigerator, if the adhesive will be used within 24 hours, or frozen, if the adhesive will be used later.
  • the polymer is stored and preweighed in the desired amount, preferably in an amount which would provide 0.1%-10% dilution with fibrinogen.
  • the volume of the adhesive depends on the extent of the surgery. Typically, both the platelets and fibrinogen are obtained from 40 ml blood, which provides about 1.5-2.5 ml of fibrinogen. To this amount about 0.015 to about 0.25 g of chitosan is added to form the hemostatic adhesive agent. If the wound is over a large area which needs to be sealed, appropriately larger volumes of the agent are prepared.
  • the addition of the polymer to fibrinogen is responsible for the hemostatic agent's increased adhesivity and strength.
  • the time for which the hemostatic adhesive is applied controls the extent of the hemostasis and the strength of the adhesion.
  • the hemostatic agent of the invention is useful for sealing and adhesion of deep tissue wounds, ruptures, or incisions, tears or cuts on the veins.
  • the process for preparation of the hemostatic adhesive agent is fast--typically the hemostatic polymer adhesive can be produced within 3-10 minutes and does not require any special equipment, agents or procedures other than those used in a biochemical medical laboratory on a daily basis.
  • the hemostatic adhesive agent of the invention is used for treatment of any trauma of the liver, spleen, pancreas, lung, bone, etc., or for cardiovascular and vascular situations, such as microvascular, anastomoses, vascular grafts, intraoperative bleeding and aortic bleeding and repair, for thoracic surgery such as lung biopsy, for transplant of the heart, renal, pancreas, lung, bone or bone marrow, for neurosurgery such as nerve anastomosis, or CSF leak repair, for endoscopic surgery, such as in hepatic trauma, or bile duct repair, for interventional radiology, such as for percutaneous liver biopsy or vascular occlusion, for gastrointestinal surgery such as colonic anastomoses, for obstetrics and gynecology such as rectovaginal fistulas, for pediatric and fetal surgery, for plastic surgery and burn repairs such as grafting process of cultured epidermis, for dermatology such as hair transplants, for
  • the treatment may be used alone or in combination with other techniques, agents and drugs typically used to correct these problems.
  • a major difference between this hemostatic adhesive agent preparation and previous fibrin glues is the agent's composition consisting of: the isolated fibrinogen purified of plasma proteins; the polymer; and the autologous living and metabolizing platelets. Purified fibrinogen is able to promote platelet activation leading to a greater conversion of prothrombin to thrombin endogenously, thus eliminating a need for addition of exogenous thrombin.
  • the polymer of the hemostatic agent together with exposed collagen at a site of injury act as a binding site for platelets. The platelets then release other coagulating factors and cofactors, acting in their natural way in promoting coagulation, and assisting also in adhesion of damaged and separated tissues together.
  • hemostatic adhesive agents of the invention promote and accelerate wound healing because they are made of the patient's own blood components.
  • the hemostatic fibrinogen/chitosan agent is fully effective as a hemostatic agent without bovine thrombin.
  • the hemostatic agent provides instant hemostasis and adheres damaged tissues together. The healing process is promoted, because fibrinogen/chitosan is combined with the patient's own viable thrombocytes.
  • This example illustrates preparation of purified fibrinogen either in nonconcentrated or concentrated form.
  • a 80-100 ml blood sample was drawn and placed into 0.1055M buffered sodium citrate solution.
  • the tubes were centrifuged at 770 ⁇ g for 10 minutes and a 40 ml platelet-rich plasma sample was removed.
  • the plasma was centrifuged a second time at 2000 ⁇ g. Then, the plasma was removed and the platelets were saved.
  • the plasma was purified using ammonium sulphate.
  • Ammonium sulfate solution was used for precipitation, isolation and purification of the fibrinogen.
  • 10 ml of ammonium sulfate (71 gms/100 ml H 2 O, 25° C.) was added slowly in increments of 0.58 ml/minute to 40 ml plasma using very fine capillary tubing (PE Intramedic Clay Adams 1. D. 0.015" ⁇ 0. D. 0.043”) and a syringe pump, (Harvard Apparatus I.V. Syringe Pump Model 903).
  • the plasma was spun using magnetic bar 40-60 rpm and mixed as a very fine jet of ammonium sulfate solution was slowly added to 1 cm under the plasma surface.
  • the concentration of the ammonium sulfate was constantly monitored by visual observation of the fibrinogen fiber thread formation and was never allowed to exceed 25% saturation in any portion of the plasma in order that only pure fibrinogen was precipitated. Such monitoring involved control of the speed of the syringe pump combined with observation of the tip of the catherer or needle ejecting the ammonium sulphate. Upon slow ejection of the ammonium sulphate ( ⁇ 0.58 ml/minute), formation of the fibrinogen precipitate as threads was observed. The yield of precipitated fibrinogen was 1-2 g/40 ml of nonconcentrated plasma. Concentrated plasma yielded proportionally larger amount of fibrinogen depending on the concentration factor, as described below.
  • Fibrinogen was dissolved in autologous citrate plasma (1 ml at 37° C.) and mixed gently to dissolve the fibrinogen. When the fibrinogen was isolated and purified from the other plasma proteins by the above procedure, the fibrinogen was dissolved without any residue.
  • This example describes preparation of the hemostatic fibrinogen/chitosan agent from autologous pig's blood for hemostasis of the pig's bleeding spleen.
  • Hemostatic fibrinogen/chitosan was prepared from 40 ml of a pig's own blood according to Example 1. Plasma was separated from the blood by centrifugation and utilized as a source of fibrinogen. Ammonium sulfate was used for the precipitation of fibrinogen. 10 ml ammonium sulfate (71 gms/100 ml H 2 O) was added continuously (10 ml/17 minutes or 0.58 ml/minute) to 40 ml plasma using very fine capillary tubing and syringe pump, in order that only fibrinogen was precipitated. The concentration of the ammonium sulfate never exceeded 25% saturation in any portion of the plasma.
  • the precipitated fibrinogen (2.1 ml) was tested for presence of other plasma proteins by dissolving it in 1 ml of pig plasma.
  • the fibrinogen dissolved without any residue confirming absence of any contamination with other plasma proteins.
  • This solution was mixed with 0.2 g of chitosan dissolved in 0.5 ml of the pig's plasma. Resulting hemostatic agent was used to test its hemostatic activity in splenic incision described in Example 4.
  • This example illustrates the effect of the fibrinogen/chitosan hemostatic agent administered separately on pig's surgical incision of the spleen.
  • the pig's abdomen was surgically opened and the spleen was exposed.
  • a surgical incision 3 cm long and 1 cm deep was made in the spleen.
  • Bleeding was controlled by compression and 0.25 g chitosan obtained from Sigma was placed into the spleen incision.
  • the dissolved isolated, purified fibrinogen (1 ml) was combined with the platelets (0.2 ml) obtained from the 40 ml of starting whole blood.
  • the plasma/platelet mixture was added over the chitosan in the spleen incision. The compression was continued for 5 minutes until hemostasis was attained.
  • the autologous hemostatic surgical adhesive is obtained from the individual to be treated with such autologous surgical agent.
  • This example illustrates the effect of the fibrinogen/chitosan hemostatic agent on a surgical incision of the spleen.
  • the pig's abdomen was surgically opened and the spleen was exposed. A surgical incision 3 cm long and 1 cm deep was made in the spleen. The incision bled profusely. Bleeding was controlled by a mechanical compression. Hemostatic agent prepared according to Examples 1 and 2, containing 0.25 g chitosan was combined with purified fibrinogen and platelets (0.2 ml) obtained from 40 ml of starting whole blood were added to the site of the bleeding. The mechanical compression was continued for 5 minutes and then the compression was removed. There was still slight bleeding which subsided in another 2-3 minutes. The wound did not reopen and complete hemostasis was thus attained.
  • the autologous hemostatic surgical adhesive is obtained from the individual to be treated with such autologous surgical agent.
  • This example illustrates the adhesive effect of the fibrinogen/chitosan-containing hemostatic adhesive agents on experimentally induced liver trauma and incisions in rats.
  • the hemostatic agent is prepared as described in Examples 1 and 2 from the rat's blood.
  • a 250 g rat is anesthetized. A midline incision is made and the surface of the liver is exposed. One lobe of the liver is excised and removed and 1 cm cut is made in another lobe of the liver. The bleeding surfaces of the wounds are sponged dry and the hemostatic agent containing concentrated isolated purified fibrinogen, chitosan and platelets is applied by spray. The fibrinogen/chitosan/platelet adhesive forms a fibrinogen/chitosan clot on contact with the bleeding liver surface and fast hemostatic process begins. A complete hemostasis is attained within 2 minutes.
  • This example illustrates the adhesive effect of the fibrinogen/chitosan containing hemostatic adhesive agent on an arterial incision.
  • the hemostatic agent is obtained from 30 ml of rat blood as described in Examples 1 and 2.
  • a 250 g rat is anesthetized.
  • An incision is made over the femoral artery.
  • the femoral artery is exposed and cleared.
  • the blood flow through the artery is stopped by pressure on the proximal portion of the artery.
  • the artery is cut and divided cleanly horizontally with a scalpel blade and excess blood is sponged dry.
  • the divided artery is held together with forceps and the hemostatic agent is applied.
  • the pressure on the proximal artery is maintained for 2-5 minutes.
  • the hemostatic agents form a clot along the cut surface of the artery and bleeding decreases until it stops. After the compression of the blood flow is relieved, hemostasis is completely maintained with 4-5 minutes.
  • the incision does not reopen.
  • This example illustrates the use of isolated purified fibrinogen/chitosan-containing hemostatic adhesive on liver trauma in domestic swine.
  • swine Three domestic swine are anesthetized using intravenous (IV) thiamylal sodium (16.0 mg/kg) and inhaled halothane.
  • Laparoscope is introduced into the peritoneal cavity under sterile conditions. Heparin is administered to create maximal bleeding from the liver laceration. Laceration in the liver lobe about 3 cm long and 2 cm deep is made to induce bleeding from this injury.
  • fibrinogen/chitosan/exogenous autologous platelets are administered through the laparoscope to the site of the liver laceration. The extent of bleeding is followed. Bleeding ceases very quickly, typically in 1-4 minutes, in every case.
  • This example illustrates the adhesive effect of the autologous hemostatic agent prepared from the fibrinogen obtained from plasma of the patient's own blood in combination with chitosan.
  • Blood is drawn and autologous concentrated fibrinogen is prepared as described in Example 1.
  • the fibrinogen obtained from about 100 ml of the whole blood is mixed with about 0.3 g chitosan.
  • the bleeding liver wound is covered with the adhesive fibrinogen/chitosan agent and platelets obtained from the whole blood are applied over the bleeding rupture to stop bleeding. Bleeding is stopped within several minutes. The patient is monitored for internal bleeding but such bleeding does not occur.
  • This example illustrates the hemostatic effect of combination of isolated purified fibrinogen with chitosan in situ in a human following the bleeding from a ruptured spleen.
  • Venous blood is drawn and autologous fibrinogen and platelets are prepared from plasma according to Example 1, and separated.
  • the purity of isolated fibrinogen is determined by dissolving the fibrinogen precipitate in 4 ml of plasma.
  • Chitosan (0.3 g) is dissolved in 1 ml of plasma.
  • Peritoneal cavity is opened, the bleeding is temporarily stopped by compression, the chitosan plasma solution is applied over the bleeding surface of the spleen followed by spraying of the fibrinogen plasma solution.
  • Autologous platelets are added in situ to stop the bleeding. Bleeding slows down and stops in about 25-30 minutes.
  • This example illustrates the sealing ability of the fibrinogen/chitosan-containing adhesive of the invention during and post biliary tract surgery in higher mammals.
  • Fibrinogen (2.5 ml) is prepared from their blood according to Examples 1 and 2, and mixed with 0.03 g chitosan, as described. Chitosan is applied over the surgery incision while both sides of the suture are held together. Fibrinogen is added immediately followed by addition of platelets. Platelets are applied to the place of the incision, bleeding and leaking of the bile. Sealing of the bile duct as well as cessation of bleeding is achieved within 8 minutes.
  • This example illustrates the use of the fibrinogen/chitosan adhesive as the measure for control of lung air leaks.
  • Patient has an obstructive disease due to a lung tumor. After the tumor is removed, the patient has an air leak. The site of the air leak is identified by using bronchoscope.
  • Patient's blood is used to prepare the fibrinogen and chitosan containing adhesive agent according to Examples 1 and 2.
  • fibrinogen and chitosan (0.15 g/ml) are prepared in more dilute solution 1 ml of fibrinogen and 0.15 g of chitosan are dissolved in 5 ml of plasma.
  • a catheter is placed as close as possible to the site of the leak and the solution is injected through the catheter. Adhesive properties of chitosan in combination with fibrinogen are able to seal the leak without forming an extensive coagulation plug.
  • the air leak is blocked and sealed by the adhesive within 5-10 minutes. After that time no air leak is detected.

Abstract

Autologous fibrinogen and chitosan containing hemostatic adhesive agents having strong hemostatic properties when applied to a bleeding wound or vessel. Fibrinogen is isolated and purified using ammonium sulphate precipitation in slow incremental portions.

Description

This is a continuation-in-part application of Ser. No. 08/377,775, filed Jan. 23, 1995, issued as U.S. Pat. No. 5,510,102 on Apr. 23, 1996.
BACKGROUND OF THE INVENTION Field of Invention
This invention concerns hemostatic adhesive agents comprising autologous isolated and purified fibrinogen in combination with a biocompatible polymer. In particular, this invention concerns the fibrinogen and polymer containing hemostatic agents containing fibrinogen isolated from autologous plasma and purified of other plasma proteins, and a biocompatible chitosan. The agent has strong hemostatic properties when applied to a bleeding wound or vessel where it facilitates a rapid formation of a polymer clot by activation of a patient's platelets and conversion of prothrombin to thrombin. The polymer component of the agent triggers and enhances the normal clotting mechanism.
BACKGROUND ART AND RELATED ART DISCLOSURES
Surgical biological glues have recently been used in a variety of surgical procedures. Among those most known and used are a fibrin glue or a gelatin-resorcin-formalin glue.
Fibrin glue is based on the basic physiological fibrinogen and thrombin functions. In the presence of calcium ions, activation of fibrinogen and fibrin-stabilizing factor XIII with thrombin produces a stable fibrin clot. Fibrin itself adheres to collagen, and factor XIII stimulates increased collagen biosynthesis by activating fibroblasts. The application of fibrin glue in wound healing allows restoration of the structural properties of the wound by the glue and stimulation of repair by the components that comprise the glue. Fibronectin and cold insoluble globulin also enhance fibroblast proliferation.
Current methods of preparing fibrin glue have improved recovery of a variety of coagulation proteins including clotting factors and thrombin.
While hemostatic action of fibrin glue has been described and shown to act as a hemostatic agent in hepatic and splenic trauma J. Ped. Surg., 24:867 (1989); as a sealant of the common bile duct Surgery, 101:357 (1987); as a glue sealing pancreatic injuries Am. J. Surg., 161:479 (1991), resections and anastomosis Brit. J. Plast. Surg., 42:54 (1989); as a glue for microvascular anastomosis, and as a glue for treating aortic dissections Ann. Thorac. Surg., 50:143 (1990), its toxicity and possible anaphylactic reactions are of great concern. Fatal reaction to the use of fibrin glue in deep hepatic wounds is described in J. Trauma, 31:408 (1991). This fatal reaction is believed to have been caused by activation and conversion of fibrinogen into a fibrin using a bovine thrombin resulting in anaphylactic shock leading to death.
The most common method of preparation of fibrin glue is by the simultaneous mixing of concentrated fibrinogen complex obtained from pooled human blood, bovine thrombin and ionic calcium immediately before use. The addition of the nonhuman, typically bovine, thrombin in the fibrin glue preparations used for treatment in humans, has resulted in severe and even fatal anaphylactic reactions, such as described above. Hemostasis abnormalities caused by antibodies to bovine proteins, such as bovine thrombin, which cross-react with human proteins including thrombin and factor V, have been reported in J. Thorac. Cardiovac. Surg., 105:892 (1993). Similarly, foreign body reactions following the use of these fibrin bovine thrombin containing glues have been detected and described in Eur. J. Pediatr. Surg., 2:285 (1992).
Another major problem connected with the currently used fibrin glues is due to the use of pooled human blood which may result in transmission of infectious diseases to a patient treated with the fibrin glue obtained from human donors, as described in Opth. Surg., 23:640 (1992).
Additionally, while fibrin glues set very rapidly, in from three to five seconds, there is no increase in their adhesive strength after five minutes (J. Biomed. Mater. Res., 26:481 (1992)).
Attempts to utilize autologous fibrin as tissue adhesive were described, for example, in Laryngoscope, 95:1074 (1985) where different methods of making fibrin tissue adhesive from a patient's own blood are evaluated. The described fibrin adhesive comprises a highly concentrated fibrinogen obtained by cryo-precipitation or by precipitation of fibrinogen with ethanol, centrifugation, or ammonium sulfate using saturated solution of purified ammonium sulfate. The precipitated fibrinogen is then combined with bovine thrombin and calcium chloride.
Laryngoscope, 97:1141 (1987) describes degradation studies of autologous fibrin tissue adhesive by the fibrinolysis inhibitor Σ-amino caprotic acid. The adhesive utilizes fibrinogen precipitated with ammonium sulfate as one component and bovine thrombin as the second component.
A method for preparation of fibrin glue for otorhinolaryngological operations is described in J. Laryngology and Otology, 101:1182 (1987). The glue consists of fibrinogen, factor XIII and aprotin (a bovine-derived fibrinolysis antifibrinolytic inhibitor) in combination with bovine thrombin and calcium chloride. Fibrinogen is precipitated with saturated solution of ammonium sulphate.
While these method seem to provide fibrin glues which fulfill the hemostatic function, they all require the presence of bovine thrombin, thereby introducing a foreign element which can cause immune reactions as well as disease transmission as described above.
It would be, therefore, advantageous to develop a new type of a biological hemostatic adhesive which would eliminate or reduce the use of bovine thrombin, or thrombin obtained from human donors, which can lead to a formation of antibodies to such bovine or human proteins, or which adhesive would avoid pooling of human blood which may result in transmission of infectious diseases. The new type of the hemostatic adhesive would avoid problems associated with the currently available fibrin glues.
It is, therefore, a primary object of this invention to provide hemostatic adhesive agents for surgical and other medical purposes which agents would be prepared from autologous blood and would eliminate or strongly reduce the risk of disease transmission or immunoreactions caused by introduction of foreign thrombin. The hemostatic adhesive agents would be prepared from the isolated and purified fibrinogen obtained from the patient's own blood, combined with biocompatible polymers and would avoid the use of foreign proteins such as thrombin. The new agents would eliminate or strongly reduce the risk of immunogenic reactions, would significantly promote healing of tissues and would be, additionally, less expensive than currently available glues.
The autologous purified isolated fibrinogen in combination with a biocompatible polymer useful as an hemostatic surgical adhesive agent has not been previously reported or disclosed.
All patents, patent applications and references cited herein are hereby incorporated by reference.
SUMMARY
One aspect of the invention is a hemostatic adhesive agent comprising a purified isolated fibrinogen in combination with a biocompatible polymer.
Another aspect of the invention is a hemostatic adhesive agent comprising an autologous purified isolated fibrinogen in combination with a biocompatible chitosan.
Another aspect of the invention is a method for isolation of fibrinogen from other plasma protein by using slow precipitation with ammonium sulphate added in small increments for extended periods of time.
Another aspect of the invention is a hemostatic adhesive agent comprising a purified isolated fibrinogen in combination with a cationic or anionic chitosan.
Another aspect of the invention is a method for use of the hemostatic adhesive agent comprising administering to a site of injury or bleeding an admixture of purified isolated fibrinogen and chitosan.
Another aspect of the invention is a method for use of the hemostatic adhesive agent, comprising administering separately to a site of injury or bleeding a purified isolated fibrinogen and chitosan.
Another aspect of this invention is a process for isolation and purification of fibrinogen, comprising steps:
(a) obtaining plasma from whole blood;
(b) treating the plasma with an ammonium sulphate solution in such a way that the concentration of ammonium sulphate in plasma does not exceed 25%;
(c) separating the fibrinogen from the plasma by centrifugation; and
(d) detecting the presence or absence of other plasma proteins.
An additional aspect of this invention is a process for preparation of purified isolated fibrinogen wherein ammonium sulphate is dissolved in an aqueous solvent in the amount of 65-73 g/100 ml, and is added in increments of about 0.50-0.62 ml/minute for about 15-20 minutes.
BRIEF DESCRIPTION OF FIGURES
FIG. 1 is a scheme illustrating the physiological process of coagulation.
FIG. 2 is a scheme illustrating the hemostatic process using a fibrinogen/polymer hemostatic adhesive agent.
DEFINITIONS
As used herein:
"Hemostatic adhesive agent" also called "fibrinogen polymer" means a solution or other preparation which contains essentially two components: a purified isolated fibrinogen and a physiologically acceptable biocompatible and FDA-approved chitosan.
"Cascade-like effect" means a sequence of reactions beginning with applying the hemostatic agent of the invention to the wound or incision, where the fibrinogen initiates conversion of prothrombin to thrombin and the polymer contained in the hemostatic agent enhances a formation of a polymer clot by trapping endogenous or exogenous platelets. This clot rapidly triggers release of factors Va, Xa and thromboplastins from the platelets added to the fibrinogen component of the hemostatic agent. The release of thromboplastins from the platelets initiates the physiological clotting process.
"Exogenous platelets" are platelets, autologous or not, added to the fibrinogen component.
"Endogenous platelets" are platelets present in the circulating blood of the patient.
DETAILED DESCRIPTION OF THE INVENTION
The current invention concerns a novel type of hemostatic adhesive agents comprised of isolated and purified fibrinogen and a biocompatible chitosan polymer.
The hemostatic adhesive agents are prepared from, and contain, a purified fibrinogen isolated from plasma, using a novel process for fibrinogen isolation and purification, combined with a physiologically acceptable biocompatible polymer. The combination of the purified isolated fibrinogen with the polymer forms, in the presence of endogenous or exogenous added platelets, an adhesive which has very strong adhesive properties and a very rapid onset of hemostatic action. Adhesivity strength and the speed with which the hemostatic action sets depend on the fibrinogen concentration and on the type and amount of the chitosan polymer.
In essence, the invention utilizes certain aspects of the natural physiological process of blood coagulation, such as activation of platelets, release of thromboplastins and other coagulation factors and cofactors, conversion of prothrombin to thrombin, conversion of fibrinogen to fibrin monomers and formation of a fibrin clot. These aspects of the natural coagulation process are enhanced by adding the biocompatible chitosan polymer.
One of the two primary components of the hemostatic adhesive agent is fibrinogen. The second component is the chitosan polymer. To obtain fibrinogen having superior coagulating properties, the fibrinogen is isolated and purified in such a way that the presence of other proteins, such as euglobulins, pseudoglobulins and albumin, is eliminated. Isolation of fibrinogen from other proteins greatly enhances its response to endogenous thrombin, by forming long fibrin monomers which spontaneously associate and form a stable insoluble fibrin polymer clot, when the fibrinogen is applied in combination with chitosan and in presence of platelets added separately, to a site of bleeding or injury. This fibrin polymer clot initiates a hemostatic process which then continues in a cascade-like fashion.
Cascade-like hemostasis is achieved by rapid and continuous trapping, activation and disruption of the platelets initially added to the fibrinogen and polymer agent followed by trapping, activation and disruption of platelets present in the patient's own blood. The disruption of the platelets leads to a release of coagulating factors from the platelets and to a fast conversion of prothrombin to thrombin. Due to this cascade-like effect, the hemostatic clot forms quicker and the adhesive strength of the hemostatic clot increases more rapidly than during normal physiological coagulation, where the coagulation time is about 3-5 minutes and during which the maximal adhesive strength of the clot is obtained physiologically or from other known fibrin glues. Moreover, as the polymer is not subject to a physiological regulation by lysis, the cascade effect continues until complete hemostasis occurs.
The current invention provides several advantages over the fibrin glues known previously.
One of the advantages of the invention is that the fibrinogen is prepared from the patient's own blood, thereby eliminating possible immunogenic reactions as well as the possibility of transmission of infectious diseases, toxins or parasites. Another advantage is that by using the hemostatic adhesive of the invention, the use of exogenous (typically bovine) thrombin is eliminated. The agent of the invention activates endogenous platelets, and promotes and enhances conversion of endogenous prothrombin to thrombin in an amount sufficient to convert the fibrinogen to fibrin clot, eliminating the need for exogenous thrombin. The presence of thrombin in all other known fibrin glues is necessary. The absence of need to use exogenous thrombin prevents transmission of infectious diseases such as HIV and hepatitis, or parasites.
Other advantages of the current hemostatic agent are the instant hemostasis, adherence of damaged tissue together, and promotion of the healing process by combination of purified fibrinogen with the patient's own thrombocytes.
I. Normal Physiological Mechanism of Blood Coagulation
The physiological mechanism of blood coagulation and clotting is based on properties of plasma proteins and platelets. These two blood components contain all the factors required for clotting.
Processes involved in normal physiological blood clotting are seen in FIG. 1.
Two major plasma proteins involved in blood clotting are fibrinogen and prothrombin. The essential reaction in coagulation of the blood is the enzymatic conversion of the soluble protein fibrinogen into the insoluble protein fibrin by thrombin. Fibrinogen exists in the circulating blood as such and can be precipitated from plasma. Thrombin is formed from an inactive circulating precursor, prothrombin, during tissue injury, bleeding or blood loss. The activation of prothrombin depends on the presence of calcium ions (Ca++) and thromboplastins which are released or derived from damaged tissues, disintegrating platelets or plasma itself. This process, or certain aspects of it are advantageously utilized in the current invention.
Normally, when the tissue is injured and bleeding occurs, it responds physiologically by activation of platelets followed by a release of thromboplastins. Thromboplastin (plasma factor III) is a substance that assists in the clotting of blood by initiating the conversion of the inactive prothrombin (plasma factor II) to the active thrombin. Such conversion occurs in the presence of calcium ions (plasma factor IV).
Thrombin is a very potent serine protease that causes clotting by converting fibrinogen (plasma factor I) to fibrin. Thrombin is so potent that it can coagulate at least 600 times its weight of fibrinogen. The velocity of the thrombin-fibrinogen reaction is further accelerated by increased concentration of thrombin. Thrombin, which can act in the absence of Ca++, enzymatically splits off a highly acidic fibrinopeptide from the fibrinogen by hydrolysing arginine-glycin peptide bonds in the fibrinogen, thereby generating fibrin monomers. The remainder of the fibrinogen then polymerizes to form fibrin.
Fibrin is an elastic, thread-like insoluble protein monomer which forms the network of the hemostatic clot. The insoluble fibrin monomers spontaneously associate in a regularly staggered array to form the insoluble fibrin polymer clot. The initial fibrin clot formed within first 3-5 seconds of bleeding is a rather weak structure, held together only by a noncovalent array of the fibrin monomers.
Additionally, thrombin converts fibrin stabilizing factor XIII, to active factor XIIIa. Factor XIIIa is an enzyme transglutaminase which covalently cross-links fibrin monomers by forming specific isopeptide bonds thereby strengthening the fibrin clot. The freshly formed threads are extremely adhesive, sticking to each other, to the blood cells, to the tissues, and to certain foreign surfaces. This adhesiveness makes the clot an effective hemostatic agent. All these enzymatic reactions, of course, take certain time, typically between 3-5 minutes, within which the final hemostatic clot forms. The time of clot formation also depends on the extent of the bleeding.
Aside from fibrinogen, prothrombin, thromboplastin, and calcium (plasma factors I and IV), there are other plasma factors involved in normal physiological coagulation reactions. These factors are plasma factors proaccelerin (V), proconvertin (VII), antihemophilic globulin (VIII), Christmas factor (IX), Stuart-Prower factor (X), plasma thromboplastin antecedent (XI), Hageman factor (XII) and fibrin stabilizing factor (XIII). Plasma factor V (proaccelerin) acts, when activated to factor Va, as a cofactor for the activated enzyme factor Xa that activates prothrombin. These and all other above named factors are involved in the normal blood coagulation processes. Some of them are also involved in the hemostatic action of the current hemostatic agent as seen in FIG. 2.
Calcium ions are essential for clotting. They are necessary for the formation of active thromboplastin and for the conversion of prothrombin to thrombin in the first phase of the coagulation process. They are not necessary and do not influence the action of thrombin on fibrinogen in the second phase of the coagulation. Consequently, the current invention does not require additional calcium ions.
The activation of prothrombin occurs on the platelets and requires platelet anionic phospholipids, activated factor Va, activated factor Xa and calcium ions. The platelet anionic phospholipids, which are normally situated on the internal side of the platelet plasma membrane, are exposed as a result of the platelet disruption. These phospholipids bind Ca++ and prothrombin. Prothrombin activates factor V, normally present in the platelets which is activated by Va factor. The activated Va factor binds to the specific receptor on the platelet membrane and by itself the Va factor acts as a receptor for factor Xa. Factor Xa binds to the prothrombin and being a serine protease, cleaves the inactive amino portion of the prothrombin, thereby activating prothrombin to thrombin. This step is advantageously utilized when the platelets are trapped within the fibrinogen/polymer hemostatic agent according to the invention.
The above-discussed coagulation properties of fibrinogen are widely utilized for fibrin glues. These glues are typically prepared from fibrinogen obtained from bovine or pooled human blood in combination with bovine or human thrombin. These foreign proteins may lead to the development of recipients' immunoreactions in case of use of fibrinogen or thrombin of different species, or to transmission of infections between individuals caused by the use of fibrinogen and/or thrombin of the same species but of different individuals.
Previously known surgical fibrin glues made up of pooled human fibrinogen activated by bovine thrombin are used extensively in Europe and attempts have been made to introduce these glues in the United States. The FDA, however, has been reluctant to approve these fibrin glues because of the risk of transmission of animal and human viruses and other infections and because of the immunological reactions caused by bovine thrombin. The current invention overcomes these problems and provides many additional advantages, as enumerated above.
For the above reasons, attempts were previously made to prepare autologous fibrin tissue adhesives. Resulting autologous fibrin tissue adhesives decreased to a certain degree the risk of transfer of viral and other infections and possible immune reactions. However, as in all of them the second component, thrombin, is needed and as this thrombin is of exogenous, most often bovine, origin, the risk of immunoreactions or transmission of infectious and parasitic diseases is not eliminated because thrombin itself may be contaminated.
II. Hemostatic Adhesive Agents of the Invention
Hemostatic adhesive agents of the invention and their hemostatic actions differ from the prior fibrin glues in that they are completely autologous, and all their components are of autologous origin and are either present endogenously in sufficient amount to achieve hemostasis according to the invention or are added exogenously after being first isolated from the autologous blood. Therefore, the invention does not require addition of foreign cells, such as platelets, foreign proteins, such as thrombin, or other components, such as calcium ions.
The hemostatic agent according to the invention is typically prepared from purified and isolated fibrinogen, in combination with a physiologically acceptable and biocompatible chitosan polymer. The hemostatic adhesive agent consists of fibrinogen which is isolated from plasma and purified to remove other plasma proteins.
The hemostatic agent additionally contains a physiologically acceptable biocompatible polymer which is highly positively charged. The preferred polymer is chitosan added in ratio from about 0.1-10% of the polymer to about 90-99.9% of fibrinogen. The polymer causes rapid activation and aggregation of platelets, exogenous or endogenous, and thereby induces and increases hemostatic adhesive action of the hemostatic agent of the invention in a cascade-like manner.
The polymer is either a component of the hemostatic adhesive agent administered in admixture with fibrinogen or the polymer can be used separately from fibrinogen and administered to the site of injury either before or after fibrinogen is added, as the hemostatic adhesive agent.
Hemostatic agents of the invention therefore consist essentially of fibrinogen and a biocompatible chitosan polymer, preferably cationic chitosan.
For initiation of its hemostatic action, the agent additionally utilizes either exogenous or endogenous, preferably autologous, platelets. The combination of fibrinogen and platelets promotes clotting, adhesion and healing as described below.
In its most preferred form, the hemostatic adhesive agent is autologous, that is, it is prepared from the patient's own blood combined with the pure physiologically acceptable and biocompatible chitosans approved by the Food and Drug Administration for use in humans.
Autologous fibrinogen is prepared from patient's own blood which is separated into plasma, platelets and blood cells. The plasma is further processed as described below to yield purified fibrinogen isolated from other plasma proteins. The platelets which are also separated from the whole blood are preserved and combined with purified fibrinogen and the polymer immediately before administration to initiate a clotting process or they are added separately to the site of bleeding after the hemostatic agent is administered. The hemostatic agent of the invention is preferably prepared in the operating room at the time of surgery or treatment.
The method for achieving hemostasis according to the invention using hemostatic adhesive agents of the invention, is illustrated in FIG. 2.
The hemostatic plasma/polymer agent has a high ratio of fibrinogen to the polymer. Generally, the agent is composed of about 90% to about 99.9% of isolated and purified fibrinogen and from about 0.1% to about 10% of the polymer. When mixed and applied to a wound's bleeding surface or bleeding vessel, the polymer component when in combination with fibrinogen, triggers the normal clotting mechanism upon contact with the bleeding wound and aggregates and activates the exogenous and/or endogenous platelets. Activated platelets release thromboplastin and promote conversion of prothrombin to thrombin in the presence of endogenous Ca++. While typically not necessary, calcium solution may be added, if for any reason the endogenous calcium would not be present in a sufficient amount. Highly positively charged chitosan, in combination with the fibrinogen, forms an array of fibers trapping and disrupting the platelets, and collagen exposed at the site of injury acts as an attractant binding site for the platelets. By forming the initial hemostatic clot, combined with additional binding sites for the platelets due to exposed collagen, more and more of the platelets and platelet debris is caught in this initial hemostatic clot.
The platelet activation, resulting from their contact with the hemostatic agent, followed by their disruption, leads to a release of factors Va and Xa and ADP, and initiation of conversion of prothrombin to thrombin. Meanwhile, additional platelets adhere to the factors released from the disrupted platelets, and prothrombin adheres to the chitosan polymer and to the platelets' membranes. As more and more endogenous platelets are activated in a cascade-like fashion, the original polymer clot is enlarged and, as it forms a clot matrix, it is also strengthened.
Such clot matrix is, under normal physiological conditions, formed only after the chain of reactions happens, as seen in FIG. 1, including the activation of platelets leading to the activation of prothrombin to thrombin, the activation of fibrinogen by thrombin, the conversion of fibrinogen to initial fibrin monomers, the formation of the weak fibrin clot and the strengthening of fibrin by cross-linking with factor XIIIa. The clot formed in response to the platelet activation then converts soluble fibrinogen to a stable fibrin clot. Such conversion occurs in the presence of factor XIIIa, a fibrin stabilizing factor, that catalyzes formation of peptide bonds between fibrin molecules, and in this way stabilizes the clot.
To the contrary, in the current invention, the clot matrix is formed quickly following the application of the hemostatic agent of the invention which delivers purified and isolated fibrinogen in combination with chitosan and separated platelets able to release coagulation factors, thereby instantly triggering the coagulation process at the site of the injury or bleeding, as illustrated in FIG. 2.
As seen in FIG. 2, the hemostasis according to the invention, as compared to the normal physiological coagulation process shown in FIG. 1, is much faster. Strength of the hemostatic polymer clot can be further increased by higher concentration of fibrinogen, by increased production of thrombin, or by addition of platelets during the entire time the adhesive is being applied. In the normal physiological coagulation process, after 3-5 minutes the strength of the normal clot does not increase. The new hemostatic agent forms a clot within five seconds and the process proceeds in controlled manner until complete hemostasis is achieved. Adhesivity of the agent is also controlled by the higher or lower concentration of the added polymer. When the concentration of the polymer is from 0.1-2%, the tensile strength of the fibrin monomers is lesser. When the polymer concentration is between 2-10%, the tensile strength of the fibrin monomers of the hemostatic clot is greater and the coagulation proceeds faster.
Using the current invention, isolated and purified fibrinogen and platelets are prepared from plasma as described below and in the Examples. A chosen polymer, preferably positively charged chitosan, is then added to the fibrinogen. Thus made adhesive is applied to the site of injury, such as the wound, venous incision, cut or rupture, or to the damaged tissue. The polymer acts rapidly as an extraneous impulse trapping and activating exogenously supplied or endogenously present platelets. Upon applying the fibrinogen-polymer agent to the site of injury, platelets activate conversion of prothrombin to thrombin in the presence of Ca++ and the physiological clotting begins rapidly and on a large scale, having readily available all the necessary clotting factors in high concentrations.
Highly positively charged chitosan and collagen exposed at the site of injury act as a binding site for platelets, which are disrupted and release thromboxane and coagulation factors Va, Xa and ADP. Additionally, endogenous platelets adhere to the released factors and prothrombin adheres to the polymer and to platelets' membranes, further promoting conversion of prothrombin to thrombin. Endogenously formed thrombin hydrolyses the fibrinogen arginine-glycine peptide bonds resulting in formation of long fibrin monomers. These monomers spontaneously associate and form a stable insoluble fibrin polymer clot.
The polymer which forms the initial clot becomes substantially strengthened by the platelets and platelets debris and its adhesivity is further enhanced by the presence of purified fibrinogen.
Meanwhile, the fibrinogen/polymer agent activates more and more platelets in cascade-like fashion so that the size and strength of the clot is much greater than that of the normal clot. Additionally, the polymer allows extension of time for the hemostatic polymer clot formation and for increase of the strength of the clot. Since the natural coagulation is endogenously regulated and controlled and is a subject to time-related lysis, such regulation mechanisms limit strength of the adhesivity of the normal clot to that formed within 3-5 minutes. After that time the strength of the normal clot cannot be increased. On the other hand, the polymer is not subject to lysis or to the other physiological regulatory mechanisms and can therefore proceed unhindered for more than 30 minutes and up to several hours.
Hemostatic adhesive agents containing fibrinogen/chitosan have many advantages over other currently available fibrin glues. They provide rapid hemostasis, adhere and glue the damaged tissues together with great strength, and seal ruptures, leaks or punctures of the tissues. The presence of chitosan in the hemostatic agent allows sizable increase in the speed with which the clot is formed or adhesion is achieved, increasing the clot size and strength in cascade-like manner. The hemostatic adhesive also allows time control with respect to when to stop the clotting and clot formation. Since the autologous hemostatic plasma/polymer agents contain the patient's own viable platelets, they actually promote the healing process. Other advantages of the plasma/polymer were discussed above and are the absence of need for addition of foreign proteins, such as bovine and human fibrinogen, thrombin, or other additives.
Studies at the University of California, Davis have indicate that, for example, in trauma patients, an excess of autologous thrombin may also be detrimental as it may lead to a clot formation and stabilization of the hemostatic process and the regulatory mechanism, depending on the trauma. Such clot formation may be detrimental during trauma.
1. Preparation of the Fibrinogen/Chitosan Hemostatic Agent
The fibrinogen/chitosan polymer agent is prepared from plasma obtained from whole blood either of the patient to be treated (autologous plasma) or from human plasma obtained from blood other than of the patient (non-autologous plasma). In the latter case, care is taken to utilize only healthy and uncontaminated full blood. In case of planned surgery, the patient may provide his own blood before the operation so that the plasma is obtained in advance and fibrinogen and platelets are isolated and preserved.
In case of acute injuries or trauma, the hemostatic adhesive agent of this invention is prepared at the time of operation or treatment. Thus, no blood bank, storage, prior collection of blood or isolation of platelets is necessary. However, the agent may be prepared from blood available from a blood bank, if necessary. Under the most optimal conditions, the current adhesive can be prepared quickly from the patient's own plasma without any risk that the patient may encounter immune reactions or become infected from another individual's blood.
The hemostatic adhesive agent is prepared from whole blood by separating red blood cells from plasma and by further isolating and separating isolated platelets. Typically, whole blood is drawn into a buffered anticoagulant agent, such as sodium citrate, and centrifuged to separate the platelets and plasma from the red blood cells. The plasma is removed and centrifuged for a second time, at high speed, to separate the platelets and the plasma.
The hemostatic fibrinogen/chitosan is preferably prepared from about 100 ml of the patient's own blood. The plasma (40 ml) is separated from the patient's own blood, as described above, and utilized as a source of highly purified fibrinogen. The platelets are also separated and preserved separately. Ammonium sulfate is used for the precipitation, isolation and purification of the fibrinogen.
Briefly, about 10 ml of ammonium sulfate, containing about 65-73, preferably 71 g/100 ml H2 O, is added slowly and continuously for about 15-20, preferably 17 minutes, or about 0.50-62 ml, preferably 0.58 ml per minute, to about 40 ml of plasma using very fine capillary tubing and syringe pump, in order to assure that only fibrinogen is precipitated. Most preferred rate of addition of the ammonium sulphate is lower than 0.58 ml/minute. Care is taken that the concentration of ammonium sulfate never exceeds 25% saturation in any portion of the plasma. Monitoring of the fibrinogen precipitation from the plasma is best at the tip of the needle or catherer where long stringy threads form. When these threads are translucent and fibrous, there is no precipitation of other proteins. When there are visible granular-like structures, other proteins, such as the euglobulins (IgG, IgM, IgE,), pseudoglobulins, and albumin are precipitating. That happens when the rate and concentration of the ammonium sulphate exceeds 25%. If the fibrinogen is contaminated with these other proteins, the adhesive strength of the hemostatic agent is diminished.
The process for production of isolated and purified fibrinogen by treatment of plasma with addition of small increments of ammonium sulphate is new. In this process, an initial solution of ammonium sulphate in concentration preferably about 71 g/100 ml of water is prepared. About 10 ml of this solution is used for precipitation of fibrinogen from 40 ml of plasma by adding this solution continually for about 17 minutes to 40 ml of plasma in such a way that preferably about 0.58 ml containing about 0.38 g of ammonium sulphate is added to 40 ml plasma volume in one minute. This process assures that only fibrinogen and no other plasma proteins are precipitated. This slow precipitation of fibrinogen constitutes a difference and improvement against previously known methods.
All previously published methods of fibrinogen precipitation have utilized saturated ammonium sulphate solution added to the plasma at the same time which resulted in precipitation of all plasma proteins because the concentration of the ammonium sulfate in the plasma exceeded 25%. Fibrinogen produced by these methods was contaminated with euglobulins and albumin, yielding fibrinogen of inferior adhesive strength. This was evidenced by the presence of an insoluble precipitate fraction present when the fibrinogen obtained by such methods was dissolved in the plasma or an aqueous solvent or medium.
The fibrinogen produced by the novel process for isolation of fibrinogen from other plasma proteins, produces the only precipitate which is fully soluble in plasma or other aqueous media. There are no insoluble precipitates present in the fibrinogen purified and isolated according to the new process. The isolated and purified fibrinogen thus obtained possesses a superior adhesive strength.
The current invention utilizes this superior isolated purified fibrinogen in combination with polymers, preferably chitosan. Chitosan may be added to the purified fibrinogen before or after it is added to the tissue. The admixture of fibrinogen and chitosan may be added to the site of bleeding; the chitosan may be applied directly to the injured tissue followed by fibrinogen; or fibrinogen may be added first, followed by chitosan. The purified fibrinogen and polymer agent traps platelets to activate the conversion of prothrombin to thrombin in the presence of endogenous Ca++, and the platelets undergo disruption and release thromboxans and ADP as already described. This release induces additional platelets to adhere with the clotting factors Va, Xa, Ca++ and prothrombin to the polymer and platelet plasma membranes.
In developing this invention, hemostatic fibrinogen/chitosan was prepared from a pig's blood. The pig's plasma was separated from the blood by centrifugation and utilized as a source of highly purified fibrinogen using ammonium sulphate precipitation according to the invention. The hemostatic agent was then tested for its hemostatic properties on the same pig.
Hemostatic properties of the fibrinogen/chitosan hemostatic agents were additionally prepared and tested on human, pig and rat splenic incisions; arterial incisions; liver wounds, cuts and lacerations; splenic ruptures; and sealing of leaks and fistulas. The hemostatic agents of this invention are thus useful for stopping bleeding from tissue and internal organs, from ruptured vessels, for sealing of common bile duct, and for control of pulmonary leaks and other similar injuries.
2. Polymer Component of the Hemostatic Adhesive
The polymer added to the isolated purified fibrinogen is a highly positively charged polymer, preferably a chitosan, such as chitosan-anionic or more preferably chitosan-cationic, which forms strong and clear bonds and gels when brought in contact with endogenous calcium ions. The chitosan polymers are biodegradable and non-toxic. Chitosan is added in concentration from about 0.1% to about 10%. Addition of chitosan accelerates wound healing and having by itself certain bioadhesive properties, increases adhesivity of the fibrinogen/chitosan hemostatic adhesive agent and also increases adhesivity of separated tissues in gluing them together.
The polymer is dissolved in a small volume, about 0.5-1 ml, of citrate autologous plasma and then added to the fibrinogen.
3. Preparation of the Hemostatic Adhesive Agent
The hemostatic adhesive agent of the invention is prepared by mixing together fibrinogen and the chitosan polymer forming the fibrinogen/chitosan hemostatic agent.
Platelets, preferably autologous, isolated from the same volume of plasma from which the fibrinogen is isolated and purified, are added to the fibrinogen and polymer agent.
The mixture of the fibrinogen/chitosan forms the basic hemostatic adhesive agent of the invention. For the best and fastest hemostasis, exogenous, but preferably autologous, platelets are added either to the basic hemostatic agent or to the site of injury at the same time as the agent is added. The agent may additionally contain other therapeutically active pharmaceutically acceptable agents or pharmaceutically acceptable additives such as a calcium solution, thrombin, antibiotics or enzymes. However, these agents are not necessary as the agent achieves hemostasis solely with the combination of fibrinogen and chitosan.
The agent of the invention is able to stop extensive and large area bleeding from a surface wound, or from the surface of a deep tissue wound, or from an arterial or venous rupture, without addition of exogenous thrombin or any other agent.
In practice, the hemostatic agent is applied over the wound, incision, cut, bleeding surface or other injury. In these cases, the polymer which activates and aggregates the exogenous platelets over the site of injury forms the initial clot and enhances the coagulation activity of the platelets and their normal hemostatic properties and forms a binding surface for endogenous platelets present in the subject's blood. The presence of exogenous and endogenous platelets and high concentrations of readily available plasma proteins in the circulating blood at the bleeding site needed for coagulation allows fast hemostatic action and clotting build-up on and over the initial hemostatic polymer clot.
While it is preferred that the autologous platelet-fibrinogen is used whenever possible, the non-autologous platelets or fibrinogen from other humans is equally useful in cases of emergency and profuse bleeding, when it is impossible or dangerous to obtain autologous blood, and is prepared by the same process and under the same conditions.
When the adhesive agent is prepared in advance, essentially the same procedure is followed except that the fibrinogen and platelets are stored separately in the refrigerator, if the adhesive will be used within 24 hours, or frozen, if the adhesive will be used later. The polymer is stored and preweighed in the desired amount, preferably in an amount which would provide 0.1%-10% dilution with fibrinogen. The volume of the adhesive depends on the extent of the surgery. Typically, both the platelets and fibrinogen are obtained from 40 ml blood, which provides about 1.5-2.5 ml of fibrinogen. To this amount about 0.015 to about 0.25 g of chitosan is added to form the hemostatic adhesive agent. If the wound is over a large area which needs to be sealed, appropriately larger volumes of the agent are prepared.
It is another advantage of the invention that the treating surgeon or physician can determine what volume is necessary to achieve complete adhesion and hemostasis. Also, should the bleeding not be contained by the available volume of the agent, additional volume can be quickly and conveniently prepared.
The addition of the polymer to fibrinogen is responsible for the hemostatic agent's increased adhesivity and strength. The time for which the hemostatic adhesive is applied controls the extent of the hemostasis and the strength of the adhesion. As a result, the hemostatic agent of the invention is useful for sealing and adhesion of deep tissue wounds, ruptures, or incisions, tears or cuts on the veins. The process for preparation of the hemostatic adhesive agent is fast--typically the hemostatic polymer adhesive can be produced within 3-10 minutes and does not require any special equipment, agents or procedures other than those used in a biochemical medical laboratory on a daily basis.
In cases of autologous platelet-rich plasma, additional advantages are the reduced risk of disease transmission as both the platelets and plasma are obtained from the patient. The immunogenic reactions to the exogenous sources of the thrombin or fibrinogen, typically bovine thrombin or fibrinogen, are eliminated. Presence of living, autologous platelets additionally promotes and expedites healing of tissues.
UTILITY
The hemostatic adhesive agent of the invention is used for treatment of any trauma of the liver, spleen, pancreas, lung, bone, etc., or for cardiovascular and vascular situations, such as microvascular, anastomoses, vascular grafts, intraoperative bleeding and aortic bleeding and repair, for thoracic surgery such as lung biopsy, for transplant of the heart, renal, pancreas, lung, bone or bone marrow, for neurosurgery such as nerve anastomosis, or CSF leak repair, for endoscopic surgery, such as in hepatic trauma, or bile duct repair, for interventional radiology, such as for percutaneous liver biopsy or vascular occlusion, for gastrointestinal surgery such as colonic anastomoses, for obstetrics and gynecology such as rectovaginal fistulas, for pediatric and fetal surgery, for plastic surgery and burn repairs such as grafting process of cultured epidermis, for dermatology such as hair transplants, for dental surgery, for ophthalmic cataract surgery, for urology, for correction of urinary fistulas and such others.
The treatment may be used alone or in combination with other techniques, agents and drugs typically used to correct these problems.
A major difference between this hemostatic adhesive agent preparation and previous fibrin glues is the agent's composition consisting of: the isolated fibrinogen purified of plasma proteins; the polymer; and the autologous living and metabolizing platelets. Purified fibrinogen is able to promote platelet activation leading to a greater conversion of prothrombin to thrombin endogenously, thus eliminating a need for addition of exogenous thrombin. The polymer of the hemostatic agent together with exposed collagen at a site of injury act as a binding site for platelets. The platelets then release other coagulating factors and cofactors, acting in their natural way in promoting coagulation, and assisting also in adhesion of damaged and separated tissues together.
Additionally, the hemostatic adhesive agents of the invention promote and accelerate wound healing because they are made of the patient's own blood components.
The hemostatic fibrinogen/chitosan agent is fully effective as a hemostatic agent without bovine thrombin. The hemostatic agent provides instant hemostasis and adheres damaged tissues together. The healing process is promoted, because fibrinogen/chitosan is combined with the patient's own viable thrombocytes.
The following examples are intended to illustrate the invention and its utility. These examples are not to be interpreted as limiting the invention in any way.
EXAMPLE 1 Preparation of Purified Isolated Fibrinogen
This example illustrates preparation of purified fibrinogen either in nonconcentrated or concentrated form.
A 80-100 ml blood sample was drawn and placed into 0.1055M buffered sodium citrate solution. The tubes were centrifuged at 770×g for 10 minutes and a 40 ml platelet-rich plasma sample was removed. The plasma was centrifuged a second time at 2000×g. Then, the plasma was removed and the platelets were saved. The plasma was purified using ammonium sulphate.
Ammonium sulfate solution was used for precipitation, isolation and purification of the fibrinogen. 10 ml of ammonium sulfate (71 gms/100 ml H2 O, 25° C.) was added slowly in increments of 0.58 ml/minute to 40 ml plasma using very fine capillary tubing (PE Intramedic Clay Adams 1. D. 0.015"×0. D. 0.043") and a syringe pump, (Harvard Apparatus I.V. Syringe Pump Model 903). The plasma was spun using magnetic bar 40-60 rpm and mixed as a very fine jet of ammonium sulfate solution was slowly added to 1 cm under the plasma surface. The concentration of the ammonium sulfate was constantly monitored by visual observation of the fibrinogen fiber thread formation and was never allowed to exceed 25% saturation in any portion of the plasma in order that only pure fibrinogen was precipitated. Such monitoring involved control of the speed of the syringe pump combined with observation of the tip of the catherer or needle ejecting the ammonium sulphate. Upon slow ejection of the ammonium sulphate (≦0.58 ml/minute), formation of the fibrinogen precipitate as threads was observed. The yield of precipitated fibrinogen was 1-2 g/40 ml of nonconcentrated plasma. Concentrated plasma yielded proportionally larger amount of fibrinogen depending on the concentration factor, as described below. Fibrinogen was dissolved in autologous citrate plasma (1 ml at 37° C.) and mixed gently to dissolve the fibrinogen. When the fibrinogen was isolated and purified from the other plasma proteins by the above procedure, the fibrinogen was dissolved without any residue.
When the rate and concentration of the precipitate ammonium sulfate solution addition exceeded 25%, euglobulins, pseudoglobins, and albumin precipitated. This precipitation was evidenced by the presence of proteins which were insoluble when fibrinogen was dissolved in the plasma. When the fibrinogen adhesive was contaminated with other proteins (euglobulins, pseudoglobins, and albumin), the adhesive strength was diminished and hemostatic action was slower. Contaminating albumin and other proteins were found to interfere with fibrin gelation by increasing fibrin solubility. The plasma was either processed as is or it was concentrated by centrifugation through a 30,000 MW cut-off filter, obtained from CentriCell Polysciences, Inc., for 20 minutes. The plasma was concentrated by a factor of 7-8, that is 270-390 mg of fibrinogen present in 100 ml of plasma was concentrated to levels larger than 2000 mg of fibrinogen per 100 ml of plasma.
EXAMPLE 2 Autologous Hemostatic Fibrinogen/Chitosan Agent
This example describes preparation of the hemostatic fibrinogen/chitosan agent from autologous pig's blood for hemostasis of the pig's bleeding spleen.
Hemostatic fibrinogen/chitosan was prepared from 40 ml of a pig's own blood according to Example 1. Plasma was separated from the blood by centrifugation and utilized as a source of fibrinogen. Ammonium sulfate was used for the precipitation of fibrinogen. 10 ml ammonium sulfate (71 gms/100 ml H2 O) was added continuously (10 ml/17 minutes or 0.58 ml/minute) to 40 ml plasma using very fine capillary tubing and syringe pump, in order that only fibrinogen was precipitated. The concentration of the ammonium sulfate never exceeded 25% saturation in any portion of the plasma. The precipitated fibrinogen (2.1 ml) was tested for presence of other plasma proteins by dissolving it in 1 ml of pig plasma. The fibrinogen dissolved without any residue confirming absence of any contamination with other plasma proteins. This solution was mixed with 0.2 g of chitosan dissolved in 0.5 ml of the pig's plasma. Resulting hemostatic agent was used to test its hemostatic activity in splenic incision described in Example 4.
EXAMPLE 3 Hemostatic Effect of Fibrinogen/Chitosan Hemostatic Agent
This example illustrates the effect of the fibrinogen/chitosan hemostatic agent administered separately on pig's surgical incision of the spleen.
The pig's abdomen was surgically opened and the spleen was exposed. A surgical incision 3 cm long and 1 cm deep was made in the spleen. The incision bled profusely. Bleeding was controlled by compression and 0.25 g chitosan obtained from Sigma was placed into the spleen incision. The dissolved isolated, purified fibrinogen (1 ml) was combined with the platelets (0.2 ml) obtained from the 40 ml of starting whole blood. The plasma/platelet mixture was added over the chitosan in the spleen incision. The compression was continued for 5 minutes until hemostasis was attained.
Bleeding wounds in humans and other mammals are treated in the same manner. The autologous hemostatic surgical adhesive is obtained from the individual to be treated with such autologous surgical agent.
EXAMPLE 4 Hemostatic Effect of Fibrinogen/Chitosan Hemostatic Agent
This example illustrates the effect of the fibrinogen/chitosan hemostatic agent on a surgical incision of the spleen.
The pig's abdomen was surgically opened and the spleen was exposed. A surgical incision 3 cm long and 1 cm deep was made in the spleen. The incision bled profusely. Bleeding was controlled by a mechanical compression. Hemostatic agent prepared according to Examples 1 and 2, containing 0.25 g chitosan was combined with purified fibrinogen and platelets (0.2 ml) obtained from 40 ml of starting whole blood were added to the site of the bleeding. The mechanical compression was continued for 5 minutes and then the compression was removed. There was still slight bleeding which subsided in another 2-3 minutes. The wound did not reopen and complete hemostasis was thus attained.
Bleeding wounds in humans and other mammals are treated in the same manner. The autologous hemostatic surgical adhesive is obtained from the individual to be treated with such autologous surgical agent.
EXAMPLE 5 Hemostatic Properties of Fibrinogen/Chitosan Hemostatic Agent on Tissue Injury
This example illustrates the adhesive effect of the fibrinogen/chitosan-containing hemostatic adhesive agents on experimentally induced liver trauma and incisions in rats.
The hemostatic agent is prepared as described in Examples 1 and 2 from the rat's blood.
A 250 g rat is anesthetized. A midline incision is made and the surface of the liver is exposed. One lobe of the liver is excised and removed and 1 cm cut is made in another lobe of the liver. The bleeding surfaces of the wounds are sponged dry and the hemostatic agent containing concentrated isolated purified fibrinogen, chitosan and platelets is applied by spray. The fibrinogen/chitosan/platelet adhesive forms a fibrinogen/chitosan clot on contact with the bleeding liver surface and fast hemostatic process begins. A complete hemostasis is attained within 2 minutes.
EXAMPLE 6 Hemostatic Properties of the Fibrinogen/Chitosan Containing Hemostatic Agent on Arterial Incision
This example illustrates the adhesive effect of the fibrinogen/chitosan containing hemostatic adhesive agent on an arterial incision.
The hemostatic agent is obtained from 30 ml of rat blood as described in Examples 1 and 2.
A 250 g rat is anesthetized. An incision is made over the femoral artery. The femoral artery is exposed and cleared. The blood flow through the artery is stopped by pressure on the proximal portion of the artery. The artery is cut and divided cleanly horizontally with a scalpel blade and excess blood is sponged dry. The divided artery is held together with forceps and the hemostatic agent is applied. The pressure on the proximal artery is maintained for 2-5 minutes. The hemostatic agents form a clot along the cut surface of the artery and bleeding decreases until it stops. After the compression of the blood flow is relieved, hemostasis is completely maintained with 4-5 minutes. The incision does not reopen.
EXAMPLE 7 Laparoscopically Applied Fibrinogen/Chitosan Adhesive Agent in Liver Trauma
This example illustrates the use of isolated purified fibrinogen/chitosan-containing hemostatic adhesive on liver trauma in domestic swine.
Three domestic swine are anesthetized using intravenous (IV) thiamylal sodium (16.0 mg/kg) and inhaled halothane. Laparoscope is introduced into the peritoneal cavity under sterile conditions. Heparin is administered to create maximal bleeding from the liver laceration. Laceration in the liver lobe about 3 cm long and 2 cm deep is made to induce bleeding from this injury.
About 3 ml of fibrinogen/chitosan/exogenous autologous platelets are administered through the laparoscope to the site of the liver laceration. The extent of bleeding is followed. Bleeding ceases very quickly, typically in 1-4 minutes, in every case.
EXAMPLE 8 Hemostatic Effect of the Adhesive Agent on Liver Injury in Humans
This example illustrates the adhesive effect of the autologous hemostatic agent prepared from the fibrinogen obtained from plasma of the patient's own blood in combination with chitosan.
Patient suffers from ruptured liver. Blood is drawn and autologous concentrated fibrinogen is prepared as described in Example 1. The fibrinogen obtained from about 100 ml of the whole blood is mixed with about 0.3 g chitosan. Upon laparoscopy, the bleeding liver wound is covered with the adhesive fibrinogen/chitosan agent and platelets obtained from the whole blood are applied over the bleeding rupture to stop bleeding. Bleeding is stopped within several minutes. The patient is monitored for internal bleeding but such bleeding does not occur.
EXAMPLE 9 Hemostatic Effect of Combination of Fibrinogen with Chitosan In Situ
This example illustrates the hemostatic effect of combination of isolated purified fibrinogen with chitosan in situ in a human following the bleeding from a ruptured spleen.
Patient suffers from ruptured spleen. Venous blood is drawn and autologous fibrinogen and platelets are prepared from plasma according to Example 1, and separated. The purity of isolated fibrinogen is determined by dissolving the fibrinogen precipitate in 4 ml of plasma. Chitosan (0.3 g) is dissolved in 1 ml of plasma. Peritoneal cavity is opened, the bleeding is temporarily stopped by compression, the chitosan plasma solution is applied over the bleeding surface of the spleen followed by spraying of the fibrinogen plasma solution. Autologous platelets are added in situ to stop the bleeding. Bleeding slows down and stops in about 25-30 minutes.
EXAMPLE 10 Fibrinogen/Chitosan Containing Agent for Sealing of the Common Bile Duct
This example illustrates the sealing ability of the fibrinogen/chitosan-containing adhesive of the invention during and post biliary tract surgery in higher mammals.
Dogs are subjected to the common bile duct surgery. Fibrinogen (2.5 ml) is prepared from their blood according to Examples 1 and 2, and mixed with 0.03 g chitosan, as described. Chitosan is applied over the surgery incision while both sides of the suture are held together. Fibrinogen is added immediately followed by addition of platelets. Platelets are applied to the place of the incision, bleeding and leaking of the bile. Sealing of the bile duct as well as cessation of bleeding is achieved within 8 minutes.
EXAMPLE 11 Use of the Autologous Fibrinogen/Chitosan Agent to Control Pulmonary Leak
This example illustrates the use of the fibrinogen/chitosan adhesive as the measure for control of lung air leaks.
Patient has an obstructive disease due to a lung tumor. After the tumor is removed, the patient has an air leak. The site of the air leak is identified by using bronchoscope. Patient's blood is used to prepare the fibrinogen and chitosan containing adhesive agent according to Examples 1 and 2. For this particular problem, fibrinogen and chitosan (0.15 g/ml) are prepared in more dilute solution 1 ml of fibrinogen and 0.15 g of chitosan are dissolved in 5 ml of plasma. A catheter is placed as close as possible to the site of the leak and the solution is injected through the catheter. Adhesive properties of chitosan in combination with fibrinogen are able to seal the leak without forming an extensive coagulation plug.
The air leak is blocked and sealed by the adhesive within 5-10 minutes. After that time no air leak is detected.

Claims (15)

What is claimed is:
1. An improved hemostatic adhesive agent consisting essentially of a mixture of fibrinogen isolated from plasma and purified of other plasma proteins and a biocompatible chitosan polymer,
wherein a ratio of the chitosan polymer to the isolated and purified fibrinogen is from about 0.1:10% to about 90:99.9%, w/w, and
wherein said fibrinogen is separated from other plasma proteins by precipitation with ammonium sulfate solution having concentration of about 65-73 g per 100 ml, said precipitation comprising the addition of about 10 ml of said ammonium sulfate solution to about 40 ml of plasma continuously in increments from about 0.50 to about 0.62 ml per minute for about 15-20 minutes.
2. A method for attaining hemostasis by administering to a site of injury a hemostatic agent consisting essentially of a mixture of fibrinogen isolated from plasma and purified of other plasma proteins and a biocompatible chitosan polymer,
wherein a ratio of the chitosan polymer to the isolated and purified fibrinogen is from about 0.1:10% to about 90:99.9%, w/w, and
wherein said fibrinogen is separated from other plasma proteins by precipitation with ammonium sulfate solution having concentration of about 65-73 g per 100 ml, said precipitation comprising the addition of about 10 ml of said ammonium sulfate solution to about 40 ml of plasma continuously in increments from about 0.5 to about 0.62 ml per minute for about 15-20 minutes.
3. The agent of claim 1 wherein the chitosan polymer is anionic or cationic.
4. The agent of claim 3 wherein ammonium sulphate solution is added in increments of no more than about 0.58 ml per minute for about 15-20 minutes.
5. The agent of claim 3 wherein ammonium sulphate solution is added in increments lower than 0.58 ml per minute for about 17 minutes.
6. The agent of claim 5 wherein the concentration of ammonium sulphate in the plasma during precipitation of fibrinogen does not at any time exceed 25%.
7. The agent of claim 6 wherein a ratio of chitosan to fibrinogen is from about 10% to about 90, w/w.
8. The agent of claim 7 wherein the fibrinogen is isolated from plasma obtained from the whole autologous blood.
9. The agent of claim 8 additionally containing platelets separated from autologous plasma said platelets added to said agent at a site of bleeding.
10. The agent of claim 8 administered to a site of bleeding.
11. The agent of claim 10 administered to the site of bleeding as an admixture of chitosan and fibrinogen.
12. The agent of claim 3 wherein the polymer is chitosan cationic.
13. The agent of claim 12 wherein the chitosan polymer is added in the amount from about 1% to about 10%.
14. The method of claim 2 wherein the fibrinogen is autologous.
15. The method of claim 14 wherein autologous platelets are additionally added to the hemostatic.
US08/636,247 1995-01-23 1996-04-23 Fibrinogen/chitosan hemostatic agents Expired - Fee Related US5773033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/636,247 US5773033A (en) 1995-01-23 1996-04-23 Fibrinogen/chitosan hemostatic agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/377,775 US5510102A (en) 1995-01-23 1995-01-23 Plasma and polymer containing surgical hemostatic adhesives
US08/636,247 US5773033A (en) 1995-01-23 1996-04-23 Fibrinogen/chitosan hemostatic agents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/377,775 Continuation-In-Part US5510102A (en) 1995-01-23 1995-01-23 Plasma and polymer containing surgical hemostatic adhesives

Publications (1)

Publication Number Publication Date
US5773033A true US5773033A (en) 1998-06-30

Family

ID=23490483

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/377,775 Expired - Lifetime US5510102A (en) 1995-01-23 1995-01-23 Plasma and polymer containing surgical hemostatic adhesives
US08/636,247 Expired - Fee Related US5773033A (en) 1995-01-23 1996-04-23 Fibrinogen/chitosan hemostatic agents

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/377,775 Expired - Lifetime US5510102A (en) 1995-01-23 1995-01-23 Plasma and polymer containing surgical hemostatic adhesives

Country Status (2)

Country Link
US (2) US5510102A (en)
WO (1) WO1996023039A1 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025782A2 (en) * 1997-11-17 1999-05-27 Haemacure Corporation Fibrin sealants or adhesives comprising a hyaluronic acid derivative material
WO2002000272A2 (en) * 2000-06-29 2002-01-03 Biosyntech Canada Inc. Composition and method for the repair and regeneration of cartilage and other tissues
US6500807B1 (en) 1999-02-02 2002-12-31 Safescience, Inc. Modified pectin and nucleic acid composition
US6518031B2 (en) 1998-12-01 2003-02-11 Nabi Hapten-carrier conjugates for treating and preventing nicotine addiction
US6568398B2 (en) 2001-03-07 2003-05-27 Edgar C. Cohen Method for hemostasis
US20030175327A1 (en) * 2001-12-31 2003-09-18 Cochrum Kent C. Hemostatic compositions and methods for controlling bleeding
US20030199615A1 (en) * 1999-12-09 2003-10-23 Cyril Chaput Mineral-polymer hybrid composition
US20040091540A1 (en) * 2000-11-15 2004-05-13 Desrosiers Eric Andre Method for restoring a damaged or degenerated intervertebral disc
US20040208786A1 (en) * 2003-01-27 2004-10-21 Kevy Sherwin V. Autologous coagulant produced from anticoagulated whole blood
WO2004110520A3 (en) * 2003-06-12 2005-05-06 Sub Q Inc Improved system and method for facilitating hemostatis with an absorbable sponge
EP1568709A2 (en) 2004-02-24 2005-08-31 ZLB Behring GmbH Purification of fibrinogen
US20050226916A1 (en) * 1998-11-12 2005-10-13 Cochrum Kent C Hemostatic polymer useful for RAPID blood coagulation and hemostasis
US20050240225A1 (en) * 2004-04-22 2005-10-27 Reinhold Schmieding Accelerated healing with intraoperative combination of suture and autogenous blood components
US20060127873A1 (en) * 2002-07-16 2006-06-15 Caroline Hoemann Composition for cytocompatible, injectable, self-gelling chitosan solutions for encapsulating and delivering live cells or biologically active factors
US20070110788A1 (en) * 2005-11-14 2007-05-17 Hissong James B Injectable formulation capable of forming a drug-releasing device
US20070248653A1 (en) * 2006-04-20 2007-10-25 Cochrum Kent C Hemostatic compositions and methods for controlling bleeding
WO2007121748A2 (en) * 2006-04-20 2007-11-01 Vivolution A/S Improved fibrin sealant composition and its use
US20070264245A1 (en) * 2002-04-13 2007-11-15 Allan Mishra Compositions and minimally invasive methods for treating incomplete tissue repair
US20080195037A1 (en) * 2007-02-08 2008-08-14 James Britton Hissong Film forming polymeric sealant for medical use
US20080207561A1 (en) * 2007-01-31 2008-08-28 Utecht Ronald E Novel biomaterials and a method for making and using same
US20080248085A1 (en) * 2002-04-13 2008-10-09 Bioparadox, Llc Method of tissue vascularization
US20090149421A1 (en) * 2005-11-04 2009-06-11 Bio Syntech Canada Inc. Gel formation of polyelectrolyte aqueous solutions by thermally induced changes in ionization state
US20090258086A1 (en) * 2006-05-10 2009-10-15 Medtronic Xomed, Inc. Biofilm extracellular polysaccharide solvating system
US20090264921A1 (en) * 2008-04-16 2009-10-22 Dalim Biotech Co., Ltd. Adhesive hemostatic agent based on porcine atelocollagen and method for production thereof
CN100562322C (en) * 2005-08-11 2009-11-25 中国科学院过程工程研究所 Colon targeting preparation of a kind of 5-aminosalicylic acid and preparation method thereof
US7628780B2 (en) * 2001-01-13 2009-12-08 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20100021545A1 (en) * 1999-12-09 2010-01-28 Biosyntech Canada Inc. Injectable in situ self-forming mineral-polymer hybrid composition and uses thereof
US20100028434A1 (en) * 1999-11-15 2010-02-04 Bio Syntech Canada, Inc. Temperature controlled and pH dependent self gelling biopolymeric aqueous solution
US20100092444A1 (en) * 2008-10-09 2010-04-15 Bioparadox, Llc Platelet rich plasma formulations for cardiac treatments
US20100112081A1 (en) * 2008-10-07 2010-05-06 Bioparadox, Llc Use of platelet rich plasma composition in the treatment of cardiac conduction abnormalities
US7740623B2 (en) 2001-01-13 2010-06-22 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20110014290A1 (en) * 1995-09-15 2011-01-20 Boston Scientific Scimed, Inc. System and method for facilitating hemostasis with an absorbable sponge
WO2012089222A2 (en) 2010-12-29 2012-07-05 Tartu Ülikool (University Of Tartu) A durable haemostatic scaffold
US8273072B2 (en) 2003-01-14 2012-09-25 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US8387798B1 (en) 2012-04-27 2013-03-05 Abdulmohsen E. A. H. Al-Terki Mutiple oral and nasal surgical procedures method and kit
US8691288B2 (en) 2006-05-10 2014-04-08 Medtronic, Inc. Gallium-containing sealant for medical use
US8784790B2 (en) 2008-06-12 2014-07-22 Medtronic Xomed, Inc. Method for treating chronic wounds with an extracellular polymeric substance solvating system
US9248160B1 (en) 2015-07-28 2016-02-02 Zo Skin Health, Inc. Post-procedure skin care systems, compositions, and methods of use thereof
US20160175477A9 (en) * 2008-04-11 2016-06-23 Virginia Commonwealth University Electrospun dextran fibers and devices formed therefrom
US9433699B2 (en) 2011-11-21 2016-09-06 Innotherapy Inc. Hydrogel comprising catechol group-coupled chitosan or polyamine and poloxamer comprising thiol group coupled to end thereof, preparation method thereof, and hemostat using same
KR20170004894A (en) 2015-07-03 2017-01-11 압젠 주식회사 An adhesive hemostatic agent
US9561300B2 (en) 2011-09-26 2017-02-07 Yes, Inc. Hemostatic compositions and dressings for bleeding
US20170232141A1 (en) * 2013-03-15 2017-08-17 Cook Medical Technologies Llc Bimodal treatment methods and compositions for gastrointestinal lesions with active bleeding
US10022083B2 (en) 2011-06-02 2018-07-17 Abdulmohsen E. A. H. Al-Terki Multiple oral and nasal surgical procedures method and kit
WO2018231089A1 (en) * 2017-06-16 2018-12-20 Борис Славинович ФАРБЕР Biologically active combinatorial polysaccharide derivatives
US10214727B2 (en) 2013-06-04 2019-02-26 Allan Mishra Platelet-rich plasma compositions and methods of preparation
KR20190062170A (en) 2017-11-28 2019-06-05 (주)다림티센 Hemostatic agent and container containing the same
WO2019107887A2 (en) 2017-11-28 2019-06-06 (주)다림티센 Composition for hemostasis and container comprising same
KR102093839B1 (en) 2019-05-28 2020-05-04 (주)다림티센 Hemostatic agent and container containing the same
US10815293B2 (en) 2016-01-12 2020-10-27 Green Cross Holdings Corporation Method for purifying fibrinogen
US10828387B2 (en) 2015-11-12 2020-11-10 St. Teresa Medical, Inc. Method of sealing a durotomy
US10953128B2 (en) 2017-11-02 2021-03-23 St. Teresa Medical, Inc. Fibrin sealant products
US11344507B2 (en) 2019-01-08 2022-05-31 Alumend, Llc Topical compositions containing low molecular weight chitosan derivatives

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK83092D0 (en) * 1992-06-24 1992-06-24 Unes As PROCEDURE FOR THE EXTRACTION OF THROMBIN
CN1091315A (en) * 1992-10-08 1994-08-31 E·R·斯奎布父子公司 Fibrin sealant compositions and using method thereof
US5795780A (en) * 1993-06-23 1998-08-18 Bristol-Myers Squibb Company Method of use of autologous thrombin blood fraction in a cell culture with keratinocytes
US6743783B1 (en) * 1993-12-01 2004-06-01 Marine Polymer Technologies, Inc. Pharmaceutical compositions comprising poly-β-1→4-N-acetylglucosamine
US5858350A (en) 1993-12-01 1999-01-12 Marine Polymer Technologies Methods and compositions for poly-β-1→4-N-acetylglucosamine cell therapy system
EP0759762A4 (en) * 1994-05-02 1999-09-01 Squibb & Sons Inc Recombinant fibrin chains, fibrin and fibrin-homologs
US7169547B2 (en) 1994-12-05 2007-01-30 New York Blood Center, Inc. High concentration white blood cells as a therapeutic product
US5585007A (en) 1994-12-07 1996-12-17 Plasmaseal Corporation Plasma concentrate and tissue sealant methods and apparatuses for making concentrated plasma and/or tissue sealant
US5510102A (en) * 1995-01-23 1996-04-23 The Regents Of The University Of California Plasma and polymer containing surgical hemostatic adhesives
US5614204A (en) * 1995-01-23 1997-03-25 The Regents Of The University Of California Angiographic vascular occlusion agents and a method for hemostatic occlusion
JPH11507697A (en) * 1995-06-09 1999-07-06 エヌ. ドロハン,ウィリアム Chitin hydrogels, their preparation and use
US5855613A (en) * 1995-10-13 1999-01-05 Islet Sheet Medical, Inc. Retrievable bioartificial implants having dimensions allowing rapid diffusion of oxygen and rapid biological response to physiological change
US5814022A (en) * 1996-02-06 1998-09-29 Plasmaseal Llc Method and apparatus for applying tissue sealant
DE19781869T1 (en) * 1996-04-30 2000-03-16 Medtronic Inc Process for the production of an autologous fibrin hemostatic agent
WO2000062828A1 (en) 1996-04-30 2000-10-26 Medtronic, Inc. Autologous fibrin sealant and method for making the same
DE19781869B4 (en) * 1996-04-30 2006-10-12 Medtronic, Inc., Minneapolis Production of fibrin sealants - e.g. by mixing platelet rich blood plasma with recombinant thromboplastin.
WO1998036705A1 (en) * 1997-02-20 1998-08-27 Keller Gregory S Augmentation and repair of dermal, subcutaneous, and vocal cord tissue defects
US7767452B2 (en) * 1997-02-20 2010-08-03 Kleinsek Don A Tissue treatments with adipocyte cells
US5885551A (en) * 1997-08-01 1999-03-23 Smetana; Alfred J. Treatment for dentinal hypersensitivity
US6168788B1 (en) 1997-09-26 2001-01-02 Leon Wortham Fibrin glue without fibrinogen and biosealant compositions and methods
JP2001520198A (en) * 1997-10-17 2001-10-30 ハーベスト・テクノロジーズ・コーポレイション Preparation of growth factor-enriched fibrinogen concentrate from platelet-rich plasma
US6482223B1 (en) 1997-12-16 2002-11-19 Closys Corporation Clotting cascade initiating apparatus and methods of use
US6478808B2 (en) 1997-12-17 2002-11-12 Closys Corporation Clotting cascade initiating apparatus and methods of use and methods of closing wounds
US6159232A (en) * 1997-12-16 2000-12-12 Closys Corporation Clotting cascade initiating apparatus and methods of use and methods of closing wounds
GB2342046B (en) * 1998-06-22 2004-02-18 Autologous Wound Therapy Inc Application for utility patent for improved enriched platelet wound healant
US6524568B2 (en) * 1998-06-22 2003-02-25 Cytomedix, Inc. Enriched platelet wound healant
US6083383A (en) * 1998-06-25 2000-07-04 Huang; Xun Yang Apparatus for production of fibrin ogen or fibrin glue
US6274090B1 (en) 1998-08-05 2001-08-14 Thermogenesis Corp. Apparatus and method of preparation of stable, long term thrombin from plasma and thrombin formed thereby
US20030069601A1 (en) * 1998-12-15 2003-04-10 Closys Corporation Clotting cascade initiating apparatus and methods of use
US6645947B1 (en) 1999-05-20 2003-11-11 Chitogenics, Inc. Adhesive N, O-carboxymethylchitosan coatings which inhibit attachment of substrate-dependent cells and proteins
US6472162B1 (en) * 1999-06-04 2002-10-29 Thermogenesis Corp. Method for preparing thrombin for use in a biological glue
EP1263931A4 (en) * 1999-11-05 2009-07-15 Gerigene Medical Corp Augmentation and repair of age-related soft tissue defects
US20090074729A2 (en) * 1999-11-05 2009-03-19 Donald Kleinsek Augmentation and repair of spincter defects with cells including fibroblasts
US20080267923A2 (en) * 1999-11-05 2008-10-30 Donald Kleinsek Hair undifferentiated cells
US20080286242A2 (en) * 1999-11-05 2008-11-20 Donald Kleinsek Augmentation and repair of spincter defects with cells including mesenchymal cells
US7799325B2 (en) * 1999-11-05 2010-09-21 Kleinsek Donald A Removal of hypertrophic scars
DE19960490A1 (en) * 1999-12-15 2001-07-12 Curasan Ag Regenerating agent
DE19960504A1 (en) * 1999-12-15 2001-08-16 Curasan Ag Regenerating agent
GB0005743D0 (en) * 2000-03-10 2000-05-03 Reckitt & Colmann Prod Ltd Pharmaceutical compositions including alginates
EP1155706A1 (en) 2000-05-19 2001-11-21 Xun Yang Huang Apparatus for production of fibrin glue and its medical application
US20020031508A1 (en) * 2000-05-19 2002-03-14 Wagner Denisa D. Methods for diagnosing and treating hemostatic disorders by modulating P-selectin activity
US20090130066A1 (en) * 2000-11-06 2009-05-21 Gerigene Medical Corporation Augmentation and repair of sphincter defects with cells including muscle cells
US7041657B2 (en) * 2001-02-12 2006-05-09 Marine Polymer Technologies Inc. Compositions and methods for modulation of vascular structure and/or function
US6942880B1 (en) * 2001-04-09 2005-09-13 Medtronic, Inc. Autologous platelet gel having beneficial geometric shapes and methods of making the same
US20030152639A1 (en) * 2001-07-03 2003-08-14 Calvin Britton Novel wound healing composition not containing bovine-derived activating reagents
US20030093119A1 (en) * 2001-09-27 2003-05-15 Chunfeng Zhao Eyelet reinforcement at the tissue-suture interface
US20030093114A1 (en) * 2001-11-13 2003-05-15 Melvin Levinson Method for effecting hemostasis
US7832566B2 (en) 2002-05-24 2010-11-16 Biomet Biologics, Llc Method and apparatus for separating and concentrating a component from a multi-component material including macroparticles
US7992725B2 (en) 2002-05-03 2011-08-09 Biomet Biologics, Llc Buoy suspension fractionation system
US7374678B2 (en) * 2002-05-24 2008-05-20 Biomet Biologics, Inc. Apparatus and method for separating and concentrating fluids containing multiple components
US20030205538A1 (en) 2002-05-03 2003-11-06 Randel Dorian Methods and apparatus for isolating platelets from blood
DE10392686T5 (en) 2002-05-24 2005-07-07 Biomet Mfg. Corp., Warsaw Apparatus and method for separating and concentrating liquids containing multiple components
US7845499B2 (en) 2002-05-24 2010-12-07 Biomet Biologics, Llc Apparatus and method for separating and concentrating fluids containing multiple components
US20060278588A1 (en) 2002-05-24 2006-12-14 Woodell-May Jennifer E Apparatus and method for separating and concentrating fluids containing multiple components
BRPI0312331A2 (en) * 2002-07-03 2016-06-28 Pericor Science Inc hyaluronic acid compositions and methods of use.
US7265097B2 (en) * 2002-08-20 2007-09-04 Chitogenics, Inc. Methods of drug delivery using sulphated chitinous polymers
CA2511807A1 (en) * 2002-12-31 2004-07-22 Marine Polymer Technologies, Inc. Hemostatic compositions and uses therefor
WO2004076637A2 (en) 2003-02-24 2004-09-10 Marine Polymer Technologies, Inc. Cell-polymer fiber compositions and use thereof
TW200505394A (en) * 2003-06-06 2005-02-16 Asahi Medical Co Material promoting wound healing
NZ546204A (en) * 2003-09-12 2009-12-24 Marinepolymer Tech Inc Vascular access preservation in haemodialysis patients
WO2005065242A2 (en) * 2003-12-29 2005-07-21 Am Biosolutions Method of treating cancer using platelet releasate
WO2005065419A2 (en) * 2003-12-29 2005-07-21 Am Biosolutions Method of culturing cells
WO2005065269A2 (en) * 2003-12-29 2005-07-21 Am Biosolutions Compositions and method for decreasing the appearance of skin wrinkles
US7462268B2 (en) 2004-08-20 2008-12-09 Allan Mishra Particle/cell separation device and compositions
US7866485B2 (en) 2005-02-07 2011-01-11 Hanuman, Llc Apparatus and method for preparing platelet rich plasma and concentrates thereof
WO2006086199A1 (en) * 2005-02-07 2006-08-17 Hanuman Llc Platelet rich plasma concentrate apparatus and method
EP1848474B1 (en) 2005-02-07 2013-06-12 Hanuman LLC Platelet rich plasma concentrate apparatus and method
US7766900B2 (en) * 2005-02-21 2010-08-03 Biomet Manufacturing Corp. Method and apparatus for application of a fluid
US20070065415A1 (en) * 2005-09-16 2007-03-22 Kleinsek Donald A Compositions and methods for the augmentation and repair of defects in tissue
US20070140992A1 (en) * 2005-12-21 2007-06-21 Lynn Schick Taste masking of essential oils using a hydrocolloid
ES2262444B1 (en) * 2006-03-01 2007-12-16 Universidad De Leon USE OF PLASMA RICH IN PLATES FOR THE PREPARATION OF A MEDICINAL PRODUCT TO COMBAT FRIBROSIS.
US9096839B2 (en) * 2006-04-26 2015-08-04 Arteriocyte Medical Systems, Inc. Compositions and methods of preparation thereof
US8567609B2 (en) 2006-05-25 2013-10-29 Biomet Biologics, Llc Apparatus and method for separating and concentrating fluids containing multiple components
US8430813B2 (en) * 2006-05-26 2013-04-30 Depuy Spine, Inc. Illuminated surgical access system including a surgical access device and integrated light emitter
WO2007142704A2 (en) 2006-06-02 2007-12-13 Hawaii Chitopure, Inc. Chitosan-derivative compounds and methods of controlling microbial populations
US20080045964A1 (en) 2006-08-16 2008-02-21 Allan Mishra Device for cartilage repair
US20080248508A1 (en) * 2006-08-17 2008-10-09 Shenda Baker Methods of making a chitosan product having an ultra-low endotoxin concentration and the ultra-low endotoxin chitosan product derived therefrom and method of accurately determining inflammatory and anti-inflammatory cellular response to such materials
EP2094283A4 (en) * 2006-11-30 2010-09-01 Biosyntech Canada Inc Method for in situ solidification of blood-polymer compositions for regenerative medicine and cartilage repair applications
DK2121048T3 (en) 2007-02-19 2015-11-23 Marinepolymer Tech Inc Hemostatic compositions and therapeutic regimens
EP2146794B1 (en) 2007-04-12 2016-10-19 Biomet Biologics, LLC Buoy suspension fractionation system
US8328024B2 (en) 2007-04-12 2012-12-11 Hanuman, Llc Buoy suspension fractionation system
EP2620139B1 (en) 2008-02-27 2016-07-20 Biomet Biologics, LLC Interleukin-1 receptor antagonist rich solutions
US8337711B2 (en) 2008-02-29 2012-12-25 Biomet Biologics, Llc System and process for separating a material
US8182769B2 (en) 2008-04-04 2012-05-22 Biomet Biologics, Llc Clean transportation system
US8518272B2 (en) * 2008-04-04 2013-08-27 Biomet Biologics, Llc Sterile blood separating system
US8012077B2 (en) * 2008-05-23 2011-09-06 Biomet Biologics, Llc Blood separating device
EP3470093B1 (en) 2008-10-06 2020-08-19 3-D Matrix Ltd. Tissue plug
US8187475B2 (en) 2009-03-06 2012-05-29 Biomet Biologics, Llc Method and apparatus for producing autologous thrombin
US20100233282A1 (en) * 2009-03-13 2010-09-16 Allan Mishra Device and methods for delivery of bioactive materials to the right side of the heart
US9244060B2 (en) * 2009-03-26 2016-01-26 Warsaw Orthopedic, Inc. Site localization and methods for monitoring treatment of disturbed blood vessels
US8858924B2 (en) * 2009-03-26 2014-10-14 Warsaw Orthopedic, Inc. Compositions and methods for treatment of hemorrhage
US8313954B2 (en) 2009-04-03 2012-11-20 Biomet Biologics, Llc All-in-one means of separating blood components
US9011800B2 (en) 2009-07-16 2015-04-21 Biomet Biologics, Llc Method and apparatus for separating biological materials
WO2011028733A1 (en) 2009-09-04 2011-03-10 Allan Mishra Compositions and minimally invasive methods for treating cancer
ES2691723T3 (en) * 2009-11-19 2018-11-28 Ortho Regenerative Technologies Inc. Formulations of soluble physiological chitosan combined with platelet rich plasma (PRP) for tissue repair
US8591391B2 (en) 2010-04-12 2013-11-26 Biomet Biologics, Llc Method and apparatus for separating a material
WO2011130646A1 (en) 2010-04-15 2011-10-20 Marine Polymer Technologies, Inc. Anti-bacterial applications of poly -n-acetylglucosamine nanofibers
US10231721B2 (en) 2010-06-24 2019-03-19 St. Croix Surgical Systems, Llc Failsafe percutaneous wound barrier
US9555171B2 (en) 2010-09-30 2017-01-31 Depuy Mitek, Llc Methods and devices for collecting separate components of whole blood
CN103648279B (en) 2011-04-15 2017-05-24 海洋聚合物技术公司 Treatment of disease with poly-n-acety glucosamine nanofibers
WO2013111130A1 (en) 2012-01-23 2013-08-01 Estar Technologies Ltd A system and method for obtaining a cellular sample enriched with defined cells such as platelet rich plasma(prp)
EP3466964A1 (en) 2012-07-06 2019-04-10 3-D Matrix Ltd. Fill-finish process for peptide solutions
US9642956B2 (en) 2012-08-27 2017-05-09 Biomet Biologics, Llc Apparatus and method for separating and concentrating fluids containing multiple components
US9950035B2 (en) 2013-03-15 2018-04-24 Biomet Biologics, Llc Methods and non-immunogenic compositions for treating inflammatory disorders
US10208095B2 (en) 2013-03-15 2019-02-19 Biomet Manufacturing, Llc Methods for making cytokine compositions from tissues using non-centrifugal methods
US10143725B2 (en) 2013-03-15 2018-12-04 Biomet Biologics, Llc Treatment of pain using protein solutions
US9895418B2 (en) 2013-03-15 2018-02-20 Biomet Biologics, Llc Treatment of peripheral vascular disease using protein solutions
US20140271589A1 (en) 2013-03-15 2014-09-18 Biomet Biologics, Llc Treatment of collagen defects using protein solutions
US9757547B2 (en) * 2013-05-03 2017-09-12 Park City Bio, LLC Lysine delivery systems for blood coagulation
EP3116551B1 (en) 2014-03-10 2022-09-07 3-D Matrix Ltd. Sterilization of peptide compositions
BR112016020584A2 (en) 2014-03-10 2017-10-03 3 D Matrix Ltd SELF-ORGANIZABLE PEPTIDE COMPOSITIONS
WO2015138478A1 (en) 2014-03-10 2015-09-17 3-D Matrix, Ltd. Autoassembling peptides for the treatment of pulmonary bulla
GB201421013D0 (en) * 2014-11-26 2015-01-07 Turzi Antoine New standardizations & medical devices for the preparation of platelet rich plasma (PRP) or bone marrow centrate (BMC)
US9713810B2 (en) 2015-03-30 2017-07-25 Biomet Biologics, Llc Cell washing plunger using centrifugal force
US9757721B2 (en) 2015-05-11 2017-09-12 Biomet Biologics, Llc Cell washing plunger using centrifugal force
US10660945B2 (en) 2015-08-07 2020-05-26 Victor Matthew Phillips Flowable hemostatic gel composition and its methods of use
US10751444B2 (en) 2015-08-07 2020-08-25 Victor Matthew Phillips Flowable hemostatic gel composition and its methods of use
US10814038B2 (en) 2016-01-06 2020-10-27 3-D Matrix, Ltd. Combination compositions
EP3723726A1 (en) 2017-12-15 2020-10-21 3-D Matrix, Ltd. Surfactant peptide nanostructures and uses in drug delivery
CA3127191A1 (en) 2019-01-21 2020-07-30 Eclipse Medcorp, Llc Methods, systems and apparatus for separating components of a biological sample
CN115779136B (en) * 2022-12-15 2024-04-12 湖南中腾湘岳生物科技有限公司 Medical hemostatic material and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394373A (en) * 1981-04-06 1983-07-19 Malette William Graham Method of achieving hemostasis
US4427650A (en) * 1981-06-25 1984-01-24 Serapharm Michael Stroetmann Enriched plasma derivative for advancement of wound closure and healing
US4744933A (en) * 1984-02-15 1988-05-17 Massachusetts Institute Of Technology Process for encapsulation and encapsulated active material system
US4749620A (en) * 1984-02-15 1988-06-07 Massachusetts Institute Of Technology Encapsulated active material system
US4853220A (en) * 1985-06-11 1989-08-01 Nederlandse Centrale Organisatie Voor Toegerastnatuurwete Nschappelijk Onderzoek Protein isolated from blood, process for preparing said protein, aantibodies against said new protein, and pharmaceutical compositions containing said protein or said antibodies
US5226877A (en) * 1989-06-23 1993-07-13 Epstein Gordon H Method and apparatus for preparing fibrinogen adhesive from whole blood
US5292362A (en) * 1990-07-27 1994-03-08 The Trustees Of Columbia University In The City Of New York Tissue bonding and sealing composition and method of using the same
US5510102A (en) * 1995-01-23 1996-04-23 The Regents Of The University Of California Plasma and polymer containing surgical hemostatic adhesives

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373519A (en) * 1981-06-26 1983-02-15 Minnesota Mining And Manufacturing Company Composite wound dressing
ATE18995T1 (en) * 1981-09-30 1986-04-15 Leipzig Arzneimittel ABSORBENT WOUND DRESSING AND METHOD OF PRODUCTION.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394373A (en) * 1981-04-06 1983-07-19 Malette William Graham Method of achieving hemostasis
US4427650A (en) * 1981-06-25 1984-01-24 Serapharm Michael Stroetmann Enriched plasma derivative for advancement of wound closure and healing
US4744933A (en) * 1984-02-15 1988-05-17 Massachusetts Institute Of Technology Process for encapsulation and encapsulated active material system
US4749620A (en) * 1984-02-15 1988-06-07 Massachusetts Institute Of Technology Encapsulated active material system
US4853220A (en) * 1985-06-11 1989-08-01 Nederlandse Centrale Organisatie Voor Toegerastnatuurwete Nschappelijk Onderzoek Protein isolated from blood, process for preparing said protein, aantibodies against said new protein, and pharmaceutical compositions containing said protein or said antibodies
US5226877A (en) * 1989-06-23 1993-07-13 Epstein Gordon H Method and apparatus for preparing fibrinogen adhesive from whole blood
US5292362A (en) * 1990-07-27 1994-03-08 The Trustees Of Columbia University In The City Of New York Tissue bonding and sealing composition and method of using the same
US5510102A (en) * 1995-01-23 1996-04-23 The Regents Of The University Of California Plasma and polymer containing surgical hemostatic adhesives

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
David M. Harris et al, Autologous Fibrin Tissue Adhesive Biodegradation and Systemic Effects, Laryngoscope 97: 1141 1144, Oct. 1987. *
David M. Harris et al, Autologous Fibrin Tissue Adhesive Biodegradation and Systemic Effects, Laryngoscope 97: 1141-1144, Oct. 1987.
Karl H. Siedentop et al, Autologous Fibrin Tissue Adhesive, Laryngoscope 95: 1074 1076, Sep. 1985. *
Karl H. Siedentop et al, Autologous Fibrin Tissue Adhesive, Laryngoscope 95: 1074-1076, Sep. 1985.
L. H. Durham et al, A Method for Preparation of Fibrin Glue, The Journal of Laryngology and Otology, vol. 101, pp. 1182 1186, Nov. 1987. *
L. H. Durham et al, A Method for Preparation of Fibrin Glue, The Journal of Laryngology and Otology, vol. 101, pp. 1182-1186, Nov. 1987.
Nicolas E. Stathakis et al, Cryoprecipitation of Fibrin Fibrinogen Complexes Induced by the Cold insoluble Globulin of Plasma, Blood, vol. 51, pp. 1211 1222, No. 6 (Jun.), 1978. *
Nicolas E. Stathakis et al, Cryoprecipitation of Fibrin-Fibrinogen Complexes Induced by the Cold-insoluble Globulin of Plasma, Blood, vol. 51, pp. 1211-1222, No. 6 (Jun.), 1978.

Cited By (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014290A1 (en) * 1995-09-15 2011-01-20 Boston Scientific Scimed, Inc. System and method for facilitating hemostasis with an absorbable sponge
US6699484B2 (en) 1997-11-17 2004-03-02 Haemacure Corporation Fibrin sealants or adhesives comprising a hyaluronic acid derivative material
WO1999025782A3 (en) * 1997-11-17 1999-07-15 Haemacure Corp Fibrin sealants or adhesives comprising a hyaluronic acid derivative material
WO1999025782A2 (en) * 1997-11-17 1999-05-27 Haemacure Corporation Fibrin sealants or adhesives comprising a hyaluronic acid derivative material
US6503527B1 (en) * 1997-11-17 2003-01-07 Haemacure Corporation Fibrin sealants or adhesives comprising a hyaluronic acid derivative material
US20030103961A1 (en) * 1997-11-17 2003-06-05 Haemacure Corporation Fibrin sealants or adhesives comprising a hyaluronic acid derivative material
US20050226916A1 (en) * 1998-11-12 2005-10-13 Cochrum Kent C Hemostatic polymer useful for RAPID blood coagulation and hemostasis
US6518031B2 (en) 1998-12-01 2003-02-11 Nabi Hapten-carrier conjugates for treating and preventing nicotine addiction
US6500807B1 (en) 1999-02-02 2002-12-31 Safescience, Inc. Modified pectin and nucleic acid composition
US8920842B2 (en) 1999-11-15 2014-12-30 Piramal Healthcare (Canada) Ltd. Temperature controlled and pH dependent self gelling biopolymeric aqueous solution
US20100028434A1 (en) * 1999-11-15 2010-02-04 Bio Syntech Canada, Inc. Temperature controlled and pH dependent self gelling biopolymeric aqueous solution
US8389467B2 (en) 1999-12-09 2013-03-05 Piramal Healthcare (Canada) Ltd. In situ self-setting mineral-polymer hybrid materials, composition and use thereof
US20100029549A1 (en) * 1999-12-09 2010-02-04 Biosyntech Canada Inc. Situ self-setting mineral-polymer hybrid materials, composition and use thereof
US20030199615A1 (en) * 1999-12-09 2003-10-23 Cyril Chaput Mineral-polymer hybrid composition
US20100021545A1 (en) * 1999-12-09 2010-01-28 Biosyntech Canada Inc. Injectable in situ self-forming mineral-polymer hybrid composition and uses thereof
US8747899B2 (en) 1999-12-09 2014-06-10 Piramal Healthcare (Canada) Ltd. Injectable in situ self-forming mineral-polymer hybrid composition and uses thereof
KR100880622B1 (en) * 2000-06-29 2009-01-30 바이오신텍 캐나다 인코포레이티드 Composition and method for the repair and regeneration of cartilage and other tissues
WO2002000272A2 (en) * 2000-06-29 2002-01-03 Biosyntech Canada Inc. Composition and method for the repair and regeneration of cartilage and other tissues
JP2004501682A (en) * 2000-06-29 2004-01-22 バイオシンテック カナダ インコーポレーティッド Compositions and methods for cartilage and other tissue repair and regeneration
SG149679A1 (en) * 2000-06-29 2009-02-27 Biosyntech Canada Inc Composition and method for the repair and regeneration of cartilage and other tissues
US8258117B2 (en) 2000-06-29 2012-09-04 Piramal Healthcare (Canada) Ltd Composition and method for the repair and regeneration of cartilage and other tissues
US20060029578A1 (en) * 2000-06-29 2006-02-09 Ecole Polytechnique Composition and method for the repair and regeneration of cartilage and other tissues
CN1471412B8 (en) * 2000-06-29 2016-06-15 生物合成技术加拿大公司 For repairing and regeneration of cartilage and the composition of other tissue and the purposes of said composition
CN1471412B (en) * 2000-06-29 2010-10-20 生物合成技术加拿大公司 Composition for the repair and regeneration of cartilage and other tissues and uses of the composition
US20110086008A1 (en) * 2000-06-29 2011-04-14 Hoemann Caroline D Composition and method for the repair and regeneration of cartilage and other tissues
US7148209B2 (en) 2000-06-29 2006-12-12 Ecole Polytechnique Composition and method for the repair and regeneration of cartilage and other tissues
US20070037737A1 (en) * 2000-06-29 2007-02-15 Hoemann Caroline D Composition and method for the repair and regeneration of cartilage and other tissues
US20020082220A1 (en) * 2000-06-29 2002-06-27 Hoemann Caroline D. Composition and method for the repair and regeneration of cartilage and other tissues
WO2002000272A3 (en) * 2000-06-29 2002-08-08 Biosyntech Canada Inc Composition and method for the repair and regeneration of cartilage and other tissues
US20090030525A1 (en) * 2000-11-15 2009-01-29 Bio Syntech Canada, Inc. Method for restoring a damaged or degenerated intervertebral disc
US20040091540A1 (en) * 2000-11-15 2004-05-13 Desrosiers Eric Andre Method for restoring a damaged or degenerated intervertebral disc
US7740623B2 (en) 2001-01-13 2010-06-22 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US7628780B2 (en) * 2001-01-13 2009-12-08 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US6568398B2 (en) 2001-03-07 2003-05-27 Edgar C. Cohen Method for hemostasis
US7101862B2 (en) 2001-12-31 2006-09-05 Area Laboratories, Llc Hemostatic compositions and methods for controlling bleeding
US20060141018A1 (en) * 2001-12-31 2006-06-29 Crosslink-D, Incorporated, A Delaware Corporation Hemostatic compositions and methods for controlling bleeding
US20030175327A1 (en) * 2001-12-31 2003-09-18 Cochrum Kent C. Hemostatic compositions and methods for controlling bleeding
US8617539B2 (en) 2002-04-13 2013-12-31 Allan Mishra Method of administration of platelet-rich plasma to treat an acute cardiac dysfunction
EP2258379A1 (en) * 2002-04-13 2010-12-08 Allan Mishra Use of platelet rich plasma composition
US20080248083A1 (en) * 2002-04-13 2008-10-09 Bioparadox, Llc Method for treatment of tissue lesion
US20080254093A1 (en) * 2002-04-13 2008-10-16 Bioparadox, Llc Compositions and minimally invasive methods for treating dysfunction of cardiac muscle
US20080248082A1 (en) * 2002-04-13 2008-10-09 Bioparadox, Llc Method of treating injured cardiac tissue
US20080248084A1 (en) * 2002-04-13 2008-10-09 Bioparadox, Llc Method of treating acute dysfunction of cardiac muscle
US20080248085A1 (en) * 2002-04-13 2008-10-09 Bioparadox, Llc Method of tissue vascularization
US9320762B2 (en) 2002-04-13 2016-04-26 Allan Mishra Compositions and minimally invasive methods for treating incomplete tissue repair
US20080248081A1 (en) * 2002-04-13 2008-10-09 Bioparadox, Llc Method of treating chronic dysfunction of cardiac muscle
EP1494535B1 (en) * 2002-04-13 2017-01-18 Allan Mishra Compositions and minimally invasive methods for treating incomplete tissue repair
US20070264245A1 (en) * 2002-04-13 2007-11-15 Allan Mishra Compositions and minimally invasive methods for treating incomplete tissue repair
US8741282B2 (en) 2002-04-13 2014-06-03 Allan Mishra Method for treatment of tendinosis with platelet rich plasma
US8088371B2 (en) 2002-04-13 2012-01-03 Allan Mishra Compositions and minimally invasive methods for treating peripheral vascular disease
US20090202430A1 (en) * 2002-07-16 2009-08-13 Bio Syntech Canada Inc. Composition for cytocompatible, injectable, self-gelling polysaccharide solutions for encapsulating and delivering live cells or biologically active factors
US20060127873A1 (en) * 2002-07-16 2006-06-15 Caroline Hoemann Composition for cytocompatible, injectable, self-gelling chitosan solutions for encapsulating and delivering live cells or biologically active factors
US8273072B2 (en) 2003-01-14 2012-09-25 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20040208786A1 (en) * 2003-01-27 2004-10-21 Kevy Sherwin V. Autologous coagulant produced from anticoagulated whole blood
WO2004110520A3 (en) * 2003-06-12 2005-05-06 Sub Q Inc Improved system and method for facilitating hemostatis with an absorbable sponge
US20070219583A1 (en) * 2003-06-12 2007-09-20 Sing Eduardo C System And Method For Facilitating Hemostatis With An Absorbable Sponge
EP1568709A2 (en) 2004-02-24 2005-08-31 ZLB Behring GmbH Purification of fibrinogen
US20050197493A1 (en) * 2004-02-24 2005-09-08 Hubert Metzner Fibrinogen purification
EP2264069A2 (en) 2004-02-24 2010-12-22 CSL Behring GmbH Purification of fibrinogen
EP2267025A2 (en) 2004-02-24 2010-12-29 CSL Behring GmbH Purification of fibrinogen
US7550567B2 (en) 2004-02-24 2009-06-23 Csl Behring Gmbh Fibrinogen purification
US20050240225A1 (en) * 2004-04-22 2005-10-27 Reinhold Schmieding Accelerated healing with intraoperative combination of suture and autogenous blood components
US7837708B2 (en) * 2004-04-22 2010-11-23 Arthrex, Inc. Accelerated healing with intraoperative combination of suture and autogenous blood components
CN100562322C (en) * 2005-08-11 2009-11-25 中国科学院过程工程研究所 Colon targeting preparation of a kind of 5-aminosalicylic acid and preparation method thereof
US20090149421A1 (en) * 2005-11-04 2009-06-11 Bio Syntech Canada Inc. Gel formation of polyelectrolyte aqueous solutions by thermally induced changes in ionization state
US20070110788A1 (en) * 2005-11-14 2007-05-17 Hissong James B Injectable formulation capable of forming a drug-releasing device
US20070248653A1 (en) * 2006-04-20 2007-10-25 Cochrum Kent C Hemostatic compositions and methods for controlling bleeding
US20090098193A1 (en) * 2006-04-20 2009-04-16 Crosslink-D, A California Corporation Hemostatic compositions and methods for controlling bleeding
WO2007121748A3 (en) * 2006-04-20 2008-05-29 Niels Erik Holm Improved fibrin sealant composition and its use
WO2007121748A2 (en) * 2006-04-20 2007-11-01 Vivolution A/S Improved fibrin sealant composition and its use
US7976875B2 (en) 2006-05-10 2011-07-12 Medtronic Xomed, Inc. Biofilm extracellular polysaccharide solvating system
US20090258086A1 (en) * 2006-05-10 2009-10-15 Medtronic Xomed, Inc. Biofilm extracellular polysaccharide solvating system
US8691288B2 (en) 2006-05-10 2014-04-08 Medtronic, Inc. Gallium-containing sealant for medical use
US9884121B2 (en) 2007-01-31 2018-02-06 Alumend, Llc Biomaterials and a method for making and using same
US8252771B2 (en) 2007-01-31 2012-08-28 Allergan, Inc. Biomaterials and a method for making and using same
US9855337B2 (en) 2007-01-31 2018-01-02 Alumend, Llc Biomaterials and a method for making and using the same
US20080207561A1 (en) * 2007-01-31 2008-08-28 Utecht Ronald E Novel biomaterials and a method for making and using same
EP2425816A2 (en) 2007-01-31 2012-03-07 Allergan, Inc. A pharmaceutical composition for use in treating an ocular disease or condition and a method for producing the composition
US20080195037A1 (en) * 2007-02-08 2008-08-14 James Britton Hissong Film forming polymeric sealant for medical use
US9119896B2 (en) 2007-02-08 2015-09-01 Medtronic Xomed, Inc. Polymeric sealant for medical use
US8088095B2 (en) 2007-02-08 2012-01-03 Medtronic Xomed, Inc. Polymeric sealant for medical use
US10046081B2 (en) * 2008-04-11 2018-08-14 The Henry M Jackson Foundation For The Advancement Of Military Medicine, Inc. Electrospun dextran fibers and devices formed therefrom
US20160175477A9 (en) * 2008-04-11 2016-06-23 Virginia Commonwealth University Electrospun dextran fibers and devices formed therefrom
US8809274B2 (en) 2008-04-16 2014-08-19 Dalim Biotech Co., Ltd. Adhesive hemostatic agent based on porcine atelocollagen and method for production thereof
US20090264921A1 (en) * 2008-04-16 2009-10-22 Dalim Biotech Co., Ltd. Adhesive hemostatic agent based on porcine atelocollagen and method for production thereof
US8067374B2 (en) 2008-04-16 2011-11-29 Dalim Biotech Co., Ltd. Adhesive hemostatic agent based on porcine atelocollagen and method for production thereof
DE102009017015A1 (en) 2008-04-16 2010-02-04 Dalim Biotech Co., Ltd., Hwaseong Porcine atelocollagen-based adhesive hemostatic agent and process for its preparation
US8784790B2 (en) 2008-06-12 2014-07-22 Medtronic Xomed, Inc. Method for treating chronic wounds with an extracellular polymeric substance solvating system
US9700344B2 (en) 2008-06-12 2017-07-11 Medtronic Xomed, Inc. Method for treating chronic wounds with an extracellular polymeric substance solvating system
US20100112081A1 (en) * 2008-10-07 2010-05-06 Bioparadox, Llc Use of platelet rich plasma composition in the treatment of cardiac conduction abnormalities
US9351999B2 (en) 2008-10-07 2016-05-31 Bioparadox, Llc Use of platelet rich plasma composition in the treatment of cardiac conduction abnormalities
US11638548B2 (en) 2008-10-07 2023-05-02 Blue Engine Biologies, LLC Use of platelet rich plasma composition in the treatment of cardiac conduction abnormalities
US8440459B2 (en) 2008-10-09 2013-05-14 Allan Kumar Mishra Platelet rich plasma formulations for cardiac treatments
US8444969B2 (en) 2008-10-09 2013-05-21 Allan Mishra Neutrophil-depleted platelet rich plasma formulations for cardiac treatments
US20100092444A1 (en) * 2008-10-09 2010-04-15 Bioparadox, Llc Platelet rich plasma formulations for cardiac treatments
WO2012089222A2 (en) 2010-12-29 2012-07-05 Tartu Ülikool (University Of Tartu) A durable haemostatic scaffold
WO2012089222A3 (en) * 2010-12-29 2012-08-23 Tartu Ülikool (University Of Tartu) A durable haemostatic scaffold
US10022083B2 (en) 2011-06-02 2018-07-17 Abdulmohsen E. A. H. Al-Terki Multiple oral and nasal surgical procedures method and kit
US10159762B2 (en) 2011-09-26 2018-12-25 Yes, Inc. Hemostatic compositions and dressings for bleeding
US9561300B2 (en) 2011-09-26 2017-02-07 Yes, Inc. Hemostatic compositions and dressings for bleeding
US9433699B2 (en) 2011-11-21 2016-09-06 Innotherapy Inc. Hydrogel comprising catechol group-coupled chitosan or polyamine and poloxamer comprising thiol group coupled to end thereof, preparation method thereof, and hemostat using same
US8387798B1 (en) 2012-04-27 2013-03-05 Abdulmohsen E. A. H. Al-Terki Mutiple oral and nasal surgical procedures method and kit
US11931227B2 (en) * 2013-03-15 2024-03-19 Cook Medical Technologies Llc Bimodal treatment methods and compositions for gastrointestinal lesions with active bleeding
US20170232141A1 (en) * 2013-03-15 2017-08-17 Cook Medical Technologies Llc Bimodal treatment methods and compositions for gastrointestinal lesions with active bleeding
US10214727B2 (en) 2013-06-04 2019-02-26 Allan Mishra Platelet-rich plasma compositions and methods of preparation
KR20170004894A (en) 2015-07-03 2017-01-11 압젠 주식회사 An adhesive hemostatic agent
US9248160B1 (en) 2015-07-28 2016-02-02 Zo Skin Health, Inc. Post-procedure skin care systems, compositions, and methods of use thereof
US10828387B2 (en) 2015-11-12 2020-11-10 St. Teresa Medical, Inc. Method of sealing a durotomy
US10815293B2 (en) 2016-01-12 2020-10-27 Green Cross Holdings Corporation Method for purifying fibrinogen
WO2018231089A1 (en) * 2017-06-16 2018-12-20 Борис Славинович ФАРБЕР Biologically active combinatorial polysaccharide derivatives
US10953128B2 (en) 2017-11-02 2021-03-23 St. Teresa Medical, Inc. Fibrin sealant products
KR20190062170A (en) 2017-11-28 2019-06-05 (주)다림티센 Hemostatic agent and container containing the same
WO2019107887A2 (en) 2017-11-28 2019-06-06 (주)다림티센 Composition for hemostasis and container comprising same
US20210001002A1 (en) * 2017-11-28 2021-01-07 Dalim Tissen Co., Ltd. Composition for hemostasis and container comprising same
US11628236B2 (en) * 2017-11-28 2023-04-18 Dalim Tissen Co., Ltd. Composition for hemostasis and container comprising same
US11344507B2 (en) 2019-01-08 2022-05-31 Alumend, Llc Topical compositions containing low molecular weight chitosan derivatives
KR102093839B1 (en) 2019-05-28 2020-05-04 (주)다림티센 Hemostatic agent and container containing the same
WO2020242231A1 (en) 2019-05-28 2020-12-03 (주) 다림티센 Hemostatic composition and receptacle comprising same

Also Published As

Publication number Publication date
WO1996023039A1 (en) 1996-08-01
US5510102A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
US5773033A (en) Fibrinogen/chitosan hemostatic agents
JP7333425B2 (en) Surgical method using purified amphipathic peptide composition
JP2002524110A (en) Type I and type III collagen hemostatic compositions for use as vascular sealants and wound dressings
JP5801789B2 (en) Biological adhesive without thrombin and its use as a medicament
Toriumi et al. Surgical tissue adhesives in otolaryngology-head and neck surgery
Reiss et al. Autologous fibrin glue: production and clinical use
JPS6340546B2 (en)
US6613325B1 (en) Prevention of post surgical adhesions using a fibrin monomer sealant
JP2668762B2 (en) Improved tissue adhesive produced using cryoprecipitate
US9302026B2 (en) Method for improved fibrin sealing
JPH02129224A (en) Preparation of fibrin
US20100197893A1 (en) Method to produce fibrin monomer in acid media for use as tissue sealant
Mathes et al. Non-suture closure of nephrotomy
US20090011043A1 (en) Tissue sealant made from whole blood
Grimaldi et al. Biotechnological Approaches to Hemostasis and Molecular Mechanisms of Wound Healing
Karmaker et al. Fibrin Glue: Sources, Characteristics and Applications
RU2262937C1 (en) Hemostatic glue
Stemberger et al. Characterization of biomaterials for tissue repair
RU2270016C2 (en) Hemostatic glue
Noelcke et al. Haemostasis in Laparoscopic Surgery and Robotica
CN116585524A (en) Skin flap bonding preparation and preparation method thereof
RU2139686C1 (en) Method of arresting of parenchymatous hemorrhage
Singh et al. and Akshay K. Verma
Lopez et al. Fibrin glue use in surgery

Legal Events

Date Code Title Description
AS Assignment

Owner name: CALIFORNIA, THE REGENTS OF THE UNIVERSITY OF, CALI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COCHRUM, KENT C.;CHIU, MAGGIE M.C.;PARKER, HAROLD R.;REEL/FRAME:008144/0134

Effective date: 19960827

Owner name: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, CALI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COCHRUM, KENT C.;CHIU, MAGGIE M.C.;PARKER, HAROLD R.;REEL/FRAME:008144/0134

Effective date: 19960827

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100630