US5454979A - Fluorosilicone antifoam - Google Patents
Fluorosilicone antifoam Download PDFInfo
- Publication number
- US5454979A US5454979A US08/111,807 US11180793A US5454979A US 5454979 A US5454979 A US 5454979A US 11180793 A US11180793 A US 11180793A US 5454979 A US5454979 A US 5454979A
- Authority
- US
- United States
- Prior art keywords
- sub
- antifoam
- integer
- value
- fluorosilicone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002518 antifoaming agent Substances 0.000 title claims abstract description 70
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 12
- 125000003709 fluoroalkyl group Chemical group 0.000 claims abstract description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 6
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract 6
- 229920002545 silicone oil Polymers 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 17
- 229920001296 polysiloxane Polymers 0.000 abstract description 17
- 238000005187 foaming Methods 0.000 abstract description 13
- 239000003960 organic solvent Substances 0.000 abstract description 12
- 239000004094 surface-active agent Substances 0.000 abstract description 9
- 239000003125 aqueous solvent Substances 0.000 abstract description 6
- 230000002085 persistent effect Effects 0.000 abstract description 4
- 239000003921 oil Substances 0.000 description 39
- 239000000203 mixture Substances 0.000 description 13
- 230000002688 persistence Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000006260 foam Substances 0.000 description 7
- -1 for example Chemical group 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 150000002430 hydrocarbons Chemical group 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000007792 addition Methods 0.000 description 6
- 125000004122 cyclic group Chemical group 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 229910021485 fumed silica Inorganic materials 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000003961 organosilicon compounds Chemical class 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- YZUPZGFPHUVJKC-UHFFFAOYSA-N 1-bromo-2-methoxyethane Chemical compound COCCBr YZUPZGFPHUVJKC-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000003039 volatile agent Substances 0.000 description 2
- SEQRDAAUNCRFIT-UHFFFAOYSA-N 1,1-dichlorobutane Chemical compound CCCC(Cl)Cl SEQRDAAUNCRFIT-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- QMSVNDSDEZTYAS-UHFFFAOYSA-N 1-bromo-1-chloroethane Chemical compound CC(Cl)Br QMSVNDSDEZTYAS-UHFFFAOYSA-N 0.000 description 1
- BPIUIOXAFBGMNB-UHFFFAOYSA-N 1-hexoxyhexane Chemical compound CCCCCCOCCCCCC BPIUIOXAFBGMNB-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 125000005389 trialkylsiloxy group Chemical group 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/02—Foam dispersion or prevention
- B01D19/04—Foam dispersion or prevention by addition of chemical substances
- B01D19/0404—Foam dispersion or prevention by addition of chemical substances characterised by the nature of the chemical substance
- B01D19/0409—Foam dispersion or prevention by addition of chemical substances characterised by the nature of the chemical substance compounds containing Si-atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/08—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
Definitions
- the invention relates to a fluorosilicone antifoam and, more specifically, to a fluorosilicone antifoam that exhibits an excellent and durable antifoam activity on the foaming of aqueous or organic solvent solutions in which a silicone surfactant or fluorosurfactant is dissolved.
- silicone antifoams Compared to nonsilicone antifoams such as alcohols, esters, mineral oils, and synthetic oils, silicone antifoams exhibit a superior antifoam activity at smaller additions and as a result are widely used for defoaming and foam suppression in foaming-prone industrial processes in waste water treatment, dyeing, fermentation, the latex industry, the cement industry, the paint industry, the adhesives industry, the petroleum industry, and so forth.
- These silicone antifoams generally take the form of an oil compound whose base components are principally dimethylpolysiloxane and silica micropowder or an emulsion in which such an oil compound is dispersed in water along with a surfactant.
- Silicone antifoams consisting of silicone oil and hydrophobicized microparticulate silica have also been proposed (Japanese Patent Publication Numbers Hei 4-42042 [42,042/1992] and Hei 4-42043 [42,043/1992]), but this type of silicone antifoam does not develop a satisfactory antifoam activity.
- the inventors achieved the present invention as the result of extensive research directed at solving these drawbacks to the prior art.
- the present invention takes as its object the introduction of an antifoam that exhibits an excellent and persistent antifoam activity on the foaming of aqueous or organic solvent solutions in which a silicone surfactant or fluorosurfactant is dissolved.
- the instant invention relates to a fluorosilicone anti foam that consists of
- a is an integer with a value of at least 4
- n is an integer with a value of 0 to 300
- Me methyl
- R is a monovalent hydrocarbon group
- X is the F(CF 2 ) a C 2 H 4 group or a monovalent hydrocarbon group with the proviso that at least 1 of X is the F(CF 2 ) a C 2 H 4 group
- n is an integer with a value of 1 to 300, and a is an integer with a value of at least 4;
- b is an integer with a value of at least 1 and x is an integer with a value of 1 to 20,
- b is an integer with a value of at least 1 and R 1 is a monovalent hydrocarbon group having no more than 6 carbons or partial hydrolyzates thereof.
- the fluorosilicone oil comprising component (A) in the antifoam of the invention is the base or main component of the present invention.
- This fluorosilicone oil has either the following general formula (a)
- the fluorosilicone oil with general formula (a) has the preceding formula in which a is an integer with a value of at least 4, for example, 4, 6, and 8.
- This fluorosilicone oil encompasses mixtures in which a has several values.
- the subscript n is an integer with a value of 0 to 300. While the fluoroalkyl groups at the two terminals function to reduce the surface tension, this effect is abolished when n exceeds 300.
- Fluorosilicone oils with general formula (a) can be synthesized, for example, by the hydrolysis of fluoroalkyldimethylchlorosilane alone, by the cohydrolysis of fluoroalkyldimethylchlorosilane and dimethyldichlorosilane, and by the polymerization in the presence of polymerization catalyst of cyclic dimethylpolysiloxane and fluorosilicone oil synthesized by one of the preceding methods.
- the fluorosilicone oil with general formula (b) has the preceding formula in which R represents monovalent hydrocarbon groups, for example, alkyl groups such as methyl, ethyl, and propyl, and in which X is a group with the formula F(CF 2 ) a C 2 H 4 or a monovalent hydrocarbon group with the proviso that at least 1 of X is a group with the formula F(CF 2 ) a C 2 H 4 .
- the subscript a is an integer with a value of at least 4, for example, 4, 6, and 8.
- This fluorosilicone oil encompasses mixtures in which a has several values.
- the subscript n is an integer with a value of 1 to 300.
- n exceeds 300, the viscosity of the oil becomes excessively large and the antifoam of the present invention suffers from a decline in antifoam activity.
- the preferred oil viscosity falls in the range of 10 to 100,000 centipoise.
- Fluorosilicone oils with general formula (b) can be synthesized, for example, by the hydrolysis of fluoroalkylmethyldichlorosilane or by the reaction of fluoroalkylmethyldichlorosilane with zinc oxide in organic solvent to yield alpha,omega-dihydroxyfluoroalkylmethylpolysiloxane oil.
- the fluorosilicone oil with general formula (b) may have either a straight chain or cyclic structure.
- the terminal silanol groups in the alpha, omega-dihydroxyfluoroalkylmethylpolysiloxane oil may as desired be capped with trialkylsiloxy groups by the usual methods.
- the microparticulate silica comprising component (B) is to have a specific surface of at least 50 m 2 /g. When the specific surface falls below 50 m 2 /g, dispersion is poor and penetration into the foam lamellae is therefore retarded, which prevents the development of an excellent antifoam activity.
- Component (B) is exemplified by the fumed and calcined silicas that are produced by dry processes and by the precipitated silica that is produced by a wet process. This component is to be added in the range of 1 to 50 weight parts per 100 weight parts of component (A).
- the fluoroalkyl-containing organosilicon compound comprising component (C) is selected from a hydroxyl-endblocked fluorosilicone oil with the following general formula (c)
- This component is to be added in the range of 0.01 to 25 weight parts per 100 weight parts of component (A).
- the hydroxyl-endblocked fluorosilicone oil with general formula (c) has the preceding formula in which the subscript b is an integer with a value of at least 1, for example, 1, 4, 6, and 8. This fluorosilicone oil encompasses mixtures in which b has several values.
- the subscript x is an integer with a value of 1 to 20.
- the cyclic fluorosilicone oil with general formula (d) has the preceding formula in which the subscript b is an integer with a value of at least 1.
- the subscript y is an integer with a value of 3 to 8, for example, 3, 4, 5, 6, 7, and 8.
- This fluorosilicone oil encompasses mixtures in which y has several values.
- the fluoroalkyl-containing alkoxysilane with general formula (e) or partial hydrolyzates thereof has the preceding formula in which the subscript b is an integer with a value of at least 1.
- R 1 is a monovalent hydrocarbon group having no more than 6 carbon atoms, for example, methyl, ethyl, propyl, butyl, and phenyl.
- the invention antifoam is readily prepared by first making up a mixture of components (A), (B), and (C) and then heating this mixture at 60° C. to 200° C. and preferably at 100° C. to 200° C.
- the preparative method is exemplified as follows:
- component (i) component (B) is added to component (A), component (C) is added with stirring, and heating and mixing to homogeneity are then carried out; or
- component (ii) component (C) is added to component (B), component (A) is added with stirring, and heating and mixing to homogeneity are then carried out.
- the mixer used in the preceding methods is preferably capable of simultaneously carrying out heating and agitation, but the invention is not limited to such mixers.
- it may be processed with a homomixer, ball mill, colloid mill, or three-roll mill. Mixing may optionally be conducted under an inert gas, e.g., nitrogen.
- Heat treatment is conducted in these methods in order to bring about hydrophobicization of the surface of the microparticulate silica comprising component (B) by treatment with the fluoroalkyl-containing organosilicon compound comprising component (C).
- This heating brings about a condensation reaction between the silanol groups present on the surface of the microparticulate silica (component (B)) and the alkoxy groups in the fluoroalkyl-containing organosilicon compound (component (C)) in order thereby to hydrophobicize the surface of component (B).
- an acidic catalyst such as sulfuric acid
- antifoam is essentially composed of components (A), (B), and (C) as described above, it may also contain the following on an optional basis insofar as the object of the present invention is not impaired: an organic solvent, water, a surfactant, a protective colloid, an organosilane, an organosilazane, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, microparticulate metal oxide, a flake filler, an amino organofunctional silicon compound, or a colorant.
- the antifoam in accordance with the present invention can be employed in various formulations depending on the nature of the foaming system.
- the foaming system is an oil-based or solvent-based system
- the invention antifoam can be used diluted with an organic solvent.
- This organic solvent is selected from hydrocarbons, halogenated hydrocarbons, amines, alcohols, ethers, ketones, esters, and acid solvents, and it is specifically but limited by methylcyclohexane, xylene, petroleum naphtha, perchloroethylene, bromochloroethane, dichlorobutane, triethylamine, butylamine, tributylamine, isopropyl alcohol, butyl alcohol, amyl alcohol, hexyl ether, butyl Cellosolve, dioxane, methyl ethyl ketone, diethyl ketone, methyl butyl ketone, ethyl acetate, Cellosolve
- the antifoam of the present invention can be used in the form of an emulsion prepared by emulsification using water and known surfactants,
- the antifoam of the present invention can also be used in the form of a powder antifoam.
- component (B) When the invention antifoam is added to a foaming aqueous or organic solvent solution, component (B) does not separate and is able to penetrate into the foam lamellae and the antifoam activity of component (A) can develop.
- the invention antifoam has an antifoam activity superior to that of prior antifoams. It also exhibits an excellent and persistent antifoam activity on the foaming of aqueous solutions and organic solvent solutions in which a silicone surfactant or fluorosurfactant is dissolved, an activity not found in prior silicone antifoams.
- 0.40 g antifoam was precisely weighed out and combined with tert-butanol to give 100 mL of antifoam solution. 1.0 mL of this antifoam solution was withdrawn with a pipette and added to the foaming medium. After foam generation by shaking in a shaker for 10 seconds, the time (minutes) required for foam disappearance was measured. This procedure was repeated until the time required for foam disappearance reached 5 or more minutes. The number of repetitions (not including the experiment that reached or exceeded 5 minutes) was tentatively called the persistence number and was taken to be indicative of the durability or persistence of the antifoam activity.
- This oil had a density of 1.014, refractive index of 1.3950, and surface tension of 19.9 mM/m.
- This oil had a density of 1.113, a refractive index of 1.3828, and a low surface tension of 18.1 mM/m.
- the antifoam was prepared by mixing 100 parts of a fluorosilicone oil with the formula
- the antifoam composition of the present invention consists of components (A), (B), and (C) as described hereinbefore, this antifoam composition exhibits an excellent and persistent antifoam activity against the foaming of aqueous or organic solvent solutions in which a silicone surfactant or fluorosurfactant is dissolved.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Dispersion Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Silicon Polymers (AREA)
- Degasification And Air Bubble Elimination (AREA)
Abstract
A fluorosilicone antifoam having excellent and persistent anti foam activity against foaming in aqueous or organic solvent solutions in which a silicone surfactant or fluorosurfactant is dissolved. The fluorosilcione antifoam includes
(A)
(a) a fluorosilicone oil with the general formula
F(CF.sub.2).sub.a C.sub.2 H.sub.4 SiMe.sub.2 O(Me.sub.2 SiO).sub.n
SiMe2 C2 H4 (CF2)a F
in which a is an integer with a value of at least 4, n is an integer with a value of 0 to 300, and Me is methyl, or
(b) a fluorosilicone oil with the general formula
XR.sub.2 SiO[F(CF.sub.2).sub.a C.sub.2 H.sub.4 SiMeO].sub.n SiR.sub.2 X
in which R is a monovalent hydrocarbon group, X is the F(CF2)a C2 H4 group or a monovalent hydrocarbon group with the proviso that at least 1 of X is the F(CF2)a C2 H4 group, n is an integer with a value of 1 to 300, and a is an integer with a value of at least 4;
(B) microparticulate silica with a specific surface of at least 50 m2 /g; and
(C) a fluoroalkyl-containing alkoxysilane with the general formula
F(CF.sub.2).sub.b C.sub.2 H.sub.4 Si(OR.sup.1).sub.3
in which b is an integer with a value of at least 1 and R1 is a monovalent hydrocarbon group having no more than 6 carbons or partial hydrolyzates thereof.
Description
The invention relates to a fluorosilicone antifoam and, more specifically, to a fluorosilicone antifoam that exhibits an excellent and durable antifoam activity on the foaming of aqueous or organic solvent solutions in which a silicone surfactant or fluorosurfactant is dissolved.
Compared to nonsilicone antifoams such as alcohols, esters, mineral oils, and synthetic oils, silicone antifoams exhibit a superior antifoam activity at smaller additions and as a result are widely used for defoaming and foam suppression in foaming-prone industrial processes in waste water treatment, dyeing, fermentation, the latex industry, the cement industry, the paint industry, the adhesives industry, the petroleum industry, and so forth. These silicone antifoams generally take the form of an oil compound whose base components are principally dimethylpolysiloxane and silica micropowder or an emulsion in which such an oil compound is dispersed in water along with a surfactant.
However, a drawback of these silicone antifoams is their very weak antifoam activity with respect to the foaming of aqueous or organic solvent solutions in which silicone surfactant or fluorosurfactant is dissolved. In response to this, Japanese Patent Publication Number Sho 35-12564 [12,564/1960] has proposed an antifoam based on perfluoroalkylsiloxane, but this antifoam does not have a completely satisfactory antifoam activity. Japanese Patent Publication Number Hei 2-85 [85/1990] teaches an antifoam that is based on a perfluoroalkyl-containing organopolysiloxane that also contains specific functional groups. However, this anti foam is effective only against the foaming of organic solvent solutions in which a fluorosurfactant is dissolved.
Silicone antifoams consisting of silicone oil and hydrophobicized microparticulate silica have also been proposed (Japanese Patent Publication Numbers Hei 4-42042 [42,042/1992] and Hei 4-42043 [42,043/1992]), but this type of silicone antifoam does not develop a satisfactory antifoam activity.
The inventors achieved the present invention as the result of extensive research directed at solving these drawbacks to the prior art. The present invention takes as its object the introduction of an antifoam that exhibits an excellent and persistent antifoam activity on the foaming of aqueous or organic solvent solutions in which a silicone surfactant or fluorosurfactant is dissolved.
These and other features, objects, and advantages of the present invention will become more apparent from a consideration of the following detailed description thereof.
The instant invention relates to a fluorosilicone anti foam that consists of
(A) 100 weight parts of
(a) a fluorosilicone oil with the general formula
F(CF.sub.2).sub.a C.sub.2 H.sub.4 SiMe.sub.2 O(Me.sub.2 SiO).sub.n SiMe.sub.2 C.sub.2 H.sub.4 (CF.sub.2).sub.a F
in which a is an integer with a value of at least 4, n is an integer with a value of 0 to 300, and Me=methyl, or
(b) a fluorosilicone oil with the general formula
XR.sub.2 SiO[F(CF.sub.2).sub.a C.sub.2 H.sub.4 SiMeO].sub.n SiR.sub.2 X
in which R is a monovalent hydrocarbon group, X is the F(CF2)a C2 H4 group or a monovalent hydrocarbon group with the proviso that at least 1 of X is the F(CF2)a C2 H4 group, n is an integer with a value of 1 to 300, and a is an integer with a value of at least 4;
(B) 1 to 50 weight parts microparticulate silica with a specific surface of at least 50 m2 /g; and
(C) 0.01 to 25 weight parts of a fluoroalkyl-containing organosilicon compound that is selected from the group consisting of
(c) a hydroxyl-endblocked fluorosilicone oil with the general formula
HO[F(CF.sub.2).sub.b C.sub.2 H.sub.4 SiMeO].sub.x H
in which b is an integer with a value of at least 1 and x is an integer with a value of 1 to 20,
(d) a cyclic fluorosilicone oil with the general formula ##STR1## in which b is an integer with a value of at least 1 and y is an integer with a value of 3 to 8, and
(e) a fluoroalkyl-containing alkoxysilane with the general formula
F(CF.sub.2).sub.b C.sub.2 H.sub.4 Si(OR.sup.1).sub.3
in which b is an integer with a value of at least 1 and R1 is a monovalent hydrocarbon group having no more than 6 carbons or partial hydrolyzates thereof.
The fluorosilicone oil comprising component (A) in the antifoam of the invention is the base or main component of the present invention. This fluorosilicone oil has either the following general formula (a)
F(CF.sub.2).sub.a C.sub.2 H.sub.4 SiMe.sub.2 O(Me.sub.2 SiO).sub.n SiMe.sub.2 C.sub.2 H.sub.4 (CF.sub.2).sub.a F
or the following general formula (b)
XR.sub.2 SiO[F(CF.sub.2).sub.a C.sub.2 H.sub.4 SiMeO].sub.n SiR.sub.2 X.
The fluorosilicone oil with general formula (a) has the preceding formula in which a is an integer with a value of at least 4, for example, 4, 6, and 8. This fluorosilicone oil encompasses mixtures in which a has several values. The subscript n is an integer with a value of 0 to 300. While the fluoroalkyl groups at the two terminals function to reduce the surface tension, this effect is abolished when n exceeds 300.
Fluorosilicone oils with general formula (a) can be synthesized, for example, by the hydrolysis of fluoroalkyldimethylchlorosilane alone, by the cohydrolysis of fluoroalkyldimethylchlorosilane and dimethyldichlorosilane, and by the polymerization in the presence of polymerization catalyst of cyclic dimethylpolysiloxane and fluorosilicone oil synthesized by one of the preceding methods.
The fluorosilicone oil with general formula (b) has the preceding formula in which R represents monovalent hydrocarbon groups, for example, alkyl groups such as methyl, ethyl, and propyl, and in which X is a group with the formula F(CF2)a C2 H4 or a monovalent hydrocarbon group with the proviso that at least 1 of X is a group with the formula F(CF2)a C2 H4. The subscript a is an integer with a value of at least 4, for example, 4, 6, and 8. This fluorosilicone oil encompasses mixtures in which a has several values. The subscript n is an integer with a value of 1 to 300. When n exceeds 300, the viscosity of the oil becomes excessively large and the antifoam of the present invention suffers from a decline in antifoam activity. The preferred oil viscosity falls in the range of 10 to 100,000 centipoise.
Fluorosilicone oils with general formula (b) can be synthesized, for example, by the hydrolysis of fluoroalkylmethyldichlorosilane or by the reaction of fluoroalkylmethyldichlorosilane with zinc oxide in organic solvent to yield alpha,omega-dihydroxyfluoroalkylmethylpolysiloxane oil.
The fluorosilicone oil with general formula (b) may have either a straight chain or cyclic structure. The terminal silanol groups in the alpha, omega-dihydroxyfluoroalkylmethylpolysiloxane oil may as desired be capped with trialkylsiloxy groups by the usual methods.
The microparticulate silica comprising component (B) is to have a specific surface of at least 50 m2 /g. When the specific surface falls below 50 m2 /g, dispersion is poor and penetration into the foam lamellae is therefore retarded, which prevents the development of an excellent antifoam activity.
Component (B) is exemplified by the fumed and calcined silicas that are produced by dry processes and by the precipitated silica that is produced by a wet process. This component is to be added in the range of 1 to 50 weight parts per 100 weight parts of component (A).
The fluoroalkyl-containing organosilicon compound comprising component (C) is selected from a hydroxyl-endblocked fluorosilicone oil with the following general formula (c)
HO[F(CF.sub.2).sub.b C.sub.2 H.sub.4 SiMeO].sub.X H,
a cyclic fluorosilicone oil with the following general formula (d) ##STR2## and a fluoroalkyl-containing alkoxysilane with the following general formula (e)
F(CF22).sub.b C.sub.2 H.sub.4 Si(OR.sup.1).sub.3
or partial hydrolyzates thereof.
This component is to be added in the range of 0.01 to 25 weight parts per 100 weight parts of component (A).
The hydroxyl-endblocked fluorosilicone oil with general formula (c) has the preceding formula in which the subscript b is an integer with a value of at least 1, for example, 1, 4, 6, and 8. This fluorosilicone oil encompasses mixtures in which b has several values. The subscript x is an integer with a value of 1 to 20.
The cyclic fluorosilicone oil with general formula (d) has the preceding formula in which the subscript b is an integer with a value of at least 1. The subscript y is an integer with a value of 3 to 8, for example, 3, 4, 5, 6, 7, and 8. This fluorosilicone oil encompasses mixtures in which y has several values.
The fluoroalkyl-containing alkoxysilane with general formula (e) or partial hydrolyzates thereof has the preceding formula in which the subscript b is an integer with a value of at least 1. R1 is a monovalent hydrocarbon group having no more than 6 carbon atoms, for example, methyl, ethyl, propyl, butyl, and phenyl.
The invention antifoam is readily prepared by first making up a mixture of components (A), (B), and (C) and then heating this mixture at 60° C. to 200° C. and preferably at 100° C. to 200° C. The preparative method is exemplified as follows:
(i) component (B) is added to component (A), component (C) is added with stirring, and heating and mixing to homogeneity are then carried out; or
(ii) component (C) is added to component (B), component (A) is added with stirring, and heating and mixing to homogeneity are then carried out.
The mixer used in the preceding methods is preferably capable of simultaneously carrying out heating and agitation, but the invention is not limited to such mixers. In addition, in order to achieve micronization or homogenization of the invention antifoam, it may be processed with a homomixer, ball mill, colloid mill, or three-roll mill. Mixing may optionally be conducted under an inert gas, e.g., nitrogen.
Heat treatment is conducted in these methods in order to bring about hydrophobicization of the surface of the microparticulate silica comprising component (B) by treatment with the fluoroalkyl-containing organosilicon compound comprising component (C). This heating brings about a condensation reaction between the silanol groups present on the surface of the microparticulate silica (component (B)) and the alkoxy groups in the fluoroalkyl-containing organosilicon compound (component (C)) in order thereby to hydrophobicize the surface of component (B). In order to accelerate this condensation reaction, the addition of a trace quantity of an acidic catalyst such as sulfuric acid to this heat treatment is preferred.
While the invention antifoam is essentially composed of components (A), (B), and (C) as described above, it may also contain the following on an optional basis insofar as the object of the present invention is not impaired: an organic solvent, water, a surfactant, a protective colloid, an organosilane, an organosilazane, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, microparticulate metal oxide, a flake filler, an amino organofunctional silicon compound, or a colorant.
The antifoam in accordance with the present invention can be employed in various formulations depending on the nature of the foaming system. When the foaming system is an oil-based or solvent-based system, the invention antifoam can be used diluted with an organic solvent. This organic solvent is selected from hydrocarbons, halogenated hydrocarbons, amines, alcohols, ethers, ketones, esters, and acid solvents, and it is specifically but limited by methylcyclohexane, xylene, petroleum naphtha, perchloroethylene, bromochloroethane, dichlorobutane, triethylamine, butylamine, tributylamine, isopropyl alcohol, butyl alcohol, amyl alcohol, hexyl ether, butyl Cellosolve, dioxane, methyl ethyl ketone, diethyl ketone, methyl butyl ketone, ethyl acetate, Cellosolve acetate, ethyl propionate, acetic acid, propionic acid, and 2-ethylhexoic acid.
When the foaming system is an aqueous system, the antifoam of the present invention can be used in the form of an emulsion prepared by emulsification using water and known surfactants, The antifoam of the present invention can also be used in the form of a powder antifoam.
When the invention antifoam is added to a foaming aqueous or organic solvent solution, component (B) does not separate and is able to penetrate into the foam lamellae and the antifoam activity of component (A) can develop. The invention antifoam has an antifoam activity superior to that of prior antifoams. It also exhibits an excellent and persistent antifoam activity on the foaming of aqueous solutions and organic solvent solutions in which a silicone surfactant or fluorosurfactant is dissolved, an activity not found in prior silicone antifoams.
The present invention will be explained below using illustrative examples. In the examples and comparison example, parts denotes weight parts and the viscosity is the value measured at 25° C. The cP unit for viscosity indicates centipoise and Me is an abbreviation for the methyl group.
200 mL 1.0 weight % of an aqueous solution of a dimethylsilicone-based nonionic surfactant was placed in a 1 L measuring cylinder. After the addition of 0.10 g of the antifoam emulsion, air was bubbled through at 600 mL/minute across a glass ball filter. The time (minutes) required to reach a total foam volume of 800 mL was measured.
100 mL 1.0 weight % of an aqueous solution of a nonionic fluorosurfactant (Zonyl FSN-100, tradename of the Du Pont Company) was employed as the foaming medium.
0.40 g antifoam was precisely weighed out and combined with tert-butanol to give 100 mL of antifoam solution. 1.0 mL of this antifoam solution was withdrawn with a pipette and added to the foaming medium. After foam generation by shaking in a shaker for 10 seconds, the time (minutes) required for foam disappearance was measured. This procedure was repeated until the time required for foam disappearance reached 5 or more minutes. The number of repetitions (not including the experiment that reached or exceeded 5 minutes) was tentatively called the persistence number and was taken to be indicative of the durability or persistence of the antifoam activity.
100 parts fluorosilicone oil (viscosity=600 cP) with the formula
Me.sub.3 SiO(C.sub.4 F.sub.9 C.sub.2 H.sub.4 SiMeO).sub.n SiMe.sub.3
10 parts fumed silica with a specific surface=200 m2 /g, and 2 parts of a hydroxyl-endblocked fluorosilicone oil with the formula
HO[CF.sub.3 C.sub.2 H.sub.4 SiMeO].sub.X H (n=3 on average)
were mixed at room temperature for 1 hour, heated and mixed at 160° C. for 2 hours, and then cooled. The antifoam was then prepared by the addition of 0.01 parts of sulfuric acid to the mixture and mixing at 60° C. for 2 hours. This antifoam was subjected to the antifoam and antifoam persistence tests, and these results are reported in Table 1.
18.8 g of a disiloxane with the formula
{F(CF.sub.2).sub.4 C.sub.2 H.sub.4 SiMe.sub.2 }.sub.2 O,
111 g octamethylcyclotetrasiloxane, and 1.3 g ion-exchange resin catalyst Amberlyst 15 from the Aldrich Chemical Company were placed in a flask and mixed at 65° C. for 22 hours. The reaction mixture was suction-filtered in order to remove the catalyst, and the volatiles were then removed at 150° C. in vacuo to yield 115 g liquid polysiloxane. This polysiloxane was confirmed by gel permeation chromatographic (GPC) analysis to be a fluorosilicone oil with the following formula.
F(CF.sub.2).sub.4 C.sub.2 H.sub.4 SiMe.sub.2 O(Me.sub.2 SiO).sub.45 SiMe.sub.2 C.sub.2 H.sub.4 (CF.sub.2).sub.4 F
This oil had a density of 1.014, refractive index of 1.3950, and surface tension of 19.9 mM/m.
100 parts of the fluorosilicone oil synthesized as above, 10 parts fumed silica with a specific surface=250 m2 /g, and 2 parts of a cyclic fluorosilicone oil with the formula
[F(CF.sub.2).sub.4 C.sub.2 H.sub.4 SiMeO].sub.3
were mixed at room temperature for 1 hour and then heated and mixed at 170° C. for 3 hours. The antifoam was then obtained by the addition of 0.01 parts of sulfuric acid to the mixture and mixing for 2 hours at 60° C. This antifoam was subjected to the antifoam and antifoam persistence tests, and these results are reported in Table 1.
41 g of disiloxane with the formula
{F(CF.sub.2).sub.8 C.sub.2 H.sub.4 SiMe.sub.2 }.sub.2 O,
84 g of dimethylcyclosiloxane mixture, and 1.3 g ion-exchange resin catalyst Amberlyst 15 from the Aldrich Chemical Company were placed in a flask and mixed at 65° C. for 30 hours. The reaction mixture was suction-filtered in order to remove the catalyst, and the volatiles were then removed at 150° C. in vacuo to yield 115 g of polysiloxane. This polysiloxane was confirmed by gel permeation chromatographic (GPC) analysis to be a fluorosilicone with the following formula.
F(CF.sub.2).sub.8 C.sub.2 H.sub.4 SiMe.sub.2 O(Me.sub.2 SiO).sub.25 SiMe.sub.2 C.sub.2 H.sub.4 (CF.sub.2).sub.8 F
This oil had a density of 1.113, a refractive index of 1.3828, and a low surface tension of 18.1 mM/m.
The antifoam was prepared by first mixing 50 parts of fluorosilicone oil synthesized as above, 50 parts of afluorosilicone oil (viscosity=600 cP) with the formula
Me.sub.3 SiO(C.sub.4 F.sub.9 C.sub.2 H.sub.4 SiMeO).sub.n SiMe.sub.3,
10 parts of fumed silica with specific surface=200 m2 /g, and 2 parts fluoroakyl-containing alkoxysilane with the formula
F(CF.sub.2).sub.4 C.sub.2 H.sub.4 Si(OMe).sub.3
at room temperature for 1 hour and then mixing at 160° C. for 2 hours. This antifoam was subjected to the antifoam and antifoam persistence tests, and these results are reported in Table 1.
100 g of fumed silica with a specific surface=200 m2 /g was sprayed with 20 g of fluoroalkyl-containing alkoxysilane CF3 C2 H4 Si(OMe)3 while stirring in a flask. Stirring for an additional 2 hours at 150° C. in a nitrogen current gave a hydrophobicized silica. 10 parts of this silica was mixed with 100 parts of the fluorosilicone oil synthesized in Example 2 and 0.01 parts sulfuric acid was added. The antifoam was prepared by stirring for 2 hours at 60° C., cooling, and neutralization by the addition of the equivalent quantity of sodium bicarbonate. This antifoam was subjected to the antifoam and antifoam persistence tests, and these results are reported in Table 1.
The antifoam was prepared by mixing 100 parts of a fluorosilicone oil with the formula
Me.sub.3 SiO(CF.sub.3 C.sub.2 H.sub.4 SiMeO).sub.n SiMe.sub.3
with 10 parts of fumed silica with a specific surface=200 m2 /g for 1 hour. This antifoam was subjected to the antifoam and antifoam persistence tests, and these results are reported in Table 1.
TABLE 1
______________________________________
Antifoam Test
Antifoam Persistence Test
Antifoam Time (Minutes)
Persistence Number
______________________________________
Example 1 30 10
Example 2 33 11
Example 3 28 14
Example 4 30 10
Comparison
6 1
Example 4
______________________________________
Because the antifoam composition of the present invention consists of components (A), (B), and (C) as described hereinbefore, this antifoam composition exhibits an excellent and persistent antifoam activity against the foaming of aqueous or organic solvent solutions in which a silicone surfactant or fluorosurfactant is dissolved.
Other variations and modifications may be made in the compounds, compositions, and methods, described herein without departing from the essential features and concepts of the present invention. The forms of the invention described herein are exemplary only and are not intended as limitations on the scope of the invention as defined in the appended claims.
Claims (1)
1. A fluorosilicone antifoam comprising:
(A) 100 weight parts of a silicone oil selected from the group consisting of
(a) a fluorosilicone oil with the formula
F(CF.sub.2).sub.a C.sub.2 H.sub.4 SiMe.sub.2 O(Me.sub.2 SiO).sub.n SiMe.sub.2 C.sub.2 H.sub.4 (CF.sub.2).sub.a F
in which a is an integer with a value of at least 4, n is an integer with a value of 0 to 300, and Me is methyl, and
(b) a fluorosilicone oil with the formula
XR.sub.2 SiO{F(CF.sub.2).sub.a C.sub.2 H.sub.4 SiMeO}.sub.n SiR.sub.2 X in which R is a monovalent hydrocarbon group, X is the F(CF2)a C2 H4 group or a monovalent hydrocarbon group with the proviso that at least 1 of X is the F(CF2)a C2 H4 group, n is an integer with a value of 1 to 300, and a is an integer with a value of at least 4;
(B) 1 to 50 weight parts of microparticulate silica with a specific surface of at least 50 m2 /g;
and
(C) 0.01 to 25 weight parts of a fluoroalkyl-containing alkoxysilane with the formula
F(CF.sub.2).sub.b C.sub.2 H.sub.4 Si(OR.sup.1).sub.3
in which b is an integer with a value of at least 1 and R1 is a monovalent hydrocarbon group having no more than 6 carbons, or partial hydrolyzates thereof; to give a hydrophobized silica.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25205292 | 1992-08-27 | ||
| JP4-252052 | 1992-08-27 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US5454979A true US5454979A (en) | 1995-10-03 |
Family
ID=17231901
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/111,807 Expired - Fee Related US5454979A (en) | 1992-08-27 | 1993-08-25 | Fluorosilicone antifoam |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US5454979A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5721203A (en) * | 1996-12-23 | 1998-02-24 | Zuberi; Manzar | Triphase drain cleaner and method |
| US5766513A (en) * | 1996-09-10 | 1998-06-16 | Exxon Research And Engineering Company | Antifoaming agents for lubricating oils (law455) |
| US20040015032A1 (en) * | 2002-07-16 | 2004-01-22 | Ramaswamy Perumangode Neelakantan | Method for reducing foam in a primary fractionator |
| US20050224394A1 (en) * | 2002-06-26 | 2005-10-13 | Dorf Ketal Chemicals India Pvt. Ltd. | Method of removal of carbonyl compounds along with acid gases from cracked gas in ethylene process |
| US20080171686A1 (en) * | 2007-01-15 | 2008-07-17 | Shin-Etsu Chemical Co., Ltd. | Low-foaming silicone composition |
| US20090118399A1 (en) * | 2005-09-06 | 2009-05-07 | Rahma Benbakoura | Delivery System For Releasing Silicone Ingredients |
| EP2391579A4 (en) * | 2009-02-02 | 2015-02-25 | Invista Technologies Srl | COMPOSITIONS OF SURFACE-MODIFIED NANOPARTICLES |
| WO2017025167A1 (en) | 2015-08-11 | 2017-02-16 | Merck Patent Gmbh | Material combination |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2961425A (en) * | 1958-04-07 | 1960-11-22 | Dow Corning | Fluoroalkylsiloxane fluids |
| GB880601A (en) * | 1958-03-24 | 1961-10-25 | Midland Silicones Ltd | Solvent defoamers |
| US3115472A (en) * | 1959-09-14 | 1963-12-24 | Dow Corning | Solvent defoamers |
| US3639260A (en) * | 1969-04-16 | 1972-02-01 | Nalco Chemical Co | Method of preparing antifoaming agent |
| US4537677A (en) * | 1984-11-05 | 1985-08-27 | Dow Corning Corporation | Oil emulsions of fluorosilicone fluids |
| US4597894A (en) * | 1983-04-11 | 1986-07-01 | Shin-Etsu Chemical Co., Ltd. | Composition containing organopolysiloxane having polyoxyalkylene and perfluoroalkyl units |
| JPH0285A (en) * | 1989-01-25 | 1990-01-05 | Daikin Ind Ltd | Heat fixing roller |
| JPH0252007A (en) * | 1988-08-12 | 1990-02-21 | Asahi Glass Co Ltd | Fluorosilicone anti-foaming agent |
| JPH042043A (en) * | 1990-04-18 | 1992-01-07 | Matsushita Electric Ind Co Ltd | Battery |
| JPH042042A (en) * | 1990-04-18 | 1992-01-07 | Yuasa Corp | Thin form battery |
| US5283004A (en) * | 1986-07-18 | 1994-02-01 | Dow Corning Corporation | Method for the preparation of a silicone defoamer composition |
-
1993
- 1993-08-25 US US08/111,807 patent/US5454979A/en not_active Expired - Fee Related
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB880601A (en) * | 1958-03-24 | 1961-10-25 | Midland Silicones Ltd | Solvent defoamers |
| US2961425A (en) * | 1958-04-07 | 1960-11-22 | Dow Corning | Fluoroalkylsiloxane fluids |
| US3115472A (en) * | 1959-09-14 | 1963-12-24 | Dow Corning | Solvent defoamers |
| US3639260A (en) * | 1969-04-16 | 1972-02-01 | Nalco Chemical Co | Method of preparing antifoaming agent |
| US4597894A (en) * | 1983-04-11 | 1986-07-01 | Shin-Etsu Chemical Co., Ltd. | Composition containing organopolysiloxane having polyoxyalkylene and perfluoroalkyl units |
| US4537677A (en) * | 1984-11-05 | 1985-08-27 | Dow Corning Corporation | Oil emulsions of fluorosilicone fluids |
| US5283004A (en) * | 1986-07-18 | 1994-02-01 | Dow Corning Corporation | Method for the preparation of a silicone defoamer composition |
| JPH0252007A (en) * | 1988-08-12 | 1990-02-21 | Asahi Glass Co Ltd | Fluorosilicone anti-foaming agent |
| JPH0285A (en) * | 1989-01-25 | 1990-01-05 | Daikin Ind Ltd | Heat fixing roller |
| JPH042043A (en) * | 1990-04-18 | 1992-01-07 | Matsushita Electric Ind Co Ltd | Battery |
| JPH042042A (en) * | 1990-04-18 | 1992-01-07 | Yuasa Corp | Thin form battery |
Non-Patent Citations (6)
| Title |
|---|
| Derwent Abstract, AN 87 346177/49 (corresponding to JP 92 042042) (1987). * |
| Derwent Abstract, AN 87-346177/49 (corresponding to JP 92 042042) (1987). |
| Derwent Abstract, AN 90 102489/14 (corresponding to JP 02 05207 A) (1990). * |
| Derwent Abstract, AN 90 257423/34 (corresponding to JP 92042043) (1990). * |
| Derwent Abstract, AN 90-102489/14 (corresponding to JP 02-05207-A) (1990). |
| Derwent Abstract, AN 90-257423/34 (corresponding to JP 92042043) (1990). |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5766513A (en) * | 1996-09-10 | 1998-06-16 | Exxon Research And Engineering Company | Antifoaming agents for lubricating oils (law455) |
| US5721203A (en) * | 1996-12-23 | 1998-02-24 | Zuberi; Manzar | Triphase drain cleaner and method |
| US20050224394A1 (en) * | 2002-06-26 | 2005-10-13 | Dorf Ketal Chemicals India Pvt. Ltd. | Method of removal of carbonyl compounds along with acid gases from cracked gas in ethylene process |
| US7575669B2 (en) | 2002-06-26 | 2009-08-18 | Dorf Ketal Chemicals, Llc | Method of removal of carbonyl compounds along with acid gases from cracked gas in ethylene process |
| US20040015032A1 (en) * | 2002-07-16 | 2004-01-22 | Ramaswamy Perumangode Neelakantan | Method for reducing foam in a primary fractionator |
| US7906012B2 (en) | 2002-07-16 | 2011-03-15 | Dorf Ketal Chemicals India Pvt. Ltd. | Method for reducing foam in a primary fractionator |
| US20090118399A1 (en) * | 2005-09-06 | 2009-05-07 | Rahma Benbakoura | Delivery System For Releasing Silicone Ingredients |
| US8754155B2 (en) | 2005-09-06 | 2014-06-17 | Dow Corning Corporation | Delivery system for releasing silicone ingredients |
| US20080171686A1 (en) * | 2007-01-15 | 2008-07-17 | Shin-Etsu Chemical Co., Ltd. | Low-foaming silicone composition |
| US7432235B2 (en) * | 2007-01-15 | 2008-10-07 | Shin-Etsu Chemical Co., Ltd. | Low-foaming silicone composition comprising a polyoxyalkylene/perfluoroalkyl-comodified organopolysiloxane |
| EP2391579A4 (en) * | 2009-02-02 | 2015-02-25 | Invista Technologies Srl | COMPOSITIONS OF SURFACE-MODIFIED NANOPARTICLES |
| WO2017025167A1 (en) | 2015-08-11 | 2017-02-16 | Merck Patent Gmbh | Material combination |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5531929A (en) | Silicone antifoam compositions | |
| US4900474A (en) | Silicone antifoamers | |
| US4639489A (en) | Method of producing a silicone defoamer composition | |
| EP0121210B1 (en) | Hydrocarbon oil based silicone antifoams | |
| EP0516109B1 (en) | Silicone defoamer composition | |
| JPH0284B2 (en) | ||
| CN110681187A (en) | Defoaming agent | |
| JPS6352927B2 (en) | ||
| US5454979A (en) | Fluorosilicone antifoam | |
| WO2021254171A1 (en) | Organosilicon defoaming composition and preparation method therefor | |
| CN114797186B (en) | Polyether and long-chain fluorine-containing hydrocarbon group co-modified polysiloxane, and preparation method and application thereof | |
| CA1155364A (en) | Silicone anti-foaming compositions | |
| JPH119904A (en) | Foam inhibitor composition | |
| CA2135420A1 (en) | Defoamer emulsion based on organofunctionally modified polysiloxanes | |
| JP3600315B2 (en) | Foaming regulator | |
| JP2025509913A (en) | Concentrated silicone antifoam emulsion | |
| JPS63147507A (en) | Production of silicone defoaming agent composition | |
| CA1300781C (en) | Method of producing a silicone defoamer composition | |
| JP2685685B2 (en) | Foam suppressor composition | |
| JPH08126801A (en) | Defoaming agent composition | |
| JPH0442042B2 (en) | ||
| JPS5940050B2 (en) | Defoaming emulsion composition | |
| JP3259516B2 (en) | Antifoaming agent for pulp black liquor | |
| JPH06121905A (en) | Fluorosilicone antifoamer | |
| JP3636293B2 (en) | Foam suppressant composition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: DOW CORNING TORAY SILICONE COMPANY, LIMITED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOBAYASHI, HIDEKI;MASATOMI, TORU;REEL/FRAME:006672/0867 Effective date: 19930819 |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20031003 |