US5424054A - Carbon fibers and method for their production - Google Patents
Carbon fibers and method for their production Download PDFInfo
- Publication number
- US5424054A US5424054A US08/065,821 US6582193A US5424054A US 5424054 A US5424054 A US 5424054A US 6582193 A US6582193 A US 6582193A US 5424054 A US5424054 A US 5424054A
- Authority
- US
- United States
- Prior art keywords
- carbon
- cobalt
- fibers
- vapor
- carbon fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
- D01F9/133—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/89—Deposition of materials, e.g. coating, cvd, or ald
- Y10S977/891—Vapor phase deposition
Definitions
- the present invention relates to hollow carbon fibers having a cylindrical wall comprising a single layer of carbon atoms and a process for the production of these fibers.
- Carbon fibers have found wide application as constituents of composite materials such as reinforced polymers and metals. Carbon fibers provide such composites with improved properties such as greater strength, higher electrical and thermal conductivity and toughness. Polymeric composites with carbon fibers are used to make parts for automobiles, airplanes, parts for electromagnetic shielding or for support for catalytic particles.
- a first method involves dehydrogenating and graphitizing organic polymer filaments by heating them in a suitable atmosphere to make continuous carbon fibers with diameters typically between 1 and 5 ⁇ m.
- a second method involves producing discontinuous carbon fiber segments by vaporizing a hydrocarbon and then with a carrier gas contacting the hydrocarbon vapor with a suitable metal catalyst.
- This type of carbon fiber is known as "vapor grown carbon fiber" or VGCF.
- VGCF vapor grown carbon fiber
- the catalyst can be either particulate or can be produced in the gas phase by decomposition of a suitable metal-containing precursor.
- U.S. Pat. No. 4,663,230 discloses contacting a vapor such as benzene, ethylene, acetone, carbon monoxide or the like with a metal-containing particle (e.g. iron, cobalt or nickel) at an elevated temperature to form carbon fibers having a diameter of 3.5 to 70 nm.
- a metal-containing particle e.g. iron, cobalt or nickel
- Oberlin et al. in the J. of Crystal Growth, 32, p. 335 (1976) discloses a two step process for making carbon fibers.
- the first step involves pyrolysing a mixture of benzene and hydrogen at 1100° C. to form primary carbon filaments having parallel carbon layers and then the second step involves depositing carbon on these filaments to thicken the filaments.
- Carbon fibers comprising a small number of nested carbon tubes will have remarkable properties. Such fibers will have very high strength by virtue of the nature and regularity of their bonding and therefore will provide superior properties to composite materials. They can serve as catalytic surfaces that would confine species in an effectively 1-dimensional space. Arrays of such fibers might be used as filters or sieves. Iijima, in Nature 354, 56 (1991) shows such carbon fibers (nanotubes) with multiple concentric cylindrical shells of hexagonally bonded carbon atoms which are produced in the cathode deposit of a carbon arc generator run with a helium atmosphere of a few hundred Torr. These nanotube fibers have typical outside diameters greater than 2 to several tens of nm.
- a still more desirable fiber is a fiber with a wall comprising a single layer or carbon atoms.
- These single atomic layer fibers could be used to assemble structures with low density and high surface to volume ratios, wires with extremely small diameters and solids with highly anisotropic properties. They also could be semiconducting or metallic depending on their helicity. These single atomic layer fibers could be used directly in assemblies or structures, or could serve as uniform "seed" substrates for growth of larger ordered structures.
- Tsang et al. in Nature 362, 520 (Apr. 8, 1993) discloses forming a multilayered carbon fiber having a short end stub comprising a single layer of carbon atoms. Tsang formed this singular fiber by selectively oxidizing a great number of multilayered carbon fibers. Due to the oxidative nature of the process which simultaneously oxidizes both the circumference and the end of the fiber (e.g. the cap), this process is limited to forming a short single atom layer stubs on the end of multilayered fibers.
- the present invention relates to carbon fibers having a wall comprising a single layer of carbon atoms.
- the present invention also relates to a process for making carbon fibers having a wall comprising a single layer of carbon atoms.
- the process involves contacting carbon vapor with cobalt.
- the carbon vapor is produced by electric-arc heating.
- the cobalt is also vaporized preferably by electric-arc heating.
- the process is carried out in an inert atmosphere.
- FIG. 1 is a schematic view of an apparatus useful for the process of the present invention
- FIG. 2 is a low magnification transmission electron microscope micrograph of the product of the process of the present invention.
- FIG. 3-4 are transmission electron microscope micrographs of the carbon fibers of the present invention.
- the present invention relates to carbon fibers having a wall comprising a single layer of carbon atoms.
- the present invention also relates to a process for making carbon fibers (tubes) having a wall comprising a single layer of carbon atoms. The process comprises contacting carbon vapor and cobalt vapor and recovering the product under conditions effective to produce the fiber as described below:
- the process of the present invention involves contacting carbon vapor with cobalt, preferably cobalt vapor, preferably in an inert atmosphere.
- carbon vapor shall mean a gas of carbon atoms, ions or clusters.
- the carbon vapor can be conveniently produced by thermally vaporizing solid carbon. Suitable forms of solid carbon are amorphous carbon, graphite, activated or decolorizing carbon or mixtures thereof.
- the solid carbon can be vaporized by heating carbon using a variety of heating techniques such as electric arc heating, RF induction heating, laser heating, electron beam heating, RF plasma heating or plasma-spray heating. Other heating techniques will be known by those skilled in the art.
- the solid carbon is vaporized by electric-arc heating.
- solid carbon in the form of a graphite rod is used as one of the two electrodes used in electric-arc heating.
- the cobalt is also vaporized.
- Suitable forms of cobalt for use in the process are pure cobalt, cobalt compounds or cobalt alloys.
- Suitable cobalt compounds include cobalt oxide.
- Other cobalt compounds such as cobalt carbonates, cobalt carbide and others may also be used.
- Cobalt alloys preferably are transition metal alloys such as cobalt/nickel or the like.
- a hollowed-out graphite rod is filled with a mixture of cobalt containing powder and graphite to form the second electrode for the electric-arc heater.
- the carbon vapor is preferably formed in an inert atmosphere such as helium, argon or neon.
- the atmosphere may contain minor amounts of other gases such as hydrogen, oxygen, nitrogen or water provided such gases do not unacceptably interfere with the process of the present invention.
- the carbon rod and the carbon/cobalt rod are electric-arc heated in an inert atmosphere.
- an electrical potential (generally about 15 to 30 volts with current of about 90-120 amps) is established between the first electrode (carbon rod) and the second electrode (carbon/cobalt rod) to heat the rods to a high temperature (e.g. about 2800° C. or greater).
- the rods are heated in a chamber which is partially evacuated and contains an inert atmosphere of helium, argon or neon, preferably at a pressure of about 100 torr to 3000 torr, more preferably about 500 torr.
- the rods are vaporized at a rate of about 2 to 10 mm/min. The arc heating of the rod results in the formation of both carbon vapor and cobalt vapor.
- the product carbon fibers are condensed on the walls of the reaction chamber and are readily recovered by vacuuming.
- the fibers can be purified by conventional methods such as solvent extraction.
- a flow tube reactor could be utilized with continuously flowing inert gas to transport the product carbon fiber out of the reaction zone.
- a plasma torch could be utilized as the heating device for vaporizing the carbon and cobalt compounds entering the flow tube reactor.
- the carbon fibers of the present invention have a wall comprising a single atomic layer of carbon atoms.
- the thickness of the wall of the fiber is a single carbon atom thick and the carbon atoms of the wall are bonded together.
- the fiber is hollow and the wall is optimally cylindrically shaped and has a cross-sectional diameter generally less than about 3.5 nm preferably less than about 2 nm and more preferably less than about 1.5 nm; preferably a diameter of about 1 nm to about 2 nm.
- the fibers generally have a length greater than about 50 nm preferably greater than 100 nm, most preferably greater than about 1000 nm.
- the carbon fibers of the present invention can be utilized to form polymeric, metallic, ceramic and glass composites. Suitable polymers for such polymeric composites include epoxy polymers, polyetheretherketones, polystyrene polymerized in the presence of polyesters and elastomers such as polybutadiene.
- an apparatus suitable for producing single atomic layer carbon fiber in accordance with the process of the present invention comprising a water-cooled chamber 10, a gas inlet 20 for inert gas with flow meter 22, and a gas outlet 30 for evacuation of the chamber and for dynamically maintaining the chamber pressure.
- a carbon rod cathode 40 is held in a water cooled holder 50 that may be advanced or retracted by a drive mechanism 60.
- An o-ring 70 is used to seal between the chamber and the moveable electrode holder shaft 80.
- An electrical connection 90 is made to the electrode holder to maintain it at ground potential.
- An anode 100 is held in a water cooled holder 110 that is insulated from the chamber and has an electrical connection 120 to the power supply 130.
- the anode is hollowed out and a mixture of graphite and cobalt powders 140 is packed into the anode and retained with a short piece of threaded graphite rod 150.
- the chamber pressure is set between 200 and 500 Torr helium pressure with a flow of 10 torr liters/sec.
- a pressure gauge 160 and a flowmeter 22 are used to monitor these conditions.
- a filter 180 prevents solid products from being drawn into the pump 190.
- An electric arc is established by bringing the anode and cathode into contact and then separating them by a short distance e.g. approximately 1 mm. The voltage across the electrodes and the gap is monitored with a voltmeter 200.
- the apparatus shown in FIG. 1 was used with an anode loaded with a mixture of cobalt and graphite powder.
- the gross percentage of consumed cobalt to consumed carbon was 2% atomic.
- a current of between 95 and 115 amps DC was set on the power supply and the voltage across the electrodes and gap was maintained between 22 and 28 volts by regulating the gap between the electrodes using the cathode drive mechanism.
- web-like structures formed in the chamber. These webs drape between various surfaces in the chamber.
- the soot on the walls had an unusual rubbery character and could be peeled off in long strips (unlike normal fullerene soot, which is crumbly).
- the soot and the web material are ferromagnetic.
- the web consists of rounded soot particles a few tens of nm across, linked together by thread-like fibers. Embedded within the soot particles are round cobalt particles with diameters ranging from a few nm to roughly 20 nm. Both electron and X-ray diffraction patterns indicate that these cobalt particles are face-centered-cubic cobalt, indicating rapid quenching, since cobalt is normally hexagonal-close-packed below 400° C. Scanning electron microscope (SEM) images show that the rubbery soot deposits from the chamber walls contain similar thread-like fibers and soot particles like the web material, but with the soot particles in greater relative abundance compared to the web material.
- SEM scanning electron microscope
- the TEM micrograph in FIG. 3, taken at higher magnification, reveals carbon fibers (shown by the arrows) each having a single-atomic-layer wall with diameters of 1.2 ⁇ 0.1 nm. These single-atomic-layer carbon fibers are ubiquitous within the larger diameter thread-like carbon fibers.
- the dark spot in the upper-right corner of FIG. 3 is a cobalt particle.
- the TEM image in FIG. 4 shows another single atomic layer carbon fiber of the same diameter, with several round objects comparable in size to fullerenes with 60-100 carbons adhering to it.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Textile Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/065,821 US5424054A (en) | 1993-05-21 | 1993-05-21 | Carbon fibers and method for their production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/065,821 US5424054A (en) | 1993-05-21 | 1993-05-21 | Carbon fibers and method for their production |
Publications (1)
Publication Number | Publication Date |
---|---|
US5424054A true US5424054A (en) | 1995-06-13 |
Family
ID=22065328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/065,821 Expired - Lifetime US5424054A (en) | 1993-05-21 | 1993-05-21 | Carbon fibers and method for their production |
Country Status (1)
Country | Link |
---|---|
US (1) | US5424054A (en) |
Cited By (192)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5482601A (en) * | 1994-01-28 | 1996-01-09 | Director-General Of Agency Of Industrial Science And Technology | Method and device for the production of carbon nanotubes |
WO1996018059A1 (en) * | 1994-12-08 | 1996-06-13 | Hyperion Catalysis International, Inc. | Functionalized fibrils |
WO1997032571A1 (en) * | 1996-03-06 | 1997-09-12 | Hyperion Catalysis International, Inc. | Functionalized nanotubes |
US5747161A (en) * | 1991-10-31 | 1998-05-05 | Nec Corporation | Graphite filaments having tubular structure and method of forming the same |
WO1999006618A1 (en) | 1997-08-04 | 1999-02-11 | Hyperion Catalysis International, Inc. | Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes |
US5928450A (en) * | 1998-02-05 | 1999-07-27 | Russell; Daniel Nelson | Process of making fractal tubes |
US5951832A (en) * | 1995-02-09 | 1999-09-14 | Kabushiki Kaisha Toshiba | Ultrafine particle enclosing fullerene and production method thereof |
US6183714B1 (en) | 1995-09-08 | 2001-02-06 | Rice University | Method of making ropes of single-wall carbon nanotubes |
US6331690B1 (en) * | 1997-12-22 | 2001-12-18 | Nec Corporation | Process for producing single-wall carbon nanotubes uniform in diameter and laser ablation apparatus used therein |
US20020084410A1 (en) * | 1996-08-08 | 2002-07-04 | William Marsh Rice University | Macroscopically manipulable nanoscale devices made from nanotube assemblies |
US20020094064A1 (en) * | 2000-10-06 | 2002-07-18 | Zhou Otto Z. | Large-area individually addressable multi-beam x-ray system and method of forming same |
US6426134B1 (en) | 1998-06-30 | 2002-07-30 | E. I. Du Pont De Nemours And Company | Single-wall carbon nanotube-polymer composites |
US20020100581A1 (en) * | 1999-06-14 | 2002-08-01 | Knowles Timothy R. | Thermal interface |
US20020110513A1 (en) * | 1998-09-18 | 2002-08-15 | Margrave John L. | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US6437329B1 (en) | 1999-10-27 | 2002-08-20 | Advanced Micro Devices, Inc. | Use of carbon nanotubes as chemical sensors by incorporation of fluorescent molecules within the tube |
US20020122754A1 (en) * | 1999-03-23 | 2002-09-05 | Ryzhkov Vladislav Andeevitch | Method and device for producing higher fullerenes and nanotubes |
US6451175B1 (en) | 2000-08-15 | 2002-09-17 | Wisconsin Alumni Research Foundation | Method and apparatus for carbon nanotube production |
US20020131910A1 (en) * | 2000-06-02 | 2002-09-19 | Resasco Daniel E. | Method and apparatus for producing carbon nanotubes |
US6455847B1 (en) | 2000-04-26 | 2002-09-24 | Advanced Micro Devices, Inc. | Carbon nanotube probes in atomic force microscope to detect partially open/closed contacts |
US6455021B1 (en) * | 1998-07-21 | 2002-09-24 | Showa Denko K.K. | Method for producing carbon nanotubes |
US20020172867A1 (en) * | 2001-04-10 | 2002-11-21 | Anglin David L. | Battery cathode |
US6502419B2 (en) | 2000-04-13 | 2003-01-07 | Sun Microsystems, Inc. | Electro-desorption compressor |
WO2003008331A1 (en) * | 2001-07-20 | 2003-01-30 | Kh Chemicals Co., Ltd | Preparation of carbon nanotubes |
US6544463B1 (en) | 1999-07-26 | 2003-04-08 | The Trustees Of The University Of Pennsylvania | Hybrid materials and methods for producing the same |
US6574130B2 (en) | 2001-07-25 | 2003-06-03 | Nantero, Inc. | Hybrid circuit having nanotube electromechanical memory |
US20030133865A1 (en) * | 2001-07-06 | 2003-07-17 | William Marsh Rice University | Single-wall carbon nanotube alewives, process for making, and compositions thereof |
US20030142790A1 (en) * | 2000-10-06 | 2003-07-31 | Zhou Otto Z. | X-ray generating mechanism using electron field emission cathode |
US20030170166A1 (en) * | 2001-07-06 | 2003-09-11 | William Marsh Rice University | Fibers of aligned single-wall carbon nanotubes and process for making the same |
US20030175200A1 (en) * | 1998-09-18 | 2003-09-18 | William Marsh Rice University | Catalytic growth of single-wall carbon nanotubes from metal particles |
US20030199172A1 (en) * | 2001-07-25 | 2003-10-23 | Thomas Rueckes | Methods of nanotube films and articles |
US6641792B2 (en) * | 2001-08-03 | 2003-11-04 | Hitachi Chemical Company, Ltd. | Hollow carbon fiber and production method |
US6643165B2 (en) | 2001-07-25 | 2003-11-04 | Nantero, Inc. | Electromechanical memory having cell selection circuitry constructed with nanotube technology |
US6645455B2 (en) | 1998-09-18 | 2003-11-11 | William Marsh Rice University | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US20030211030A1 (en) * | 2002-05-09 | 2003-11-13 | Smiljanic Olivier | Method and apparatus for producing single-wall carbon nanotubes |
US20040009353A1 (en) * | 1999-06-14 | 2004-01-15 | Knowles Timothy R. | PCM/aligned fiber composite thermal interface |
US6680016B2 (en) * | 2001-08-17 | 2004-01-20 | University Of Dayton | Method of forming conductive polymeric nanocomposite materials |
US20040022981A1 (en) * | 2002-04-01 | 2004-02-05 | Carbon Nanotechnologies, Inc. | Composite of single-wall carbon nanotubes and aromatic polyamide and process for making the same |
US6689439B2 (en) * | 2000-03-08 | 2004-02-10 | Zbigniew S. Sobolewski | Micro-stud diffusion substrate for use in fuel cells |
US20040027224A1 (en) * | 2002-05-31 | 2004-02-12 | International Rectifier Corporation | Planar transformer arrangement |
US6706402B2 (en) | 2001-07-25 | 2004-03-16 | Nantero, Inc. | Nanotube films and articles |
US20040062704A1 (en) * | 2002-10-01 | 2004-04-01 | Conoco Inc. | Process for converting alkanes to carbon filaments |
US20040073251A1 (en) * | 2002-10-15 | 2004-04-15 | Jan Weber | Nanotube paper-based medical device |
US20040071870A1 (en) * | 1999-06-14 | 2004-04-15 | Knowles Timothy R. | Fiber adhesive material |
US20040071949A1 (en) * | 2001-07-27 | 2004-04-15 | Glatkowski Paul J. | Conformal coatings comprising carbon nanotubes |
US20040077249A1 (en) * | 2002-10-18 | 2004-04-22 | Yasuyuki Saito | Method and apparatus for carbon fiber fixed on a substrate |
US20040131532A1 (en) * | 1999-06-02 | 2004-07-08 | Resasco Daniel E. | Method and catalyst for producing single walled carbon nanotubes |
US6761870B1 (en) | 1998-11-03 | 2004-07-13 | William Marsh Rice University | Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure CO |
US20040164289A1 (en) * | 2001-12-28 | 2004-08-26 | Nantero, Inc. | Electromechanical three-trace junction devices |
US6784028B2 (en) | 2001-12-28 | 2004-08-31 | Nantero, Inc. | Methods of making electromechanical three-trace junction devices |
US20040169615A1 (en) * | 1997-01-16 | 2004-09-02 | Crowley Robert Joseph | Optical antenna array for harmonic generation, mixing and signal amplification |
US6790425B1 (en) * | 1999-10-27 | 2004-09-14 | Wiliam Marsh Rice University | Macroscopic ordered assembly of carbon nanotubes |
US6800369B2 (en) | 2000-11-13 | 2004-10-05 | International Business Machines Corporation | Crystals comprising single-walled carbon nanotubes |
US20040202603A1 (en) * | 1994-12-08 | 2004-10-14 | Hyperion Catalysis International, Inc. | Functionalized nanotubes |
WO2004102659A2 (en) * | 2003-05-08 | 2004-11-25 | Curamik Electronics Gmbh | Composite material, electrical circuit or electric module |
US20040241077A1 (en) * | 2001-10-01 | 2004-12-02 | Ryzhkov Vladislav Andreevitch | Short carbon nanotubes |
US20040258604A1 (en) * | 2001-09-06 | 2004-12-23 | Ryzhkov Vladislay Andreevitch | Apparatus and method for nanoparticle and nanotube production and use therefor for gas storage |
US20040265491A1 (en) * | 2002-01-08 | 2004-12-30 | Sumio Iijima | Method of manufacturing the densely fitted multi-layer carbon nano-tube |
US20040265211A1 (en) * | 2001-12-14 | 2004-12-30 | Dillon Anne C. | Hot wire production of single-wall carbon nanotubes |
US20050011827A1 (en) * | 2003-07-18 | 2005-01-20 | Koslow Evan E. | Carbon or activated carbon nanofibers |
US20050025696A1 (en) * | 1999-06-02 | 2005-02-03 | Resasco Daniel E. | Method of producing single-walled carbon nanotubes |
US6858349B1 (en) | 2000-09-07 | 2005-02-22 | The Gillette Company | Battery cathode |
US20050042163A1 (en) * | 2003-08-20 | 2005-02-24 | Conocophillips Company | Metal loaded carbon filaments |
US6884404B2 (en) * | 2000-05-31 | 2005-04-26 | Fuji Xerox Co., Ltd. | Method of manufacturing carbon nanotubes and/or fullerenes, and manufacturing apparatus for the same |
US20050092241A1 (en) * | 2003-10-17 | 2005-05-05 | General Electric Company | Appliance having a container including a nanostructured material for hydrogen storage |
US20050100497A1 (en) * | 1995-09-08 | 2005-05-12 | William Marsh Rice University | Electrical conductors comprising single-wall carbon nanotubes |
US20050112053A1 (en) * | 2001-07-10 | 2005-05-26 | Clarke Mark S. | Production of stable aqueous dispersions of carbon nanotubes government interests |
US20050123467A1 (en) * | 2003-12-03 | 2005-06-09 | Avetik Harutyunyan | Systems and methods for production of carbon nanostructures |
US6908572B1 (en) | 2000-07-17 | 2005-06-21 | University Of Kentucky Research Foundation | Mixing and dispersion of nanotubes by gas or vapor expansion |
US6911682B2 (en) | 2001-12-28 | 2005-06-28 | Nantero, Inc. | Electromechanical three-trace junction devices |
US20050142313A1 (en) * | 2003-12-31 | 2005-06-30 | Grah Michael D. | Method of shrinking a film |
US6919592B2 (en) | 2001-07-25 | 2005-07-19 | Nantero, Inc. | Electromechanical memory array using nanotube ribbons and method for making same |
US20050226361A1 (en) * | 2000-10-06 | 2005-10-13 | The University Of North Carolina At Chapel Hill | Computed tomography scanning system and method using a field emission x-ray source |
US20050245665A1 (en) * | 2001-08-17 | 2005-11-03 | Chenggang Chen | Method of forming nanocomposite materials |
US20050255033A1 (en) * | 2004-05-13 | 2005-11-17 | Yutaka Shimoji | Laser fabrication of continuous nanofibers |
US20050263456A1 (en) * | 2003-03-07 | 2005-12-01 | Cooper Christopher H | Nanomesh article and method of using the same for purifying fluids |
US20050266162A1 (en) * | 2004-03-12 | 2005-12-01 | Jiazhong Luo | Carbon nanotube stripping solutions and methods |
US20050272847A1 (en) * | 2001-08-17 | 2005-12-08 | Chyi-Shan Wang | Method of forming nanocomposite materials |
US20060008403A1 (en) * | 2004-07-09 | 2006-01-12 | Clean Technologies International Corporation | Reactant liquid system for facilitating the production of carbon nanostructures |
US20060008047A1 (en) * | 2000-10-06 | 2006-01-12 | The University Of North Carolina At Chapel Hill | Computed tomography system for imaging of human and small animal |
US20060008406A1 (en) * | 2004-07-09 | 2006-01-12 | Clean Technologies International Corporation | Method and apparatus for preparing a collection surface for use in producing carbon nanostructures |
US20060008405A1 (en) * | 2004-07-09 | 2006-01-12 | Wagner Anthony S | Method and apparatus for producing carbon nanostructures |
US20060019819A1 (en) * | 2004-07-23 | 2006-01-26 | Yang Shao-Horn | Fiber structures including catalysts and methods associated with the same |
US20060021510A1 (en) * | 2004-07-27 | 2006-02-02 | University Of North Texas | Method and apparatus for hydrogen production from greenhouse gas saturated carbon nanotubes and synthesis of carbon nanostructures therefrom |
US20060039849A1 (en) * | 2000-06-02 | 2006-02-23 | Resasco Daniel E | Process and apparatus for producing single-walled carbon nanotubes |
US20060039848A1 (en) * | 2004-01-09 | 2006-02-23 | Olga Matarredona | Carbon nanotube pastes and methods of use |
US20060057055A1 (en) * | 2003-12-15 | 2006-03-16 | Resasco Daniel E | Rhenium catalysts and methods for production of single-walled carbon nanotubes |
US20060060825A1 (en) * | 2001-03-26 | 2006-03-23 | Glatkowski Paul J | Coatings comprising carbon nanotubes and methods for forming same |
US20060078489A1 (en) * | 2004-09-09 | 2006-04-13 | Avetik Harutyunyan | Synthesis of small and narrow diameter distributed carbon single walled nanotubes |
US20060079623A1 (en) * | 2001-08-17 | 2006-04-13 | Chenggang Chen | Method of forming nanocomposite materials |
US20060083927A1 (en) * | 2004-10-15 | 2006-04-20 | Zyvex Corporation | Thermal interface incorporating nanotubes |
US7033650B2 (en) * | 1999-09-29 | 2006-04-25 | Electrovac, Fabrikation, Elektrotechnischer Spezialartikel, Gesellschaft Mbh | Method of producing a nanotube layer on a substrate |
US7041372B2 (en) * | 2001-09-19 | 2006-05-09 | Lockheed Martin Corporation | Anti-ballistic nanotube structures |
US20060099136A1 (en) * | 2001-12-14 | 2006-05-11 | Dillon Anne C | Hot wire production of single-wall and multi-wall carbon nanotubes |
US20060104890A1 (en) * | 2004-11-17 | 2006-05-18 | Avetik Harutyunyan | Catalyst for synthesis of carbon single-walled nanotubes |
US20060137817A1 (en) * | 2004-11-17 | 2006-06-29 | Hyperion Catalysis International, Inc. | Method for preparing catalyst supports and supported catalysts from single walled carbon nanotubes |
US20060145194A1 (en) * | 2002-11-19 | 2006-07-06 | William Marsh Rice University | Method for creating a functional interface between a nanoparticle, nanotube or nanowire, and a biological molecule or system |
US7097821B1 (en) | 1997-08-04 | 2006-08-29 | Hyperion Catalysis International, Inc. | Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes produced according to this method |
US7112315B2 (en) | 1999-04-14 | 2006-09-26 | The Regents Of The University Of California | Molecular nanowires from single walled carbon nanotubes |
US20060228289A1 (en) * | 2005-01-11 | 2006-10-12 | Avetik Harutyunyan | Methods for growing long carbon single-walled nanotubes |
US7125534B1 (en) | 1998-09-18 | 2006-10-24 | William Marsh Rice University | Catalytic growth of single- and double-wall carbon nanotubes from metal particles |
US20060239893A1 (en) * | 2004-11-16 | 2006-10-26 | Hyperion Catalysis International, Inc. | Method for preparing single walled carbon nanotubes |
US20060274889A1 (en) * | 2000-10-06 | 2006-12-07 | University Of North Carolina At Chapel Hill | Method and apparatus for controlling electron beam current |
US20060286024A1 (en) * | 2005-06-15 | 2006-12-21 | Baker R Terry K | Synthesis and cleaving of carbon nanochips |
US20060284538A1 (en) * | 2005-06-17 | 2006-12-21 | Avetik Harutyunyan | Carbon single-walled nanotubes as electrodes for electrochromic glasses |
US20070084797A1 (en) * | 2003-03-07 | 2007-04-19 | Seldon Technologies, Llc | Purification of fluids with nanomaterials |
US20070116629A1 (en) * | 2005-09-15 | 2007-05-24 | Avetik Harutyunyan | Methods for synthesis of high quality carbon single-walled nanotubes |
US20070116633A1 (en) * | 2004-07-09 | 2007-05-24 | Clean Technologies International Corporation | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
JP2007515364A (en) * | 2003-10-16 | 2007-06-14 | ザ ユニバーシティ オブ アクロン | Carbon nanotubes on carbon nanofiber substrate |
US20070160522A1 (en) * | 2003-04-02 | 2007-07-12 | Beyong-Hwan Ryu | Method of preparing carbon nanotube from liquid phased-carbon source |
US20070170414A1 (en) * | 2001-06-14 | 2007-07-26 | Hyperion Catalysis International, Inc. | Field emission devices using modified carbon nanotubes |
US7274078B2 (en) | 2001-07-25 | 2007-09-25 | Nantero, Inc. | Devices having vertically-disposed nanofabric articles and methods of making the same |
US20070227700A1 (en) * | 2006-03-29 | 2007-10-04 | Dimitrakopoulos Christos D | VLSI chip hot-spot minimization using nanotubes |
US20070231561A1 (en) * | 2006-03-31 | 2007-10-04 | 3M Innovative Properties Company | Optical article having an antistatic layer |
US20070238826A1 (en) * | 2004-08-31 | 2007-10-11 | Hyperion Catalysis International, Inc. | Conductive thermosets by extrusion |
US7304357B2 (en) | 2001-07-25 | 2007-12-04 | Nantero, Inc. | Devices having horizontally-disposed nanofabric articles and methods of making the same |
US20070281087A1 (en) * | 2006-01-30 | 2007-12-06 | Harutyunyan Avetik R | Catalyst for the Growth of Carbon Single-Walled Nanotubes |
US20080013258A1 (en) * | 2005-10-13 | 2008-01-17 | Honda R&D Americas, Inc. | Functionalized nanotube material for supercapacitor electrodes |
US7323136B1 (en) * | 2000-02-01 | 2008-01-29 | William Marsh Rice University | Containerless mixing of metals and polymers with fullerenes and nanofibers to produce reinforced advanced materials |
US20080031802A1 (en) * | 2004-10-22 | 2008-02-07 | Hyperion Catalysis International, Inc. | Ozonolysis of carbon nanotubes |
US20080039315A1 (en) * | 2004-11-16 | 2008-02-14 | Jun Ma | Methods of preparing supported catalysts from metal loaded carbon nanotubes |
US20080036358A1 (en) * | 2001-06-14 | 2008-02-14 | Hyperion Catalysis International, Inc. | Field Emission Devices Using Ion Bombarded Carbon Nanotubes |
US20080044651A1 (en) * | 2004-06-02 | 2008-02-21 | Mysticmd Inc. | Coatings Comprising Carbon Nanotubes |
US7335395B2 (en) | 2002-04-23 | 2008-02-26 | Nantero, Inc. | Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US20080069420A1 (en) * | 2006-05-19 | 2008-03-20 | Jian Zhang | Methods, systems, and computer porgram products for binary multiplexing x-ray radiography |
US20080111110A1 (en) * | 2002-06-14 | 2008-05-15 | Hyperion Catalysis International, Inc. | Electroconductive Carbon Fibril-based Inks and Coatings |
US20080135815A1 (en) * | 2004-04-07 | 2008-06-12 | Glatkowski Paul J | Fugitive Viscosity and Stability Modifiers For Carbon Nanotube Compositions |
US20080166563A1 (en) * | 2007-01-04 | 2008-07-10 | Goodrich Corporation | Electrothermal heater made from thermally conducting electrically insulating polymer material |
US20080171204A1 (en) * | 2002-11-19 | 2008-07-17 | William Marsh Rice University | Fabrication of light emitting film coated fullerenes and their application for in-vivo light emission |
US20080176052A1 (en) * | 2005-11-16 | 2008-07-24 | Jun Ma | Mixed Structures of Single Walled and Multi Walled Carbon Nanotubes |
US20080176740A1 (en) * | 2004-11-16 | 2008-07-24 | Jun Ma | Method for preparing catalysts supported on carbon nanotubes networks |
US20080279751A1 (en) * | 2006-03-29 | 2008-11-13 | Hyperion Catalysis International, Inc. | Method for preparing uniform single walled carbon nanotubes |
US20080276987A1 (en) * | 2007-05-08 | 2008-11-13 | Vanguard Solar, Inc. | Nanostructured Solar Cells |
US20080279753A1 (en) * | 2006-01-30 | 2008-11-13 | Harutyunyan Avetik R | Method and Apparatus for Growth of High Quality Carbon Single-Walled Nanotubes |
US20080288067A1 (en) * | 2007-05-10 | 2008-11-20 | Newcyte, Inc. | Artificial retinal implant |
US7466523B1 (en) * | 2003-07-10 | 2008-12-16 | Yingjian Chen | Nanotube spin valve and method of producing the same |
US20090022264A1 (en) * | 2007-07-19 | 2009-01-22 | Zhou Otto Z | Stationary x-ray digital breast tomosynthesis systems and related methods |
US20090102046A1 (en) * | 2007-10-18 | 2009-04-23 | International Business Machines Corporation | On-chip temperature gradient minimization using carbon nanotube cooling structures with variable cooling capacity |
US20090176112A1 (en) * | 2006-05-02 | 2009-07-09 | Kruckenberg Teresa M | Modification of reinforcing fiber tows used in composite materials by using nanoreinforcements |
US7560136B2 (en) | 2003-01-13 | 2009-07-14 | Nantero, Inc. | Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US7566478B2 (en) | 2001-07-25 | 2009-07-28 | Nantero, Inc. | Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US20090202644A1 (en) * | 2005-04-06 | 2009-08-13 | Drexel University | Functional nanoparticle filled carbon nanotubes and methods of their production |
US20090208391A1 (en) * | 2008-01-25 | 2009-08-20 | Hyperion Catalysis International, Inc. | Processes for the recovery of catalytic metal and carbon nanotubes |
US20090227162A1 (en) * | 2006-03-10 | 2009-09-10 | Goodrich Corporation | Low density lightning strike protection for use in airplanes |
US20090255799A1 (en) * | 2004-11-17 | 2009-10-15 | Avetik Harutyunyan | Welding of carbon single-walled nanotubes by microwave treatment |
US20090296516A1 (en) * | 2005-10-07 | 2009-12-03 | Sulzer Mixpac Ag | Dynamic Mixer |
US20100003185A1 (en) * | 2004-08-16 | 2010-01-07 | Wagner Anthony S | Method and apparatus for producing fine carbon particles |
US20100021794A1 (en) * | 2008-07-23 | 2010-01-28 | Korea Institute Of Science And Techology | Method of fabricating carbon material, carbon material prepared by the method, cell material and apparatus using the same |
US20100047522A1 (en) * | 2008-03-14 | 2010-02-25 | Nano-C, Inc. | Carbon nanotube-transparent conductive inorganic nanoparticles hybrid thin films for transparent conductive applications |
US20100086472A1 (en) * | 2005-02-07 | 2010-04-08 | Hyperion Catalysis International, Inc. | Single-walled carbon nanotube catalysts and method for preparing same |
US20100098877A1 (en) * | 2003-03-07 | 2010-04-22 | Cooper Christopher H | Large scale manufacturing of nanostructured material |
US20100143691A1 (en) * | 2007-04-17 | 2010-06-10 | Sumitomo Precision Products Co., Ltd. | High heat conduction composite material |
US20100160553A1 (en) * | 2002-06-19 | 2010-06-24 | Mcdaniel Neal D | Methods of making polymer composites containing single-walled carbon nanotubes |
US20100206362A1 (en) * | 2007-05-08 | 2010-08-19 | Vanguard Solar, Inc. | Solar Cells and Photodetectors With Semiconducting Nanostructures |
US20100221173A1 (en) * | 2005-03-29 | 2010-09-02 | Hyperion Catalysis International, Inc. | Method for preparing single walled carbon nanotubes from a metal layer |
US7796999B1 (en) | 2006-04-03 | 2010-09-14 | Sprint Spectrum L.P. | Method and system for network-directed media buffer-size setting based on device features |
US20100239489A1 (en) * | 2004-11-17 | 2010-09-23 | Honda Motor Co., Ltd. | Methods for Controlling the Quality of Metal Nanocatalyst for Growing High Yield Carbon Nanotubes |
US20100239064A1 (en) * | 2005-04-25 | 2010-09-23 | Unc-Chapel Hill | Methods, systems, and computer program products for multiplexing computed tomography |
US20100240529A1 (en) * | 1999-06-02 | 2010-09-23 | Leandro Balzano | Single-walled carbon nanotube-ceramic composites and methods of use |
US20100283090A1 (en) * | 2009-05-11 | 2010-11-11 | Honda Patents & Technologies North America,Llc | Magnetic nanotransistor |
US7842387B2 (en) | 2005-06-28 | 2010-11-30 | The Board Of Regents Of The University Of Oklahoma | Methods for growing and harvesting carbon nanotubes |
US20100308279A1 (en) * | 2005-09-16 | 2010-12-09 | Chaohui Zhou | Conductive Silicone and Methods for Preparing Same |
US20100316557A1 (en) * | 2009-06-10 | 2010-12-16 | Carbon Solutions, Inc. | Continuous extraction technique for the purification of carbon nanomaterials |
US20100329413A1 (en) * | 2009-01-16 | 2010-12-30 | Zhou Otto Z | Compact microbeam radiation therapy systems and methods for cancer treatment and research |
US20110002838A1 (en) * | 2005-03-29 | 2011-01-06 | Hyperion Catalysis International, Inc | Method for preparing single walled carbon nanotubes from a metal layer |
CN1918067B (en) * | 2004-02-09 | 2011-01-26 | Kh化学有限公司 | A method for the preparation of y-branched carbon nanotubes |
US20110049292A1 (en) * | 2009-08-28 | 2011-03-03 | Rohr, Inc | Lightning strike protection |
US20110073344A1 (en) * | 2009-09-29 | 2011-03-31 | Hyperion Catalysis International, Inc. | Gasket containing carbon nanotubes |
US20110110842A1 (en) * | 2009-06-10 | 2011-05-12 | Haddon Robert C | Continuous extraction technique for the purification of carbon nanomaterials |
WO2011086384A1 (en) | 2010-01-16 | 2011-07-21 | Nanoridge Materials, Incorporated | Armour with transformed nanotube material |
WO2011086382A1 (en) | 2010-01-16 | 2011-07-21 | Nanoridge Materials, Incorporated | Ceramic matrix composite articles comprising graphene nanoribbons - like material and their manufacturing method using carbon nanotubes |
US20110220191A1 (en) * | 2008-09-09 | 2011-09-15 | Vanguard Solar, Inc. | Solar cells and photodetectors with semiconducting nanostructures |
US8062702B2 (en) | 2001-11-20 | 2011-11-22 | William Marsh Rice University | Coated fullerenes, composites and dielectrics made therefrom |
WO2011144292A2 (en) | 2010-05-21 | 2011-11-24 | Merck Patent Gmbh | Selectively etching of a carbon nano tubes (cnt) polymer matrix on a plastic substructure |
DE102010043473A1 (en) | 2010-11-05 | 2012-05-10 | Evonik Degussa Gmbh | Carbon nanotube-containing polyamide 12 composition |
WO2012059489A1 (en) | 2010-11-05 | 2012-05-10 | Evonik Goldschmidt Gmbh | Composition made of polymers and electrically conductive carbon |
DE102010043470A1 (en) | 2010-11-05 | 2012-05-10 | Evonik Degussa Gmbh | Composition of polyamides with low concentration of carboxylic acid amide groups and electrically conductive carbon |
US8358739B2 (en) | 2010-09-03 | 2013-01-22 | The University Of North Carolina At Chapel Hill | Systems and methods for temporal multiplexing X-ray imaging |
US8518711B2 (en) | 2010-07-29 | 2013-08-27 | Honda Motor Co., Ltd. | Quantitative characterization of metallic and semiconductor single-walled carbon nanotube ratios |
EP2639261A1 (en) | 2012-03-16 | 2013-09-18 | Evonik Degussa GmbH | Polyamide composition containing electrically conductive carbon |
WO2014076576A2 (en) | 2012-11-14 | 2014-05-22 | The Pontificia Universidad Católica Madre Y Maestra | Carbon nanotubes conformally coated with diamond nanocrystals or silicon carbide, methods of making the same and methods of their use |
US8834827B2 (en) | 2005-03-14 | 2014-09-16 | National Research Council Of Canada | Method and apparatus for the continuous production and functionalization of single-walled carbon nanotubes using a high frequency plasma torch |
RU2541012C2 (en) * | 2013-04-05 | 2015-02-10 | Мсд Текнолоджис Частная Компания С Ограниченной Ответственностью | Hollow carbon nanoparticles, carbon nanomaterial and method for its production |
US20150096558A1 (en) * | 2012-04-23 | 2015-04-09 | David W. Mazyck | Helmet air purification system |
US9115266B2 (en) | 2013-07-31 | 2015-08-25 | E I Du Pont De Nemours And Company | Carbon nanotube-polymer composite and process for making same |
RU2593875C2 (en) * | 2014-07-03 | 2016-08-10 | Рябых Виктор Владимирович | Method of producing modified with metal carbon nano structures, foundry alloy for composite materials based on aluminium or aluminium alloy and its production method |
US9782136B2 (en) | 2014-06-17 | 2017-10-10 | The University Of North Carolina At Chapel Hill | Intraoral tomosynthesis systems, methods, and computer readable media for dental imaging |
EP3640280A1 (en) | 2018-10-19 | 2020-04-22 | Evonik Operations GmbH | Conductive moulding masses |
US10835199B2 (en) | 2016-02-01 | 2020-11-17 | The University Of North Carolina At Chapel Hill | Optical geometry calibration devices, systems, and related methods for three dimensional x-ray imaging |
US10980494B2 (en) | 2014-10-20 | 2021-04-20 | The University Of North Carolina At Chapel Hill | Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging |
WO2021105860A1 (en) | 2019-11-26 | 2021-06-03 | Trimtabs Ltd | Cables and methods of their production |
US11070107B2 (en) * | 2012-04-03 | 2021-07-20 | The Boeing Company | Open-core flywheel architecture |
US11450446B2 (en) | 2015-05-05 | 2022-09-20 | Nano-C, Inc. | Carbon nanotube based hybrid films for mechanical reinforcement of multilayered, transparent-conductive, laminar stacks |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4663230A (en) * | 1984-12-06 | 1987-05-05 | Hyperion Catalysis International, Inc. | Carbon fibrils, method for producing same and compositions containing same |
US5102647A (en) * | 1988-04-12 | 1992-04-07 | Showa Denko K.K. | Method of producing vapor growth carbon fibers |
-
1993
- 1993-05-21 US US08/065,821 patent/US5424054A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4663230A (en) * | 1984-12-06 | 1987-05-05 | Hyperion Catalysis International, Inc. | Carbon fibrils, method for producing same and compositions containing same |
US5102647A (en) * | 1988-04-12 | 1992-04-07 | Showa Denko K.K. | Method of producing vapor growth carbon fibers |
Non-Patent Citations (78)
Title |
---|
Ajayan et al, "Smallest carbon nanotube", Nature, vol. 358, Jul. 2, 1992. |
Ajayan et al, Smallest carbon nanotube , Nature, vol. 358, Jul. 2, 1992. * |
Ajayan et al., "Capillarity-induced filling of carbon nanotubes", Nature, vol. 361, No. 6410, Jan. 28, 1993. |
Ajayan et al., "Distribution of pertagons and shapes in carbon nano-tubes and nano-particles", Chem. Phys. Lett., vol. 202 No. 5 Jan. 29, 1993. |
Ajayan et al., "Opening carbon nantubes with oxygen and implictions for filling", Nature, vol. 362, Apr. 8, 1993. |
Ajayan et al., Capillarity induced filling of carbon nanotubes , Nature, vol. 361, No. 6410, Jan. 28, 1993. * |
Ajayan et al., Distribution of pertagons and shapes in carbon nano tubes and nano particles , Chem. Phys. Lett., vol. 202 No. 5 Jan. 29, 1993. * |
Ajayan et al., Opening carbon nantubes with oxygen and implictions for filling , Nature, vol. 362, Apr. 8, 1993. * |
Ando et al., "Preparation of Carbon nanotubes by Arc-Discharge Evaporation", Jpn. Appl. Phys. 32 (Jan. 1993), Pt. 2, No. 1A/B. |
Ando et al., Preparation of Carbon nanotubes by Arc Discharge Evaporation , Jpn. Appl. Phys. 32 (Jan. 1993), Pt. 2, No. 1A/B. * |
Bacon, "Growth, Structure, and Properties of Graphite Whiskers", Journal of Applied Physics, vol. 31, No. 2, Feb. 1960. |
Bacon, Growth, Structure, and Properties of Graphite Whiskers , Journal of Applied Physics, vol. 31, No. 2, Feb. 1960. * |
Baker, "Catalytic Growth of Carbon Filaments", Carbon, vol. 27 No. 3, pp. 315-323, 1989 (no month). |
Baker, Catalytic Growth of Carbon Filaments , Carbon, vol. 27 No. 3, pp. 315 323, 1989 (no month). * |
Baum, R, "Carbon nanotubes opened by oxidation", Apr. 12, 1993 C & EN. |
Baum, R, Carbon nanotubes opened by oxidation , Apr. 12, 1993 C & EN. * |
Bethune et al., "Cobalt Catalyzed Growth of Single-Walled Carbon Nanotubes", IBM Research Division, Almaden Reserch Center 650 Harry Road, San Jose, Calif. 15120-6099 (no date). |
Bethune et al., Cobalt Catalyzed Growth of Single Walled Carbon Nanotubes , IBM Research Division, Almaden Reserch Center 650 Harry Road, San Jose, Calif. 15120 6099 (no date). * |
Charlier et al., "Energetics of Multilayered Carbon Tubles", The American Physical Society, Physical Review Letters, vol. 70, No. 12, Mar. 22, 1993. |
Charlier et al., Energetics of Multilayered Carbon Tubles , The American Physical Society, Physical Review Letters, vol. 70, No. 12, Mar. 22, 1993. * |
Dravid et al., "Buckytubes and Derivatives: Their Growth and Implications for Buckyball Formation", Science, vol. 259, Mar. 12, 1993. |
Dravid et al., Buckytubes and Derivatives: Their Growth and Implications for Buckyball Formation , Science, vol. 259, Mar. 12, 1993. * |
Ebbesen et al., "Large-scale synthesis of carbon nanotubes", Nature, vol. 358, Jul. 16, 1992. |
Ebbesen et al., Large scale synthesis of carbon nanotubes , Nature, vol. 358, Jul. 16, 1992. * |
Endo et al., "Formation of Carbon Nanofibers", J. Phys. Chem. 1992, 96, 6941-6944. |
Endo et al., Formation of Carbon Nanofibers , J. Phys. Chem. 1992, 96, 6941 6944. * |
Endo, "Grow carbon fibers in the vapor phase", Chemtech, Sep. 1988. |
Endo, Grow carbon fibers in the vapor phase , Chemtech, Sep. 1988. * |
F. Flam, "Condensed Matter Physicists Shrink Their Horizons", Science, vol. 260, Apr. 9, 1993. |
F. Flam, Condensed Matter Physicists Shrink Their Horizons , Science, vol. 260, Apr. 9, 1993. * |
Ge et al., "How to grow buckytubes", Science, vol. 260, Apr. 23, 1993. |
Ge et al., How to grow buckytubes , Science, vol. 260, Apr. 23, 1993. * |
I. Peterson, "Wrapping carbon into superstrong tubes", Science Views, vol. 143, 1993 (no month). |
I. Peterson, Wrapping carbon into superstrong tubes , Science Views, vol. 143, 1993 (no month). * |
Iijima et al., "Pentagons, heptagons and negative curvature in graphite microtuble growth", Nature vol. 356, Apr. 30, 1992. |
Iijima et al., "Pentagons, heptagons and negative curvature in graphite microtubule growth", Nature, vol. 356, Apr. 30, 1992. |
Iijima et al., Pentagons, heptagons and negative curvature in graphite microtuble growth , Nature vol. 356, Apr. 30, 1992. * |
Iijima et al., Pentagons, heptagons and negative curvature in graphite microtubule growth , Nature, vol. 356, Apr. 30, 1992. * |
Iijima, "Helical microtubules of graphitic carbon", Nature, vol. 354, Nov. 7, 1991. |
Iijima, et al., "Growth Model for Carbon Nanotubes", vol. 69, No. 21, Physical Review Letters, Nov. 23, 1992. |
Iijima, et al., Growth Model for Carbon Nanotubes , vol. 69, No. 21, Physical Review Letters, Nov. 23, 1992. * |
Iijima, Helical microtubules of graphitic carbon , Nature, vol. 354, Nov. 7, 1991. * |
Johnson et al., "Electron paramagnetic resonance studies of lanthanum-containing C82 ", Nature, vol. 355, Jan. 16, 1992. |
Johnson et al., Electron paramagnetic resonance studies of lanthanum containing C 82 , Nature, vol. 355, Jan. 16, 1992. * |
Jose Yacaman et al., Catalytic growth of carbon microtubles with fullerene structure , Appl. Phys. Lett 62 (6), Feb. 8, 1993. * |
Jose-Yacaman et al., "Catalytic growth of carbon microtubles with fullerene structure", Appl. Phys. Lett 62 (6), Feb. 8, 1993. |
Kato et al., "Process of formation of vapour-grown carbon fibres by gas-phase reaction using ultrafine iron catalyst particles", Journal of Materials Science Letters 11 (1992) 674-677 (no month). |
Kato et al., Process of formation of vapour grown carbon fibres by gas phase reaction using ultrafine iron catalyst particles , Journal of Materials Science Letters 11 (1992) 674 677 (no month). * |
Lambin et al., "On the Energetics of Tubular Fullerenes", Institute for Research in Interface Sciences, Facultes N.-D. de la Paix, 61 rue de Bruxelles, B-5000 Namur, Belgium (no date). |
Lambin et al., On the Energetics of Tubular Fullerenes , Institute for Research in Interface Sciences, Facultes N. D. de la Paix, 61 rue de Bruxelles, B 5000 Namur, Belgium (no date). * |
Oberlin et al., "Filamentous Growth of Carbon through Benzene Decomposition", Journal of Crystal Growth, 32 (1976) 335-349 no month. |
Oberlin et al., Filamentous Growth of Carbon through Benzene Decomposition , Journal of Crystal Growth, 32 (1976) 335 349 no month. * |
P. M. Ajayan et al., "Smallest carbon nanotube", Nature, vol. 258, Jul. 2, 1992. |
P. M. Ajayan et al., Smallest carbon nanotube , Nature, vol. 258, Jul. 2, 1992. * |
Pederson et al., "Nanocapillarity in Fullerene Tubules", Physical Review Letters, vol. 69, No. 18, Nov. 2, 1992. |
Pederson et al., Nanocapillarity in Fullerene Tubules , Physical Review Letters, vol. 69, No. 18, Nov. 2, 1992. * |
Saito et al., "Growth and structure of graphitic tubules and polyhedral particles in arc-discharge", Chemical Physics Letters, vol. 204, No. 3, 4, Mar. 19, 1993. |
Saito et al., Growth and structure of graphitic tubules and polyhedral particles in arc discharge , Chemical Physics Letters, vol. 204, No. 3, 4, Mar. 19, 1993. * |
Seraphin et al, "Yttrium Carbide in nanotubes", Nature, vol. 362, Apr. 8, 1993. |
Seraphin et al, Yttrium Carbide in nanotubes , Nature, vol. 362, Apr. 8, 1993. * |
Shinohara et al., "Encapsulation of a scandium trimer in C82 ", Nature, vol. 357, May 7, 1992. |
Shinohara et al., Encapsulation of a scandium trimer in C 82 , Nature, vol. 357, May 7, 1992. * |
Tsang et al., "Thinning and opening of carbon nanotubes by oxidation using carbon dioxide", Nature, vol. 362, Apr. 8, 1993. |
Tsang et al., Thinning and opening of carbon nanotubes by oxidation using carbon dioxide , Nature, vol. 362, Apr. 8, 1993. * |
Ugarte, "Curling and closure of graphitic networks under electron-beam irradiation", Nature, vol. 359, Oct. 22, 1992. |
Ugarte, "Morphology and structure of graphitic soot particles generated in arc-discharge C60 production", Chemical Physics Letters, vol. 198, No. 6, Oct. 23, 1992. |
Ugarte, Curling and closure of graphitic networks under electron beam irradiation , Nature, vol. 359, Oct. 22, 1992. * |
Ugarte, Morphology and structure of graphitic soot particles generated in arc discharge C 60 production , Chemical Physics Letters, vol. 198, No. 6, Oct. 23, 1992. * |
W. Kratschmer et al., "Solid C60 : a new form of carbon", Nature, vol. 347, Sep. 27, 1990. |
W. Kratschmer et al., "The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule", Chemical Physics Letters, vol. 170, No. 2.3, Jul. 6, 1990. |
W. Kratschmer et al., Solid C 60 : a new form of carbon , Nature, vol. 347, Sep. 27, 1990. * |
W. Kratschmer et al., The infrared and ultraviolet absorption spectra of laboratory produced carbon dust: evidence for the presence of the C 60 molecule , Chemical Physics Letters, vol. 170, No. 2.3, Jul. 6, 1990. * |
Walker et al., "Chemistry and Physics of Carbon", Department of Material Sciences and Engineering, University Park, Pa., vol. 14 no date. |
Walker et al., Chemistry and Physics of Carbon , Department of Material Sciences and Engineering, University Park, Pa., vol. 14 no date. * |
Wang et al., "Growth and characterization of buckybundles", Appl. Phys. Lett. 62 (16), Apr. 19, 1993. |
Wang et al., Growth and characterization of buckybundles , Appl. Phys. Lett. 62 (16), Apr. 19, 1993. * |
Yannoni et al., "Scandium Clusters in Fullerene Cages", Science, vol. 256, May 22, 1992, |
Yannoni et al., Scandium Clusters in Fullerene Cages , Science, vol. 256, May 22, 1992, * |
Cited By (410)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5747161A (en) * | 1991-10-31 | 1998-05-05 | Nec Corporation | Graphite filaments having tubular structure and method of forming the same |
US5482601A (en) * | 1994-01-28 | 1996-01-09 | Director-General Of Agency Of Industrial Science And Technology | Method and device for the production of carbon nanotubes |
US20060193868A1 (en) * | 1994-12-08 | 2006-08-31 | Hyperion Catalysis International, Inc. | Functionalized nanotubes |
US20040202603A1 (en) * | 1994-12-08 | 2004-10-14 | Hyperion Catalysis International, Inc. | Functionalized nanotubes |
WO1996018059A1 (en) * | 1994-12-08 | 1996-06-13 | Hyperion Catalysis International, Inc. | Functionalized fibrils |
US7854945B2 (en) | 1994-12-08 | 2010-12-21 | Hyperion Catalysis International, Inc. | Functionalized nanotubes |
US5951832A (en) * | 1995-02-09 | 1999-09-14 | Kabushiki Kaisha Toshiba | Ultrafine particle enclosing fullerene and production method thereof |
US6183714B1 (en) | 1995-09-08 | 2001-02-06 | Rice University | Method of making ropes of single-wall carbon nanotubes |
US7338915B1 (en) | 1995-09-08 | 2008-03-04 | Rice University | Ropes of single-wall carbon nanotubes and compositions thereof |
US7070754B2 (en) | 1995-09-08 | 2006-07-04 | William Marsh Rice University | Ropes of single-wall carbon nanotubes |
US20050100497A1 (en) * | 1995-09-08 | 2005-05-12 | William Marsh Rice University | Electrical conductors comprising single-wall carbon nanotubes |
US20060008407A1 (en) * | 1995-09-08 | 2006-01-12 | William Marsh Rice University | Ropes of single-wall carbon nanotubes |
US6969504B2 (en) | 1995-09-08 | 2005-11-29 | William Marsh Rice University | Electrical conductors comprising single-wall carbon nanotubes |
WO1997032571A1 (en) * | 1996-03-06 | 1997-09-12 | Hyperion Catalysis International, Inc. | Functionalized nanotubes |
US20040265209A1 (en) * | 1996-08-08 | 2004-12-30 | William Marsh Rice University | Method for end-derivatizing single-wall carbon nanotubes and for introducing an endohedral group to single-wall carbon nanotubes |
US7959779B2 (en) | 1996-08-08 | 2011-06-14 | William Marsh Rice University | Macroscopically manipulable nanoscale devices made from nanotube assemblies |
US20100096265A1 (en) * | 1996-08-08 | 2010-04-22 | William Marsh Rice University, A Texas University | Macroscopically manipulable nanoscale devices made from nanotube assemblies |
US20020084410A1 (en) * | 1996-08-08 | 2002-07-04 | William Marsh Rice University | Macroscopically manipulable nanoscale devices made from nanotube assemblies |
US20050244326A1 (en) * | 1996-08-08 | 2005-11-03 | William Marsh Rice University | Method for fractionating single-wall carbon nanotubes |
US7048903B2 (en) * | 1996-08-08 | 2006-05-23 | William Marsh Rice University | Macroscopically manipulable nanoscale devices made from nanotube assemblies |
US7357906B2 (en) | 1996-08-08 | 2008-04-15 | William Marsh Rice University | Method for fractionating single-wall carbon nanotubes |
US7205021B2 (en) * | 1997-01-16 | 2007-04-17 | Ambit Corp | Optical antenna array for harmonic generation, mixing and signal amplification |
US20040169615A1 (en) * | 1997-01-16 | 2004-09-02 | Crowley Robert Joseph | Optical antenna array for harmonic generation, mixing and signal amplification |
US7097821B1 (en) | 1997-08-04 | 2006-08-29 | Hyperion Catalysis International, Inc. | Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes produced according to this method |
US7074379B2 (en) | 1997-08-04 | 2006-07-11 | Hyperion Catalysis International, Inc. | Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes produced according to this method |
US6827919B1 (en) | 1997-08-04 | 2004-12-07 | Hyperion Catalysis International, Inc. | Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes produced according to this method |
US7144564B2 (en) | 1997-08-04 | 2006-12-05 | Hyperion Catalysis International, Inc. | Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes produced according to this method |
US6221330B1 (en) * | 1997-08-04 | 2001-04-24 | Hyperion Catalysis International Inc. | Process for producing single wall nanotubes using unsupported metal catalysts |
WO1999006618A1 (en) | 1997-08-04 | 1999-02-11 | Hyperion Catalysis International, Inc. | Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes |
US20060239897A1 (en) * | 1997-08-04 | 2006-10-26 | Hyperion Catalysis International, Inc. | Process for producing single wall nanotubes using unsupported metal catalysts and single wall nanotubes produced according to this method |
US6331690B1 (en) * | 1997-12-22 | 2001-12-18 | Nec Corporation | Process for producing single-wall carbon nanotubes uniform in diameter and laser ablation apparatus used therein |
US5928450A (en) * | 1998-02-05 | 1999-07-27 | Russell; Daniel Nelson | Process of making fractal tubes |
US6426134B1 (en) | 1998-06-30 | 2002-07-30 | E. I. Du Pont De Nemours And Company | Single-wall carbon nanotube-polymer composites |
US6455021B1 (en) * | 1998-07-21 | 2002-09-24 | Showa Denko K.K. | Method for producing carbon nanotubes |
US7125534B1 (en) | 1998-09-18 | 2006-10-24 | William Marsh Rice University | Catalytic growth of single- and double-wall carbon nanotubes from metal particles |
US20070003470A1 (en) * | 1998-09-18 | 2007-01-04 | William Marsh Rice University | Ropes comprised of single-walled and double-walled carbon nanotubes |
US6645455B2 (en) | 1998-09-18 | 2003-11-11 | William Marsh Rice University | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US6875412B2 (en) | 1998-09-18 | 2005-04-05 | William Marsh Rice University | Chemically modifying single wall carbon nanotubes to facilitate dispersal in solvents |
US20070098621A1 (en) * | 1998-09-18 | 2007-05-03 | William Marsh Rice University | Sidewall derivatized carbon nanotubes |
US6827918B2 (en) | 1998-09-18 | 2004-12-07 | William Marsh Rice University | Dispersions and solutions of fluorinated single-wall carbon nanotubes |
US7201887B2 (en) | 1998-09-18 | 2007-04-10 | William Marsh Rice University | Catalytic growth of single-and double-wall carbon nanotubes from metal particles |
US20020110513A1 (en) * | 1998-09-18 | 2002-08-15 | Margrave John L. | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US7527780B2 (en) | 1998-09-18 | 2009-05-05 | William Marsh Rice University | Functionalized single-wall carbon nanotubes |
US20030175200A1 (en) * | 1998-09-18 | 2003-09-18 | William Marsh Rice University | Catalytic growth of single-wall carbon nanotubes from metal particles |
US7150864B1 (en) | 1998-09-18 | 2006-12-19 | William Marsh Rice University | Ropes comprised of single-walled and double-walled carbon nanotubes |
US7780939B2 (en) | 1998-09-18 | 2010-08-24 | William Marsh Rice University | Sidewall derivatized carbon nanotubes |
US6841139B2 (en) | 1998-09-18 | 2005-01-11 | William Marsh Rice University | Methods of chemically derivatizing single-wall carbon nanotubes |
US6835366B1 (en) | 1998-09-18 | 2004-12-28 | William Marsh Rice University | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof, and use of derivatized nanotubes |
US20050244327A9 (en) * | 1998-09-18 | 2005-11-03 | William Marsh Rice University | Catalytic growth of single-wall carbon nanotubes from metal particles |
US20040223901A1 (en) * | 1998-11-03 | 2004-11-11 | William Marsh Rice University | Single-wall carbon nanotubes from high pressure CO |
US6761870B1 (en) | 1998-11-03 | 2004-07-13 | William Marsh Rice University | Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure CO |
US7204970B2 (en) | 1998-11-03 | 2007-04-17 | William Marsh Rice University | Single-wall carbon nanotubes from high pressure CO |
US20020122754A1 (en) * | 1999-03-23 | 2002-09-05 | Ryzhkov Vladislav Andeevitch | Method and device for producing higher fullerenes and nanotubes |
US7112315B2 (en) | 1999-04-14 | 2006-09-26 | The Regents Of The University Of California | Molecular nanowires from single walled carbon nanotubes |
US7563428B2 (en) | 1999-06-02 | 2009-07-21 | The Board Of Regents Of The University Of Oklahoma | Method of making carbon nanotubes |
US20070116630A1 (en) * | 1999-06-02 | 2007-05-24 | Resasco Daniel E | Method of producing single-walled carbon nanotubes |
US20040131532A1 (en) * | 1999-06-02 | 2004-07-08 | Resasco Daniel E. | Method and catalyst for producing single walled carbon nanotubes |
US7094386B2 (en) | 1999-06-02 | 2006-08-22 | The Board Of Regents Of The University Of Oklahoma | Method of producing single-walled carbon nanotubes |
US7816709B2 (en) | 1999-06-02 | 2010-10-19 | The Board Of Regents Of The University Of Oklahoma | Single-walled carbon nanotube-ceramic composites and methods of use |
US20100240529A1 (en) * | 1999-06-02 | 2010-09-23 | Leandro Balzano | Single-walled carbon nanotube-ceramic composites and methods of use |
US7354881B2 (en) | 1999-06-02 | 2008-04-08 | The Board Of Regents Of The University Of Oklahoma | Method and catalyst for producing single walled carbon nanotubes |
US20050025696A1 (en) * | 1999-06-02 | 2005-02-03 | Resasco Daniel E. | Method of producing single-walled carbon nanotubes |
US20080107588A1 (en) * | 1999-06-02 | 2008-05-08 | Resasco Daniel E | Method of producing single-walled carbon nanotubes |
US6962892B2 (en) | 1999-06-02 | 2005-11-08 | The Board Of Regents Of The University Of Oklahoma | Metallic catalytic particle for producing single-walled carbon nanotubes |
US20060213599A1 (en) * | 1999-06-14 | 2006-09-28 | Knowles Timothy R | Fiber adhesive material |
US7144624B2 (en) | 1999-06-14 | 2006-12-05 | Energy Science Laboratories, Inc. | Dendritic fiber material |
US20020100581A1 (en) * | 1999-06-14 | 2002-08-01 | Knowles Timothy R. | Thermal interface |
US6913075B1 (en) * | 1999-06-14 | 2005-07-05 | Energy Science Laboratories, Inc. | Dendritic fiber material |
US20040009353A1 (en) * | 1999-06-14 | 2004-01-15 | Knowles Timothy R. | PCM/aligned fiber composite thermal interface |
US20040071870A1 (en) * | 1999-06-14 | 2004-04-15 | Knowles Timothy R. | Fiber adhesive material |
US7132161B2 (en) | 1999-06-14 | 2006-11-07 | Energy Science Laboratories, Inc. | Fiber adhesive material |
US20050164001A1 (en) * | 1999-07-26 | 2005-07-28 | Trustees Of The University Of Pennsylvania | Hybrid materials and methods for producing the same |
US20030155692A1 (en) * | 1999-07-26 | 2003-08-21 | Luzzi David E. | Hybrid materials and methods for producing the same |
US6863857B2 (en) | 1999-07-26 | 2005-03-08 | The Trustees Of The University Of Pennsylvania | Hybrid materials and methods for producing the same |
US7332222B2 (en) | 1999-07-26 | 2008-02-19 | The Trustees Of The University Of Pennsylvania | Hybrid materials and methods for producing the same |
US6544463B1 (en) | 1999-07-26 | 2003-04-08 | The Trustees Of The University Of Pennsylvania | Hybrid materials and methods for producing the same |
US6692717B1 (en) | 1999-09-17 | 2004-02-17 | William Marsh Rice University | Catalytic growth of single-wall carbon nanotubes from metal particles |
US7033650B2 (en) * | 1999-09-29 | 2006-04-25 | Electrovac, Fabrikation, Elektrotechnischer Spezialartikel, Gesellschaft Mbh | Method of producing a nanotube layer on a substrate |
US6790425B1 (en) * | 1999-10-27 | 2004-09-14 | Wiliam Marsh Rice University | Macroscopic ordered assembly of carbon nanotubes |
US6437329B1 (en) | 1999-10-27 | 2002-08-20 | Advanced Micro Devices, Inc. | Use of carbon nanotubes as chemical sensors by incorporation of fluorescent molecules within the tube |
US20080210370A1 (en) * | 1999-10-27 | 2008-09-04 | Smalley Richard E | Macroscopic ordered assembly of carbon nanotubes |
US7323136B1 (en) * | 2000-02-01 | 2008-01-29 | William Marsh Rice University | Containerless mixing of metals and polymers with fullerenes and nanofibers to produce reinforced advanced materials |
US20080038140A1 (en) * | 2000-02-01 | 2008-02-14 | Enrique V Barrera | Containerless mixing of metals and polymers with fullerenes and nanofibers to produce reinforced advanced materials |
US6689439B2 (en) * | 2000-03-08 | 2004-02-10 | Zbigniew S. Sobolewski | Micro-stud diffusion substrate for use in fuel cells |
US6502419B2 (en) | 2000-04-13 | 2003-01-07 | Sun Microsystems, Inc. | Electro-desorption compressor |
US6455847B1 (en) | 2000-04-26 | 2002-09-24 | Advanced Micro Devices, Inc. | Carbon nanotube probes in atomic force microscope to detect partially open/closed contacts |
US6884404B2 (en) * | 2000-05-31 | 2005-04-26 | Fuji Xerox Co., Ltd. | Method of manufacturing carbon nanotubes and/or fullerenes, and manufacturing apparatus for the same |
US20020131910A1 (en) * | 2000-06-02 | 2002-09-19 | Resasco Daniel E. | Method and apparatus for producing carbon nanotubes |
US7585482B2 (en) | 2000-06-02 | 2009-09-08 | The Board Of Regents Of The University Of Oklahoma | Method and apparatus for producing carbon nanotubes |
US7459138B2 (en) | 2000-06-02 | 2008-12-02 | The Board Of Regents Of The University Of Oklahoma | Process and apparatus for producing single-walled carbon nanotubes |
US6955800B2 (en) | 2000-06-02 | 2005-10-18 | The Board Of Regents Of The University Of Oklahoma | Method and apparatus for producing carbon nanotubes |
US20080008644A1 (en) * | 2000-06-02 | 2008-01-10 | Resasco Daniel E | Method and apparatus for producing carbon nanotubes |
US20060039849A1 (en) * | 2000-06-02 | 2006-02-23 | Resasco Daniel E | Process and apparatus for producing single-walled carbon nanotubes |
US6908572B1 (en) | 2000-07-17 | 2005-06-21 | University Of Kentucky Research Foundation | Mixing and dispersion of nanotubes by gas or vapor expansion |
US6451175B1 (en) | 2000-08-15 | 2002-09-17 | Wisconsin Alumni Research Foundation | Method and apparatus for carbon nanotube production |
US6858349B1 (en) | 2000-09-07 | 2005-02-22 | The Gillette Company | Battery cathode |
US6876724B2 (en) | 2000-10-06 | 2005-04-05 | The University Of North Carolina - Chapel Hill | Large-area individually addressable multi-beam x-ray system and method of forming same |
US20060008047A1 (en) * | 2000-10-06 | 2006-01-12 | The University Of North Carolina At Chapel Hill | Computed tomography system for imaging of human and small animal |
US20070009081A1 (en) * | 2000-10-06 | 2007-01-11 | The University Of North Carolina At Chapel Hill | Computed tomography system for imaging of human and small animal |
US7082182B2 (en) | 2000-10-06 | 2006-07-25 | The University Of North Carolina At Chapel Hill | Computed tomography system for imaging of human and small animal |
US20050226361A1 (en) * | 2000-10-06 | 2005-10-13 | The University Of North Carolina At Chapel Hill | Computed tomography scanning system and method using a field emission x-ray source |
US20030142790A1 (en) * | 2000-10-06 | 2003-07-31 | Zhou Otto Z. | X-ray generating mechanism using electron field emission cathode |
US20020094064A1 (en) * | 2000-10-06 | 2002-07-18 | Zhou Otto Z. | Large-area individually addressable multi-beam x-ray system and method of forming same |
US7227924B2 (en) | 2000-10-06 | 2007-06-05 | The University Of North Carolina At Chapel Hill | Computed tomography scanning system and method using a field emission x-ray source |
US20060018432A1 (en) * | 2000-10-06 | 2006-01-26 | The University Of North Carolina At Chapel Hill | Large-area individually addressable multi-beam x-ray system and method of forming same |
US6850595B2 (en) | 2000-10-06 | 2005-02-01 | The University Of North Carolina At Chapel Hill | X-ray generating mechanism using electron field emission cathode |
US20060274889A1 (en) * | 2000-10-06 | 2006-12-07 | University Of North Carolina At Chapel Hill | Method and apparatus for controlling electron beam current |
US6800369B2 (en) | 2000-11-13 | 2004-10-05 | International Business Machines Corporation | Crystals comprising single-walled carbon nanotubes |
US20060060825A1 (en) * | 2001-03-26 | 2006-03-23 | Glatkowski Paul J | Coatings comprising carbon nanotubes and methods for forming same |
US7060241B2 (en) | 2001-03-26 | 2006-06-13 | Eikos, Inc. | Coatings comprising carbon nanotubes and methods for forming same |
US20020172867A1 (en) * | 2001-04-10 | 2002-11-21 | Anglin David L. | Battery cathode |
US20080036358A1 (en) * | 2001-06-14 | 2008-02-14 | Hyperion Catalysis International, Inc. | Field Emission Devices Using Ion Bombarded Carbon Nanotubes |
US7960904B2 (en) | 2001-06-14 | 2011-06-14 | Hyperion Catalysis International, Inc. | Field emission devices using carbon nanotubes modified by energy, plasma, chemical or mechanical treatment |
US20080203886A1 (en) * | 2001-06-14 | 2008-08-28 | Hyperion Catalysis International, Inc. | Field emission devices using modified carbon nanotubes |
US20070170414A1 (en) * | 2001-06-14 | 2007-07-26 | Hyperion Catalysis International, Inc. | Field emission devices using modified carbon nanotubes |
US7125502B2 (en) | 2001-07-06 | 2006-10-24 | William Marsh Rice University | Fibers of aligned single-wall carbon nanotubes and process for making the same |
US20030133865A1 (en) * | 2001-07-06 | 2003-07-17 | William Marsh Rice University | Single-wall carbon nanotube alewives, process for making, and compositions thereof |
US20030170166A1 (en) * | 2001-07-06 | 2003-09-11 | William Marsh Rice University | Fibers of aligned single-wall carbon nanotubes and process for making the same |
US7288238B2 (en) | 2001-07-06 | 2007-10-30 | William Marsh Rice University | Single-wall carbon nanotube alewives, process for making, and compositions thereof |
US7968073B2 (en) * | 2001-07-10 | 2011-06-28 | Battelle Memorial Institute | Stable aqueous dispersions of carbon nanotubes |
US20050112053A1 (en) * | 2001-07-10 | 2005-05-26 | Clarke Mark S. | Production of stable aqueous dispersions of carbon nanotubes government interests |
WO2003008331A1 (en) * | 2001-07-20 | 2003-01-30 | Kh Chemicals Co., Ltd | Preparation of carbon nanotubes |
US20030161782A1 (en) * | 2001-07-20 | 2003-08-28 | Young-Nam Kim | Preparation of carbon nanotubes |
US7329398B2 (en) * | 2001-07-20 | 2008-02-12 | Kh Chemicals Co., Ltd. | Preparation of carbon nanotubes |
US20040197260A1 (en) * | 2001-07-23 | 2004-10-07 | Resasco Daniel E. | Method for producing single walled carbon nanotubes |
US7357907B2 (en) | 2001-07-23 | 2008-04-15 | The Board Of Regents Of The University Of Oklahoma | Method for producing single walled carbon nanotubes |
US7745810B2 (en) | 2001-07-25 | 2010-06-29 | Nantero, Inc. | Nanotube films and articles |
US20030199172A1 (en) * | 2001-07-25 | 2003-10-23 | Thomas Rueckes | Methods of nanotube films and articles |
US6706402B2 (en) | 2001-07-25 | 2004-03-16 | Nantero, Inc. | Nanotube films and articles |
US7342818B2 (en) | 2001-07-25 | 2008-03-11 | Nantero, Inc. | Hybrid circuit having nanotube electromechanical memory |
US7335528B2 (en) | 2001-07-25 | 2008-02-26 | Nantero, Inc. | Methods of nanotube films and articles |
US7120047B2 (en) | 2001-07-25 | 2006-10-10 | Segal Brent M | Device selection circuitry constructed with nanotube technology |
US7566478B2 (en) | 2001-07-25 | 2009-07-28 | Nantero, Inc. | Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US20040085805A1 (en) * | 2001-07-25 | 2004-05-06 | Nantero, Inc. | Device selection circuitry constructed with nanotube technology |
US6942921B2 (en) | 2001-07-25 | 2005-09-13 | Nantero, Inc. | Nanotube films and articles |
US7304357B2 (en) | 2001-07-25 | 2007-12-04 | Nantero, Inc. | Devices having horizontally-disposed nanofabric articles and methods of making the same |
US7056758B2 (en) | 2001-07-25 | 2006-06-06 | Nantero, Inc. | Electromechanical memory array using nanotube ribbons and method for making same |
US6919592B2 (en) | 2001-07-25 | 2005-07-19 | Nantero, Inc. | Electromechanical memory array using nanotube ribbons and method for making same |
US7298016B2 (en) | 2001-07-25 | 2007-11-20 | Nantero, Inc. | Electromechanical memory array using nanotube ribbons and method for making same |
US6643165B2 (en) | 2001-07-25 | 2003-11-04 | Nantero, Inc. | Electromechanical memory having cell selection circuitry constructed with nanotube technology |
US7274078B2 (en) | 2001-07-25 | 2007-09-25 | Nantero, Inc. | Devices having vertically-disposed nanofabric articles and methods of making the same |
US7264990B2 (en) | 2001-07-25 | 2007-09-04 | Nantero, Inc. | Methods of nanotubes films and articles |
US20030165074A1 (en) * | 2001-07-25 | 2003-09-04 | Nantero, Inc. | Hybrid circuit having nanotube electromechanical memory |
US6835591B2 (en) | 2001-07-25 | 2004-12-28 | Nantero, Inc. | Methods of nanotube films and articles |
US6574130B2 (en) | 2001-07-25 | 2003-06-03 | Nantero, Inc. | Hybrid circuit having nanotube electromechanical memory |
US8101976B2 (en) | 2001-07-25 | 2012-01-24 | Nantero Inc. | Device selection circuitry constructed with nanotube ribbon technology |
US6836424B2 (en) | 2001-07-25 | 2004-12-28 | Nantero, Inc. | Hybrid circuit having nanotube electromechanical memory |
US20050063210A1 (en) * | 2001-07-25 | 2005-03-24 | Nantero, Inc. | Hybrid circuit having nanotube electromechanical memory |
US20070120100A1 (en) * | 2001-07-27 | 2007-05-31 | Glatkowski Paul J | Conformal coatings comprising carbon nanotubes |
US20040071949A1 (en) * | 2001-07-27 | 2004-04-15 | Glatkowski Paul J. | Conformal coatings comprising carbon nanotubes |
US7118693B2 (en) | 2001-07-27 | 2006-10-10 | Eikos, Inc. | Conformal coatings comprising carbon nanotubes |
US6641792B2 (en) * | 2001-08-03 | 2003-11-04 | Hitachi Chemical Company, Ltd. | Hollow carbon fiber and production method |
US7273652B2 (en) * | 2001-08-03 | 2007-09-25 | Hitachi Chemical Company, Ltd. | Hollow carbon fiber and production method |
US6743500B2 (en) * | 2001-08-03 | 2004-06-01 | Hitachi Chemical Company, Ltd. | Hollow carbon fiber and production method |
US20050245665A1 (en) * | 2001-08-17 | 2005-11-03 | Chenggang Chen | Method of forming nanocomposite materials |
US7029603B2 (en) | 2001-08-17 | 2006-04-18 | University Of Dayton | Conductive polymeric nanocomposite materials |
US20050272847A1 (en) * | 2001-08-17 | 2005-12-08 | Chyi-Shan Wang | Method of forming nanocomposite materials |
US20060079623A1 (en) * | 2001-08-17 | 2006-04-13 | Chenggang Chen | Method of forming nanocomposite materials |
US6680016B2 (en) * | 2001-08-17 | 2004-01-20 | University Of Dayton | Method of forming conductive polymeric nanocomposite materials |
US20040089851A1 (en) * | 2001-08-17 | 2004-05-13 | Chyi-Shan Wang | Conductive polymeric nanocomposite materials |
US20040258604A1 (en) * | 2001-09-06 | 2004-12-23 | Ryzhkov Vladislay Andreevitch | Apparatus and method for nanoparticle and nanotube production and use therefor for gas storage |
US7041372B2 (en) * | 2001-09-19 | 2006-05-09 | Lockheed Martin Corporation | Anti-ballistic nanotube structures |
US20040241077A1 (en) * | 2001-10-01 | 2004-12-02 | Ryzhkov Vladislav Andreevitch | Short carbon nanotubes |
US7244408B2 (en) | 2001-10-01 | 2007-07-17 | Rosseter Holdings Limited | Short carbon nanotubes |
US8062702B2 (en) | 2001-11-20 | 2011-11-22 | William Marsh Rice University | Coated fullerenes, composites and dielectrics made therefrom |
US20040265211A1 (en) * | 2001-12-14 | 2004-12-30 | Dillon Anne C. | Hot wire production of single-wall carbon nanotubes |
US20060099136A1 (en) * | 2001-12-14 | 2006-05-11 | Dillon Anne C | Hot wire production of single-wall and multi-wall carbon nanotubes |
US7820132B2 (en) | 2001-12-14 | 2010-10-26 | Alliance For Sustainable Energy, Llc | Hot wire production of single-wall and multi-wall carbon nanotubes |
US7915066B2 (en) | 2001-12-28 | 2011-03-29 | Nantero, Inc. | Methods of making electromechanical three-trace junction devices |
US6911682B2 (en) | 2001-12-28 | 2005-06-28 | Nantero, Inc. | Electromechanical three-trace junction devices |
US6784028B2 (en) | 2001-12-28 | 2004-08-31 | Nantero, Inc. | Methods of making electromechanical three-trace junction devices |
US7521736B2 (en) | 2001-12-28 | 2009-04-21 | Nantero, Inc. | Electromechanical three-trace junction devices |
US20040191978A1 (en) * | 2001-12-28 | 2004-09-30 | Nantero, Inc. | Methods of making electromechanical three-trace junction devices |
US20040164289A1 (en) * | 2001-12-28 | 2004-08-26 | Nantero, Inc. | Electromechanical three-trace junction devices |
US6979590B2 (en) | 2001-12-28 | 2005-12-27 | Nantero, Inc. | Methods of making electromechanical three-trace junction devices |
US7176505B2 (en) | 2001-12-28 | 2007-02-13 | Nantero, Inc. | Electromechanical three-trace junction devices |
US20040265491A1 (en) * | 2002-01-08 | 2004-12-30 | Sumio Iijima | Method of manufacturing the densely fitted multi-layer carbon nano-tube |
US6967043B2 (en) * | 2002-01-08 | 2005-11-22 | Japan Science And Technology Agency | Method of manufacturing the densely fitted multi-layer carbon nano-tube |
US20040022981A1 (en) * | 2002-04-01 | 2004-02-05 | Carbon Nanotechnologies, Inc. | Composite of single-wall carbon nanotubes and aromatic polyamide and process for making the same |
US7335395B2 (en) | 2002-04-23 | 2008-02-26 | Nantero, Inc. | Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US20030211030A1 (en) * | 2002-05-09 | 2003-11-13 | Smiljanic Olivier | Method and apparatus for producing single-wall carbon nanotubes |
US20080124482A1 (en) * | 2002-05-09 | 2008-05-29 | Olivier Smiljanic | Method and apparatus for producing single-wall carbon nanotubes |
US20080226536A1 (en) * | 2002-05-09 | 2008-09-18 | Olivier Smiljanic | Method and apparatus for producing single-wall carbon nanotubes |
US20100300358A1 (en) * | 2002-05-09 | 2010-12-02 | Olivier Smiljanic | Apparatus for producing single-wall carbon nanotubes |
US7591989B2 (en) | 2002-05-09 | 2009-09-22 | Institut National De La Recherche Scientifique | Method and apparatus for producing single-wall carbon nanotubes |
US8071906B2 (en) | 2002-05-09 | 2011-12-06 | Institut National De La Recherche Scientifique | Apparatus for producing single-wall carbon nanotubes |
US7864018B2 (en) | 2002-05-31 | 2011-01-04 | International Rectifier Corporation | Planar transformer arrangement |
US20060109072A1 (en) * | 2002-05-31 | 2006-05-25 | International Rectifier Corporation | Planar transformer arrangement |
US7414507B2 (en) | 2002-05-31 | 2008-08-19 | International Rectifier Corporation | Planar transformer arrangement |
US20040027224A1 (en) * | 2002-05-31 | 2004-02-12 | International Rectifier Corporation | Planar transformer arrangement |
US20080266043A1 (en) * | 2002-05-31 | 2008-10-30 | International Rectifier Corporation | Planar transformer arrangement |
US8545730B2 (en) | 2002-06-14 | 2013-10-01 | Hyperion Catalysis International, Inc. | Electroconductive carbon fibril-based inks and coatings |
US20080111110A1 (en) * | 2002-06-14 | 2008-05-15 | Hyperion Catalysis International, Inc. | Electroconductive Carbon Fibril-based Inks and Coatings |
US7852613B2 (en) | 2002-06-14 | 2010-12-14 | Hyperion Catalysis International, Inc. | Electroconductive carbon fibril-based inks and coatings |
US8083970B2 (en) | 2002-06-14 | 2011-12-27 | Hyperion Catalysis International, Inc. | Electroconductive carbon fibril-based inks and coatings |
US7829622B2 (en) | 2002-06-19 | 2010-11-09 | The Board Of Regents Of The University Of Oklahoma | Methods of making polymer composites containing single-walled carbon nanotubes |
US20100160553A1 (en) * | 2002-06-19 | 2010-06-24 | Mcdaniel Neal D | Methods of making polymer composites containing single-walled carbon nanotubes |
US7078008B2 (en) | 2002-10-01 | 2006-07-18 | Conocophillips Company | Process for converting alkanes to carbon filaments |
US20040062704A1 (en) * | 2002-10-01 | 2004-04-01 | Conoco Inc. | Process for converting alkanes to carbon filaments |
US20040073251A1 (en) * | 2002-10-15 | 2004-04-15 | Jan Weber | Nanotube paper-based medical device |
US20040138733A1 (en) * | 2002-10-15 | 2004-07-15 | Scimed Life Systems, Inc. | Nano-actuated medical device |
US7493160B2 (en) | 2002-10-15 | 2009-02-17 | Boston Scientific Scimed, Inc. | Nano-actuated medical device |
US7037319B2 (en) | 2002-10-15 | 2006-05-02 | Scimed Life Systems, Inc. | Nanotube paper-based medical device |
US7306503B2 (en) * | 2002-10-18 | 2007-12-11 | Canon Kabushiki Kaisha | Method and apparatus of fixing carbon fibers on a substrate using an aerosol deposition process |
US20100173099A1 (en) * | 2002-10-18 | 2010-07-08 | C/O Canon Kabushiki Kaisha | Method and apparatus for carbon fiber fixed on a substrate |
US20040077249A1 (en) * | 2002-10-18 | 2004-04-22 | Yasuyuki Saito | Method and apparatus for carbon fiber fixed on a substrate |
US8361349B2 (en) | 2002-11-19 | 2013-01-29 | William Marsh Rice University | Fabrication of light emitting film coated fullerenes and their application for in-vivo light emission |
US20080171204A1 (en) * | 2002-11-19 | 2008-07-17 | William Marsh Rice University | Fabrication of light emitting film coated fullerenes and their application for in-vivo light emission |
US7682527B2 (en) | 2002-11-19 | 2010-03-23 | William Marsh Rice University | Fabrication of light emitting film coated fullerenes and their application for in-vivo light emission |
US20100151248A1 (en) * | 2002-11-19 | 2010-06-17 | William Marsh Rice University | Fabrication of light emitting film coated fullerenes and their application for in-vivo emission |
US7692218B2 (en) | 2002-11-19 | 2010-04-06 | William Marsh Rice University | Method for creating a functional interface between a nanoparticle, nanotube or nanowire, and a biological molecule or system |
US20060145194A1 (en) * | 2002-11-19 | 2006-07-06 | William Marsh Rice University | Method for creating a functional interface between a nanoparticle, nanotube or nanowire, and a biological molecule or system |
US7560136B2 (en) | 2003-01-13 | 2009-07-14 | Nantero, Inc. | Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US20100098877A1 (en) * | 2003-03-07 | 2010-04-22 | Cooper Christopher H | Large scale manufacturing of nanostructured material |
US20050263456A1 (en) * | 2003-03-07 | 2005-12-01 | Cooper Christopher H | Nanomesh article and method of using the same for purifying fluids |
US7211320B1 (en) | 2003-03-07 | 2007-05-01 | Seldon Technologies, Llc | Purification of fluids with nanomaterials |
US20070084797A1 (en) * | 2003-03-07 | 2007-04-19 | Seldon Technologies, Llc | Purification of fluids with nanomaterials |
US7419601B2 (en) | 2003-03-07 | 2008-09-02 | Seldon Technologies, Llc | Nanomesh article and method of using the same for purifying fluids |
US20070160522A1 (en) * | 2003-04-02 | 2007-07-12 | Beyong-Hwan Ryu | Method of preparing carbon nanotube from liquid phased-carbon source |
US8398948B2 (en) | 2003-04-02 | 2013-03-19 | Korea Research Institute Of Chemical Technology | Method of preparing carbon nanotube from liquid phased-carbon source |
WO2004102659A2 (en) * | 2003-05-08 | 2004-11-25 | Curamik Electronics Gmbh | Composite material, electrical circuit or electric module |
WO2004102659A3 (en) * | 2003-05-08 | 2005-06-09 | Curamik Electronics Gmbh | Composite material, electrical circuit or electric module |
US20060263584A1 (en) * | 2003-05-08 | 2006-11-23 | Jurgen Schulz-Harder | Composite material, electrical circuit or electric module |
US7466523B1 (en) * | 2003-07-10 | 2008-12-16 | Yingjian Chen | Nanotube spin valve and method of producing the same |
WO2005009589A1 (en) * | 2003-07-18 | 2005-02-03 | Koslow Technologies Corporation | Carbon or activated carbon nanofibers |
US20050011827A1 (en) * | 2003-07-18 | 2005-01-20 | Koslow Evan E. | Carbon or activated carbon nanofibers |
US7296691B2 (en) | 2003-07-18 | 2007-11-20 | Kx Technologies Llc | Carbon or activated carbon nanofibers |
US20050042163A1 (en) * | 2003-08-20 | 2005-02-24 | Conocophillips Company | Metal loaded carbon filaments |
JP2012102012A (en) * | 2003-10-16 | 2012-05-31 | Univ Of Akron | Carbon nanotube on carbon nanofiber substrate |
JP2007515364A (en) * | 2003-10-16 | 2007-06-14 | ザ ユニバーシティ オブ アクロン | Carbon nanotubes on carbon nanofiber substrate |
US7416583B2 (en) | 2003-10-17 | 2008-08-26 | General Electric Company | Appliance having a container including a nanostructured material for hydrogen storage |
US20050092241A1 (en) * | 2003-10-17 | 2005-05-05 | General Electric Company | Appliance having a container including a nanostructured material for hydrogen storage |
US7803426B2 (en) | 2003-10-17 | 2010-09-28 | General Electric Company | Appliance having a container including a nanostructured material for hydrogen storage |
US20080272008A1 (en) * | 2003-10-17 | 2008-11-06 | General Electric Company | Appliance having a container including a nanostructured material for hydrogen storage |
US20050123467A1 (en) * | 2003-12-03 | 2005-06-09 | Avetik Harutyunyan | Systems and methods for production of carbon nanostructures |
US7981396B2 (en) | 2003-12-03 | 2011-07-19 | Honda Motor Co., Ltd. | Methods for production of carbon nanostructures |
US20060057055A1 (en) * | 2003-12-15 | 2006-03-16 | Resasco Daniel E | Rhenium catalysts and methods for production of single-walled carbon nanotubes |
US20050142313A1 (en) * | 2003-12-31 | 2005-06-30 | Grah Michael D. | Method of shrinking a film |
US7335327B2 (en) | 2003-12-31 | 2008-02-26 | Cryovac, Inc. | Method of shrinking a film |
US20080213161A1 (en) * | 2004-01-09 | 2008-09-04 | Olga Matarredona | Carbon nanotube pastes and methods of use |
US7279247B2 (en) | 2004-01-09 | 2007-10-09 | The Board Of Regents Of The University Of Oklahoma | Carbon nanotube pastes and methods of use |
US20060039848A1 (en) * | 2004-01-09 | 2006-02-23 | Olga Matarredona | Carbon nanotube pastes and methods of use |
CN1918067B (en) * | 2004-02-09 | 2011-01-26 | Kh化学有限公司 | A method for the preparation of y-branched carbon nanotubes |
US20050266162A1 (en) * | 2004-03-12 | 2005-12-01 | Jiazhong Luo | Carbon nanotube stripping solutions and methods |
US8632699B2 (en) | 2004-04-07 | 2014-01-21 | Eikos, Inc. | Fugitive viscosity and stability modifiers for carbon nanotube compositions |
US20080135815A1 (en) * | 2004-04-07 | 2008-06-12 | Glatkowski Paul J | Fugitive Viscosity and Stability Modifiers For Carbon Nanotube Compositions |
US20050255033A1 (en) * | 2004-05-13 | 2005-11-17 | Yutaka Shimoji | Laser fabrication of continuous nanofibers |
US20080044651A1 (en) * | 2004-06-02 | 2008-02-21 | Mysticmd Inc. | Coatings Comprising Carbon Nanotubes |
US8263037B2 (en) | 2004-07-09 | 2012-09-11 | Clean Technology International Corporation | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
US20080050303A1 (en) * | 2004-07-09 | 2008-02-28 | Wagner Anthony S | Reactant Liquid System For Facilitating The Production Of Carbon Nanostructures |
US20110189076A1 (en) * | 2004-07-09 | 2011-08-04 | Wagner Anthony S | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
US20100172817A1 (en) * | 2004-07-09 | 2010-07-08 | Wagner Anthony S | Method And Apparatus For Preparing A Collection Surface For Use In Producing Carbon Nanostructures |
US20060008405A1 (en) * | 2004-07-09 | 2006-01-12 | Wagner Anthony S | Method and apparatus for producing carbon nanostructures |
US7815885B2 (en) | 2004-07-09 | 2010-10-19 | Clean Technology International Corporation | Method and apparatus for producing carbon nanostructures |
US20090155160A1 (en) * | 2004-07-09 | 2009-06-18 | Wagner Anthony S | Method and Apparatus for Producing Carbon Nanostructures |
US7550128B2 (en) | 2004-07-09 | 2009-06-23 | Clean Technologies International Corporation | Method and apparatus for producing carbon nanostructures |
US9133033B2 (en) | 2004-07-09 | 2015-09-15 | Clean Technology International Corp. | Reactant liquid system for facilitating the production of carbon nanostructures |
US7922993B2 (en) | 2004-07-09 | 2011-04-12 | Clean Technology International Corporation | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
US20060008403A1 (en) * | 2004-07-09 | 2006-01-12 | Clean Technologies International Corporation | Reactant liquid system for facilitating the production of carbon nanostructures |
US7563426B2 (en) | 2004-07-09 | 2009-07-21 | Clean Technologies International Corporation | Method and apparatus for preparing a collection surface for use in producing carbon nanostructures |
US20060008406A1 (en) * | 2004-07-09 | 2006-01-12 | Clean Technologies International Corporation | Method and apparatus for preparing a collection surface for use in producing carbon nanostructures |
US20070116633A1 (en) * | 2004-07-09 | 2007-05-24 | Clean Technologies International Corporation | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
US7901653B2 (en) | 2004-07-09 | 2011-03-08 | Clean Technology International Corporation | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
US20110033366A1 (en) * | 2004-07-09 | 2011-02-10 | Wagner Anthony S | Reactant liquid system for facilitating the production of carbon nanostructures |
US20080056980A1 (en) * | 2004-07-09 | 2008-03-06 | Wagner Anthony S | Spherical carbon nanostructure and method for producing spherical carbon nanostructures |
US7815886B2 (en) | 2004-07-09 | 2010-10-19 | Clean Technology International Corporation | Reactant liquid system for facilitating the production of carbon nanostructures |
US7814846B2 (en) | 2004-07-09 | 2010-10-19 | Clean Technology International Corporation | Method and apparatus for preparing a collection area for use in producing carbon nanostructures |
US7229944B2 (en) * | 2004-07-23 | 2007-06-12 | Massachusetts Institute Of Technology | Fiber structures including catalysts and methods associated with the same |
US20060019819A1 (en) * | 2004-07-23 | 2006-01-26 | Yang Shao-Horn | Fiber structures including catalysts and methods associated with the same |
US20060021510A1 (en) * | 2004-07-27 | 2006-02-02 | University Of North Texas | Method and apparatus for hydrogen production from greenhouse gas saturated carbon nanotubes and synthesis of carbon nanostructures therefrom |
US7468097B2 (en) | 2004-07-27 | 2008-12-23 | University Of North Texas | Method and apparatus for hydrogen production from greenhouse gas saturated carbon nanotubes and synthesis of carbon nanostructures therefrom |
US20100003185A1 (en) * | 2004-08-16 | 2010-01-07 | Wagner Anthony S | Method and apparatus for producing fine carbon particles |
US8197787B2 (en) | 2004-08-16 | 2012-06-12 | Clean Technology International Corporation | Method and apparatus for producing fine carbon particles |
US8163831B2 (en) | 2004-08-31 | 2012-04-24 | Hyperion Catalysis International, Inc. | Thermosets containing carbon nanotubes by extrusion |
US7566749B2 (en) | 2004-08-31 | 2009-07-28 | Hyperion Catalysis International, Inc. | Conductive thermosets by extrusion |
US7910650B2 (en) | 2004-08-31 | 2011-03-22 | Hyperion Catalysis International, Inc. | Conductive thermosets by extrusion |
US20080036123A1 (en) * | 2004-08-31 | 2008-02-14 | Hyperion Catalysis International, Inc. | Conductive thermosets by extrusion |
US20110133133A1 (en) * | 2004-08-31 | 2011-06-09 | Alan Fischer | Thermosets containing carbon nanotubes by extrusion |
US20070238826A1 (en) * | 2004-08-31 | 2007-10-11 | Hyperion Catalysis International, Inc. | Conductive thermosets by extrusion |
EP3235781A1 (en) | 2004-09-09 | 2017-10-25 | Honda Motor Co., Ltd. | Synthesis of small and narrow diameter distributed carbon single-walled nanotubes |
US20060078489A1 (en) * | 2004-09-09 | 2006-04-13 | Avetik Harutyunyan | Synthesis of small and narrow diameter distributed carbon single walled nanotubes |
WO2007024242A2 (en) | 2004-09-09 | 2007-03-01 | Honda Motor Co. Ltd. | Synthesis of small and narrow diameter distributed carbon single-walled nanotubes |
US10384943B2 (en) | 2004-09-09 | 2019-08-20 | Honda Motor Co., Ltd. | Synthesis of small and narrow diameter distributed carbon single walled nanotubes |
US20060083927A1 (en) * | 2004-10-15 | 2006-04-20 | Zyvex Corporation | Thermal interface incorporating nanotubes |
US20080031802A1 (en) * | 2004-10-22 | 2008-02-07 | Hyperion Catalysis International, Inc. | Ozonolysis of carbon nanotubes |
US7923403B2 (en) | 2004-11-16 | 2011-04-12 | Hyperion Catalysis International, Inc. | Method for preparing catalysts supported on carbon nanotubes networks |
US7968489B2 (en) | 2004-11-16 | 2011-06-28 | Hyperion Catalysis International, Inc. | Methods of preparing supported catalysts from metal loaded carbon nanotubes |
US20060239893A1 (en) * | 2004-11-16 | 2006-10-26 | Hyperion Catalysis International, Inc. | Method for preparing single walled carbon nanotubes |
US7862795B2 (en) | 2004-11-16 | 2011-01-04 | Hyperion Catalysis International, Inc. | Method for preparing single walled carbon nanotubes |
US20080176740A1 (en) * | 2004-11-16 | 2008-07-24 | Jun Ma | Method for preparing catalysts supported on carbon nanotubes networks |
US20080175786A1 (en) * | 2004-11-16 | 2008-07-24 | Xinjie Zhang | Method for preparing single walled carbon nanotubes |
US20080039315A1 (en) * | 2004-11-16 | 2008-02-14 | Jun Ma | Methods of preparing supported catalysts from metal loaded carbon nanotubes |
US8287836B2 (en) | 2004-11-16 | 2012-10-16 | Hyperion Catalysis International, Inc. | Method for preparing single walled carbon nanotubes |
US20100239489A1 (en) * | 2004-11-17 | 2010-09-23 | Honda Motor Co., Ltd. | Methods for Controlling the Quality of Metal Nanocatalyst for Growing High Yield Carbon Nanotubes |
US20090093360A1 (en) * | 2004-11-17 | 2009-04-09 | Hyperion Catalysis International, Inc. | Method for preparing catalyst supports and supported catalysts from single walled carbon nanotubes |
US7396798B2 (en) | 2004-11-17 | 2008-07-08 | Hyperion Catalysis International, Inc. | Method for preparing catalyst supports and supported catalysts from single walled carbon nanotubes |
US7611687B1 (en) | 2004-11-17 | 2009-11-03 | Honda Motor Co., Ltd. | Welding of carbon single-walled nanotubes by microwave treatment |
US20090255799A1 (en) * | 2004-11-17 | 2009-10-15 | Avetik Harutyunyan | Welding of carbon single-walled nanotubes by microwave treatment |
US7485600B2 (en) | 2004-11-17 | 2009-02-03 | Honda Motor Co., Ltd. | Catalyst for synthesis of carbon single-walled nanotubes |
US20060137817A1 (en) * | 2004-11-17 | 2006-06-29 | Hyperion Catalysis International, Inc. | Method for preparing catalyst supports and supported catalysts from single walled carbon nanotubes |
US20060104890A1 (en) * | 2004-11-17 | 2006-05-18 | Avetik Harutyunyan | Catalyst for synthesis of carbon single-walled nanotubes |
US8012447B2 (en) | 2004-11-17 | 2011-09-06 | Honda Motor Co., Ltd. | Methods for controlling the quality of metal nanocatalyst for growing high yield carbon nanotubes |
US7871591B2 (en) | 2005-01-11 | 2011-01-18 | Honda Motor Co., Ltd. | Methods for growing long carbon single-walled nanotubes |
US20060228289A1 (en) * | 2005-01-11 | 2006-10-12 | Avetik Harutyunyan | Methods for growing long carbon single-walled nanotubes |
US8496904B2 (en) | 2005-02-07 | 2013-07-30 | Hyperion Catalysis International, Inc. | Single-walled carbon nanotube catalysts and method for preparing same |
US20100086472A1 (en) * | 2005-02-07 | 2010-04-08 | Hyperion Catalysis International, Inc. | Single-walled carbon nanotube catalysts and method for preparing same |
US8834827B2 (en) | 2005-03-14 | 2014-09-16 | National Research Council Of Canada | Method and apparatus for the continuous production and functionalization of single-walled carbon nanotubes using a high frequency plasma torch |
US7947247B2 (en) | 2005-03-29 | 2011-05-24 | Hyperion Catalysis International, Inc. | Method for preparing single walled carbon nanotubes from a metal layer |
US20100221173A1 (en) * | 2005-03-29 | 2010-09-02 | Hyperion Catalysis International, Inc. | Method for preparing single walled carbon nanotubes from a metal layer |
US8529862B2 (en) | 2005-03-29 | 2013-09-10 | Hyperion Catalysis International, Inc. | Method for preparing single walled carbon nanotubes from a metal layer |
US20110002838A1 (en) * | 2005-03-29 | 2011-01-06 | Hyperion Catalysis International, Inc | Method for preparing single walled carbon nanotubes from a metal layer |
US8119021B2 (en) | 2005-04-06 | 2012-02-21 | Drexel University | Functional nanoparticle filled carbon nanotubes and methods of their production |
US20090202644A1 (en) * | 2005-04-06 | 2009-08-13 | Drexel University | Functional nanoparticle filled carbon nanotubes and methods of their production |
US8155262B2 (en) | 2005-04-25 | 2012-04-10 | The University Of North Carolina At Chapel Hill | Methods, systems, and computer program products for multiplexing computed tomography |
US20100239064A1 (en) * | 2005-04-25 | 2010-09-23 | Unc-Chapel Hill | Methods, systems, and computer program products for multiplexing computed tomography |
US20060286024A1 (en) * | 2005-06-15 | 2006-12-21 | Baker R Terry K | Synthesis and cleaving of carbon nanochips |
US7867616B2 (en) | 2005-06-17 | 2011-01-11 | Honda Motor Co., Ltd. | Carbon single-walled nanotubes as electrodes for electrochromic glasses |
US20060284538A1 (en) * | 2005-06-17 | 2006-12-21 | Avetik Harutyunyan | Carbon single-walled nanotubes as electrodes for electrochromic glasses |
US7842387B2 (en) | 2005-06-28 | 2010-11-30 | The Board Of Regents Of The University Of Oklahoma | Methods for growing and harvesting carbon nanotubes |
US20070116629A1 (en) * | 2005-09-15 | 2007-05-24 | Avetik Harutyunyan | Methods for synthesis of high quality carbon single-walled nanotubes |
US20100308279A1 (en) * | 2005-09-16 | 2010-12-09 | Chaohui Zhou | Conductive Silicone and Methods for Preparing Same |
US20090296516A1 (en) * | 2005-10-07 | 2009-12-03 | Sulzer Mixpac Ag | Dynamic Mixer |
US20090168301A1 (en) * | 2005-10-13 | 2009-07-02 | Honda Motor Co., Ltd | Functionalized Nanotube Material for Supercapacitor Electrodes |
US7435476B2 (en) | 2005-10-13 | 2008-10-14 | Honda Motor Co., Ltd. | Functionalized nanotube material for supercapacitor electrodes |
US20080013258A1 (en) * | 2005-10-13 | 2008-01-17 | Honda R&D Americas, Inc. | Functionalized nanotube material for supercapacitor electrodes |
US9126828B2 (en) | 2005-11-16 | 2015-09-08 | Hyperion Catalysis International, Inc. | Mixed structures of single walled and multi walled carbon nanotubes |
US20080176052A1 (en) * | 2005-11-16 | 2008-07-24 | Jun Ma | Mixed Structures of Single Walled and Multi Walled Carbon Nanotubes |
US20100086471A1 (en) * | 2005-11-16 | 2010-04-08 | Hyperion Catalysis International, Inc. | Mixed structures of single walled and multi walled carbon nanotubes |
US8163263B2 (en) | 2006-01-30 | 2012-04-24 | Honda Motor Co., Ltd. | Catalyst for the growth of carbon single-walled nanotubes |
US20070281087A1 (en) * | 2006-01-30 | 2007-12-06 | Harutyunyan Avetik R | Catalyst for the Growth of Carbon Single-Walled Nanotubes |
US20080279753A1 (en) * | 2006-01-30 | 2008-11-13 | Harutyunyan Avetik R | Method and Apparatus for Growth of High Quality Carbon Single-Walled Nanotubes |
US8962130B2 (en) | 2006-03-10 | 2015-02-24 | Rohr, Inc. | Low density lightning strike protection for use in airplanes |
US20090227162A1 (en) * | 2006-03-10 | 2009-09-10 | Goodrich Corporation | Low density lightning strike protection for use in airplanes |
US20070227700A1 (en) * | 2006-03-29 | 2007-10-04 | Dimitrakopoulos Christos D | VLSI chip hot-spot minimization using nanotubes |
US20080316711A1 (en) * | 2006-03-29 | 2008-12-25 | International Business Machines Corporation | Vlsi hot-spot minimization using nanotubes |
US9151550B2 (en) | 2006-03-29 | 2015-10-06 | International Business Machines Corporation | VLSI hot-spot minimization using nanotubes |
US20080279751A1 (en) * | 2006-03-29 | 2008-11-13 | Hyperion Catalysis International, Inc. | Method for preparing uniform single walled carbon nanotubes |
US7951351B2 (en) | 2006-03-29 | 2011-05-31 | Hyperion Catalysis International, Inc. | Method for preparing uniform single walled carbon nanotubes |
US7842554B2 (en) | 2006-03-29 | 2010-11-30 | International Business Machines Corporation | VLSI hot-spot minimization using nanotubes |
US8092904B2 (en) | 2006-03-31 | 2012-01-10 | 3M Innovative Properties Company | Optical article having an antistatic layer |
US20070231561A1 (en) * | 2006-03-31 | 2007-10-04 | 3M Innovative Properties Company | Optical article having an antistatic layer |
US7796999B1 (en) | 2006-04-03 | 2010-09-14 | Sprint Spectrum L.P. | Method and system for network-directed media buffer-size setting based on device features |
US20090176112A1 (en) * | 2006-05-02 | 2009-07-09 | Kruckenberg Teresa M | Modification of reinforcing fiber tows used in composite materials by using nanoreinforcements |
US7832983B2 (en) | 2006-05-02 | 2010-11-16 | Goodrich Corporation | Nacelles and nacelle components containing nanoreinforced carbon fiber composite material |
US20110001086A1 (en) * | 2006-05-02 | 2011-01-06 | Goodrich Corporation | Methods of making nanoreinforced carbon fiber and components comprising nanoreinforced carbon fiber |
US20080069420A1 (en) * | 2006-05-19 | 2008-03-20 | Jian Zhang | Methods, systems, and computer porgram products for binary multiplexing x-ray radiography |
US8189893B2 (en) | 2006-05-19 | 2012-05-29 | The University Of North Carolina At Chapel Hill | Methods, systems, and computer program products for binary multiplexing x-ray radiography |
US8752279B2 (en) | 2007-01-04 | 2014-06-17 | Goodrich Corporation | Methods of protecting an aircraft component from ice formation |
US20080166563A1 (en) * | 2007-01-04 | 2008-07-10 | Goodrich Corporation | Electrothermal heater made from thermally conducting electrically insulating polymer material |
US20100143691A1 (en) * | 2007-04-17 | 2010-06-10 | Sumitomo Precision Products Co., Ltd. | High heat conduction composite material |
US8053069B2 (en) * | 2007-04-17 | 2011-11-08 | Sumitomo Precision Products Co., Ltd. | High heat conduction composite material |
US20080276987A1 (en) * | 2007-05-08 | 2008-11-13 | Vanguard Solar, Inc. | Nanostructured Solar Cells |
US8431818B2 (en) | 2007-05-08 | 2013-04-30 | Vanguard Solar, Inc. | Solar cells and photodetectors with semiconducting nanostructures |
US7999176B2 (en) | 2007-05-08 | 2011-08-16 | Vanguard Solar, Inc. | Nanostructured solar cells |
US20100206362A1 (en) * | 2007-05-08 | 2010-08-19 | Vanguard Solar, Inc. | Solar Cells and Photodetectors With Semiconducting Nanostructures |
US8433417B2 (en) | 2007-05-10 | 2013-04-30 | Newcyte, Inc. | Carbon nanostructure artificial retinal implant |
US20080288067A1 (en) * | 2007-05-10 | 2008-11-20 | Newcyte, Inc. | Artificial retinal implant |
US20090022264A1 (en) * | 2007-07-19 | 2009-01-22 | Zhou Otto Z | Stationary x-ray digital breast tomosynthesis systems and related methods |
US7751528B2 (en) | 2007-07-19 | 2010-07-06 | The University Of North Carolina | Stationary x-ray digital breast tomosynthesis systems and related methods |
TWI463614B (en) * | 2007-10-18 | 2014-12-01 | Ibm | On-chip temperature gradient minimization using carbon nanotube cooling structures with variable cooling capacityy |
US8063483B2 (en) | 2007-10-18 | 2011-11-22 | International Business Machines Corporation | On-chip temperature gradient minimization using carbon nanotube cooling structures with variable cooling capacity |
US20090102046A1 (en) * | 2007-10-18 | 2009-04-23 | International Business Machines Corporation | On-chip temperature gradient minimization using carbon nanotube cooling structures with variable cooling capacity |
US20090208391A1 (en) * | 2008-01-25 | 2009-08-20 | Hyperion Catalysis International, Inc. | Processes for the recovery of catalytic metal and carbon nanotubes |
US8852547B2 (en) | 2008-01-25 | 2014-10-07 | Hyperion Catalysis International, Inc. | Processes for the recovery of catalytic metal and carbon nanotubes |
US20100047522A1 (en) * | 2008-03-14 | 2010-02-25 | Nano-C, Inc. | Carbon nanotube-transparent conductive inorganic nanoparticles hybrid thin films for transparent conductive applications |
US9214256B2 (en) | 2008-03-14 | 2015-12-15 | Nano-C, Inc. | Carbon nanotube-transparent conductive inorganic nanoparticles hybrid thin films for transparent conductive applications |
US20100021794A1 (en) * | 2008-07-23 | 2010-01-28 | Korea Institute Of Science And Techology | Method of fabricating carbon material, carbon material prepared by the method, cell material and apparatus using the same |
US8486584B2 (en) | 2008-07-23 | 2013-07-16 | Korea Institute Of Science And Technology | Method of fabricating carbon material, carbon material prepared by the method, cell material and apparatus using the same |
US20110220191A1 (en) * | 2008-09-09 | 2011-09-15 | Vanguard Solar, Inc. | Solar cells and photodetectors with semiconducting nanostructures |
US20100329413A1 (en) * | 2009-01-16 | 2010-12-30 | Zhou Otto Z | Compact microbeam radiation therapy systems and methods for cancer treatment and research |
US8995608B2 (en) | 2009-01-16 | 2015-03-31 | The University Of North Carolina At Chapel Hill | Compact microbeam radiation therapy systems and methods for cancer treatment and research |
US8600003B2 (en) | 2009-01-16 | 2013-12-03 | The University Of North Carolina At Chapel Hill | Compact microbeam radiation therapy systems and methods for cancer treatment and research |
US20100283090A1 (en) * | 2009-05-11 | 2010-11-11 | Honda Patents & Technologies North America,Llc | Magnetic nanotransistor |
US8093669B2 (en) | 2009-05-11 | 2012-01-10 | Honda Motor Co., Ltd. | Magnetic nanotransistor |
US8449858B2 (en) | 2009-06-10 | 2013-05-28 | Carbon Solutions, Inc. | Continuous extraction technique for the purification of carbon nanomaterials |
US8454923B2 (en) | 2009-06-10 | 2013-06-04 | Carbon Solutions, Inc. | Continuous extraction technique for the purification of carbon nanomaterials |
US20100316557A1 (en) * | 2009-06-10 | 2010-12-16 | Carbon Solutions, Inc. | Continuous extraction technique for the purification of carbon nanomaterials |
US20110110842A1 (en) * | 2009-06-10 | 2011-05-12 | Haddon Robert C | Continuous extraction technique for the purification of carbon nanomaterials |
US8561934B2 (en) | 2009-08-28 | 2013-10-22 | Teresa M. Kruckenberg | Lightning strike protection |
US20110049292A1 (en) * | 2009-08-28 | 2011-03-03 | Rohr, Inc | Lightning strike protection |
US20110073344A1 (en) * | 2009-09-29 | 2011-03-31 | Hyperion Catalysis International, Inc. | Gasket containing carbon nanotubes |
WO2011086384A1 (en) | 2010-01-16 | 2011-07-21 | Nanoridge Materials, Incorporated | Armour with transformed nanotube material |
WO2011086382A1 (en) | 2010-01-16 | 2011-07-21 | Nanoridge Materials, Incorporated | Ceramic matrix composite articles comprising graphene nanoribbons - like material and their manufacturing method using carbon nanotubes |
WO2011144292A2 (en) | 2010-05-21 | 2011-11-24 | Merck Patent Gmbh | Selectively etching of a carbon nano tubes (cnt) polymer matrix on a plastic substructure |
US8809112B2 (en) | 2010-05-21 | 2014-08-19 | Merck Patent Gmbh | Selectively etching of a carbon nano tubes (CNT) polymer matrix on a plastic substructure |
US8518711B2 (en) | 2010-07-29 | 2013-08-27 | Honda Motor Co., Ltd. | Quantitative characterization of metallic and semiconductor single-walled carbon nanotube ratios |
US8358739B2 (en) | 2010-09-03 | 2013-01-22 | The University Of North Carolina At Chapel Hill | Systems and methods for temporal multiplexing X-ray imaging |
DE102010043472A1 (en) | 2010-11-05 | 2012-05-10 | Evonik Goldschmidt Gmbh | Composition of polymers and electrically conductive carbon |
WO2012059468A1 (en) | 2010-11-05 | 2012-05-10 | Evonik Degussa Gmbh | Polyamide 12 composition containing carbon nanotubes |
DE102010043473A1 (en) | 2010-11-05 | 2012-05-10 | Evonik Degussa Gmbh | Carbon nanotube-containing polyamide 12 composition |
WO2012059467A1 (en) | 2010-11-05 | 2012-05-10 | Evonik Degussa Gmbh | Composition of polyamides with low concentration of carboxamide groups and electrically conductive carbon |
WO2012059489A1 (en) | 2010-11-05 | 2012-05-10 | Evonik Goldschmidt Gmbh | Composition made of polymers and electrically conductive carbon |
DE102010043470A1 (en) | 2010-11-05 | 2012-05-10 | Evonik Degussa Gmbh | Composition of polyamides with low concentration of carboxylic acid amide groups and electrically conductive carbon |
US9312043B2 (en) | 2012-03-16 | 2016-04-12 | Evonik Degussa Gmbh | Polyamide composition containing electrically conductive carbon |
DE102012204181A1 (en) | 2012-03-16 | 2013-09-19 | Evonik Degussa Gmbh | Electrically conductive carbon-containing polyamide composition |
EP2639261A1 (en) | 2012-03-16 | 2013-09-18 | Evonik Degussa GmbH | Polyamide composition containing electrically conductive carbon |
US11070107B2 (en) * | 2012-04-03 | 2021-07-20 | The Boeing Company | Open-core flywheel architecture |
US20150096558A1 (en) * | 2012-04-23 | 2015-04-09 | David W. Mazyck | Helmet air purification system |
WO2014076576A2 (en) | 2012-11-14 | 2014-05-22 | The Pontificia Universidad Católica Madre Y Maestra | Carbon nanotubes conformally coated with diamond nanocrystals or silicon carbide, methods of making the same and methods of their use |
RU2541012C2 (en) * | 2013-04-05 | 2015-02-10 | Мсд Текнолоджис Частная Компания С Ограниченной Ответственностью | Hollow carbon nanoparticles, carbon nanomaterial and method for its production |
US9115266B2 (en) | 2013-07-31 | 2015-08-25 | E I Du Pont De Nemours And Company | Carbon nanotube-polymer composite and process for making same |
US9782136B2 (en) | 2014-06-17 | 2017-10-10 | The University Of North Carolina At Chapel Hill | Intraoral tomosynthesis systems, methods, and computer readable media for dental imaging |
US9907520B2 (en) | 2014-06-17 | 2018-03-06 | The University Of North Carolina At Chapel Hill | Digital tomosynthesis systems, methods, and computer readable media for intraoral dental tomosynthesis imaging |
RU2593875C2 (en) * | 2014-07-03 | 2016-08-10 | Рябых Виктор Владимирович | Method of producing modified with metal carbon nano structures, foundry alloy for composite materials based on aluminium or aluminium alloy and its production method |
US10980494B2 (en) | 2014-10-20 | 2021-04-20 | The University Of North Carolina At Chapel Hill | Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging |
US11450446B2 (en) | 2015-05-05 | 2022-09-20 | Nano-C, Inc. | Carbon nanotube based hybrid films for mechanical reinforcement of multilayered, transparent-conductive, laminar stacks |
US10835199B2 (en) | 2016-02-01 | 2020-11-17 | The University Of North Carolina At Chapel Hill | Optical geometry calibration devices, systems, and related methods for three dimensional x-ray imaging |
WO2020079161A1 (en) | 2018-10-19 | 2020-04-23 | Evonik Operations Gmbh | Conductive moulding compounds |
EP3640280A1 (en) | 2018-10-19 | 2020-04-22 | Evonik Operations GmbH | Conductive moulding masses |
WO2021105860A1 (en) | 2019-11-26 | 2021-06-03 | Trimtabs Ltd | Cables and methods of their production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5424054A (en) | Carbon fibers and method for their production | |
US7056479B2 (en) | Process for preparing carbon nanotubes | |
JP3754417B2 (en) | Double-walled carbon nanotubes and methods for their production and use | |
US8124503B2 (en) | Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces | |
JP3363759B2 (en) | Carbon nanotube device and method of manufacturing the same | |
Lange et al. | Nanocarbon production by arc discharge in water | |
JP2526782B2 (en) | Carbon fiber and its manufacturing method | |
US6156256A (en) | Plasma catalysis of carbon nanofibers | |
US7824649B2 (en) | Apparatus and method for synthesizing a single-wall carbon nanotube array | |
US20030132393A1 (en) | Diamond/carbon nanotube structures for efficient electron field emission | |
Tarasov et al. | Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co–Ni and YNi2 catalysts | |
JP2001348215A (en) | Manufacturing method of carbon nanotube and/or fullerene and manufacturing device therefor | |
WO2003078316A1 (en) | Iron/carbon composite, carbonaceous material comprising the iron/carbon composite, and process for producing the same | |
EP1478595B1 (en) | Method and apparatus for the production of carbon nanostructures | |
JPH11116218A (en) | Production of single layered nanotube | |
US10920085B2 (en) | Alteration of carbon fiber surface properties via growing of carbon nanotubes | |
CA2565139A1 (en) | Production of carbon nanotubes | |
Malekimoghadam et al. | Carbon nanotubes processing | |
JP4665113B2 (en) | Fine particle production method and fine particle production apparatus | |
JP2003160322A (en) | Production method for carbon nanotube | |
US8808635B2 (en) | Reactor and method for obtaining carbon material by short circuit electric current | |
JP3861857B2 (en) | Method for producing carbon nanotube tape | |
WO2004099072A1 (en) | Production method and device for single layer carbon nanotube | |
JP2003286016A (en) | Method for manufacturing purified carbon tube encapsulating metal | |
JPH11310407A (en) | Production of functional carbonaceous material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BETHUNE, DONALD STIMSON;BEYERS, ROBERT BRUCE;REEL/FRAME:006563/0352 Effective date: 19930521 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING |
|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIANG, CHING-HWA;REEL/FRAME:006975/0944 Effective date: 19940210 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: CALIFORNIA INSTITUTE OF TECHNOLOGY, CALIFORNIA Free format text: CORRECTED RECORDATION FORM COVER SHEET FOR INVENTOR KIANG ONLY;ASSIGNOR:KIANG, CHING-HWA;REEL/FRAME:018524/0987 Effective date: 19940210 |
|
CC | Certificate of correction | ||
CC | Certificate of correction |