US5383159A - Semiconductor memory device of alternately-activated open bit-line architecture - Google Patents

Semiconductor memory device of alternately-activated open bit-line architecture Download PDF

Info

Publication number
US5383159A
US5383159A US08/120,823 US12082393A US5383159A US 5383159 A US5383159 A US 5383159A US 12082393 A US12082393 A US 12082393A US 5383159 A US5383159 A US 5383159A
Authority
US
United States
Prior art keywords
word line
bit
bit lines
dummy
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/120,823
Inventor
Yasushi Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Assigned to SHARP KABUSHIKI KAISHA reassignment SHARP KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUBOTA, YASHUSHI
Application granted granted Critical
Publication of US5383159A publication Critical patent/US5383159A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4097Bit-line organisation, e.g. bit-line layout, folded bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/18Bit line organisation; Bit line lay-out

Definitions

  • the present invention relates to a semiconductor memory device, such as a dynamic random access memory (DRAM), of alternately-activated open-bit line architecture, and more particularly to a method of driving dummy word lines for cancellation of noises to be generated when word lines and bit lines are activated.
  • DRAM dynamic random access memory
  • FIG. 1A shows a prior art DRAM of alternately-activated open bit-line architecture as disclosed in 1991 the Institute of Electronics, Information and Communication Engineers Spring National Convention Records C-660.
  • FIG. 1B is an enlarged detail of the DRAM shown in FIG. 1A.
  • the DRAM has differential sense amplifiers SA (only three of which are shown) arranged in a row, and pairs of bit lines connected to the sense amplifiers SA. Two pairs of bit lines B0 and /B0, B1 and /B1 extend outwardly from opposite sides of each sense amplifier SA.
  • Memory cells MC are disposed at intersections between the alternate bit lines B0, B1, /B0, /B1 and word lines W1, W2, W3, W4.
  • the alternate bit lines B0 are activated by a signal (storage charge) in the memory cells MC connected to the word line W1. At this time, electric potentials on the bit lines B1 are fixed, and therefore interference noise between neighboring bit lines is greatly reduced.
  • dummy cells DC and dummy word lines DW1, . . . , DW4 Such components are often employed not only in a DRAM of open bit-line architecture but also in a common DRAM.
  • the dummy cells DC and the dummy word lines DW1, . . . , DW4 have utterly the same constructions as those of the memory cells MC and the word lines W1, . . . , W4 respectively, inclusive of parasitic capacitance.
  • the sense amplifiers SA are arranged in a row at a pitch equivalent to twice the bit line pitch.
  • the integration scale exceeds the level of a 64 Mbit DRAM (wherein the bit line pitch is about 1.0 ⁇ m)
  • the present inventor has designed an improved DRAM of alternately-activated open bit-line architecture.
  • the arrangement of the DRAM is shown in FIG. 2.
  • differential type sense amplifiers SA are arranged in a staggering manner.
  • Two bit lines extend from either side of each sense amplifier, and a plurality of word lines (only two of which are shown by WL1 and WL2) and two dummy word lines (DWL1 and DWL2) intersect the bit lines positioned between the rows of the sense amplifiers.
  • Memory cells MC are provided at intersections between the bit lines and the word lines WL1, WL2 and dummy memory cells DC are provided at intersections between the bit lines and the dummy word lines DWL1, DWL 2 so that cell array blocks (four ow which are shown by MB0, MB1, MB2, MB3) are provided between the rows of the sense amplifiers SA.
  • the sense amplifiers SA in each row can be arranged at a pitch equivalent to at least four times the bit line pitch. Accordingly, even though the bit line pitch is reduced, a relatively large area can be assured for each sense amplifier SA (more specifically, for the channel length and/or diffusion area of each transistor). As a result, it is possible to increase the packing density while keeping high the sensitivity of each sense amplifier.
  • bit lines /BL0, /BL2, /BL4, /BL6 being counterparts of the bit lines BL0, BL2, BL4, BL6 are arranged alternately in the neighboring memory cell blocks MB1 and MB3.
  • this arrangement requires a complicated operation and circuit design for driving the dummy word lines.
  • one dummy word line located in a certain cell array block can be a counterpart of the word lines located in different two cell array blocks on both sides of the certain cell array block.
  • the dummy word line DWL1 provided in the cell array block MB2 is activated when memory cells MC in either of the neighboring cell array blocks MB1 and MB3 are selected.
  • FIG. 3 shows waveforms of drive signals for the word lines WL (WL1, WL2) and the dummy word lines DWL (DWL1, DWL2).
  • both the word lines and the dummy word lines assume a potential of ground GND when not selected and an elevated potential VBST higher than a potential of a power supply when selected.
  • the object of the present invention is therefore to provide a semiconductor memory device of alternately-activated open bit-line architecture which can respond to the need for increase of a packing density or integration scale to a level of 64 Mbits or more without decreasing sensitivity of the sense amplifiers, and which can simplify the dummy word line driving operation.
  • the present invention provides a semiconductor memory device, comprising:
  • a plurality of sense amplifiers of differential type arranged in one direction in rows, wherein the neighboring rows constitute associated first and second rows and the sense amplifiers of the first and second rows are disposed alternately with each other in a staggering manner;
  • bit lines extending from each of the sense amplifiers of the first and second rows in opposite first and second directions wherein the bit lines extending from the sense amplifiers of the first row in the first direction and the bit lines extending from the sense amplifiers of the second row in the second direction constitute a bit line group between the first and second rows;
  • bit lines in said group a plurality of dummy cells disposed at intersections between the bit lines in said group and said dummy word lines such that the dummy cells connected with one dummy word line are connected with the alternate bit lines and that the dummy cells connected with the other dummy word line are connected with the remaining bit lines;
  • control section for controlling activation of a selected one of said word lines by a signal, said control section applying to a corresponding dummy word line a signal opposite in phase from that applied to said selected word line such that when the memory cells connected with the activated word line are electrically connected with the associated bit lines, the dummy cells connected with the same bit lines are electrically disconnected therefrom.
  • the sense amplifiers in each row are arranged at a pitch equivalent to at least four times the bit line pitch. Therefore, an area occupied by one sense amplifier (the channel length and/or diffusion region of each transistor) can be made relatively large even when the bit line pitch is reduced. As a result, a high packing density is attained without decreasing the sensitivity of each sense amplifier.
  • the memory cells and dummy cells connected with the bit lines in the bit line group constitute a cell array block.
  • the present invention unlike the DRAM of FIG. 2 wherein when a word line provided in a certain cell array block is activated, two dummy word lines provided in the neighboring cell array blocks are required to be activated for cancellation of noises, only one dummy word line, which is provided in the same cell array block as the selected word line, is operated so as to be electrically disconnected from the bit lines. As a result, selection of the address of the dummy word line to be inactivated can be effected easily. This very much contributes to simplification of a circuit design and operation for driving the dummy word lines.
  • Noise cancellation is performed as follows. That is, when a selected word line is activated by the signal of a high level applied from the control section, the memory cells connected to the selected word line are electrically connected with the bit lines which are thus activated. At this time, the dummy cells connected to the same bit lines are electrically disconnected from these bit lines by the signal opposite in phase to that applied to the word line. As a result, the capacitance of each bit line is kept unchanged. Noise due to parasitic capacitances between the word line and the bit lines are also canceled by a noise from the dummy word line having a characteristic opposite to the noise from the word line.
  • control section controls a potential of each dummy word line to a first high level of a power supply when the dummy word line is not selected and to a level of ground when the dummy word line is selected; while controlling a potential of each word line to the first high level during a time of data reading, to a second high level higher than the first high level during a time of data writing, and to the level of ground when the word line is not selected.
  • FIG. 1A shows a prior art DRAM of alternately-activated open bit-line architecture
  • FIG. 1B shows an enlarged detail of the DRAM shown in FIG. 1A;
  • FIG. 2 shows a solution to the problems caused by the prior art DRAM, wherein the arrangement of sense amplifiers is different from that of the prior art DRAM;
  • FIG. 3 is a waveform chart showing drive signal waveforms for the word line and the dummy word line in the DRAM of FIG. 2;
  • FIG. 4 shows a DRAM of alternately-activated open bit-line architecture in accordance with an embodiment of the present invention
  • FIG. 5 is a waveform chart showing drive signal waveforms for the word line and the dummy word line of the DRAM as shown in FIG. 4;
  • FIG. 6 is a waveform chart showing other drive signal waveforms for the word line and the dummy word line of the DRAM as shown in FIG. 4.
  • FIG. 4 shows an arrangement of a DRAM of alternately-activated open bit-line architecture in accordance with an embodiment of the present invention.
  • the DRAM has a plurality of rows of sense amplifiers of differential type, only three of which rows are shown in FIG. 4.
  • the rows are substantially parallel to each other.
  • the sense amplifiers (only two of which are shown by 11 and 13) in a first row are spaced substantially the same distance from each other.
  • the sense amplifiers (only two of which are shown by 12 and 14) in a second row placed on one side of the first row are spaced substantially the same distance from each other
  • the sense amplifiers (only two of which are shown by 2 and 4) in a third row placed on the other side of the first row are spaced substantially the same distance from each other.
  • the sense amplifiers 11, 13 in the first row alternate with the sense amplifiers 12 and 14 in the second row, so that they are arranged in a staggering manner.
  • the sense amplifiers 2, 4 in the third row alternate with the sense amplifiers 11 and 13 in the first row, so that they are arranged in a staggering manner. This is true with the other rows not shown.
  • Each adjacent two rows, namely the first and second rows and the first and third rows in FIG. 4 are associated with each other.
  • bit lines BL0 and BL1 and bit lines /BL1 and /BL0 extend from the sense amplifier 11 of the first row in the opposite directions.
  • Bit lines BL4 and BL5 and bit lines /BL5 and /BL4 extend from the sense amplifier 13 of the first row in the opposite directions.
  • Bit lines /BL3 and/BL2 and BL2 and BL3 extend from the sense amplifier 12 of the second row in the opposite directions, so that bit lines BL2 and BL3 are disposed between the bit lines BL1 and BL4.
  • bit lines /BL7 and /BL6 and bit lines BL6 and BL7 extend from the sense amplifier 14 of the second row, so that the bit lines BL6 and BL7 are disposed next to the bit line BL5.
  • Each sense amplifier amplifies the difference in potential between each paired bit lines extending in the opposite directions therefrom.
  • bit lines BL0 and BL1, BL2 and BL3, BL4 and BL5, and BL6 and BL7 disposed between the first and second rows of the sense amplifiers constitute a bit line group.
  • bit lines disposed between the third and first rows of the sense amplifiers constitute a bit line group. In this way, a plurality of bit line groups are provided between the neighboring rows of the sense amplifiers.
  • the memory cells MC and dummy cells DC provided between each two adjacent rows of the sense amplifiers constitute a cell array block MB (MB1, MB2, MB3).
  • each sense amplifier SA (more specifically the channel length and/or diffusion region of each transistor) can occupy an area sufficiently wide to attain a high sensitivity. Accordingly, this arrangement can be applied to high-density semiconductor memory devices having storage capacity of more than 64 Mbits.
  • the memory cells MC connected to the selected word line are electrically connected to the corresponding bit lines, which are thus activated.
  • WL1 located in the cell array block MB2 between the first and second rows of the sense amplifiers is selected for activation
  • memory cells MC connected to this word line WL1 are electrically connected with the bit lines BL0, BL2, BL4, BL6, which bit lines are thus activated.
  • word lines including WL1 and WL2 are represented by WL and dummy word lines DWL1 and DWL2 are represented by DWL.
  • dummy cells DC connected to the bit lines BL0, BL2, BL4, BL6 are electrically disconnected from the bit lines BL0, BL2, BL4, BL6.
  • the capacitances of the bit lines BL0, BL2, BL4, BL6 are kept unchanged.
  • noise due to parasitic capacitances between the word line WL1 and the bit lines BL0, BL2, BL4, BL6 are canceled by the noise from the dummy word line DWL1 having a characteristic opposite to the noise from the word line WL1.
  • the noises generated due to the activation of the word line and the bit lines can be canceled.
  • the semiconductor memory device of the present embodiment when a word line in a certain cell array block is selected to be activated, only one dummy word line in the same cell array block is required to be operated for cancellation of noises. Accordingly, the address selection for the dummy word lines becomes much easier and the operation and circuit design for driving the dummy word lines DWL are simplified much more, as compared with the DRAM shown in FIG. 2.
  • the dummy word driving method of the present invention may be called "reverse phase dummy word line driving method”.

Abstract

A semiconductor memory device of alternately-activated open bit-line architecture is provided wherein paired bit lines extend from opposite sides of sense amplifiers that are arranged in one direction and every other bit line is activated through activation of a word line intersecting the bit lines. The sense amplifiers in the neighboring first and second rows alternate with each other in a staggering manner. The bit lines extending from the sense amplifiers of the first row in a first direction and the bit lines extending from the sense amplifiers in the opposite, second direction constitute a bit line group between the first and second rows. Word lines and dummy word lines intersect the bit line group. In operation, signals opposite in phase to each other are applied to a selected word line and a corresponding dummy word line from a control section so that memory cells connected to the selected word line are electrically connected with the bit lines while the dummy cells connected with the same bit lines are electrically disconnected from these bit lines.

Description

BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor memory device, such as a dynamic random access memory (DRAM), of alternately-activated open-bit line architecture, and more particularly to a method of driving dummy word lines for cancellation of noises to be generated when word lines and bit lines are activated.
FIG. 1A shows a prior art DRAM of alternately-activated open bit-line architecture as disclosed in 1991 the Institute of Electronics, Information and Communication Engineers Spring National Convention Records C-660. FIG. 1B is an enlarged detail of the DRAM shown in FIG. 1A. Referring to FIG. 1A, the DRAM has differential sense amplifiers SA (only three of which are shown) arranged in a row, and pairs of bit lines connected to the sense amplifiers SA. Two pairs of bit lines B0 and /B0, B1 and /B1 extend outwardly from opposite sides of each sense amplifier SA. Memory cells MC are disposed at intersections between the alternate bit lines B0, B1, /B0, /B1 and word lines W1, W2, W3, W4. In reading operation, when the word line W1, for example, is activated, the alternate bit lines B0 are activated by a signal (storage charge) in the memory cells MC connected to the word line W1. At this time, electric potentials on the bit lines B1 are fixed, and therefore interference noise between neighboring bit lines is greatly reduced.
Referring to FIG. 1B, there are also shown dummy cells DC and dummy word lines DW1, . . . , DW4. Such components are often employed not only in a DRAM of open bit-line architecture but also in a common DRAM. The dummy cells DC and the dummy word lines DW1, . . . , DW4 have utterly the same constructions as those of the memory cells MC and the word lines W1, . . . , W4 respectively, inclusive of parasitic capacitance. When a signal is read out on the bit lines B0, for example, from the corresponding memory cells MC, various noises similar to those generated on the bit line B0 are made to be generated on the counterpart bit line /B0 as well. Various noises occurring during the data reading operation are thereby canceled and the intensity of the signal is increased.
In the above example, the sense amplifiers SA are arranged in a row at a pitch equivalent to twice the bit line pitch. However, when the integration scale exceeds the level of a 64 Mbit DRAM (wherein the bit line pitch is about 1.0 μm), it is difficult to arrange the sense amplifiers SA in a width corresponding to twice the bit line pitch. This is because channel lengths of transistors constituting each sense amplifier SA and the size of diffusion regions cannot be reduced in conformity to a scaling rule since the sensitivity of each sense amplifier SA is required to be maintained at a certain high level. In more detail, when the channel lengths of the transistors constituting each sense amplifier SA are reduced, a difference takes place between the paired transistors in effective channel length and/or threshold voltage due to a scatter in fabrication process of the transistors. On the other hand, when the diffusion regions are dimensionally reduced, a difference takes place between the load capacitances of the sense amplifiers SA. Those differences are major factors of the reduction of the sensitivity of each sense amplifier SA.
For the above reasons, the prior art arrangement cannot be used for high density DRAMs.
In order to solve this problem, the present inventor has designed an improved DRAM of alternately-activated open bit-line architecture. The arrangement of the DRAM is shown in FIG. 2. In the DRAM shown in FIG. 2, differential type sense amplifiers SA are arranged in a staggering manner. Two bit lines extend from either side of each sense amplifier, and a plurality of word lines (only two of which are shown by WL1 and WL2) and two dummy word lines (DWL1 and DWL2) intersect the bit lines positioned between the rows of the sense amplifiers. Memory cells MC are provided at intersections between the bit lines and the word lines WL1, WL2 and dummy memory cells DC are provided at intersections between the bit lines and the dummy word lines DWL1, DWL 2 so that cell array blocks (four ow which are shown by MB0, MB1, MB2, MB3) are provided between the rows of the sense amplifiers SA. According to this arrangement, the sense amplifiers SA in each row can be arranged at a pitch equivalent to at least four times the bit line pitch. Accordingly, even though the bit line pitch is reduced, a relatively large area can be assured for each sense amplifier SA (more specifically, for the channel length and/or diffusion area of each transistor). As a result, it is possible to increase the packing density while keeping high the sensitivity of each sense amplifier.
However, the inventor has found that this improved DRAM has the following drawbacks.
For example, when a word line WL1 connected to the cell array block MB2 is activated to select memory cells MC provided at the intersections between the word line WL1 and the bit lines BL0, BL2, BL4, BL6, for example, two dummy word lines DWL2 connected to the neighboring cell array blocks MB1 and MB3 respectively must be activated at the same time. This is because bit lines /BL0, /BL2, /BL4, /BL6 being counterparts of the bit lines BL0, BL2, BL4, BL6 are arranged alternately in the neighboring memory cell blocks MB1 and MB3. Thus, this arrangement requires a complicated operation and circuit design for driving the dummy word lines. Furthermore, one dummy word line located in a certain cell array block can be a counterpart of the word lines located in different two cell array blocks on both sides of the certain cell array block. For instance, the dummy word line DWL1 provided in the cell array block MB2 is activated when memory cells MC in either of the neighboring cell array blocks MB1 and MB3 are selected. This also complicates the operation and circuit design for driving the dummy word lines. FIG. 3 shows waveforms of drive signals for the word lines WL (WL1, WL2) and the dummy word lines DWL (DWL1, DWL2). As shown in FIG. 3, both the word lines and the dummy word lines assume a potential of ground GND when not selected and an elevated potential VBST higher than a potential of a power supply when selected.
SUMMARY OF THE INVENTION
The object of the present invention is therefore to provide a semiconductor memory device of alternately-activated open bit-line architecture which can respond to the need for increase of a packing density or integration scale to a level of 64 Mbits or more without decreasing sensitivity of the sense amplifiers, and which can simplify the dummy word line driving operation.
In order to achieve the above object, the present invention provides a semiconductor memory device, comprising:
a plurality of sense amplifiers of differential type arranged in one direction in rows, wherein the neighboring rows constitute associated first and second rows and the sense amplifiers of the first and second rows are disposed alternately with each other in a staggering manner;
two pairs of bit lines extending from each of the sense amplifiers of the first and second rows in opposite first and second directions, wherein the bit lines extending from the sense amplifiers of the first row in the first direction and the bit lines extending from the sense amplifiers of the second row in the second direction constitute a bit line group between the first and second rows;
a plurality of word lines intersecting said bit line group;
a pair of dummy word lines intersecting said bit line group;
a plurality of memory cells disposed at intersections between the bit lines in said bit line group and said word lines such that the memory cells connected with one word line are connected with alternate bit lines and that the memory cells connected with one bit line are connected with alternate word lines;
a plurality of dummy cells disposed at intersections between the bit lines in said group and said dummy word lines such that the dummy cells connected with one dummy word line are connected with the alternate bit lines and that the dummy cells connected with the other dummy word line are connected with the remaining bit lines;
a control section for controlling activation of a selected one of said word lines by a signal, said control section applying to a corresponding dummy word line a signal opposite in phase from that applied to said selected word line such that when the memory cells connected with the activated word line are electrically connected with the associated bit lines, the dummy cells connected with the same bit lines are electrically disconnected therefrom.
In the semiconductor memory device of the present invention, the sense amplifiers in each row are arranged at a pitch equivalent to at least four times the bit line pitch. Therefore, an area occupied by one sense amplifier (the channel length and/or diffusion region of each transistor) can be made relatively large even when the bit line pitch is reduced. As a result, a high packing density is attained without decreasing the sensitivity of each sense amplifier.
The memory cells and dummy cells connected with the bit lines in the bit line group constitute a cell array block.
According to the present invention, unlike the DRAM of FIG. 2 wherein when a word line provided in a certain cell array block is activated, two dummy word lines provided in the neighboring cell array blocks are required to be activated for cancellation of noises, only one dummy word line, which is provided in the same cell array block as the selected word line, is operated so as to be electrically disconnected from the bit lines. As a result, selection of the address of the dummy word line to be inactivated can be effected easily. This very much contributes to simplification of a circuit design and operation for driving the dummy word lines.
Noise cancellation is performed as follows. That is, when a selected word line is activated by the signal of a high level applied from the control section, the memory cells connected to the selected word line are electrically connected with the bit lines which are thus activated. At this time, the dummy cells connected to the same bit lines are electrically disconnected from these bit lines by the signal opposite in phase to that applied to the word line. As a result, the capacitance of each bit line is kept unchanged. Noise due to parasitic capacitances between the word line and the bit lines are also canceled by a noise from the dummy word line having a characteristic opposite to the noise from the word line.
Preferably, the control section controls a potential of each dummy word line to a first high level of a power supply when the dummy word line is not selected and to a level of ground when the dummy word line is selected; while controlling a potential of each word line to the first high level during a time of data reading, to a second high level higher than the first high level during a time of data writing, and to the level of ground when the word line is not selected.
In this case, potentials opposite in sign and same in magnitude are applied to the selected word line and dummy word line in the time of data reading to substantially completely cancel the noise. In the time of data writing, the word line is driven to the further elevated potential to assure a satisfying data writing operation.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
FIG. 1A shows a prior art DRAM of alternately-activated open bit-line architecture;
FIG. 1B shows an enlarged detail of the DRAM shown in FIG. 1A;
FIG. 2 shows a solution to the problems caused by the prior art DRAM, wherein the arrangement of sense amplifiers is different from that of the prior art DRAM;
FIG. 3 is a waveform chart showing drive signal waveforms for the word line and the dummy word line in the DRAM of FIG. 2;
FIG. 4 shows a DRAM of alternately-activated open bit-line architecture in accordance with an embodiment of the present invention;
FIG. 5 is a waveform chart showing drive signal waveforms for the word line and the dummy word line of the DRAM as shown in FIG. 4; and
FIG. 6 is a waveform chart showing other drive signal waveforms for the word line and the dummy word line of the DRAM as shown in FIG. 4.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 4 shows an arrangement of a DRAM of alternately-activated open bit-line architecture in accordance with an embodiment of the present invention. The DRAM has a plurality of rows of sense amplifiers of differential type, only three of which rows are shown in FIG. 4. The rows are substantially parallel to each other. As shown in FIG. 4, the sense amplifiers (only two of which are shown by 11 and 13) in a first row are spaced substantially the same distance from each other. Similarly, the sense amplifiers (only two of which are shown by 12 and 14) in a second row placed on one side of the first row are spaced substantially the same distance from each other, and the sense amplifiers (only two of which are shown by 2 and 4) in a third row placed on the other side of the first row are spaced substantially the same distance from each other. The sense amplifiers 11, 13 in the first row alternate with the sense amplifiers 12 and 14 in the second row, so that they are arranged in a staggering manner. Similarly, the sense amplifiers 2, 4 in the third row alternate with the sense amplifiers 11 and 13 in the first row, so that they are arranged in a staggering manner. This is true with the other rows not shown. Each adjacent two rows, namely the first and second rows and the first and third rows in FIG. 4, are associated with each other.
Two bit lines extend outwardly from each sense amplifier in the opposite first and second directions (to the right and left in the figure). For example, bit lines BL0 and BL1 and bit lines /BL1 and /BL0 extend from the sense amplifier 11 of the first row in the opposite directions. Bit lines BL4 and BL5 and bit lines /BL5 and /BL4 extend from the sense amplifier 13 of the first row in the opposite directions. Bit lines /BL3 and/BL2 and BL2 and BL3 extend from the sense amplifier 12 of the second row in the opposite directions, so that bit lines BL2 and BL3 are disposed between the bit lines BL1 and BL4. Similarly, bit lines /BL7 and /BL6 and bit lines BL6 and BL7 extend from the sense amplifier 14 of the second row, so that the bit lines BL6 and BL7 are disposed next to the bit line BL5. Each sense amplifier amplifies the difference in potential between each paired bit lines extending in the opposite directions therefrom.
The bit lines BL0 and BL1, BL2 and BL3, BL4 and BL5, and BL6 and BL7 disposed between the first and second rows of the sense amplifiers constitute a bit line group. Similarly, the bit lines disposed between the third and first rows of the sense amplifiers constitute a bit line group. In this way, a plurality of bit line groups are provided between the neighboring rows of the sense amplifiers.
A plurality of word lines (only two of which are shown by WL1 and WL2) and two dummy word lines DWL1 and DWL2 intersect the bit lines of the bit line group between each adjacent two rows of the sense amplifiers, and memory cells MC and dummy cells DC are provided at the intersections between those bit lines and the word lines WL1, WL2 and dummy word lines DWL1, DWL2. The memory cells MC and dummy cells DC provided between each two adjacent rows of the sense amplifiers (e.g., the first and second rows, the third and first rows) constitute a cell array block MB (MB1, MB2, MB3).
As obvious from the figure, the sense amplifiers 11, 13; 12, 14; 2, 4 in each row are spaced from each other the distance corresponding to at least four times the bit line pitch as in the DRAM shown in FIG. 2. Therefore, as mentioned with respect to the arrangement of FIG. 2, even if the bit line pitch becomes smaller, each sense amplifier SA (more specifically the channel length and/or diffusion region of each transistor) can occupy an area sufficiently wide to attain a high sensitivity. Accordingly, this arrangement can be applied to high-density semiconductor memory devices having storage capacity of more than 64 Mbits.
In operation, a drive signal of an elevated potential VBST=4.5 V is applied from a control section 20 including a booster 21 (see FIG. 4) to a selected word line WL (here WL1 or WL2) as shown in FIG. 5 to activate the word line. Thereby, the memory cells MC connected to the selected word line are electrically connected to the corresponding bit lines, which are thus activated. For instance, when the WL1 located in the cell array block MB2 between the first and second rows of the sense amplifiers is selected for activation, memory cells MC connected to this word line WL1 are electrically connected with the bit lines BL0, BL2, BL4, BL6, which bit lines are thus activated. At the same time, dummy cells DC are electrically disconnected from the same bit lines BL0, BL2, BL4, BL6 since a signal opposite in phase to the signal supplied to the word line WL1 (a signal that changes from a potential of an electric power supply VCC=3.3 V to a potential of ground GND=0 V as shown in FIG. 5) is applied from the control section 20 to the dummy word line DWL1 provided in the same cell array block MB2. Note that in FIG. 5, word lines including WL1 and WL2 are represented by WL and dummy word lines DWL1 and DWL2 are represented by DWL.
With the above-mentioned operation, dummy cells DC connected to the bit lines BL0, BL2, BL4, BL6 are electrically disconnected from the bit lines BL0, BL2, BL4, BL6. As a result, the capacitances of the bit lines BL0, BL2, BL4, BL6 are kept unchanged. Furthermore, noise due to parasitic capacitances between the word line WL1 and the bit lines BL0, BL2, BL4, BL6 are canceled by the noise from the dummy word line DWL1 having a characteristic opposite to the noise from the word line WL1. Thus, the noises generated due to the activation of the word line and the bit lines can be canceled.
As described above, in the semiconductor memory device of the present embodiment, when a word line in a certain cell array block is selected to be activated, only one dummy word line in the same cell array block is required to be operated for cancellation of noises. Accordingly, the address selection for the dummy word lines becomes much easier and the operation and circuit design for driving the dummy word lines DWL are simplified much more, as compared with the DRAM shown in FIG. 2.
The dummy word driving method of the present invention may be called "reverse phase dummy word line driving method".
Normally, the elevated potential VBST=4.5 V, which is greater than the potential of a power supply VCC, is applied to the selected word line WL as described above. In this case, in order to completely cancel noise by the "reverse phase dummy word line driving method", it is preferred to keep the dummy word line DWL at the elevated potential VBST=4.5 V when the dummy word line is inoperative and drive it to the potential of ground GND=0 V when it is required to operate such that a change in potential on the selected word line is equal to that on the selected dummy word line. However, it is impractical to always put the booster 21 in operation. The power consumption also increases. Drive signals for the word line and the dummy word line as shown in FIG. 6 are a solution to this inconvenience. That is, as shown in FIG. 6, the dummy word line DWL is kept at the potential of a power supply VCC=3.3 V when not selected. When data is read out from memory cells, the potential of the word line WL is raised to the same potential VCC=3.3 V, and at the same time the potential of the dummy word line DWL is dropped to the potential GND. In this way, noises are substantially canceled. Then, to write data, the elevated potential VBST=4.5 V is applied to the word line WL such that data writing is satisfactorily carried out. With the above-mentioned operation, possible generation of noises can be suppressed in the data reading time. It is to be noted that it is sufficient to apply the potential of a power supply VCC to the word line WL in the data reading time for the reason that a signal at around a pre-charged potential (normally a half of the potential of a power supply VCC) is required to be transmitted in the data reading time.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.

Claims (7)

What is claimed is:
1. A semiconductor memory device, comprising:
a plurality of sense amplifiers of differential type arranged in one direction in rows, wherein the neighboring rows constitute associated first and second rows and the sense amplifiers of the first and second rows are disposed alternately with each other in a staggering manner and the sense amplifiers of each row are spaced from adjacent sense amplifiers in the same row by a distance at least equal to four times of a bit line pitch;
two pairs of alternatively-activated bit lines extending from each of the sense amplifiers of the first and second rows in opposite first and second directions, wherein the bit lines extending from the sense amplifiers of the first row in the first direction and the bit lines extending from the sense amplifiers of the second row in the second direction constitute a bit line group between the first and second rows, wherein said bit line pitch is the distance between bit lines in said pairs of bit lines in each respective bit line group;
a plurality of word lines intersecting said bit line group;
a pair of dummy word lines intersecting said bit line group, said pair of dummy word lines positioned in proximity to said word lines;
a plurality of memory cells disposed at intersections between the bit lines in said bit line group and said word lines such that the memory cells connected with one word line are connected with alternate bit lines and that the memory cells connected with one bit line are connected with alternate word lines;
a plurality of dummy cells disposed at intersections between the bit lines in said group and said dummy word lines such that the dummy cells connected with one dummy word line are connected with the alternate bit lines and that the dummy cells connected with the other dummy word line are connected with the remaining bit lines;
a control section for controlling activation of a selected one of said word lines by a signal, said control section applying to a corresponding dummy word line a signal opposite in phase from that applied to said selected word line such that when the memory cells connected with the activated word line are electrically connected with the associated bit lines, the dummy cells connected with the same bit lines are electrically disconnected therefrom.
2. The semiconductor memory device as claimed in claim 1, wherein said control section controls a potential of each dummy word line to a first high level when the dummy word line is not selected and to a low level when the dummy word line is selected; while controlling a potential of each word line to said first high level during a time of data reading, to a second high level higher than said first high level during a time of data writing, and to said low level when the word line is not selected.
3. The semiconductor memory device as claimed in claim 2, wherein said first high level is a level of a power supply and said low level is a level of ground.
4. The semiconductor memory device as claimed in claim 3, wherein said first high level is 3.3 V and said second high level is 4.5 V.
5. The semiconductor memory device as claimed in claim 1, wherein wherein said controlling section controls a potential of each dummy word line to a first high level when the dummy word line is not selected and to a low level when the dummy word line is selected; while controlling a potential of each word line to a second high level higher than said first high level during both a time of data reading and a time of data writing, and to said low level when the word line is not selected.
6. The semiconductor memory device as claimed in claim 5, wherein said first high level is a level of a power supply and said low level is a level of ground.
7. The semiconductor memory device as claimed in claim 6, wherein said first high level is 3.3 V and said second high level is 4.5 v.
US08/120,823 1992-09-17 1993-09-15 Semiconductor memory device of alternately-activated open bit-line architecture Expired - Lifetime US5383159A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4-247666 1992-09-17
JP4247666A JP2945216B2 (en) 1992-09-17 1992-09-17 Semiconductor memory device

Publications (1)

Publication Number Publication Date
US5383159A true US5383159A (en) 1995-01-17

Family

ID=17166861

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/120,823 Expired - Lifetime US5383159A (en) 1992-09-17 1993-09-15 Semiconductor memory device of alternately-activated open bit-line architecture

Country Status (2)

Country Link
US (1) US5383159A (en)
JP (1) JP2945216B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691933A (en) * 1994-12-16 1997-11-25 Kabushiki Kaisha Toshiba Semiconductor memory device having improved bit line distribution
US5748554A (en) * 1996-12-20 1998-05-05 Rambus, Inc. Memory and method for sensing sub-groups of memory elements
US5757710A (en) * 1996-12-03 1998-05-26 Mosel Vitelic Corporation DRAM with edge sense amplifiers which are activated along with sense amplifiers internal to the array during a read cycle
US5781488A (en) * 1997-04-18 1998-07-14 Mosel Vitelic Corporation DRAM with new I/O data path configuration
WO1998033185A1 (en) * 1997-01-28 1998-07-30 Micron Technology, Inc. Dram architecture with combined sense amplifier pitch
US5841720A (en) * 1997-08-26 1998-11-24 International Business Machines Corporation Folded dummy world line
US6144590A (en) * 1998-05-20 2000-11-07 Siemens Aktiengesellschaft Semiconductor memory having differential bit lines
US20040114421A1 (en) * 2002-09-20 2004-06-17 International Business Machines Corporation DRAM Circuit and its Operation Method
KR100474609B1 (en) * 2001-07-18 2005-03-08 미쓰비시덴키 가부시키가이샤 Semiconductor memory device
US20050083721A1 (en) * 2001-09-07 2005-04-21 Hampel Craig E. Granularity memory column access
US20060039227A1 (en) * 2004-08-17 2006-02-23 Lawrence Lai Memory device having staggered memory operations
US20060056253A1 (en) * 2003-09-19 2006-03-16 International Business Machines Corporation DRAM circuit and its operation method
US20060117155A1 (en) * 2004-11-29 2006-06-01 Ware Frederick A Micro-threaded memory
US20070104006A1 (en) * 2005-11-08 2007-05-10 Samsung Electronics Co. Ltd. Memory core and method thereof
DE10144245B4 (en) * 2000-11-10 2007-06-06 Samsung Electronics Co., Ltd., Suwon Semiconductor memory device with bit lines and a sense amplifier
US7280428B2 (en) 2004-09-30 2007-10-09 Rambus Inc. Multi-column addressing mode memory system including an integrated circuit memory device
US20070260841A1 (en) * 2006-05-02 2007-11-08 Hampel Craig E Memory module with reduced access granularity
US7319602B1 (en) 2004-07-01 2008-01-15 Netlogic Microsystems, Inc Content addressable memory with twisted data lines
DE19732694B4 (en) * 1996-12-13 2008-10-02 Samsung Electronics Co., Ltd., Suwon Non-volatile ferroelectric memory device
US7500075B1 (en) 2001-04-17 2009-03-03 Rambus Inc. Mechanism for enabling full data bus utilization without increasing data granularity
US20100034004A1 (en) * 2008-08-07 2010-02-11 Elpida Memory, Inc. Semiconductor memory device of open bit line type
US20100271854A1 (en) * 2009-04-28 2010-10-28 Integrated Device Technology, Inc. Ternary Content Addressable Memory Having Reduced Leakage Effects
US20110002152A1 (en) * 2009-07-02 2011-01-06 Micron Technology, Inc. Systems, memories, and methods for repair in open digit memory architectures
US7920397B1 (en) 2010-04-30 2011-04-05 Netlogic Microsystems, Inc. Memory device having bit line leakage compensation
US8102689B2 (en) * 2005-08-19 2012-01-24 Samsung Electronics Co., Ltd. Semiconductor memory device having dummy sense amplifiers and methods of utilizing the same
JP2015084270A (en) * 2014-12-09 2015-04-30 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. Semiconductor storage device
US9268719B2 (en) 2011-08-05 2016-02-23 Rambus Inc. Memory signal buffers and modules supporting variable access granularity

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427847B2 (en) * 1999-11-04 2010-03-10 エルピーダメモリ株式会社 Dynamic RAM and semiconductor device
KR100634165B1 (en) * 2003-06-17 2006-10-16 삼성전자주식회사 Semiconductor memory device capable of increasing input/output line number without increase in chip area
KR100600056B1 (en) 2004-10-30 2006-07-13 주식회사 하이닉스반도체 Semiconductor device for low voltage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4903344A (en) * 1987-07-07 1990-02-20 Oki Electric Industry Co., Ltd. Semiconductor memory device with staggered sense amplifiers
US4943949A (en) * 1984-11-26 1990-07-24 Hitachi, Ltd. Semiconductor memory including means for noise suppression
US5134588A (en) * 1990-07-27 1992-07-28 Sharp Kabushiki Kaisha Semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943949A (en) * 1984-11-26 1990-07-24 Hitachi, Ltd. Semiconductor memory including means for noise suppression
US4903344A (en) * 1987-07-07 1990-02-20 Oki Electric Industry Co., Ltd. Semiconductor memory device with staggered sense amplifiers
US5134588A (en) * 1990-07-27 1992-07-28 Sharp Kabushiki Kaisha Semiconductor memory device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
1) Tsutomu Yoshihara, Hideto Hidaka, Yoshio Matsuda and Kazuyasu Fujishima "A Twisted Bit Line Technique for Multi-Mb DRAMS", 1988 IEEE International Solid-State Circuit Conference, pp. 238-239.
1) Tsutomu Yoshihara, Hideto Hidaka, Yoshio Matsuda and Kazuyasu Fujishima A Twisted Bit Line Technique for Multi Mb DRAMS , 1988 IEEE International Solid State Circuit Conference, pp. 238 239. *
2) Yasushi Kubota, Katsuji Iguchi, Keiichiro Uda and Junkou Takagi: "Alternately-Activated Open Bit-Line Architecture for High Density DRAMS", 1991 the Institute of Electronics, Information and Communication Engineers Spring National Convention Records C-660, pp. 5-251.
2) Yasushi Kubota, Katsuji Iguchi, Keiichiro Uda and Junkou Takagi: Alternately Activated Open Bit Line Architecture for High Density DRAMS , 1991 the Institute of Electronics, Information and Communication Engineers Spring National Convention Records C 660, pp. 5 251. *

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691933A (en) * 1994-12-16 1997-11-25 Kabushiki Kaisha Toshiba Semiconductor memory device having improved bit line distribution
US5757710A (en) * 1996-12-03 1998-05-26 Mosel Vitelic Corporation DRAM with edge sense amplifiers which are activated along with sense amplifiers internal to the array during a read cycle
US6011737A (en) * 1996-12-03 2000-01-04 Mosel Vitelic Corporation DRAM with edge sense amplifiers which are activated along with sense amplifiers internal to the array during a read cycle
DE19732694B4 (en) * 1996-12-13 2008-10-02 Samsung Electronics Co., Ltd., Suwon Non-volatile ferroelectric memory device
US5748554A (en) * 1996-12-20 1998-05-05 Rambus, Inc. Memory and method for sensing sub-groups of memory elements
USRE37409E1 (en) * 1996-12-20 2001-10-16 Rambus Inc. Memory and method for sensing sub-groups of memory elements
WO1998033185A1 (en) * 1997-01-28 1998-07-30 Micron Technology, Inc. Dram architecture with combined sense amplifier pitch
US5781488A (en) * 1997-04-18 1998-07-14 Mosel Vitelic Corporation DRAM with new I/O data path configuration
US5966338A (en) * 1997-04-18 1999-10-12 Mosel Vitelic Corporation Dram with new I/O data path configuration
US5841720A (en) * 1997-08-26 1998-11-24 International Business Machines Corporation Folded dummy world line
US6144590A (en) * 1998-05-20 2000-11-07 Siemens Aktiengesellschaft Semiconductor memory having differential bit lines
DE10144245B4 (en) * 2000-11-10 2007-06-06 Samsung Electronics Co., Ltd., Suwon Semiconductor memory device with bit lines and a sense amplifier
US10146445B2 (en) 2001-04-17 2018-12-04 Rambus Inc. Mechanism for enabling full data bus utilization without increasing data granularity
US9417800B2 (en) 2001-04-17 2016-08-16 Rambus Inc. Mechanism for enabling full data bus utilization without increasing data granularity
US20090157993A1 (en) * 2001-04-17 2009-06-18 Garrett Jr Billy Mechanism for enabling full data bus utilization without increasing data granularity
US8856480B2 (en) 2001-04-17 2014-10-07 Rambus Inc. Mechanism for enabling full data bus utilization without increasing data granularity
US9257161B2 (en) 2001-04-17 2016-02-09 Rambus Inc. Mechanism for enabling full data bus utilization without increasing data granularity
US10860216B2 (en) 2001-04-17 2020-12-08 Rambus Inc. Mechanism for enabling full data bus utilization without increasing data granularity
US7500075B1 (en) 2001-04-17 2009-03-03 Rambus Inc. Mechanism for enabling full data bus utilization without increasing data granularity
US8370596B2 (en) 2001-04-17 2013-02-05 Rambus Inc. Mechanism for enabling full data bus utilization without increasing data granularity
KR100474609B1 (en) * 2001-07-18 2005-03-08 미쓰비시덴키 가부시키가이샤 Semiconductor memory device
US20050083721A1 (en) * 2001-09-07 2005-04-21 Hampel Craig E. Granularity memory column access
US20040114421A1 (en) * 2002-09-20 2004-06-17 International Business Machines Corporation DRAM Circuit and its Operation Method
US6999364B2 (en) * 2002-09-20 2006-02-14 International Business Machines Corporation DRAM circuit and its operation method
US7274612B2 (en) * 2003-09-19 2007-09-25 International Business Machines Corporation DRAM circuit and its operation method
US20060056253A1 (en) * 2003-09-19 2006-03-16 International Business Machines Corporation DRAM circuit and its operation method
US7319602B1 (en) 2004-07-01 2008-01-15 Netlogic Microsystems, Inc Content addressable memory with twisted data lines
US20080043507A1 (en) * 2004-07-01 2008-02-21 Varadarajan Srinivasan Content addressable memory with twisted data lines
US7545661B2 (en) 2004-07-01 2009-06-09 Netlogic Microsystems, Inc. Content addressable memory with twisted data lines
US8190808B2 (en) 2004-08-17 2012-05-29 Rambus Inc. Memory device having staggered memory operations
US20060039227A1 (en) * 2004-08-17 2006-02-23 Lawrence Lai Memory device having staggered memory operations
US8154947B2 (en) 2004-09-30 2012-04-10 Rambus Inc. Multi-column addressing mode memory system including an integrated circuit memory device
US8908466B2 (en) 2004-09-30 2014-12-09 Rambus Inc. Multi-column addressing mode memory system including an integrated circuit memory device
US7505356B2 (en) 2004-09-30 2009-03-17 Rambus Inc. Multi-column addressing mode memory system including an integrated circuit memory device
US8432766B2 (en) 2004-09-30 2013-04-30 Rambus Inc. Multi-column addressing mode memory system including an integrated circuit memory device
US20080062807A1 (en) * 2004-09-30 2008-03-13 Ware Frederick A Multi-column addressing mode memory system including an integrated circuit memory device
US20110153932A1 (en) * 2004-09-30 2011-06-23 Rambus Inc. Multi-column addressing mode memory system including an integrated circuit memory device
US7280428B2 (en) 2004-09-30 2007-10-09 Rambus Inc. Multi-column addressing mode memory system including an integrated circuit memory device
US8050134B2 (en) 2004-09-30 2011-11-01 Rambus Inc. Multi-column addressing mode memory system including an integrated circuit memory device
US20060117155A1 (en) * 2004-11-29 2006-06-01 Ware Frederick A Micro-threaded memory
US9652176B2 (en) 2004-11-29 2017-05-16 Rambus Inc. Memory controller for micro-threaded memory operations
US11797227B2 (en) 2004-11-29 2023-10-24 Rambus Inc. Memory controller for micro-threaded memory operations
US9292223B2 (en) 2004-11-29 2016-03-22 Rambus Inc. Micro-threaded memory
US10331379B2 (en) 2004-11-29 2019-06-25 Rambus Inc. Memory controller for micro-threaded memory operations
US8595459B2 (en) 2004-11-29 2013-11-26 Rambus Inc. Micro-threaded memory
US8102689B2 (en) * 2005-08-19 2012-01-24 Samsung Electronics Co., Ltd. Semiconductor memory device having dummy sense amplifiers and methods of utilizing the same
US20070104006A1 (en) * 2005-11-08 2007-05-10 Samsung Electronics Co. Ltd. Memory core and method thereof
US7586804B2 (en) 2005-11-08 2009-09-08 Samsung Electronics Co., Ltd. Memory core, memory device including a memory core, and method thereof testing a memory core
US8364926B2 (en) 2006-05-02 2013-01-29 Rambus Inc. Memory module with reduced access granularity
US20070260841A1 (en) * 2006-05-02 2007-11-08 Hampel Craig E Memory module with reduced access granularity
US10191866B2 (en) 2006-05-02 2019-01-29 Rambus Inc. Memory controller for selective rank or subrank access
US10795834B2 (en) 2006-05-02 2020-10-06 Rambus Inc. Memory controller for selective rank or subrank access
US11467986B2 (en) 2006-05-02 2022-10-11 Rambus Inc. Memory controller for selective rank or subrank access
US9256557B2 (en) 2006-05-02 2016-02-09 Rambus Inc. Memory controller for selective rank or subrank access
US20100034004A1 (en) * 2008-08-07 2010-02-11 Elpida Memory, Inc. Semiconductor memory device of open bit line type
USRE46202E1 (en) 2008-08-07 2016-11-08 Longitude Semiconductor S.A.R.L. Semiconductor memory device of open bit line type
US8000123B2 (en) 2008-08-07 2011-08-16 Elpida Memory, Inc. Semiconductor memory device of open bit line type
US20100271854A1 (en) * 2009-04-28 2010-10-28 Integrated Device Technology, Inc. Ternary Content Addressable Memory Having Reduced Leakage Effects
US7944724B2 (en) 2009-04-28 2011-05-17 Netlogic Microsystems, Inc. Ternary content addressable memory having reduced leakage effects
US8964494B2 (en) 2009-07-02 2015-02-24 Micron Technology, Inc. memories and methods for repair in open digit memory architectures
US20110002152A1 (en) * 2009-07-02 2011-01-06 Micron Technology, Inc. Systems, memories, and methods for repair in open digit memory architectures
US8427895B2 (en) 2009-07-02 2013-04-23 Micron Technology, Inc. Systems, memories, and methods for repair in open digit memory architectures
US8351285B2 (en) * 2009-07-02 2013-01-08 Micron Technology, Inc. Systems, memories, and methods for repair in open digit memory architectures
US7920397B1 (en) 2010-04-30 2011-04-05 Netlogic Microsystems, Inc. Memory device having bit line leakage compensation
US9268719B2 (en) 2011-08-05 2016-02-23 Rambus Inc. Memory signal buffers and modules supporting variable access granularity
US9666250B2 (en) 2011-08-05 2017-05-30 Rambus Inc. Memory signal buffers and modules supporting variable access granularity
JP2015084270A (en) * 2014-12-09 2015-04-30 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. Semiconductor storage device

Also Published As

Publication number Publication date
JP2945216B2 (en) 1999-09-06
JPH06103754A (en) 1994-04-15

Similar Documents

Publication Publication Date Title
US5383159A (en) Semiconductor memory device of alternately-activated open bit-line architecture
US6344990B1 (en) DRAM for storing data in pairs of cells
US8218386B2 (en) Embedded memory databus architecture
KR960002819B1 (en) Semiconductor memory device
US6545933B2 (en) Semiconductor memory
US5062077A (en) Dynamic type semiconductor memory device
US6272054B1 (en) Twin-cell memory architecture with shielded bitlines for embedded memory applications
KR19990030297A (en) Semiconductor Memory with Hierarchical Bit Line Structures with Uneven Local Bit Lines
US4086662A (en) Memory system with read/write control lines
US5966340A (en) Semiconductor memory device having hierarchical word line structure
EP0107387A2 (en) Semiconductor memory device
US6456521B1 (en) Hierarchical bitline DRAM architecture system
US5091887A (en) Dynamic semiconductor memory device
US4920517A (en) Semiconductor memory device having sub bit lines
US6297985B1 (en) Cell block structure of nonvolatile ferroelectric memory
CN100468566C (en) Ferroelectric memory device
JP3913451B2 (en) Semiconductor memory device
US4980864A (en) Semiconductor dynamic random access memory with relaxed pitch condition for sense amplifiers and method of operating the same
KR100231404B1 (en) Small-sized multi-valued semiconductor memory device
US6816398B2 (en) Memory device
CN115171750B (en) Memory, access method thereof and electronic equipment
KR100429882B1 (en) Semiconductor memory device having mesh-type structure of precharge voltage line
KR100288819B1 (en) Semiconductor memory device
KR100368133B1 (en) Method for storing information on a memory cell
JP3159496B2 (en) Semiconductor memory device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHARP KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUBOTA, YASHUSHI;REEL/FRAME:006692/0804

Effective date: 19930910

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12