US5298743A - Mass spectrometry and mass spectrometer - Google Patents

Mass spectrometry and mass spectrometer Download PDF

Info

Publication number
US5298743A
US5298743A US07/942,992 US94299292A US5298743A US 5298743 A US5298743 A US 5298743A US 94299292 A US94299292 A US 94299292A US 5298743 A US5298743 A US 5298743A
Authority
US
United States
Prior art keywords
vacuum chamber
ions
vacuum
accelerating voltage
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/942,992
Other languages
English (en)
Inventor
Yoshiaki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Assigned to HITACHI, LTD. reassignment HITACHI, LTD. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KATO, YOSHIAKI
Application granted granted Critical
Publication of US5298743A publication Critical patent/US5298743A/en
Priority to US08/841,002 priority Critical patent/US5744798A/en
Priority to US09/015,322 priority patent/US6002130A/en
Priority to US09/354,583 priority patent/US6087657A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/067Ion lenses, apertures, skimmers

Definitions

  • the present invention relates generally to a mass spectrometry (method of mass analysis) and mass spectrometer (apparatus for mass analysis) and, more particularly, to a mass spectrometry and mass spectrometer for generating ions under an atmospheric pressure and analyzing masses.
  • Atmospheric pressure ionization is often utilized for mass-analyzing a fluid containing sample and solvent components flowing from a liquid chromatograph (LC).
  • LC liquid chromatograph
  • soft ionization is effected so as not to impart an excessive energy to sample molecules. For this reason, the sample is decomposed to a less extent upon ionization, and the molecular ions are easy to observe.
  • the ionization under a high pressure atmospheric pressure
  • even a substance having a low ionization potential is ionized at a high ionization efficiency. Therefore, a highly sensitive mass analysis can be expected.
  • the ionization under an atmospheric pressure is described in detail in Analytical Chemistry, Vol. 62, No. 13, pp. 713A-725A (1990).
  • the ions have to be introduced into a vacuum in order to mass-analyze the ions generated under the atmospheric pressure. If the ions generated under the atmospheric pressure are immediately led into a high vacuum chamber to perform the mass analysis, there arises problems such as contamination in the high vacuum chamber. Hence, in most of the cases, low and intermediate vacuum chambers are provided between the atmospheric pressure and the high vacuum to give a gradual pressure gradient between the atmospheric pressure and the high vacuum, while these chambers are evacuated independently by use of vacuum exhaust pumps.
  • low and intermediate vacuum chambers are provided between an atmospheric pressure ionizing unit and a high vacuum unit for effecting a mass analysis and are evacuated by a common vacuum system.
  • the low and intermediate vacuum-chambers are evacuated in this way by the common vacuum system, and hence the vacuum system is simplified. This in turn leads to a reduction in costs.
  • FIG. 1 is a schematic diagram of a whole arrangement of a liquid chromatograph/mass spectrometer, showing one embodiment according to the present invention
  • FIG. 2 is a conceptual diagram illustrating an LC/MS device based on the conventional technique
  • FIG. 3 is a conceptual diagram illustrating the LC/MS device based on the conventional technique
  • FIG. 4 is a conceptual diagram illustrating the LC/MS device based on the conventional technique
  • FIG. 5 is a conceptual diagram depicting the LC/MS device based on ionization in a counter gas system
  • FIG. 6 is a schematic diagram showing a shock wave by a supersonic fluid introduced into a vacuum from an atmospheric pressure
  • FIG. 7 is a conceptual diagram illustrating the LC/MS device including an ion acceleration electrode for restraining a spread of speed.
  • FIG. 8 is a conceptual diagram of the LC/MS of a 3-stage differential pumping system
  • FIG. 9 is a conceptual diagram of the LC/MS of a 2-stage differential pumping system
  • FIG. 10 is a conceptual diagram of the LC/MS device, showing another embodiment of the present invention.
  • FIG. 11 is a conceptual diagram of the LC/MS device, showing still another embodiment of the present invention.
  • FIG. 12 is a diagram showing an insulin mass spectrum obtained by the conventional system.
  • FIG. 13 is a diagram showing the insulin mass spectrum obtained in accordance with the embodiment of the present invention.
  • vacuum system is the first item which has to be considered in an LC/MS interface, i.e., a mass spectrometer directly connected to the liquid chromatograph (LC).
  • LC liquid chromatograph
  • the second system is, as depicted in FIG. 3 or 4, a method of introducing the ions to an MS part 8 through several-staged differential pumping systems employing a plurality of partition walls formed with the aperture 3 and skimmer(s) 5, 7.
  • an aperture diameter d (m) and a pumping speed S (m 3 /s) of a vacuum pump are given as follows to obtain a vacuum required for the MS.
  • a vacuum degree for operation of the MS is herein 10 -3 -10 -4 Pa.
  • a conductance C 1 of a gas in viscous flow region of the aperture diameter d (m) is obtained by the formula (1).
  • the vacuum P 1 of the MS part is obtained by the formula (2).
  • the atmospheric pressure P 0 is approximately 10 5 Pa.
  • the aperture diameter d required for accomplishing a vacuum degree of 10 -4 Pa in the MS part is given as follows. From the formulae (1) and (3), ##EQU2##
  • the aperture has a diameter of approximately 2.5 ⁇ m. If a cryopump having a pumping speed of 10,000 liters/s is employed as the vacuum pump, the aperture diameter is nothing more than 7.9 ⁇ m. When the ions are sampled from the atmosphere through the aperture having such a small diameter clogging of the aperture is frequently caused due to matters such as dusts in the air. Further, since the diameter of the aperture is small, a good deal of ions can not be introduced. This makes the high sensitivity measurement difficult. An additional problem is that the cryopump is remarkably expensive.
  • FIG. 2 is a schematic diagram based on this system. The ions sprayed from a spray nozzle 1 and generated under an atmospheric pressure and in a high electrostatic field 2 enter the MS part via the aperture 3. Neutral molecules are trapped by a cooling fin 16 of the cryopump. On the other hand, the ions go straight and undergo a mass sorting in a quadrupole MS 9 and reach a detector 10.
  • the vacuum of the MS unit 8 is defined as follows. Let P 0 be the atmospheric pressure, and let P 2 be the vacuum degree of the MS unit 8. Let S 1 , S 2 be the pumping speeds of the vacuum pumps of the differential pumping system part and MS part, respectively. Let C 1 , C 2 be the conductances of gases of the first and second apertures 3, 5, respectively. Further, let d 1 , d 2 be the diameters of the first and second apertures.
  • the pressure P 1 of the differential vacuum chamber 4 is given by the following formula: ##EQU3##
  • the conductance C 2 in the molecular flow region is given by the following formula:
  • A is the area of the aperture. This is further expressed as:
  • the MS part 8 is evacuated by the oil diffusion pump having a pumping speed of 1,000 liters/s, while the differential vacuum system part 4 is evacuated by a mechanical booster pump of 16.7 liters/s.
  • the diameter of the first aperture 3 is assumed to be 200 ⁇ m, while the diameter of the second aperture 5 is assumed be 400 ⁇ m.
  • the vacuums P 1 , P 2 of the differential pumping system part 4 and MS part 8 are respectively given from the formulae (5) and (11):
  • the vacuum of the MS part 8 is high enough for the mass analysis.
  • the second system using a plurality of apertures and the differential pumping system exhibits such an advantage that the large apertures and the inexpensive vacuum pumps can be utilized. For this reason, the second system is widely utilized in a great number of vacuum devices.
  • a 3-stage differential pumping system is similarly utilized. This differential pumping system corresponds to a method which is excellent in terms of such a point that the ions generated under the atmospheric pressure are led to the MS part at a high efficiency.
  • the two-or three-stage differential pumping system is used in the LC/MS.
  • the cluster ion is an ion to which a multiplicity of polar molecules are added.
  • the type and the number of the molecules to be added are not constant. It is therefore impossible to directly obtain the information on a molecular weight of the sample molecule from the cluster ion by means of the MS.
  • ions having same m/z are distributed widely in the form of a multiplicity of cluster ions, and hence a detected ionic current value is also decreased. Therefore, desolvation for removing the added molecules from the cluster ions is required.
  • Proposed as a method therefor are the following methods and a combinational system thereof. In any case, an external energy greater than the addition energy of the polar molecules is given to the cluster ion, thereby releasing the polar molecules from the ion.
  • the energy imparted to the cluster ion is controlled to exceed slightly the energy that is required for the release of the added molecules. It is required that the energy be repeatedly injected into the ions.
  • FIG. 5 is a schematic diagram showing this system.
  • the cluster ions are made to pass through an inert gas which has been heated ( ⁇ 70° C.), e.g., dry nitrogen.
  • Nitrogen molecules are caused to collide with the cluster ions, and the heat is transferred to the cluster ions from the nitrogen molecules continually, thereby releasing the added molecules from the ions.
  • the dry nitrogen is flowed in a direction 24 opposite to a flow of the ions in the vicinity of the ion sampling aperture 3. Therefore, neutral solvent molecules (such as water) flowing together with the ions are flowed back in a direction 23 opposite to the ions sampling aperture 3 due to the dry nitrogen.
  • the ions 22 are accelerated by an electric potential applied between the aperture 3 and the spray nozzle 1 and collide with the dry nitrogen molecules.
  • the ions 22 undergo the desolvation and enter the aperture 3. This also prevents extra polar molecule from entering the vacuum chamber, and a possibility of collision and recoupling within the vacuum chamber can be made low.
  • this system is a preferable method capable of restricting the polar molecules from entering the vacuum chamber. Hence, the desolvation is attainable more efficiently in a combination with the following system than used singly.
  • the Mach disk is expressed as: ##EQU6##
  • the Mach disk is generated in a place positioned 6.3 mm away from the aperture towards the high vacuum part.
  • the adiabatic compression is effected on the Mach disk surface, whereby the cluster ions are rapidly heated.
  • the desolvation is performed.
  • the second aperture 5 is disposed in a place positioned 7 mm or more apart backwards from the first aperture 3
  • the cluster ions invariably pass through the Mach disk surface, thereby promoting the desolvation with heating by the adiabatic compression.
  • This system is a preferable method capable of attaining the desolvation without supply of special external energy. In rear of the Mach disk, however, the flow of molecules becomes absolutely irregular, and the flow of ions entering the second aperture does not become constant.
  • sampling is often effected in a molecular flow region (Silent Zone) 27 in front of the Mach disk where the ions and gas molecules continue their motion in straight line.
  • Silent Zone molecular flow region
  • the gas diffused into the vacuum from the atmospheric pressure is rapidly cooled by the adiabatic expansion.
  • the gas to be introduced is heated beforehand, and where the interface including the aperture is heated, the adiabatic cooling can be compensated to some extent, and an addition of water and the like can be prevented. It is, however, difficult to attain the perfect desolvation only by heating. It is because most of ions of organic compounds passing through this interface tend to easily undergo the thermal decomposition by heating. It is therefore impossible to perform heating at a high temperature for the purpose of the desolvation.
  • a mean free path of the gaseous molecules become about 0.06 to 0.6 mm.
  • the ions existing in the gas are accelerated in a direction along the electric field and collide with the neutral molecules.
  • the acceleration and collision are repeated.
  • the mean free path is 0.1 mm ( ⁇ 66 Pa)
  • the ions are accelerated by approximately 1 eV in the electric field of 100 V/cm, where e is the number of electric valences of the ions. A part of this kinetic energy is transformed into an internal energy (thermal energy) by the collision.
  • Important factors in this desolvation system are a vacuum degree and an intensity of the electric field in the case of the acceleration and collision.
  • the electric potential is applied between the first and second apertures 3, 5 or/and between the second and third apertures 5, 7, whereby the ions are accelerated and collide with the neutral molecules.
  • a degree of the desolvation can be changed by controlling the applied voltages V 1 , V 2 . This method is remarkably effective in the desolvation.
  • This method has a defect of directly undergoing influences of the pressures of the ion acceleration and collision parts 4, 6. Besides, because of accelerating the ions, there is a risk in which a part of the kinetic energy is not consumed by the collision but is imparted directly to the ions. Therefore, the ions which have entered the high vacuum MS part 8 spread in speed. It follows that this directly brings about declines in resolving power and sensitivity in the mass analysis. If the speed spread exceeds 1 eV, it is difficult to attain the resolving power more than one mass unit in the case of the quadrupole MS. In addition, a transmissivity of the ions is also decreased. In the case of a double focusing mass spectrometer, the large energy dispersion occurs due to the electric field, with the result that the declines in the sensitivity and resolving power are induced.
  • the mean free path of the nitrogen molecules under from the atmospheric pressure ( ⁇ 10 5 Pa) to 10 3 Pa is approximately 5 ⁇ 10 -5 mm-5 ⁇ 10 -3 mm.
  • the kinetic energy received by the ions ranges from 5 ⁇ 10 -3 eV to 5 ⁇ 10 -1 eV, which is considerably lower than 1 eV.
  • the collisions frequently happen in this pressure region, and it is therefore impossible to accelerate the ions, although the ion moving direction can be changed even when the electric field is applied. More specifically, even when the ions are accelerated under this pressure, the spread of the kinetic energy can be restrained not more than 1 eV.
  • the mean free path of the nitrogen molecules ranges from approximately 5 ⁇ 10 -3 mm to 5 mm.
  • the electric field of 100 V/mm is applied under this pressure, the kinetic energy received by the ions within the mean free path is as large as 5 ⁇ 10 -1 eV to 5 ⁇ 10 2 eV. This causes a large spread of the kinetic energy (speed).
  • the mean free path becomes 50 mm to 50 m. Reduced is a probability that the accelerated ions collide with the neutral molecules in the acceleration field. The spread of the kinetic energy is reduced.
  • the vacuum gradually becomes higher from the ions sampling aperture 3 in the ion flying direction of the MS part 8. If there is a sufficient space between the ions sampling aperture 3 and an ion acceleration electrode 20, the ions are accelerated between these two portions and invariably pass through the intermediate pressure region (10 3 Pa-1 Pa). Spread of energies of the ions do not occur in the high pressure part (10 5 -10 3 Pa). On the other hand, the ions are accelerated in the region where the pressure ranges from 10 2 Pa to 1 Pa, and the energy spread is provided.
  • the ion acceleration electrode 20 In order to restrain the energy (speed) spread as low as possible, the ion acceleration electrode 20 is positioned close to the ion sampling aperture 3, and the ions are accelerated in the high pressure part (10 5 -10 3 Pa). In this region, however, the cluster ions can not be sufficiently accelerated. The energy required for the desolvation cannot be given to the cluster ions. Therefore, the desolvation in this region can not be expected.
  • the ion acceleration in the differential pumping system part is an acceleration in the intermediate pressure region (10 3 -1 Pa), and it follows that the energy spread is imparted.
  • the following prevention measures are required for avoiding this energy spread.
  • the pressure difference is controlled stepwise and accurately by using a plurality of differential pumping system. Further, the desolvation by acceleration is performed in the vacuum of 10 2 Pa or under, and the ion acceleration is restrained at the possible lowest level under the intermediate pressure of 10 2 -1 Pa. The ions are accelerated at a stretch in the next high vacuum region. This requires a difficult of the pressure control and an intricate and expensive differential pumping system as shown in FIG. 8.
  • the pressure of the first vacuum chamber 4 is kept at 10 3 -10 2 Pa, while the ion acceleration voltage V 1 is kept at 100-200 V.
  • the second vacuum chamber is maintained at 10-1 Pa, while the ion acceleration voltage V 2 is restrained down at 10-20 V.
  • the collision dissociation is promoted by increasing the ion acceleration voltage in such a low vacuum region as to exert no influence on the ion speed. Whereas in such a region as to exert an influence on the ion speed, the ion acceleration voltage is restrained low. It is not, however, easy to constantly control the pressure and the ion acceleration voltage.
  • the present invention is embodied by the following technique.
  • the intermediate vacuum region (10 2 -1 Pa) between the case of the high pressure and the case of high vacuum, the spread of speed is induced.
  • the intermediate vacuum region is physically separated from each of the high-pressure part and high-vacuum part through partition walls with orifices.
  • the voltage required for accelerating the ions is applied in each vacuum chamber. Chambers are provided so that the interface parts are depressurized sequentially from the atmospheric pressure.
  • the chamber adjacent to the atmospheric pressure is evacuated not by an independent pump but through a bypass hole opened to the high vacuum part at the next stage, so that a pressure of this chamber can be easily set by a conductance of this hole.
  • the vacuum pump, the pumping duct and the control power supply of vacuum system can be thereby simplified.
  • the ions are accelerated by the electric field of 200 through 100 V/5 mm in the chamber held at a pressure of 10 3 to 10 2 Pa. It is therefore possible to provide the number of collisions and energy required for the desolvation while restraining the energy spread within 1 eV.
  • An electric potential (approximately 10-20 V/5 mm) enough to converge the ions is given in the chamber of 10 2 to 1 Pa. The energy spread in this region can be thereby restrained within 12 eV.
  • an ESI Electro-Spray Ionization, i.e., ionization by spraying a liquid in a high electric field
  • a spray nozzle 1 to which a high voltage V 0 is applied
  • a counter gas introduction chamber 25 a first aperture (ion sampling aperture) 3, a first vacuum chamber 4, a second aperture 5, a second vacuum chamber 6, a third aperture 7, an ion acceleration power supply 21, a heater 14 and a heater power supply 15.
  • An eluate fed in from the LC reaches the spray nozzle 1 and is sprayed in the atmosphere 2.
  • a good deal of electric charges are carried on the sprayed droplet surfaces.
  • the droplets are diminished by evaporating the solvent from the droplet surfaces while flying in the atmosphere 2.
  • a repulsion of the electric charges of the same polarity carried on the surface becomes greater than a surface tension, the droplets are segmented at a stretch. Finally, it comes to a result that the ions have evaporated from the liquid phase to the atmosphere 2 (gas phase).
  • the counter gas is made to flow into the atmosphere 2 from the vicinity of the first aperture 3 in a direction opposite to the flying direction of the ions, where the counter gas is fed via a needle valve 12 from a gas cylinder 13.
  • the counter gas is typically heated at 60°-70° C., thus promoting the evaporation of the solvent from the droplets.
  • the ions move with the aid of the electric field while resisting a flow of the counter gas and enters the first vacuum chamber 4 via the first aperture 3.
  • the ions are then accelerated by the voltage V 1 applied between the partition walls, of the first vacuum chamber, formed respectively with the first and second apertures 3, 5.
  • the ions then collide with the neutral gaseous molecules and undergo the desolvation.
  • the ions further enter the second vacuum chamber 6 via the second aperture 5.
  • the ions are herein subjected to an acceleration and convergence and enter the third aperture 7.
  • the ions, which have entered the MS part 8 via the third aperture 7, are accelerated by an acceleration voltage applied between the ion acceleration electrode 20 and the third aperture 7 as well.
  • the ions then undergo a mass sorting by the quadrupole MS 9.
  • the ions are detected by the detector 10 and provides a mass spectrum after passing through a DC amplifier 11.
  • the first, second and third apertures typically have a skimmer structure, whereby the diffused neutral molecules are prevented from entering the next vacuum chamber.
  • the first vacuum chamber 4 includes no independent vacuum pump and is structured such that this chamber 4 is evacuated by the vacuum pump 1 through the second vacuum chamber 6 from a bypass hole 26 provided downwardly of the second aperture 5.
  • the MS part is evacuated by an independent vacuum pump 2.
  • Numeral 9 designates a quadrupole, and 21 denotes an ion acceleration power supply.
  • the interface part is heated by the heater power supply 15 and the heater 14 to prevent cooling due to the adiabatic expansion.
  • the diameters of the first, second and third apertures are 200 ⁇ m, 400 ⁇ m and 500 ⁇ m, respectively; and the diameter of the bypass hole formed downwardly of the second aperture is 5 mm. It is also presumed that the pumping speeds of the vacuum pumps 1, 2 are 16.7 liters/s and 1,000 liters/s.
  • P 1 , P 2 , P 3 be the vacuum degrees of the first vacuum chamber, the second vacuum chamber and the MS part.
  • C 1 be the conductance of the first aperture 3, and this conductance is defined by the (1) and therefore given as follows: ##EQU7##
  • the conductance in the molecular flow region is given as follows: ##EQU9## where the coefficient 0.834 is the conductance correction term of the aperture having a thickness.
  • the pressure P 2 of the second vacuum chamber 6 is given as: ##EQU12##
  • the vacuum obtained in the second vacuum chamber is better than in the first vacuum chamber by approximately one digit.
  • the vacuum P 3 of the MS part is further given as below: ##EQU13##
  • Second aperture diameter 400 ⁇ m
  • Pumping speed of pump 1 (e.g., mechanical booster pump): 16.7 liters/s
  • Pumping speed of pump 2 (e.g., oil diffusion pump): 1,000 liters/s
  • the system is equivalent to the 2-stage differential pumping system shown in the vacuum system diagram of FIG. 8. Namely, the system is equivalent to a 3-stage differential pumping system including an oil rotary pump (pumping speed: 120 liters/m), a mechanical booster pump (pumping speed: 1,000 liters/m) and an oil diffusion pump (pumping speed; 1,000 liters/s).
  • the oil rotary pump, pumping ducts and a vacuum sequence controller are unnecessary, thereby remarkably simplifying the vacuum system.
  • the acceleration by the ion acceleration voltage V 1 of 100 V is effected.
  • FIG. 10 shows an example where the first vacuum chamber 4 is evacuated only via the second aperture 5. If the diameter of the second aperture is set from several mm to approximately 5 mm, the situation is equivalent to that in the embodiment of FIG. 1.
  • FIG. 11 Another embodiment of the present invention is shown by FIG. 11. Ion sampling is carried out not by the apertures but by a capillary (inside diameter: 0.5-0.2 m, length: 100 mm-200 mm).
  • the capillary may be made of quartz or metallic material such as stainless steel. In the case of quartz, however, it is required that the ion accelerating electric potential be applicable by effecting silver plating or the like on both ends thereof. Besides, it is possible to help the desolvation by heating this capillary.
  • the point that the first vacuum chamber is evacuated by the pump 1 via the bypass hole 26 is the same as the embodiment 1.
  • FIG. 12 shows an insulin (molecular weight: 5734.6) mass spectrum obtained by the conventional system illustrate in FIG. 9.
  • a quantity of introduced sample was 1 ⁇ g.
  • Significant peaks (multiply charged ion) do not appear on the mass spectrum.
  • This measurement involved the use of a double focusing mass spectrometer, wherein the accelerating voltage was 4 kV.
  • FIG. 13 shows a bovine insulin mass spectrum obtained by the embodiment (FIG. 1) according to the present invention.
  • a quantity of introduced sample was 10 ng.
  • insulin's multiply charged ions (M+6H) 6 +, (M+5H) 5 +, and (M+4H) 4 + are obviously appear as noises in a wide mass region or captured by the electric field of the double focusing mass spectrometer.
  • the desolvation of the multiply charged ions was sufficiently performed, and the mass peak is obviously given onto the mass spectrum. Further, the noises on the mass spectrum due to the cluster ions are reduced.
  • the multiply charged ions and peusomolecular ions are subjected the sufficient desolvation, and the measurement can be performed with a high sensitivity.
  • the electro-spray ionization has been exemplified as the atmospheric pressure ionization.
  • the same effects are, however, obtainable by atmospheric pressure chemical ionization (APCI), pneumatically assisted ESI and the like.
  • APCI atmospheric pressure chemical ionization
  • the present invention is applied not only to the LC/MS but to methods of ionization under the atmospheric pressure as in the case of supercritical fluid chromatography (SFC)/MS and CZE (Capillary Zone Electrophoresis)/MS.
  • the differential pumping system is simplified, and the inexpensive device can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)
US07/942,992 1991-09-12 1992-09-10 Mass spectrometry and mass spectrometer Expired - Lifetime US5298743A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/841,002 US5744798A (en) 1991-09-12 1997-04-18 Mass spectrometry and mass spectrometer
US09/015,322 US6002130A (en) 1991-09-12 1998-01-29 Mass spectrometry and mass spectrometer
US09/354,583 US6087657A (en) 1991-09-12 1999-07-16 Mass spectrometry and mass spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3-232956 1991-09-12
JP3232956A JP2913924B2 (ja) 1991-09-12 1991-09-12 質量分析の方法および装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16736393A Continuation 1991-09-12 1993-12-16

Publications (1)

Publication Number Publication Date
US5298743A true US5298743A (en) 1994-03-29

Family

ID=16947503

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/942,992 Expired - Lifetime US5298743A (en) 1991-09-12 1992-09-10 Mass spectrometry and mass spectrometer
US08/841,002 Expired - Lifetime US5744798A (en) 1991-09-12 1997-04-18 Mass spectrometry and mass spectrometer

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08/841,002 Expired - Lifetime US5744798A (en) 1991-09-12 1997-04-18 Mass spectrometry and mass spectrometer

Country Status (4)

Country Link
US (2) US5298743A (de)
EP (1) EP0532046B1 (de)
JP (1) JP2913924B2 (de)
DE (1) DE69223471T2 (de)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496998A (en) * 1993-07-02 1996-03-05 Thorald Bergmann Time-of-flight mass-spectrometer with gasphase ion source, with high sensitivity and large dynamic range
US5505832A (en) * 1994-05-02 1996-04-09 Bruker Franzen Analytik Gmbh Device and method for mass spectrometric analysis of substance mixtures by coupling capillary electrophoretic separation (CE) with electrospray ionization (ESI)
DE19520276A1 (de) * 1995-06-02 1996-12-12 Bruker Franzen Analytik Gmbh Verfahren und Vorrichtung für die Einführung von Ionen in den Gasstrom einer Öffnung zu einem Massenspektrometer
US5672868A (en) * 1996-02-16 1997-09-30 Varian Associates, Inc. Mass spectrometer system and method for transporting and analyzing ions
US5859433A (en) * 1995-06-30 1999-01-12 Bruker-Franzen Analytik Gmbh Ion trap mass spectrometer with vacuum-external ion generation
US6122050A (en) * 1998-02-26 2000-09-19 Cornell Research Foundation, Inc. Optical interface for a radially viewed inductively coupled argon plasma-Optical emission spectrometer
US6566652B1 (en) * 1999-09-13 2003-05-20 Hitachi, Ltd. Mass spectrometry apparatus having ion source not at negative pressure when finishing measurement
US20050029442A1 (en) * 2003-07-24 2005-02-10 Zoltan Takats Electrosonic spray ionization method and device for the atmospheric ionization of molecules
US20060009915A1 (en) * 2000-12-26 2006-01-12 Institute Of Systems Biology Rapid and quantitative proteome analysis and related methods
US20060124846A1 (en) * 2002-03-28 2006-06-15 Mds Sciex Inc. Laser desorption ion source with ion guide coupling for ion mass spectroscopy
US20060151692A1 (en) * 2005-01-10 2006-07-13 Applera Corporation Method and apparatus for improved sensitivity in a mass spectrometer
US20060169891A1 (en) * 2005-01-10 2006-08-03 Applera Corporation Method and apparatus for improved sensitivity in a mass spectrometer
US20070054416A1 (en) * 1997-06-26 2007-03-08 Regnier Fred E High density sample holder for analysis of biological samples
US20070095726A1 (en) * 2005-10-28 2007-05-03 Tihiro Ohkawa Chafftron
USRE40632E1 (en) 1999-12-03 2009-02-03 Thermo Finnigan Llc. Mass spectrometer system including a double ion guide interface and method of operation
US20090065690A1 (en) * 2002-07-24 2009-03-12 Micromass Uk Ltd Mass analysis with alternating bypass of a fragmentation device
US20090302210A1 (en) * 2006-05-10 2009-12-10 Micromass Uk Limited Mass spectrometer
US20110036980A1 (en) * 2007-09-07 2011-02-17 Cousins Lisa Multi-pressure stage mass spectrometer and methods
US20130284915A1 (en) * 2010-12-27 2013-10-31 Bio Chromato, Inc. Mass spectrometry method, mass spectrometer, and mass spectrometry system
US9368335B1 (en) 2015-02-02 2016-06-14 Thermo Finnigan Llc Mass spectrometer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304798A (en) * 1992-04-10 1994-04-19 Millipore Corporation Housing for converting an electrospray to an ion stream
GB9324213D0 (en) * 1993-11-25 1994-01-12 Kore Tech Ltd Vacuum inlet
US5495107A (en) * 1994-04-06 1996-02-27 Thermo Jarrell Ash Corporation Analysis
US8288719B1 (en) * 2006-12-29 2012-10-16 Griffin Analytical Technologies, Llc Analytical instruments, assemblies, and methods
WO2012054130A1 (en) * 2010-10-21 2012-04-26 Advion Biosystems, Inc. Atmospheric pressure ionization inlet for mass spectrometers
EP2643845B1 (de) * 2010-11-26 2022-03-30 Analytik Jena GmbH Verbesserungen an oder im zusammenhang mit massenspektrometrie
JP5792561B2 (ja) * 2011-08-25 2015-10-14 株式会社日立製作所 自動クリーニング機能付き質量分析装置
WO2020110264A1 (ja) * 2018-11-29 2020-06-04 株式会社島津製作所 質量分析装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842266A (en) * 1973-04-11 1974-10-15 Us Air Force Atmospheric sampling probe for a mass spectrometer
US4209696A (en) * 1977-09-21 1980-06-24 Fite Wade L Methods and apparatus for mass spectrometric analysis of constituents in liquids
US4740696A (en) * 1985-07-18 1988-04-26 Seiko Instruments & Electronics Ltd. ICP mass spectrometer
US4842701A (en) * 1987-04-06 1989-06-27 Battelle Memorial Institute Combined electrophoretic-separation and electrospray method and system
US4963735A (en) * 1988-11-11 1990-10-16 Hitachi, Ltd. Plasma source mass spectrometer
US4996424A (en) * 1990-05-03 1991-02-26 Hitachi, Ltd. Atmospheric pressure ionization mass spectrometer
US5015845A (en) * 1990-06-01 1991-05-14 Vestec Corporation Electrospray method for mass spectrometry
US5157260A (en) * 1991-05-17 1992-10-20 Finnian Corporation Method and apparatus for focusing ions in viscous flow jet expansion region of an electrospray apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215747A (ja) * 1985-07-15 1987-01-24 Hitachi Ltd 質量分析計
JPH07118295B2 (ja) * 1985-10-30 1995-12-18 株式会社日立製作所 質量分析計
JP2753265B2 (ja) * 1988-06-10 1998-05-18 株式会社日立製作所 プラズマイオン化質量分析計

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842266A (en) * 1973-04-11 1974-10-15 Us Air Force Atmospheric sampling probe for a mass spectrometer
US4209696A (en) * 1977-09-21 1980-06-24 Fite Wade L Methods and apparatus for mass spectrometric analysis of constituents in liquids
US4740696A (en) * 1985-07-18 1988-04-26 Seiko Instruments & Electronics Ltd. ICP mass spectrometer
US4842701A (en) * 1987-04-06 1989-06-27 Battelle Memorial Institute Combined electrophoretic-separation and electrospray method and system
US4963735A (en) * 1988-11-11 1990-10-16 Hitachi, Ltd. Plasma source mass spectrometer
US4996424A (en) * 1990-05-03 1991-02-26 Hitachi, Ltd. Atmospheric pressure ionization mass spectrometer
US5015845A (en) * 1990-06-01 1991-05-14 Vestec Corporation Electrospray method for mass spectrometry
US5157260A (en) * 1991-05-17 1992-10-20 Finnian Corporation Method and apparatus for focusing ions in viscous flow jet expansion region of an electrospray apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Analytical Chemistry, vol. 62, No. 13, Jul. 1990, pp. 713A 725A, American Chemical Society; E. C. Huang et al: Atmospheric pressure ionization mass spectrometry , p. 713A; figures 1 2. *
Analytical Chemistry, vol. 62, No. 13, Jul. 1990, pp. 713A-725A, American Chemical Society; E. C. Huang et al: "Atmospheric pressure ionization mass spectrometry", p. 713A; figures 1-2.

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496998A (en) * 1993-07-02 1996-03-05 Thorald Bergmann Time-of-flight mass-spectrometer with gasphase ion source, with high sensitivity and large dynamic range
US5505832A (en) * 1994-05-02 1996-04-09 Bruker Franzen Analytik Gmbh Device and method for mass spectrometric analysis of substance mixtures by coupling capillary electrophoretic separation (CE) with electrospray ionization (ESI)
DE19520276C2 (de) * 1995-06-02 1999-08-26 Bruker Daltonik Gmbh Vorrichtung für die Einführung von Ionen in ein Massenspektrometer
US5747799A (en) * 1995-06-02 1998-05-05 Bruker-Franzen Analytik Gmbh Method and device for the introduction of ions into the gas stream of an aperture to a mass spectrometer
DE19520276A1 (de) * 1995-06-02 1996-12-12 Bruker Franzen Analytik Gmbh Verfahren und Vorrichtung für die Einführung von Ionen in den Gasstrom einer Öffnung zu einem Massenspektrometer
US5859433A (en) * 1995-06-30 1999-01-12 Bruker-Franzen Analytik Gmbh Ion trap mass spectrometer with vacuum-external ion generation
US5672868A (en) * 1996-02-16 1997-09-30 Varian Associates, Inc. Mass spectrometer system and method for transporting and analyzing ions
DE19780214B4 (de) * 1996-02-16 2009-07-30 Varian, Inc., Palo Alto Massenspektrometersystem und Verfahren zum Transportieren und Analysieren von Ionen
US20070054416A1 (en) * 1997-06-26 2007-03-08 Regnier Fred E High density sample holder for analysis of biological samples
US6122050A (en) * 1998-02-26 2000-09-19 Cornell Research Foundation, Inc. Optical interface for a radially viewed inductively coupled argon plasma-Optical emission spectrometer
US6566652B1 (en) * 1999-09-13 2003-05-20 Hitachi, Ltd. Mass spectrometry apparatus having ion source not at negative pressure when finishing measurement
USRE40632E1 (en) 1999-12-03 2009-02-03 Thermo Finnigan Llc. Mass spectrometer system including a double ion guide interface and method of operation
US20060009915A1 (en) * 2000-12-26 2006-01-12 Institute Of Systems Biology Rapid and quantitative proteome analysis and related methods
US8909481B2 (en) 2000-12-26 2014-12-09 The Institute Of Systems Biology Method of mass spectrometry for identifying polypeptides
US20060124846A1 (en) * 2002-03-28 2006-06-15 Mds Sciex Inc. Laser desorption ion source with ion guide coupling for ion mass spectroscopy
US7405397B2 (en) * 2002-03-28 2008-07-29 Mds Sciex Inc. Laser desorption ion source with ion guide coupling for ion mass spectroscopy
US9384951B2 (en) 2002-07-24 2016-07-05 Micromass Uk Limited Mass analysis using alternating fragmentation modes
US9196466B2 (en) 2002-07-24 2015-11-24 Micromass Uk Limited Mass spectrometer with bypass of a fragmentation device
US9697995B2 (en) 2002-07-24 2017-07-04 Micromass Uk Limited Mass spectrometer with bypass of a fragmentation device
US8809768B2 (en) 2002-07-24 2014-08-19 Micromass Uk Limited Mass spectrometer with bypass of a fragmentation device
US20110062324A1 (en) * 2002-07-24 2011-03-17 Micromass Uk Ltd Mass spectrometer with bypass of a fragmentation device
US20090065690A1 (en) * 2002-07-24 2009-03-12 Micromass Uk Ltd Mass analysis with alternating bypass of a fragmentation device
US10083825B2 (en) 2002-07-24 2018-09-25 Micromass Uk Limited Mass spectrometer with bypass of a fragmentation device
US8704164B2 (en) 2002-07-24 2014-04-22 Micromass Uk Limited Mass analysis using alternating fragmentation modes
US7851751B2 (en) * 2002-07-24 2010-12-14 Micromass UH Limited Mass analysis with alternating bypass of a fragmentation device
US20110215237A1 (en) * 2002-07-24 2011-09-08 Micromass Uk Limited Mass Analysis Using Alternating Fragmentation Modes
US20050029442A1 (en) * 2003-07-24 2005-02-10 Zoltan Takats Electrosonic spray ionization method and device for the atmospheric ionization of molecules
US7015466B2 (en) 2003-07-24 2006-03-21 Purdue Research Foundation Electrosonic spray ionization method and device for the atmospheric ionization of molecules
US7259371B2 (en) * 2005-01-10 2007-08-21 Applera Corporation Method and apparatus for improved sensitivity in a mass spectrometer
US7256395B2 (en) * 2005-01-10 2007-08-14 Applera Corporation Method and apparatus for improved sensitivity in a mass spectrometer
US20060169891A1 (en) * 2005-01-10 2006-08-03 Applera Corporation Method and apparatus for improved sensitivity in a mass spectrometer
US20060151692A1 (en) * 2005-01-10 2006-07-13 Applera Corporation Method and apparatus for improved sensitivity in a mass spectrometer
US20070095726A1 (en) * 2005-10-28 2007-05-03 Tihiro Ohkawa Chafftron
US8237106B2 (en) 2006-05-10 2012-08-07 Micromass Uk Limited Mass spectrometer
US20090302210A1 (en) * 2006-05-10 2009-12-10 Micromass Uk Limited Mass spectrometer
US20110036980A1 (en) * 2007-09-07 2011-02-17 Cousins Lisa Multi-pressure stage mass spectrometer and methods
US9343280B2 (en) * 2007-09-07 2016-05-17 Perkinelmer Health Sciences Canada, Inc. Multi-pressure stage mass spectrometer and methods
US20130284915A1 (en) * 2010-12-27 2013-10-31 Bio Chromato, Inc. Mass spectrometry method, mass spectrometer, and mass spectrometry system
US9368335B1 (en) 2015-02-02 2016-06-14 Thermo Finnigan Llc Mass spectrometer

Also Published As

Publication number Publication date
US5744798A (en) 1998-04-28
EP0532046A1 (de) 1993-03-17
EP0532046B1 (de) 1997-12-10
JP2913924B2 (ja) 1999-06-28
DE69223471T2 (de) 1998-07-16
DE69223471D1 (de) 1998-01-22
JPH0574409A (ja) 1993-03-26

Similar Documents

Publication Publication Date Title
US5298743A (en) Mass spectrometry and mass spectrometer
US6002130A (en) Mass spectrometry and mass spectrometer
US5432343A (en) Ion focusing lensing system for a mass spectrometer interfaced to an atmospheric pressure ion source
EP0123553B1 (de) Verfahren und Vorrichtung zur Änderung der Energie der in einem gasförmigen Medium enthaltenen geladenen Teilchen
US5352892A (en) Atmospheric pressure ion interface for a mass analyzer
EP0565027B1 (de) Zeitliche Modulation eines Elektrosprays
US6278111B1 (en) Electrospray for chemical analysis
US5838002A (en) Method and apparatus for improved electrospray analysis
CA2192915C (en) Electrospray and atmospheric pressure chemical ionization mass spectrometer and ion source
US4667100A (en) Methods and apparatus for mass spectrometric analysis of fluids
JPH043622B2 (de)
JP5601370B2 (ja) 大気圧イオン化質量分析装置
US4960991A (en) Multimode ionization source
WO1990008398A1 (en) A method of preparing samples for mass analysis by desorption from a frozen solution
CA1117225A (en) Sampling system for mass spectrometer
US5331159A (en) Combined electrospray/particle beam liquid chromatography/mass spectrometer
US6344646B1 (en) Ion trap mass spectrometer and ion trap mass spectrometry
US5164593A (en) Mass spectrometer system including an ion source operable under high pressure conditions, and a two-stage pumping arrangement
US5030826A (en) Single port thermospray ion source with coaxial vapor flow
US5359196A (en) Mass spectrometry with gas counterflow for particle beam
JPH1012188A (ja) 大気圧イオン化イオントラップ質量分析方法及び装置
McCullough et al. A 3T external source quadrupole Fourier transform mass spectrometer for ion/molecule reactions and analysis
JP2882402B2 (ja) 質量分析の方法および装置
JP3559736B2 (ja) 質量分析計
WO1998007505A1 (en) Method and apparatus for improved electrospray analysis

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KATO, YOSHIAKI;REEL/FRAME:006262/0601

Effective date: 19920731

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12