US5289378A - Vehicle lan with adapters for coupling portable data terminals - Google Patents
Vehicle lan with adapters for coupling portable data terminals Download PDFInfo
- Publication number
- US5289378A US5289378A US08/024,892 US2489293A US5289378A US 5289378 A US5289378 A US 5289378A US 2489293 A US2489293 A US 2489293A US 5289378 A US5289378 A US 5289378A
- Authority
- US
- United States
- Prior art keywords
- data
- vehicle
- terminal
- lan
- coupling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000008878 coupling Effects 0.000 title claims description 17
- 238000010168 coupling process Methods 0.000 title claims description 17
- 238000005859 coupling reaction Methods 0.000 title claims description 17
- 238000012545 processing Methods 0.000 claims description 12
- 238000013497 data interchange Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 abstract description 16
- 238000004891 communication Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000013011 mating Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- VJYFKVYYMZPMAB-UHFFFAOYSA-N ethoprophos Chemical compound CCCSP(=O)(OCC)SCCC VJYFKVYYMZPMAB-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 235000011888 snacks Nutrition 0.000 description 1
- 230000033772 system development Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R11/00—Arrangements for holding or mounting articles, not otherwise provided for
- B60R11/02—Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R11/00—Arrangements for holding or mounting articles, not otherwise provided for
- B60R11/02—Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
- B60R11/0241—Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof for telephones
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1626—Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1632—External expansion units, e.g. docking stations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/28—Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K17/00—Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
- G06K17/0022—Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisions for transferring data to distant stations, e.g. from a sensing device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10554—Moving beam scanning
- G06K7/10564—Light sources
- G06K7/10574—Multiple sources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10554—Moving beam scanning
- G06K7/10564—Light sources
- G06K7/10584—Source control
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10554—Moving beam scanning
- G06K7/10594—Beam path
- G06K7/10683—Arrangement of fixed elements
- G06K7/10702—Particularities of propagating elements, e.g. lenses, mirrors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10712—Fixed beam scanning
- G06K7/10722—Photodetector array or CCD scanning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10712—Fixed beam scanning
- G06K7/10722—Photodetector array or CCD scanning
- G06K7/10732—Light sources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10792—Special measures in relation to the object to be scanned
- G06K7/10801—Multidistance reading
- G06K7/10811—Focalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10821—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
- G06K7/10841—Particularities of the light-sensitive elements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10821—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
- G06K7/10851—Circuits for pulse shaping, amplifying, eliminating noise signals, checking the function of the sensing device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10821—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
- G06K7/10881—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices constructional details of hand-held scanners
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/12—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using a selected wavelength, e.g. to sense red marks and ignore blue marks
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/08—Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
- G07C5/0808—Diagnosing performance data
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/08—Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
- G07C5/0841—Registering performance data
- G07C5/085—Registering performance data using electronic data carriers
- G07C5/0858—Registering performance data using electronic data carriers wherein the data carrier is removable
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/3827—Portable transceivers
- H04B1/3877—Arrangements for enabling portable transceivers to be used in a fixed position, e.g. cradles or boosters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/10—Current supply arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/03—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
- B60R16/0315—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for using multiplexing techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B2001/3894—Waterproofing of transmission device
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M7/00—Arrangements for interconnection between switching centres
- H04M7/006—Networks other than PSTN/ISDN providing telephone service, e.g. Voice over Internet Protocol (VoIP), including next generation networks with a packet-switched transport layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Definitions
- This invention relates to a vehicle data system wherein a multiplicity of devices, such as two-way radio data transceivers, bar code scanners, RF tag readers, large format keyboards and displays, printers, electronic scales and other types of measuring devices, may be associated on board an individual delivery route vehicle, material handling vehicle, or the like.
- a multiplicity of devices such as two-way radio data transceivers, bar code scanners, RF tag readers, large format keyboards and displays, printers, electronic scales and other types of measuring devices, may be associated on board an individual delivery route vehicle, material handling vehicle, or the like.
- Factory and warehouse material handling can take many forms. The simplest operations may involve individuals manually carrying goods from one point to another. As materials get larger and more material is moved, carts or lift trucks are typically used. Highly automated operations may use computer controlled storage and retrieval systems with complex systems of conveyors, elevators and handling equipment. Whether the system is automated or not, most material handling operations utilize human operated lift trucks of some type. The non-automated operations generally require the lift truck operator to get written instructions from a foreman or supervisor and then begin moving product per those instructions. More automated operations have often used two-way mobile radio communications to give instructions to operators in real time.
- Shipping and distribution operations generally involve loading trucks with the correct materials or products, sending them to the correct destinations at the correct time, and unloading them in the correct order. Error or inefficiency in any of these operations may cause loss of time, revenue and ultimately profit.
- the formerly manual methods of directing these processes have been replaced by computer supported techniques including computerized order entry and shipping instruction, route accounting on delivery vehicles, and direct store delivery of products. While most large operations utilize central computer systems to automate many of these processes, the use of computer data terminals on the vehicle is expanding to provide better operator productivity, information control and customer service.
- peripherals such as bar code scanners, RF tag readers, large format displays and keyboards, printers, electronic scales and other types of measuring devices.
- the ability to monitor critical vehicle performance parameters such as fuel economy, engine temperature and oil pressure, odometer and tachometer readings and the like offer the capability to manage and optimize the efficiency of a fleet of vehicles. The most effective application of these system components would result if all of the parts could be integrated into the system in an organized, logical fashion.
- Radio data terminals An important feature would be the ability to quickly and conveniently disconnect a selected portable device from any non-portable components and operate the same in a portable mode when needed.
- One exemplary application of radio data terminals involves reading bar coded labels on items or materials that are not accessible by a vehicle.
- Another situation where portability is advantageous is in reading labels on all four sides of a shipping pallet with individual packing containers placed such that the bar coded labels are arranged on the outside surface of the "stack". It would be much more convenient for an operator to read all the associated labels by walking around the stack than to maneuver the vehicle around the pallet to read all the labels.
- the radio terminal mounting system should ideally be configured so that the operator can easily remove the terminal from its mobile mount with its scanner attached, use the terminal portably, and return it to the mobile mount with minimal effort or care.
- a route accounting terminal is removed from its vehicle mount regularly to be hand carried by the operator to the point where data is to be captured.
- a further object resides in the provision of such a vehicle data system wherein multiple devices may be connected at different locations in different vehicles and integrated into a vehicle data communication system on a dynamic basis without interrupting system operation.
- a portable data terminal and a set of peripheral devices are connected via a vehicle local area network (LAN) having the following characteristics:
- the LAN is configured so that multiple devices may be connected simultaneously.
- the LAN may have a total length up to hundreds of feet for operation on virtually any vehicle.
- Any connected device may be inactive or off without having an effect on the other devices.
- Power for operation of the portable data terminal is provided by the internal terminal batteries when used portably and by the vehicle when the terminal is placed in the vehicle mount. Further, the terminal batteries may receive charge while the terminal is operating from the vehicle power so that full battery capacity is available when portable operation is required.
- portable terminals may be quickly removed from the system, and may be placed in generally random physical network locations by the terminal users.
- FIG. 1 is a diagrammatic illustration of a vehicle data system in accordance with the present invention, and which may represent a data system associated with a gasoline-powered or battery-powered material handling vehicle such as a forklift truck.
- FIG. 2 shows by a similar diagrammatic illustration a fixed data system which may utilize adaptors and a local area network corresponding to that of FIG. 1, and may receive terminals from vehicles such as that of FIG. 1, for purposes of interchange of data with a host computer, and for recharging of the terminal batteries.
- FIG. 3 shows a vehicle data system which may include the features and components of FIG. 1, and which further provides for plural terminals sharing a common peripheral device means such as a printer.
- FIG. 4 shows a further vehicle data system in accordance with the present invention, which is particularly appropriate for product distribution applications and the like, features of FIG. 3 also being applicable to FIG. 4, and the RF link for example of FIG. 4 also being applicable to FIGS. 1-3.
- FIG. 5 is a diagram illustrating the various data processing layers of a preferred implementation of local area network and representing message frame construction for an outgoing transmission at the left and the inverse incoming frame reduction at the right, exemplary frame formats for the respective layers being represented centrally of the diagram, and an exemplary physical transmission link being indicated as a horizontal path at the bottom of the diagram (and corresponding to the LAN data bus transmission paths of FIGS. 1-4).
- FIG. 6 shows a preferred electrical interface arrangement for coupling each of the terminals and peripheral devices of FIGS. 1-4 with the LAN transmission link of these Figures.
- the illustrated electrical interface of FIG. 6 is an example of a "Physical layer" as diagrammed in FIG. 5.
- FIG. 7 is a somewhat diagrammatic partial vertical sectional view illustrating constructional details of a preferred adapter for the systems of FIGS. 1-4, a portable battery powered terminal corresponding to that of FIG. 1 being shown as being inserted part way into the adapter channel, to the point of initial electrical contact; and also indicating in diagrammatic fashion a laser bar code scanner device in a separate vehicle mounting or holster means and coupled with the terminal via an extendable coiled cable.
- FIG. 8 is a somewhat diagrammatic longitudinal sectional view showing the adapter contact assembly of FIG. 7 on a greatly enlarged scale.
- FIG. 9 is a diagrammatic bottom plan view of the terminal of FIGS. 1 and 7, illustrating the external contact area of the terminal and also the connector fittings for coupling the terminal with a scanner such as the handheld laser bar code scanner which is diagrammatically indicated in FIGS. 1 and 7.
- FIG. 1 shows a system comprised of a portable battery operated data terminal 10 which may be connected through an adapter 11, and a set of peripheral devices such is 12-15 (e.g. devices that might be particularly suited for forklift truck applications), the terminal and peripheral devices being coupled via a local area network data bus 16 of a self-propelled manually steered vehicle 17.
- adapters such as 11 may releasably accommodate terminals such as terminal 10 which receive and store data obtained by means of an optical bar code or RF tag scanner 18.
- vehicle power is generally available from the electrical system of the vehicle.
- Certain electric vehicles such as lift trucks may operate from voltages as high as 72 volts, so higher voltage operation must be accommodated as well as the more typical value of twelve volts.
- a preferred LAN configuration for the embodiments of FIGS. 1 through 6 may have the characteristics (1) through (4) described in the section headed SUMMARY OF THE INVENTION, and as further detailed hereafter in reference to FIG. 5.
- each LAN connected device in FIGS. 1 through 6 A general characteristic of each LAN connected device in FIGS. 1 through 6 is that communication and control intelligence is required to receive and transmit information through the LAN.
- the terminal e.g. terminal 10, FIG. 1 with its processor and memory system may serve as a communication controller or primary processor while each peripheral device (such as 12-15, FIG. 1) may comprise a secondary unit which typically contains a microcomputer to perform communication and control tasks.
- Certain applications may involve multiple terminals (such as 21-26, FIG. 2) connected to a single LAN data bus such as vehicle bus 16, FIG. 1, or such as LAN data bus 27 of fixed installation 28, FIG. 2.
- Multiple adapters such as 31-36 enable communication from terminal to terminal, and from any of multiple terminals to an RS-232 interface means such as 15, FIG. 1, or 37, FIG. 2.
- Such an interface may be used for data interchange with a host computer system overseeing a multiplicity of vehicles (such as 17, FIG. 1) or fixed installations (such as 28, FIG. 2), and may include the LAN controller
- Vehicle mounted terminals such as terminal 10, FIG. 1, may be removed from vehicle adapters such as 11 at the end of a working shift and physically inserted into one of the adapters 31-36 of a fixed installation 28 for transfer of accumulated data to a host computer.
- Components 15 and 37 may comprise LAN controller and protocol converters for adapting to an external RS-232 transmission system.
- a vehicle such as 17 could itself be coupled with a host computer via interface means 15, e.g. while for the case of an electrically driven vehicle, the vehicle batteries were being recharged. In each case, the batteries of terminals such as 21-26, FIG. 2, would be recharged e.g. from AC power as indicated at 38, FIG. 2. Where interface means 15, FIG.
- terminals such as 10 may be automatically switched when in adapter 11 so as to activate primary LAN programming enabling the microcomputer of terminal 10 to act as the LAN controller when on board vehicle 17.
- the terminal When such a terminal 10 is inserted in one of adaptors 31-36 on the other hand, the terminal would operate as a standard secondary unit, and be identified dynamically by means of the primary programming of the LAN controller of interface means 37.
- a series of terminals such as 41-43 may be coupled with a LAN data bus 44 via respective adapters such as 45-47 which may be part of self propelled manually steered vehicle 48.
- Such multiple terminals can thus share peripheral devices on board the vehicle such as printer 49.
- the LAN controller may be external to the terminals, e.g. associated with printer 49 or an interface means such as 15, FIG. 1, or 37, FIG. 2.
- FIG. 4 shows a diagram of a data terminal 60 and peripherals 61-67 in an arrangement that might be particularly suited to a route or delivery truck application.
- the LAN communication protocol is preferably designed to coordinate and resolve all of the resultant communication requirements.
- terminal 60 may contain programming to act as the LAN controller and may be removably received in a mobile mount adapter 70 of a vehicle 71 which supplies operating and recharging power to the terminal batteries as indicated at 72.
- RF coupling means 67 may alternatively contain the network controller and further may couple the LAN data bus 73 with a stationary host so that data from terminal 60 and from measurement means 61-65 may be supplied periodically to a host computer system, and data from the host may be supplied for example to printer 66 as needed.
- FIG. 1 shows a diagram of a data terminal 60 and peripherals 61-67 in an arrangement that might be particularly suited to a route or delivery truck application.
- the LAN communication protocol is preferably designed to coordinate and resolve all of the resultant communication requirements.
- LAN data bus 16 may have an RF modem coupled therewith, and in each of FIGS. 1, 3 and 4, the terminals may receive scheduling information or the like whenever required during a working day, from a host computer system via an RF link, for example.
- on-line communication with a host computer may be established at any time.
- the network controller when separate from the terminal may contain a special buffer memory for storing data for one or more terminals which may be temporarily disconnected from the network.
- Such network controller and buffer memory may be part of an RF unit having two-way on-line communication with a host computer, in any of the embodiments of FIG. 1-4.
- a LAN communication structure for networking multiple portable terminals may present unique difficulties since the portable terminals may be removed from the system for various purposes such as those previously described herein. Further it is desirable to provide a system whereby the terminals may be placed in generally random physical network locations by the terminal users. Preferably the terminals may be identified on a dynamic basis as they are added to the local area network, without requiring a unique "hard" terminal address for each terminal which may be associated with the network.
- a unique feature of the preferred LAN protocol of the present invention is in its structure for addressing that establishes "virtual" rather than permanent physical identification of the communicating devices. This is advantageous in that communication sessions may involve a set of physical devices and connections that are constantly being changed and rearranged (as is common with portable data terminals and their peripherals).
- the implementation of the LAN communication protocol preferably conforms to the International Standards Organization (ISO) reference model for Open System Interconnection with the functional operations broken into "layers" as diagrammed in FIG. 5.
- ISO International Standards Organization
- a detailed description of the LAN protocol is include in Appendix A (not reproduced here, but is available in the file)
- the physical electrical interface to the LAN is preferably as diagrammed in FIG. 6.
- the LAN data bus consists of a balanced two-wire signal pair 91 and 92 conforming to the EIA RS 485 interface standard with tri-state wire-OR capability for the desired multidrop characteristic.
- the physical communication link must be treated as a transmission line with low characteristic impedance, typically 120 ohm. Line termination must be made through resistors such as 93 and 94 of a value equal to that characteristic impedance which results in a relatively high current required to drive a signal on the line.
- a line drive integrated circuit 95 is used that has sufficient output capability to provide the necessary output current.
- a typical device that has this capability is the Texas Instruments SN75176 type.
- devices of this type are bipolar circuits that require significantly more operating current than is usually available in a portable product that is powered from batteries.
- power to the line driver integrated circuit as indicated in FIG. 6 is switched e.g. by means of a power transistor 97 to minimize the battery current drain.
- Transistor 97 is shown as being controlled by a microcomputer 98 which may be part of the portable terminals of FIGS. 1-4.
- each peripheral in FIGS. 1-4 may also include a microcomputer for performing the functions of microcomputer 98.
- inactive or physically "not present" terminals represent virtually no loading or effect on the system. It is only when the terminal begins to transmit data that it is known to exist by the network. Consequently, no special switching or isolation is required to remove or replace a terminal from the system.
- a significant difference between the LAN configurations typically used for personal computer networking and communications, and the configuration described here for use with portable data terminals has to do with the mechanical connector method employed for interface to the electrical network.
- Presently common commercially available LAN products may utilize coaxial cables and connectors, twisted pair conductors with some type of connector termination or in some cases, telephone wire with modular phone jacks.
- Each of these physical interface methods requires a "fastening” and “unfastening” operation when the attached device is connected and unconnected from the network.
- An important feature of the portable LAN described here is in its method of electrical connection between the LAN and the connected portable terminal which must be removed and replaced often during operation.
- conductive contacts 111 are exposed e.g. at an undersurface of each terminal such as terminal 10, FIG. 1, and each adapter such as 11 is provided with spring loaded mating contacts 110.
- the interface adapter holds the terminal securely in place while aligning the external contacts 111 with the mating contacts fingers 110.
- An additional feature of the LAN interface adapter for mobile mounting applications is in its "open face" which allows connection to a scanner such as 18, FIGS. 1 and 7, without impeding the placement and removal of the terminal from the adapter.
- terminal 10 is shown in initial contact with the adapter indicated at 11, with a connector 120 leading to scanner 18 located in the open area of the adapter.
- the adapter may have a contact assembly 125 including spring fingers 110 aligned with respective terminal contacts 111.
- FIG. 8 is an enlarged view of contact assembly 125 and shows the initial position of contact finger 110 at 110A, and shows a deflected position at 110B (the terminal being fully inserted into and frictionally held by the adapter to maintain the deflected condition 110B of the spring fingers).
- FIG. 9 is a bottom plan view of the terminal 10, showing its set of contacts such as 111, and showing connector fittings at 127 and 128 which may receive the scanner connector 120, FIG. 7.
- adapter 11 is shown as comprising a base part 131 which may be notched at 132 to accommodate scanner fitting 120, and a pair of upstanding generally C shaped parts 133 and 134 which define a channel 135 for receiving the terminal 10.
- the parts 133 and 134 may have sloping surfaces such as 136, FIG. 7, which limit the downward movement of a terminal into the receiving channel, and serve to frictionally retain the terminal with a suitable degree of pressure between contacts such as 111 and mating spring fingers such as 110.
- U.S. Ser. No. 06/915,023 in a second figure thereof shows a system block diagram including a network controller (NC) with a "RS 485" communications port (91) connected with a "RS 485" multidrop bus system (75).
- System power from a vehicle power system (30,31,40) is supplied via a power line (PWR) to a series of point of sale registers (14-1 through 17-1) which are coupled to the RS 485 multidrop bus system (75).
- a conduit (140-1) for power and data (FWR & DATA) contains both a multidrop data bus and power lines.
- junction boxes (41-1, 51-1, 52-1, 54-1 and 55-1) serve to couple the multidrop data bus and power lines with the point of sale registers (14-1, 16-1, 17-1). An unused junction box is shown in the PWR & data line.
- the fifth figure of the incorporated application shows the distribution of power from a vehicle system power source (e.g. a data processing battery 40-1) to the network controller via a power function box (41-1) and a further junction box (51-1) at the network controller (NC).
- a sixth figure illustrates charging of the data processing battery (40-1) from an alternator via suitable battery isolator means (such as 31-1).
- the ninth figure indicates the segments of conduit (140-1A, 140-1B, 140-1C) between successive junction boxes (41-1, 51-1, 54-1, 55-1, 52-1).
- This same type of power and data conduit system may be utilized in the product distribution vehicles (such as forklift trucks and delivery vans) illustrated in FIGS. 1, 3 and 4 herein.
- FIGS. 1, 3 and 4 may have devices 11 to 15, 45, 46, 47, 49, 61 to 67 and 70 receiving vehicle power in the same way as shown in the second and fourth figures of the incorporated application Ser. No. 06/915,023, for example, and FIGS. 1 to 4 may be provided with a network controller as shown in the twelfth figure through sixteenth figure (parts A through G) of the incorporated application.
- the present disclosure represents significant improvements over the incorporated application, for example in providing one or more mobile mount adapters such as 11, FIG. 1, 45, 46, 47, FIG. 3, and 70, FIG. 4, on a multidrop data bus with diverse peripheral devices such as 12 to 15, FIG. 1, 49, FIG. 3, and 61 to 67, FIG. 4. Further, various devices may be added to the system on a dynamic basis during system operation, and assigned addresses as they become active on the network.
- conduit system containing the LAN data bus and power supply conductors may also contain a charging power line for supplying charging power to one of the contact fingers 116 which mates with the charging current input contact e.g. 111A, FIG. 9, of the terminal 10.
- terminal 10 of the present disclosure may incorporate the terminal system (27-10A) and battery pack (27-10B) of the twenty-seventh figure.
- a charger (27-22) may he mounted adjacent mobile mount adapter 11 and receive charging power from the vehicle. Where the vehicle system supplies power at a relatively high voltage such as seventy-two volts, preferably such voltage is reduced to a lower voltage value such as twelve volts at a location near the vehicle power source and then power at such lower voltage value is supplied by a suitable cable to the charger component (27-22).
- the charger has terminals labeled +CHARGE, TEMP, GND, CHG CONTROL which would be connected to four of the spring fingers 110, FIG. 7, of the mobile mount adapter 11.
- the other two spring fingers 110 would be connected to the lines LAN+DATA and LAN-DATA of the twenty-seventh figure which would correspond with LAN data bus 16, FIG. 1.
- the LAN interface (27-39) of the twenty-bus seventh figure would include line driver/receiver 95, FIG. 6, which would receive +5 volts and the Power control signal from the microcomputer of the terminal system (27-10A) of the twenty-seventh figure.
- the terminal 10 is provided with an RF transceiver
- the terminal may correspond with that described in the following pending application:
- FIGS. 1, 3 and 4 illustrate vehicle data systems for vehicles such as forklift trucks and delivery vans which are utilized in product transport processes and the like.
- vehicles normally contain vehicle electric power means associated with the vehicle drive, e.g. a motive power engine-driven alternator or generator and vehicle storage battery for use in starting the engine, or electric storage batteries which themselves provide the propulsion energy.
- vehicle power represented at 19 in FIG. 1, and at 72 in FIG. 4 preferably is derived from the vehicle electric power means.
- Vehicle power may also energize the LAN devices 12 to 15, FIG. 1, 45, 46, 47 and 49, FIG. 3, and 66 and 67, FIG. 4, as well as the interface circuits for devices 12 to 15, 49 and 61 to 67 which may correspond with LAN interface 95, 97, 98, FIG. 6.
- vehicle power is supplied via suitable voltage regulator means to points such as 140 and 141 in FIG. 6 as well as to microcomputer 98, for each device permanently associated with the LAN data bus in FIGS. 1, 3 and 4.
- components such as 95, 97, 98 in FIG. 6 are part of a removable device such as terminal 10, FIG. 1, terminals 41, 42, 43, FIG. 3, and 60, FIG. 4, such components may be supplied from battery power carried with the removable device, or from charging power (+CHG) derived from the vehicle electric power means, e.g. 19 or 72.
- the local area network means of FIGS. 1, 3 and 4 is preferably powered at least in part from vehicle electric power means and independently of fixed power sources (such as represented at 38 in FIG. 2).
- FIG. 1 shows an optical or RF scanner means 18 connected by a cable 150 and cable fitting 120 with a connector of the terminal 10 to form data terminal and scanner means
- parts 10 and 18 may be in a single unit as shown for example in a pending application of Phillip Miller, et al, U.S. Ser. No. 07/136,097 filed Dec. 21, 1987, now abandoned.
- the entire disclosure of this application including the drawings is incorporated herein by reference.
- the handle (15) of the first and third figures of the incorporated drawings of Ser. No. 07/136,097 may contain a series of external contacts corresponding to contacts 111, FIGS. 7 and 9, for engaging with spring fingers corresponding to fingers 110, FIGS. 7 and 8. In this case, the receiving channel of the mobile mount adapters of FIGS.
- the mobile mount adapters may contain interface components such as 95, 97, 98 which are energized from vehicle power, and also alternatively an optical coupling may be provided between a light emitting diode and light sensor of the scanner and terminal unit of the incorporated application and the microcomputer 98 within each adapter for accommodating the interchange of data between the scanner and terminal unit and the LAN data bus, e.g. to effect printout of data from the scanner and terminal unit on a printer such as 14, FIG. 1, 49, FIG. 3 or 66, FIG. 4, or to effect transmission of data via component 37, FIG. 2, or 67, FIG. 4.
- interface components such as 95, 97, 98 which are energized from vehicle power
- an optical coupling may be provided between a light emitting diode and light sensor of the scanner and terminal unit of the incorporated application and the microcomputer 98 within each adapter for accommodating the interchange of data between the scanner and terminal unit and the LAN data bus, e.g. to effect printout of data from the scanner and terminal unit on a printer such as
- the present invention is particularly directed to an individually manned transport vehicle where the driver of the vehicle is the one concerned with operation of the on board devices. Since the driver at times must devote full attention to guidance of the vehicle, it is particularly appropriate that the data capture devices can be quickly inserted into and removed from mobile mount adapters, so that the driver may be completely unencumbered while driving the vehicle. It is advantageous to have a large area display which can be read at a distance e.g. from the driver seat of the vehicle. Such a display can provide information which is useful in moving from one work location to another, e.g. geographical type information; the display being positioned so that such information can be read at a glance e.g. during a brief stop of the vehicle while the driver remains at the controls of the vehicle.
- Each of the connectors such as represented at 161 to 165, FIG. 1, 166 to 169, FIG. 3, and 171 to 173, FIG. 4, may be a standardized quick-connect and quick-disconnect type so that adapters and devices may be interchanged and placed at desired locations about each type of individually manned transport vehicle.
- each connection such as 161 may include a set of spring fingers such as 110 receiving the LAN+ and LAN- connections such as 101,102, FIG. 6.
- Each device may then include an interface such as shown at 95, 97, 98, and power supply means for energizing these components from vehicle electric power, (vehicle electric power being available e.g. from a twelve-volt d.c. plug-in power receptacle adjacent each connection 161-169, 171-173).
- connection such as 110, 111, FIG. 7, may be maintained by a frictional ball and socket type detent such as indicated at 180, FIG. 7, which seats with an audible click into a terminal recess 181 when correct deflection of spring contacts 110 has been achieved.
- the RT1210 and RT2210 data terminals are battery powered hand-held two-way radio data transceivers with keyboard, LCD display, built-in radio communication hardware and support for high-performance optical bar code readers. Communication to the portable terminals is accomplished by interfacing an RM2216 terminal multiplexor and RB2212 base transceiver to a host computer through a communication port. The host computer may transmit to or receive data from any selected terminal at any time.
- RT1210 and RT2210 terminals were originally designed for hand-held operation, they have been used in mobile applications by placing the entire terminal into a receptacle which holds the unit firmly in place and isolates the unit from vibration and shock. Power for operation is provided by the terminal battery pack.
- Literature pertaining to the commercially available components is shown in APPENDIX B.
- FIG. 7 shows a holster 190 on base 131 for receiving and securely retaining a scanner such as 18, e.g. by a resilient liner 191 of the holster 190 frictionally engaging with a barrel 192 of the scanner.
- the holster 190 may be constructed e.g. at 193 to hold the handgrip part 194 and trigger 195 clear thereof so that the scanner of FIG. 7 is quickly and easily removed by manually grasping the handgrip part 194, and so that the trigger 195 will not be actuated as the scanner is manually inserted into the holster
- the scanner for bar codes need not be physically attached to the terminal.
- a lot of the software effort involved may represent the accommodation of the periodic removal of major sections of the system to do remote scanning of marginally accessible codes.
- the scanner is always attached to the terminal by a pendant cable and if the code to be scanned is beyond the reach of the cable then the terminal must necessarily be removed from its holster.
- the terminal may represent a very significant portion of a "LAN" system and to remove it in this fashion may disable the system generally. Placing the terminal in its holster again may entail the reestablishment of the hierarchial or virtual address structure that was established prior to the removal of the terminal.
- the terminals now incorporate various types of scanner interfaces. Some of them have been add-on devices to accommodate scanner types manufactured by third parties. Others have been built-in and have been used to communicate with scanners such as shown in U.S. Pat. No. 4,766,300 issued Aug. 23, 1988 to Chadima. Some of these handheld terminal devices provide power converters accommodating the requirements idiosynoratic to specific scanner types. All of such scanners directly draw power from the terminal, reducing operational time per battery charge.
- a scanner such as 18, FIG. 7, may be operated while disconnected from the terminal on a permanent basis. Terminals presently connect with a host by an RF link and maintain contact without benefit of cable. Of course, terminals mounted on a vehicle will be drawing their power from the vehicular electrical system. The power requirements for a scanner connected by cable to a terminal on a vehicle as in FIG. 7 will not be a large factor in the power budget imposed upon the terminal.
- Detaching the terminal from the scanner completely provides benefits in the area of flexibility and ease of use. Since the scanner doesn't require contact with or attachment to the terminal the job of providing operating power no longer is the province of the terminal. The scanner, being completely portable would require its own battery pack but this pack would not have to be unusually capacious. Once the scanning function has been performed the scanner can be reinserted in its holster on the vehicle and charged back up to full capacity from vehicle power by its own charger.
- the communication link replacing cable 150, FIG. 7, may be ultrasonic but could also be infrared or even another very low power RF link.
- Various modulation and demodulation schemes could be employed and the choice of the most appropriate means of encoding data on the channel would depend greatly upon the channel type used. Once the code had been read, the link between the scanner and the terminal could employ one of the various error checking and correcting procedures.
- the terminals would still incorporate a form of scanner interface but the link would not be mechanical. It would be desirable to provide a bidirectional data path.
- the scanner would include the matching interface to implement the link and using a bidirectional data path the scanner could receive an acknowledgement after a scan. Reception of such an acknowledgement would constitute an indication of a valid scan and the illumination of an indicator light would provide operator feedback. The lack of a response from the terminal in a specified time period would constitute a negative acknowledgement and another indication on the scanner would signal the operator that another scan was necessary.
- Appropriate scanners for this type of operation would include current wand and modified CCD type scanners of Norand Corporation and a number of other manufacturer's laser scanners.
- This scanner would be used typically, by a forklift operator in close proximity to his vehicle. Limited range would not be a significant deterrent here and may even be a benefit in an operation where multiple units are in use.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Toxicology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Human Computer Interaction (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mechanical Engineering (AREA)
- Small-Scale Networks (AREA)
- Mobile Radio Communication Systems (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/024,892 US5289378A (en) | 1989-01-31 | 1993-03-01 | Vehicle lan with adapters for coupling portable data terminals |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30530289A | 1989-01-31 | 1989-01-31 | |
US08/024,892 US5289378A (en) | 1989-01-31 | 1993-03-01 | Vehicle lan with adapters for coupling portable data terminals |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US30530289A Continuation | 1986-08-08 | 1989-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5289378A true US5289378A (en) | 1994-02-22 |
Family
ID=23180246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/024,892 Expired - Lifetime US5289378A (en) | 1989-01-31 | 1993-03-01 | Vehicle lan with adapters for coupling portable data terminals |
Country Status (2)
Country | Link |
---|---|
US (1) | US5289378A (fr) |
CA (1) | CA1340400C (fr) |
Cited By (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995013577A1 (fr) * | 1993-11-03 | 1995-05-18 | Computec Oy | Ordinateur pour vehicule |
US5442553A (en) * | 1992-11-16 | 1995-08-15 | Motorola | Wireless motor vehicle diagnostic and software upgrade system |
WO1996003823A1 (fr) * | 1994-07-22 | 1996-02-08 | Norand Corporation | Systeme hierarchise de telecommunications a migration intelligente des donnees, des programmes et des traitements |
US5568484A (en) * | 1994-12-22 | 1996-10-22 | Matsushita Avionics Systems Corporation | Telecommunications system and method for use on commercial aircraft and other vehicles |
US5602854A (en) * | 1991-05-13 | 1997-02-11 | Norand Corporation | Wireless personal local area network utilizing removable radio frequency modules with digital interfaces and idle sense communication protocol |
US5657317A (en) * | 1990-01-18 | 1997-08-12 | Norand Corporation | Hierarchical communication system using premises, peripheral and vehicular local area networking |
US5745794A (en) * | 1995-05-18 | 1998-04-28 | Symbol Technologies, Inc. | System for converting signals into a predetermined data exchange format with plug-in modular connector having voltage, ground, data, and clock terminals for a scanning head |
US5758300A (en) * | 1994-06-24 | 1998-05-26 | Fuji Jukogyo Kabushiki Kaisha | Diagnosis system for motor vehicles and the method thereof |
US5794164A (en) * | 1995-11-29 | 1998-08-11 | Microsoft Corporation | Vehicle computer system |
US5888087A (en) * | 1989-01-31 | 1999-03-30 | Norand Corporation | One-handed dock for a portable data collection terminal |
US6032089A (en) * | 1997-12-01 | 2000-02-29 | Chrysler Corporation | Vehicle instrument panel computer interface node |
US6036086A (en) * | 1997-03-28 | 2000-03-14 | Lucent Technologies Inc. | Apparatus and method for initiating a telephone transaction using a scanner |
US6061614A (en) * | 1997-10-17 | 2000-05-09 | Amtech Systems Corporation | Electronic tag including RF modem for monitoring motor vehicle performance |
US6101433A (en) * | 1998-12-07 | 2000-08-08 | Challenger Enterprises, Llc | Automated vehicle preventative maintenance system |
US6107917A (en) * | 1998-10-16 | 2000-08-22 | Carrender; Curtis L. | Electronic tag including RF modem for monitoring motor vehicle performance with filtering |
US6124826A (en) * | 1994-10-07 | 2000-09-26 | Mannesmann Aktiengesellschaft | Navigation device for people |
US6236918B1 (en) * | 1996-04-23 | 2001-05-22 | Sumitomo Wiring Systems, Ltd. | Vehicle electronic control apparatus |
US6295492B1 (en) * | 1999-01-27 | 2001-09-25 | Infomove.Com, Inc. | System for transmitting and displaying multiple, motor vehicle information |
US6400702B1 (en) | 1991-10-01 | 2002-06-04 | Intermec Ip Corp. | Radio frequency local area network |
US6430164B1 (en) | 1999-06-17 | 2002-08-06 | Cellport Systems, Inc. | Communications involving disparate protocol network/bus and device subsystems |
US6580985B2 (en) * | 2001-04-17 | 2003-06-17 | Beat-Sonic Co., Ltd. | Vehicle audio adapter |
US20030112767A1 (en) * | 1991-10-01 | 2003-06-19 | Meier Robert C. | Communication network providing wireless and hard-wired dynamic routing |
US20030128685A1 (en) * | 1992-11-27 | 2003-07-10 | Mahany Ronald L. | Wireless personal local area network |
US6614768B1 (en) | 1989-04-28 | 2003-09-02 | Broadcom Corporation | Enhanced mobility and address resolution in a wireless premises based network |
US20030200372A1 (en) * | 2002-04-19 | 2003-10-23 | Compaq Information | Reducing power consumption of an electronic system having a communication device |
EP1155915A3 (fr) * | 2000-05-18 | 2003-11-19 | BECKER GmbH | Equipement électronique à boítier ou support et support ou boítier pour ses modules |
US6654378B1 (en) | 1992-03-18 | 2003-11-25 | Broadcom Corp. | Transaction control system including portable data terminal and mobile customer service station |
US6732031B1 (en) | 2000-07-25 | 2004-05-04 | Reynolds And Reynolds Holdings, Inc. | Wireless diagnostic system for vehicles |
US6732032B1 (en) | 2000-07-25 | 2004-05-04 | Reynolds And Reynolds Holdings, Inc. | Wireless diagnostic system for characterizing a vehicle's exhaust emissions |
US20040125753A1 (en) * | 1995-06-07 | 2004-07-01 | Mahany Ronald L. | Hierarchical communication system providing intelligent data, program and processing migration |
US6894601B1 (en) | 1998-10-16 | 2005-05-17 | Cummins Inc. | System for conducting wireless communications between a vehicle computer and a remote system |
US20050152340A1 (en) * | 1997-09-16 | 2005-07-14 | Voit Eric A. | Network session management |
US20050161511A1 (en) * | 1996-09-03 | 2005-07-28 | Parker James A. | Optical reader system comprising host processor and optical reader |
US6928348B1 (en) | 2001-04-30 | 2005-08-09 | Reynolds & Reynolds Holdings, Inc. | Internet-based emissions test for vehicles |
US6957133B1 (en) | 2003-05-08 | 2005-10-18 | Reynolds & Reynolds Holdings, Inc. | Small-scale, integrated vehicle telematics device |
US6988033B1 (en) | 2001-08-06 | 2006-01-17 | Reynolds & Reynolds Holdings, Inc. | Internet-based method for determining a vehicle's fuel efficiency |
US20060131420A1 (en) * | 1990-05-25 | 2006-06-22 | Koenck Steven E | Multi-level hierarchical radio-frequency communication system |
US7090510B1 (en) * | 2002-04-02 | 2006-08-15 | Ford Global Technologies, Llc | Audio input jack assembly in a vehicle |
US20060200587A1 (en) * | 1997-02-25 | 2006-09-07 | Hindman George W | Apparatus and method for a mobile navigation computer |
US7113127B1 (en) | 2003-07-24 | 2006-09-26 | Reynolds And Reynolds Holdings, Inc. | Wireless vehicle-monitoring system operating on both terrestrial and satellite networks |
US20070009108A1 (en) * | 2005-07-07 | 2007-01-11 | Furge Kenneth C | Update system for an audio amplifier |
US7174243B1 (en) | 2001-12-06 | 2007-02-06 | Hti Ip, Llc | Wireless, internet-based system for transmitting and analyzing GPS data |
US20070040084A1 (en) * | 2005-06-03 | 2007-02-22 | Lane Sturman | Support arm assembly |
US20070106543A1 (en) * | 2004-10-07 | 2007-05-10 | Baughman Thomas J | Server-based systems and methods for processing fuel orders |
US7225065B1 (en) | 2004-04-26 | 2007-05-29 | Hti Ip, Llc | In-vehicle wiring harness with multiple adaptors for an on-board diagnostic connector |
US7228211B1 (en) | 2000-07-25 | 2007-06-05 | Hti Ip, Llc | Telematics device for vehicles with an interface for multiple peripheral devices |
US20070147938A1 (en) * | 2005-12-13 | 2007-06-28 | Zih Corp. | Printer encoder adapted for positioning aboard a mobile unit |
US20070266109A1 (en) * | 2006-05-11 | 2007-11-15 | Mark Mellott | Apparatus and method for sharing data among multiple terminal devices |
US20080086651A1 (en) * | 1999-04-23 | 2008-04-10 | Lunsford Eric M | System and method for detection of an accessory device connection status |
US20080154691A1 (en) * | 2006-12-13 | 2008-06-26 | Wellman Timothy A | Fleet management system |
US20080268662A1 (en) * | 2007-04-26 | 2008-10-30 | Krivtsov Sergey M | Pass-through connector |
US7477968B1 (en) | 2001-03-14 | 2009-01-13 | Hti, Ip Llc. | Internet-based vehicle-diagnostic system |
US7523159B1 (en) | 2001-03-14 | 2009-04-21 | Hti, Ip, Llc | Systems, methods and devices for a telematics web services interface feature |
US7664097B2 (en) | 1996-04-18 | 2010-02-16 | Verizon Services Corp. | Telephone service via networking |
US20100039247A1 (en) * | 2006-12-13 | 2010-02-18 | Ziegler Ronald L | Impact sensing usable with fleet management system |
US7747365B1 (en) | 2001-03-13 | 2010-06-29 | Htiip, Llc | Internet-based system for monitoring vehicles |
US20100228428A1 (en) * | 2006-12-13 | 2010-09-09 | Crown Equipment Corporation | Information system for industrial vehicles |
US20100241295A1 (en) * | 2009-03-17 | 2010-09-23 | Jared Klineman Cooper | System and method for communicating data in locomotive consist or other vehicle consist |
US7813332B1 (en) | 1997-03-19 | 2010-10-12 | Verizon Services Corp. | Voice call alternative routing through PSTN and internet networks |
US7817619B1 (en) | 1996-12-18 | 2010-10-19 | Verizon Services Corp. | Internet long distance telephone service |
US7830860B2 (en) | 1997-03-11 | 2010-11-09 | Verizon Services Corp. | Packet data network voice call quality monitoring |
US7835344B1 (en) | 1997-03-19 | 2010-11-16 | Verizon Services Corp. | Transport of caller identification information through diverse communication networks |
US20100318794A1 (en) * | 2009-06-11 | 2010-12-16 | Panasonic Avionics Corporation | System and Method for Providing Security Aboard a Moving Platform |
US20110022442A1 (en) * | 2006-12-13 | 2011-01-27 | Crown Equipment Corporation | Information system for industrial vehicles including cyclical recurring vehicle information message |
US7885242B2 (en) | 1993-12-23 | 2011-02-08 | Broadcom Corp. | Enhanced mobility and address resolution in a wireless premises based network |
US20110040440A1 (en) * | 2009-08-12 | 2011-02-17 | Crown Equipment Corporation | Information system for industrial vehicles |
US7904219B1 (en) | 2000-07-25 | 2011-03-08 | Htiip, Llc | Peripheral access devices and sensors for use with vehicle telematics devices and systems |
US7920898B2 (en) | 1993-10-13 | 2011-04-05 | Dataquill Limited | Data entry systems |
US20110093144A1 (en) * | 2009-03-17 | 2011-04-21 | Todd Goodermuth | System and method for communicating data in a train having one or more locomotive consists |
US8380413B2 (en) | 2011-07-14 | 2013-02-19 | General Electric Company | Method and system for rail vehicle control |
US8379531B2 (en) | 1996-04-18 | 2013-02-19 | Verizon Services Corp. | Telephony communication via varied redundant networks |
US8704960B2 (en) | 2010-04-27 | 2014-04-22 | Panasonic Avionics Corporation | Deployment system and method for user interface devices |
US8798821B2 (en) | 2009-03-17 | 2014-08-05 | General Electric Company | System and method for communicating data in a locomotive consist or other vehicle consist |
US8935022B2 (en) | 2009-03-17 | 2015-01-13 | General Electric Company | Data communication system and method |
US8938062B2 (en) | 1995-12-11 | 2015-01-20 | Comcast Ip Holdings I, Llc | Method for accessing service resource items that are for use in a telecommunications system |
US20150031412A1 (en) * | 2012-04-25 | 2015-01-29 | Compliance Software, Inc. | Capturing and processing instant drug test results using a mobile device |
US9191505B2 (en) | 2009-05-28 | 2015-11-17 | Comcast Cable Communications, Llc | Stateful home phone service |
US9350956B2 (en) | 2012-04-25 | 2016-05-24 | Compliance Software, Inc. | Capturing and processing instant drug test results using a mobile device |
US9379775B2 (en) | 2009-03-17 | 2016-06-28 | General Electric Company | Data communication system and method |
US9513630B2 (en) | 2010-11-17 | 2016-12-06 | General Electric Company | Methods and systems for data communications |
US9520005B2 (en) | 2003-07-24 | 2016-12-13 | Verizon Telematics Inc. | Wireless vehicle-monitoring system |
US9637147B2 (en) | 2009-03-17 | 2017-05-02 | General Electronic Company | Data communication system and method |
US20170169415A1 (en) * | 2015-10-12 | 2017-06-15 | Wal-Mart Stores, Inc. | System, method, and non-transitory computer-readable storage media related to transactions using a mobile device |
USD802789S1 (en) | 2012-04-25 | 2017-11-14 | Formfox, Inc. | Test cup holder |
US10144440B2 (en) | 2010-11-17 | 2018-12-04 | General Electric Company | Methods and systems for data communications |
US11225404B2 (en) | 2006-12-13 | 2022-01-18 | Crown Equipment Corporation | Information system for industrial vehicles |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102831672B (zh) * | 2012-09-03 | 2015-09-02 | 同济汽车设计研究院有限公司 | 智能车辆监控系统 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4345147A (en) * | 1980-11-14 | 1982-08-17 | International Telephone And Telegraph Corporation | Vehicle mounted mobile business data handling system |
US4396985A (en) * | 1980-01-16 | 1983-08-02 | Omron Tateisi Electronics Co. | Electronic cash register system for food dispensing business |
US4588938A (en) * | 1983-09-06 | 1986-05-13 | James P. Liautaud | Battery charger |
US4621189A (en) * | 1985-10-08 | 1986-11-04 | Telxon Corporation | Hand held data entry apparatus |
US4706096A (en) * | 1985-06-26 | 1987-11-10 | Kabushiki Kaisha Sato | Unit type thermal label printer |
US4739183A (en) * | 1985-07-29 | 1988-04-19 | Nippon Soken, Inc. | Local area network for vehicle |
US4742335A (en) * | 1986-06-18 | 1988-05-03 | Baker Industries, Inc. | Sequential and/or random polling system with virtually instantaneous response time |
US4746932A (en) * | 1985-04-19 | 1988-05-24 | Kabushiki Kaisha Sato | Thermal label printer having I/O capabilities |
US4751648A (en) * | 1986-03-31 | 1988-06-14 | Halliburton Company | Local area network data transfer system |
US4766300A (en) * | 1984-08-06 | 1988-08-23 | Norand Corporation | Instant portable bar code reader |
US4773032A (en) * | 1984-11-20 | 1988-09-20 | Fujitsu Limited | Terminal input apparatus |
US4801786A (en) * | 1984-05-25 | 1989-01-31 | Anatoli Stobbe | Checking system and method for verifying checking stations in a monitoring system |
US4835372A (en) * | 1985-07-19 | 1989-05-30 | Clincom Incorporated | Patient care system |
-
1989
- 1989-09-29 CA CA000615453A patent/CA1340400C/fr not_active Expired - Fee Related
-
1993
- 1993-03-01 US US08/024,892 patent/US5289378A/en not_active Expired - Lifetime
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4396985A (en) * | 1980-01-16 | 1983-08-02 | Omron Tateisi Electronics Co. | Electronic cash register system for food dispensing business |
US4345147A (en) * | 1980-11-14 | 1982-08-17 | International Telephone And Telegraph Corporation | Vehicle mounted mobile business data handling system |
US4588938A (en) * | 1983-09-06 | 1986-05-13 | James P. Liautaud | Battery charger |
US4801786A (en) * | 1984-05-25 | 1989-01-31 | Anatoli Stobbe | Checking system and method for verifying checking stations in a monitoring system |
US4766300A (en) * | 1984-08-06 | 1988-08-23 | Norand Corporation | Instant portable bar code reader |
US4773032A (en) * | 1984-11-20 | 1988-09-20 | Fujitsu Limited | Terminal input apparatus |
US4746932A (en) * | 1985-04-19 | 1988-05-24 | Kabushiki Kaisha Sato | Thermal label printer having I/O capabilities |
US4706096A (en) * | 1985-06-26 | 1987-11-10 | Kabushiki Kaisha Sato | Unit type thermal label printer |
US4835372A (en) * | 1985-07-19 | 1989-05-30 | Clincom Incorporated | Patient care system |
US4739183A (en) * | 1985-07-29 | 1988-04-19 | Nippon Soken, Inc. | Local area network for vehicle |
US4621189A (en) * | 1985-10-08 | 1986-11-04 | Telxon Corporation | Hand held data entry apparatus |
US4751648A (en) * | 1986-03-31 | 1988-06-14 | Halliburton Company | Local area network data transfer system |
US4742335A (en) * | 1986-06-18 | 1988-05-03 | Baker Industries, Inc. | Sequential and/or random polling system with virtually instantaneous response time |
Cited By (152)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5888087A (en) * | 1989-01-31 | 1999-03-30 | Norand Corporation | One-handed dock for a portable data collection terminal |
US5790536A (en) * | 1989-01-31 | 1998-08-04 | Norand Corporation | Hierarchical communication system providing intelligent data, program and processing migration |
US6614768B1 (en) | 1989-04-28 | 2003-09-02 | Broadcom Corporation | Enhanced mobility and address resolution in a wireless premises based network |
US5657317A (en) * | 1990-01-18 | 1997-08-12 | Norand Corporation | Hierarchical communication system using premises, peripheral and vehicular local area networking |
US20060215591A1 (en) * | 1990-05-25 | 2006-09-28 | Mahany Ronald L | Wireless personal local area network |
US20060227739A1 (en) * | 1990-05-25 | 2006-10-12 | Mahany Ronald L | Wireless personal local area network |
US20060233161A1 (en) * | 1990-05-25 | 2006-10-19 | Koenck Steven E | Multi-level hierarchical radio-frequency communication system |
US20060131420A1 (en) * | 1990-05-25 | 2006-06-22 | Koenck Steven E | Multi-level hierarchical radio-frequency communication system |
US7510121B2 (en) | 1990-05-25 | 2009-03-31 | Broadcom Corporation | Multi-level hierarchical radio-frequency communication system |
US5602854A (en) * | 1991-05-13 | 1997-02-11 | Norand Corporation | Wireless personal local area network utilizing removable radio frequency modules with digital interfaces and idle sense communication protocol |
US20050232213A1 (en) * | 1991-10-01 | 2005-10-20 | Meier Robert C | Radio frequency local area network |
US20070121529A1 (en) * | 1991-10-01 | 2007-05-31 | Broadcom Corporation | Communication network providing wireless and hard-wired dynamic routing |
US20060268807A1 (en) * | 1991-10-01 | 2006-11-30 | Meier Robert C | Radio frequency local area network |
US6400702B1 (en) | 1991-10-01 | 2002-06-04 | Intermec Ip Corp. | Radio frequency local area network |
US7907577B2 (en) | 1991-10-01 | 2011-03-15 | Broadcom Corporation | Communication network providing wireless and hard-wired dynamic routing |
US20030112767A1 (en) * | 1991-10-01 | 2003-06-19 | Meier Robert C. | Communication network providing wireless and hard-wired dynamic routing |
US20040038717A1 (en) * | 1992-03-18 | 2004-02-26 | Mahany Ronald L. | Transaction control system including portable data terminal and mobile customer service station |
US7471651B2 (en) | 1992-03-18 | 2008-12-30 | Broadcom Corporation | Transaction control system including portable data terminal and mobile customer service station |
US6654378B1 (en) | 1992-03-18 | 2003-11-25 | Broadcom Corp. | Transaction control system including portable data terminal and mobile customer service station |
US5442553A (en) * | 1992-11-16 | 1995-08-15 | Motorola | Wireless motor vehicle diagnostic and software upgrade system |
US20090296677A1 (en) * | 1992-11-27 | 2009-12-03 | Mahany Ronald L | Wireless personal local area network |
US20090303920A1 (en) * | 1992-11-27 | 2009-12-10 | Mahany Ronald L | Wireless personal local area network |
US20030193905A1 (en) * | 1992-11-27 | 2003-10-16 | Mahany Ronald L. | Wireless personal local area network |
US20030128685A1 (en) * | 1992-11-27 | 2003-07-10 | Mahany Ronald L. | Wireless personal local area network |
US7920898B2 (en) | 1993-10-13 | 2011-04-05 | Dataquill Limited | Data entry systems |
US8290538B2 (en) | 1993-10-13 | 2012-10-16 | Dataquill Limited | Data entry systems |
WO1995013577A1 (fr) * | 1993-11-03 | 1995-05-18 | Computec Oy | Ordinateur pour vehicule |
US7885242B2 (en) | 1993-12-23 | 2011-02-08 | Broadcom Corp. | Enhanced mobility and address resolution in a wireless premises based network |
US20070164114A1 (en) * | 1994-03-04 | 2007-07-19 | Longacre Andrew Jr | Method and apparatus for reading decodable indicia |
US20090039163A1 (en) * | 1994-03-04 | 2009-02-12 | Hand Held Products, Inc. | Optical reader having image sensor for reading decodable indicia |
US20090308927A1 (en) * | 1994-03-04 | 2009-12-17 | Hand Held Products, Inc. | Bar Code Reading Device For Reading 1D Or 2D Bar Code Symbols |
US8397992B2 (en) | 1994-03-04 | 2013-03-19 | Hand Held Products, Inc. | Optical reader having image sensor for reading decodable indicia |
US8602309B2 (en) | 1994-03-04 | 2013-12-10 | Hand Held Products, Inc. | Bar code reading device for reading 1D or 2D bar code symbols |
US20060278709A1 (en) * | 1994-03-04 | 2006-12-14 | Longacre Andrew Jr | Bar code reading device for reading 1D or 2D bar code symbols |
US20060255150A1 (en) * | 1994-03-04 | 2006-11-16 | Longacre Andrew Jr | Bar code reading device having image data in plurality of different formats |
US5758300A (en) * | 1994-06-24 | 1998-05-26 | Fuji Jukogyo Kabushiki Kaisha | Diagnosis system for motor vehicles and the method thereof |
WO1996003823A1 (fr) * | 1994-07-22 | 1996-02-08 | Norand Corporation | Systeme hierarchise de telecommunications a migration intelligente des donnees, des programmes et des traitements |
US6124826A (en) * | 1994-10-07 | 2000-09-26 | Mannesmann Aktiengesellschaft | Navigation device for people |
US5568484A (en) * | 1994-12-22 | 1996-10-22 | Matsushita Avionics Systems Corporation | Telecommunications system and method for use on commercial aircraft and other vehicles |
US5745794A (en) * | 1995-05-18 | 1998-04-28 | Symbol Technologies, Inc. | System for converting signals into a predetermined data exchange format with plug-in modular connector having voltage, ground, data, and clock terminals for a scanning head |
US20090080398A1 (en) * | 1995-06-07 | 2009-03-26 | Mahany Ronald L | Hierarchical Communication System Providing Intelligent Data, Program and Processing Migration |
US7969911B2 (en) | 1995-06-07 | 2011-06-28 | Broadcom Corporation | Hierarchical communication system providing intelligent data, program and processing migration |
US20040125753A1 (en) * | 1995-06-07 | 2004-07-01 | Mahany Ronald L. | Hierarchical communication system providing intelligent data, program and processing migration |
US8526329B2 (en) | 1995-06-07 | 2013-09-03 | Broadcom Corporation | Hierarchical communication system providing intelligent data, program and processing migration |
US7440416B2 (en) | 1995-06-07 | 2008-10-21 | Broadcom Corporation | Hierarchical communication system providing intelligent data, program and processing migration |
US20110007724A1 (en) * | 1995-06-07 | 2011-01-13 | Mahany Ronald L | Hierarchical communication system providing intelligent data, program and processing migration |
US6970434B1 (en) | 1995-06-07 | 2005-11-29 | Broadcom Corporation | Hierarchical communication system providing intelligent data, program and processing migration |
US5794164A (en) * | 1995-11-29 | 1998-08-11 | Microsoft Corporation | Vehicle computer system |
US8938062B2 (en) | 1995-12-11 | 2015-01-20 | Comcast Ip Holdings I, Llc | Method for accessing service resource items that are for use in a telecommunications system |
US8379531B2 (en) | 1996-04-18 | 2013-02-19 | Verizon Services Corp. | Telephony communication via varied redundant networks |
US7664097B2 (en) | 1996-04-18 | 2010-02-16 | Verizon Services Corp. | Telephone service via networking |
US6236918B1 (en) * | 1996-04-23 | 2001-05-22 | Sumitomo Wiring Systems, Ltd. | Vehicle electronic control apparatus |
US8553681B2 (en) | 1996-06-26 | 2013-10-08 | Verizon Services Corp. | Telephone service via packet-switched networking |
US20050161511A1 (en) * | 1996-09-03 | 2005-07-28 | Parker James A. | Optical reader system comprising host processor and optical reader |
US7817619B1 (en) | 1996-12-18 | 2010-10-19 | Verizon Services Corp. | Internet long distance telephone service |
US7805542B2 (en) | 1997-02-25 | 2010-09-28 | George W. Hindman | Mobile unit attached in a mobile environment that fully restricts access to data received via wireless signal to a separate computer in the mobile environment |
US20060200587A1 (en) * | 1997-02-25 | 2006-09-07 | Hindman George W | Apparatus and method for a mobile navigation computer |
US7830860B2 (en) | 1997-03-11 | 2010-11-09 | Verizon Services Corp. | Packet data network voice call quality monitoring |
US7813332B1 (en) | 1997-03-19 | 2010-10-12 | Verizon Services Corp. | Voice call alternative routing through PSTN and internet networks |
US7835344B1 (en) | 1997-03-19 | 2010-11-16 | Verizon Services Corp. | Transport of caller identification information through diverse communication networks |
US6036086A (en) * | 1997-03-28 | 2000-03-14 | Lucent Technologies Inc. | Apparatus and method for initiating a telephone transaction using a scanner |
US7948968B2 (en) | 1997-09-16 | 2011-05-24 | Verizon Communications Inc. | Network session management |
US9215254B1 (en) | 1997-09-16 | 2015-12-15 | Verizon Patent And Licensing Inc. | Network session management for telephony over hybrid networks |
US20050152340A1 (en) * | 1997-09-16 | 2005-07-14 | Voit Eric A. | Network session management |
US8976782B1 (en) | 1997-09-16 | 2015-03-10 | Verizon Patent And Licensing Inc. | Network session management for telephony over hybrid networks |
US6061614A (en) * | 1997-10-17 | 2000-05-09 | Amtech Systems Corporation | Electronic tag including RF modem for monitoring motor vehicle performance |
US6032089A (en) * | 1997-12-01 | 2000-02-29 | Chrysler Corporation | Vehicle instrument panel computer interface node |
US6107917A (en) * | 1998-10-16 | 2000-08-22 | Carrender; Curtis L. | Electronic tag including RF modem for monitoring motor vehicle performance with filtering |
US6894601B1 (en) | 1998-10-16 | 2005-05-17 | Cummins Inc. | System for conducting wireless communications between a vehicle computer and a remote system |
US6101433A (en) * | 1998-12-07 | 2000-08-08 | Challenger Enterprises, Llc | Automated vehicle preventative maintenance system |
US6295492B1 (en) * | 1999-01-27 | 2001-09-25 | Infomove.Com, Inc. | System for transmitting and displaying multiple, motor vehicle information |
US20080086651A1 (en) * | 1999-04-23 | 2008-04-10 | Lunsford Eric M | System and method for detection of an accessory device connection status |
US6430164B1 (en) | 1999-06-17 | 2002-08-06 | Cellport Systems, Inc. | Communications involving disparate protocol network/bus and device subsystems |
US6727606B2 (en) | 2000-05-18 | 2004-04-27 | Harman Becker Automotive Systems Gmbh | Multimedia system with a housing that operationally stores a plurality of multimedia modules |
EP1155915A3 (fr) * | 2000-05-18 | 2003-11-19 | BECKER GmbH | Equipement électronique à boítier ou support et support ou boítier pour ses modules |
US7228211B1 (en) | 2000-07-25 | 2007-06-05 | Hti Ip, Llc | Telematics device for vehicles with an interface for multiple peripheral devices |
US6732031B1 (en) | 2000-07-25 | 2004-05-04 | Reynolds And Reynolds Holdings, Inc. | Wireless diagnostic system for vehicles |
US7904219B1 (en) | 2000-07-25 | 2011-03-08 | Htiip, Llc | Peripheral access devices and sensors for use with vehicle telematics devices and systems |
US6732032B1 (en) | 2000-07-25 | 2004-05-04 | Reynolds And Reynolds Holdings, Inc. | Wireless diagnostic system for characterizing a vehicle's exhaust emissions |
USRE47422E1 (en) | 2000-07-25 | 2019-06-04 | Verizon Patent And Licensing Inc. | Internet-based system for monitoring vehicles |
US9224249B2 (en) | 2000-07-25 | 2015-12-29 | Hti Ip, L.L.C. | Peripheral access devices and sensors for use with vehicle telematics devices and systems |
US7747365B1 (en) | 2001-03-13 | 2010-06-29 | Htiip, Llc | Internet-based system for monitoring vehicles |
US7532963B1 (en) | 2001-03-14 | 2009-05-12 | Hti Ip, Llc | Internet-based vehicle-diagnostic system |
US7532962B1 (en) | 2001-03-14 | 2009-05-12 | Ht Iip, Llc | Internet-based vehicle-diagnostic system |
US7523159B1 (en) | 2001-03-14 | 2009-04-21 | Hti, Ip, Llc | Systems, methods and devices for a telematics web services interface feature |
US7480551B1 (en) | 2001-03-14 | 2009-01-20 | Hti Ip, Llc | Internet-based vehicle-diagnostic system |
US7477968B1 (en) | 2001-03-14 | 2009-01-13 | Hti, Ip Llc. | Internet-based vehicle-diagnostic system |
US6580985B2 (en) * | 2001-04-17 | 2003-06-17 | Beat-Sonic Co., Ltd. | Vehicle audio adapter |
US6928348B1 (en) | 2001-04-30 | 2005-08-09 | Reynolds & Reynolds Holdings, Inc. | Internet-based emissions test for vehicles |
US6988033B1 (en) | 2001-08-06 | 2006-01-17 | Reynolds & Reynolds Holdings, Inc. | Internet-based method for determining a vehicle's fuel efficiency |
US7174243B1 (en) | 2001-12-06 | 2007-02-06 | Hti Ip, Llc | Wireless, internet-based system for transmitting and analyzing GPS data |
US7090510B1 (en) * | 2002-04-02 | 2006-08-15 | Ford Global Technologies, Llc | Audio input jack assembly in a vehicle |
US6944687B2 (en) * | 2002-04-19 | 2005-09-13 | Hewlett-Packard Development Company, L.P. | Reducing power consumption of an electronic system having a communication device |
US20030200372A1 (en) * | 2002-04-19 | 2003-10-23 | Compaq Information | Reducing power consumption of an electronic system having a communication device |
US6957133B1 (en) | 2003-05-08 | 2005-10-18 | Reynolds & Reynolds Holdings, Inc. | Small-scale, integrated vehicle telematics device |
US20070069947A1 (en) * | 2003-07-24 | 2007-03-29 | Reynolds And Reynolds Holdings, Inc. | Wireless vehicle-monitoring system operating on both terrestrial and satellite networks |
US8452486B2 (en) | 2003-07-24 | 2013-05-28 | Hti Ip, L.L.C. | Wireless vehicle-monitoring system operating on both terrestrial and satellite networks |
US9520005B2 (en) | 2003-07-24 | 2016-12-13 | Verizon Telematics Inc. | Wireless vehicle-monitoring system |
US7113127B1 (en) | 2003-07-24 | 2006-09-26 | Reynolds And Reynolds Holdings, Inc. | Wireless vehicle-monitoring system operating on both terrestrial and satellite networks |
US7225065B1 (en) | 2004-04-26 | 2007-05-29 | Hti Ip, Llc | In-vehicle wiring harness with multiple adaptors for an on-board diagnostic connector |
US7447574B1 (en) | 2004-04-26 | 2008-11-04 | Hti Ip, Llc | In-vehicle wiring harness with multiple adaptors for an on-board diagnostic connector |
US20070106543A1 (en) * | 2004-10-07 | 2007-05-10 | Baughman Thomas J | Server-based systems and methods for processing fuel orders |
US8794579B2 (en) | 2005-06-03 | 2014-08-05 | Steelcase, Inc. | Support arm assembly |
US20070040084A1 (en) * | 2005-06-03 | 2007-02-22 | Lane Sturman | Support arm assembly |
US8050418B2 (en) | 2005-07-07 | 2011-11-01 | Harman International Industries, Incorporated | Update system for an audio amplifier |
US20070009108A1 (en) * | 2005-07-07 | 2007-01-11 | Furge Kenneth C | Update system for an audio amplifier |
US9849694B2 (en) | 2005-12-13 | 2017-12-26 | Zih Corp. | Printer encoder adapted for positioning aboard a mobile unit |
US20110074553A1 (en) * | 2005-12-13 | 2011-03-31 | Zih Corp. | Printer encoder adapted for positioning aboard a mobile unit |
US20070147938A1 (en) * | 2005-12-13 | 2007-06-28 | Zih Corp. | Printer encoder adapted for positioning aboard a mobile unit |
US20070266109A1 (en) * | 2006-05-11 | 2007-11-15 | Mark Mellott | Apparatus and method for sharing data among multiple terminal devices |
US8438239B2 (en) | 2006-05-11 | 2013-05-07 | Vocollect, Inc. | Apparatus and method for sharing data among multiple terminal devices |
US10013815B2 (en) | 2006-12-13 | 2018-07-03 | Crown Equipment Corporation | Information system for industrial vehicles |
US10599160B2 (en) | 2006-12-13 | 2020-03-24 | Crown Equipment Corporation | Fleet management system |
US20110022442A1 (en) * | 2006-12-13 | 2011-01-27 | Crown Equipment Corporation | Information system for industrial vehicles including cyclical recurring vehicle information message |
US8249910B2 (en) | 2006-12-13 | 2012-08-21 | Crown Equipment Corporation | Fleet management system |
US9984341B2 (en) | 2006-12-13 | 2018-05-29 | Crown Equipment Corporation | Information system for industrial vehicles including cyclical recurring vehicle information message |
US8060400B2 (en) | 2006-12-13 | 2011-11-15 | Crown Equipment Corporation | Fleet management system |
US20080154712A1 (en) * | 2006-12-13 | 2008-06-26 | Crown Equipment Corporation | Fleet management system |
US11225404B2 (en) | 2006-12-13 | 2022-01-18 | Crown Equipment Corporation | Information system for industrial vehicles |
US20080154691A1 (en) * | 2006-12-13 | 2008-06-26 | Wellman Timothy A | Fleet management system |
US10810521B2 (en) | 2006-12-13 | 2020-10-20 | Crown Equipment Corporation | Information system for industrial vehicles including cyclical recurring vehicle information message |
US10600256B2 (en) | 2006-12-13 | 2020-03-24 | Crown Equipment Corporation | Impact sensing usable with fleet management system |
US20100039247A1 (en) * | 2006-12-13 | 2010-02-18 | Ziegler Ronald L | Impact sensing usable with fleet management system |
US20100228428A1 (en) * | 2006-12-13 | 2010-09-09 | Crown Equipment Corporation | Information system for industrial vehicles |
US11947361B2 (en) | 2006-12-13 | 2024-04-02 | Crown Equipment Corporation | Fleet management system |
US11823502B2 (en) | 2006-12-13 | 2023-11-21 | Crown Equipment Corporation | Impact sensing usable with fleet management system |
US9281647B2 (en) * | 2007-04-26 | 2016-03-08 | Intelligent Mechatronic Systems Inc. | Pass-through connector |
US20080268662A1 (en) * | 2007-04-26 | 2008-10-30 | Krivtsov Sergey M | Pass-through connector |
US9379775B2 (en) | 2009-03-17 | 2016-06-28 | General Electric Company | Data communication system and method |
US8583299B2 (en) | 2009-03-17 | 2013-11-12 | General Electric Company | System and method for communicating data in a train having one or more locomotive consists |
US20100241295A1 (en) * | 2009-03-17 | 2010-09-23 | Jared Klineman Cooper | System and method for communicating data in locomotive consist or other vehicle consist |
US20110093144A1 (en) * | 2009-03-17 | 2011-04-21 | Todd Goodermuth | System and method for communicating data in a train having one or more locomotive consists |
US8935022B2 (en) | 2009-03-17 | 2015-01-13 | General Electric Company | Data communication system and method |
US8532850B2 (en) | 2009-03-17 | 2013-09-10 | General Electric Company | System and method for communicating data in locomotive consist or other vehicle consist |
US8798821B2 (en) | 2009-03-17 | 2014-08-05 | General Electric Company | System and method for communicating data in a locomotive consist or other vehicle consist |
US9637147B2 (en) | 2009-03-17 | 2017-05-02 | General Electronic Company | Data communication system and method |
US9191505B2 (en) | 2009-05-28 | 2015-11-17 | Comcast Cable Communications, Llc | Stateful home phone service |
US8402268B2 (en) | 2009-06-11 | 2013-03-19 | Panasonic Avionics Corporation | System and method for providing security aboard a moving platform |
US20100318794A1 (en) * | 2009-06-11 | 2010-12-16 | Panasonic Avionics Corporation | System and Method for Providing Security Aboard a Moving Platform |
US8583314B2 (en) | 2009-08-12 | 2013-11-12 | Crown Equipment Corporation | Information system for industrial vehicles |
US8725345B2 (en) | 2009-08-12 | 2014-05-13 | Crown Equipment Corporation | Information system for industrial vehicles |
US20110040440A1 (en) * | 2009-08-12 | 2011-02-17 | Crown Equipment Corporation | Information system for industrial vehicles |
US8704960B2 (en) | 2010-04-27 | 2014-04-22 | Panasonic Avionics Corporation | Deployment system and method for user interface devices |
US10144440B2 (en) | 2010-11-17 | 2018-12-04 | General Electric Company | Methods and systems for data communications |
US9513630B2 (en) | 2010-11-17 | 2016-12-06 | General Electric Company | Methods and systems for data communications |
US8380413B2 (en) | 2011-07-14 | 2013-02-19 | General Electric Company | Method and system for rail vehicle control |
USD802789S1 (en) | 2012-04-25 | 2017-11-14 | Formfox, Inc. | Test cup holder |
US9350956B2 (en) | 2012-04-25 | 2016-05-24 | Compliance Software, Inc. | Capturing and processing instant drug test results using a mobile device |
US20150031412A1 (en) * | 2012-04-25 | 2015-01-29 | Compliance Software, Inc. | Capturing and processing instant drug test results using a mobile device |
US9094493B2 (en) * | 2012-04-25 | 2015-07-28 | Compliance Software, Inc. | Capturing and processing instant drug test results using a mobile device |
US20170169415A1 (en) * | 2015-10-12 | 2017-06-15 | Wal-Mart Stores, Inc. | System, method, and non-transitory computer-readable storage media related to transactions using a mobile device |
US10810567B2 (en) * | 2015-10-12 | 2020-10-20 | Walmart Apollo, Llc | System, method, and non-transitory computer-readable storage media related to transactions using a mobile device |
Also Published As
Publication number | Publication date |
---|---|
CA1340400C (fr) | 1999-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5289378A (en) | Vehicle lan with adapters for coupling portable data terminals | |
US5895431A (en) | Communication system used to assist deliveries of goods or services | |
US5625555A (en) | Data communication system with adapter for removable coupling of portable data terminals | |
US5465207A (en) | Vehicle data system | |
US5521370A (en) | Pistol grip hand-held data terminal cooperable with communicating and recharging dock | |
US5517434A (en) | Data capture system with communicating and recharging docking apparatus and hand-held data terminal means cooperable therewith | |
US5625180A (en) | Data capture system with communicating and recharging docking apparatus and hand-held data terminal means cooperable therewith | |
US7004395B2 (en) | Multi-level hierarchical radio-frequency communication system | |
US6006100A (en) | Multi-level, hierarchical radio-frequency communication system | |
US6192400B1 (en) | Multilevel data communication system including local and host systems | |
US5520470A (en) | Portable printer for handheld computer | |
US5910776A (en) | Method and apparatus for identifying locating or monitoring equipment or other objects | |
EP1528496B1 (fr) | Système d'aide de délivrance du courrier | |
US6052279A (en) | Customizable hand-held computer | |
CA2673025C (fr) | Systeme et procede de communication d'informations de statut | |
US6054846A (en) | Universal power-supply connection system for multiple electronic devices, and devices for use therewith | |
US5380994A (en) | Microcomputer adapted for inventory control | |
AU641541B2 (en) | Multi-level radio-frequency communication system | |
US7918401B2 (en) | Multi-level hierarchical radio-frequency communication system | |
US6581837B1 (en) | Wireless interface for bar code scanner | |
EP1702291A1 (fr) | Lecteur optique | |
CN116596418A (zh) | 一种二次物流智能管理系统及方法 | |
JP2000103505A (ja) | パレット管理システム | |
JPH10207576A (ja) | 携帯型情報端末装置 | |
US20020066787A1 (en) | Radio frequency/direct wired connection for bar code scanner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NORAND CORPORATION, IOWA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MILLER, PHILLIP;KOENCK, STEVEN E.;KUBLER, JOSEPH J.;AND OTHERS;REEL/FRAME:006747/0545;SIGNING DATES FROM 19890208 TO 19890301 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: FIRST NATIONAL BANK OF CHICAGO, THE, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:NORAND CORPORATION;REEL/FRAME:007795/0717 Effective date: 19960126 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: NORAND CORPORATION, IOWA Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:FIRST NATIONAL BANK OF CHICAGO, AS COLLATERAL AGENT, THE;REEL/FRAME:009479/0471 Effective date: 19970225 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: INTERMEC IP CORP., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERMEC TECHNOLOGIES CORPORATION;REEL/FRAME:016237/0161 Effective date: 19990721 Owner name: INTERMEC TECHNOLOGIES CORPORATION, WASHINGTON Free format text: MERGER;ASSIGNOR:NORAND CORPORATION;REEL/FRAME:016237/0153 Effective date: 19971219 |