US5170645A - Direct drive circular knitting machine - Google Patents

Direct drive circular knitting machine Download PDF

Info

Publication number
US5170645A
US5170645A US07/790,060 US79006091A US5170645A US 5170645 A US5170645 A US 5170645A US 79006091 A US79006091 A US 79006091A US 5170645 A US5170645 A US 5170645A
Authority
US
United States
Prior art keywords
knitting machine
circular knitting
rotor
electric motor
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/790,060
Inventor
Francesco Lonati
Ettore Lonati
Fausto Lonati
Tiberio Lonati
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S F I M Srl
GTI Energy
Original Assignee
S F I M Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP91119181A priority Critical patent/EP0541838B1/en
Application filed by S F I M Srl filed Critical S F I M Srl
Priority to US07/790,060 priority patent/US5170645A/en
Assigned to S.F.I.M. S.R.L. reassignment S.F.I.M. S.R.L. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: LONATI, ETTORE, LONATI, FAUSTO, LONATI, FRANCESCO, LONATI, TIBERIO
Application granted granted Critical
Publication of US5170645A publication Critical patent/US5170645A/en
Assigned to S.F.I.M. DI LONATI CAV. FRANCESCO & C. SOCIETA IN ACCOMANDITA SEMPLICE reassignment S.F.I.M. DI LONATI CAV. FRANCESCO & C. SOCIETA IN ACCOMANDITA SEMPLICE CHANGE OF LEGAL STATUS Assignors: S.F.I.M. S.R.L.
Assigned to GAS TECHNOLOGY INSTITUTE reassignment GAS TECHNOLOGY INSTITUTE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GAS RESEARCH INSTITUTE
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/94Driving-gear not otherwise provided for
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/94Driving-gear not otherwise provided for
    • D04B15/99Driving-gear not otherwise provided for electrically controlled

Definitions

  • the present invention relates to a circular knitting machine for manufacturing socks, stockings and the like.
  • the needle cylinder is actuated so as to rotate about its own axis by means of an electric motor which is accommodated in the base of the machine and is connected to the needle cylinder by means of a transmission which is generally of the gear type.
  • the angular position of the needle cylinder is furthermore controlled, generally by means of a position sensor, by an electric control element which actuates the various elements of the machine according to a program.
  • the gear transmission also creates noise and is a source of vibrations which can interfere with the system for controlling the angular position of the needle cylinder, causing inaccuracy of the information which is transmitted by the sensor to the electronic control components of the machine.
  • the aim of the present invention is to eliminate the above described disadvantages by providing a circular knitting machine for manufacturing socks, stockings and the like, which has an extremely simplified needle cylinder actuation with respect to conventional machines.
  • an object of the present invention is to provide a circular knitting machine which considerably contains the rotating masses, thereby achieving better dynamics and precision with respect to conventional machines, of the same category.
  • Another object of the present invention is to provide a circular knitting machine which has lower operating costs than known machines.
  • a circular knitting machine for manufacturing socks, stockings and the like which comprises a main structure which supports a needle cylinder which is rotatable about its own axis with respect to said main structure, an electric motor being provided for the rotary actuation of the needle cylinder about said axis, characterized in that said electric motor comprises a rotor which is rigidly and coaxially associated with said needle cylinder and a stator which is adjacent to said rotor and is supported by said main structure.
  • FIG. 1 is a sectional view of a portion of the machine according to a first embodiment of the invention, taken along a plane which passes through the axis of the needle cylinder;
  • FIG. 2 is an enlarged view of a detail of FIG. 1;
  • FIG. 3 is a sectional view of the machine in a second embodiment, taken similarly to FIG. 2;
  • FIG. 4 is a sectional view of the machine in a third embodiment, taken similarly to FIG. 2;
  • FIG. 5 is a block diagram of the structure of an electronic driver for the electric motor of the machine according to the invention.
  • a circular knitting machine for manufacturing socks, stockings and the like comprises a main structure, identified by the reference numeral 1, which supports a needle cylinder 2 which can rotate about its own axis with respect to the main structure 1.
  • An electric motor, indicated by the reference numeral 3, is provided for the rotary actuation of the needle cylinder 2 about said axis.
  • Said electric motor 3 comprises a rotor 4 which is rigidly and coaxially associated with the needle cylinder 2 and a stator 5 which is adjacent to the rotor 4 and is supported by the main structure 1.
  • the electric motor 3 is of the multiple-phase synchronous alternating-current type with electronic phase switching. It is well-known that it is usually complicated to vary its rotation rate, whereas there are considerable advantages with respect to direct-current motors or to asynchronous multiple-phase motors. The variation system which has been used is described hereinafter.
  • the electric motor 3 has, in a first embodiment, a disk-shaped rotor 4 which supports a plurality of permanent magnets 6 on a side 7 of the disk which faces the windings 8 which are supported by the stator 5.
  • the disk furthermore supports means for detecting the position of said rotor 4. Further embodiments of the machine according to the invention arise depending on the type of position detection means employed.
  • the position detection means comprise an optical encoder which is arranged so that it has a stroboscopic ring 12 on the periphery of the disk and an optical sensor 13 supported by a bell housing or bell 11.
  • the sensor 13 is electrically connected to an electronic driver of the motor by means of an electric cable 14 which exits from the bell 11 and is powered by electric cables 15 which enter said bell 11.
  • the disk is flanged and the position detection means comprise a resolver, identified by the reference numeral 16, which has rotor windings 17 and 18 fixed to a distal portion 19 of the flanged disk and stator windings 20 and 21 fixed to the bell 11.
  • the resolver 16 is connected to the electronic driver of the motor by means of electric cables 22 which exit from the bell 11.
  • a magnetic detector which is arranged so that it has a ring of magnetic or ferromagnetic material on the distal portion 19 of the flanged disk and a magnetic sensor supported by the bell 11.
  • the electric motor 3 has, in a second embodiment thereof, a rotor 4 which comprises a plurality of permanent magnets 9 which are fixed on the surface of the needle cylinder 2, whereas the stator comprises a plurality of windings 10 which are fixed on a bell 11 of the main structure 1.
  • the windings 10 are arranged around the rotor 4.
  • the rotor furthermore supports means for detecting the position of said rotor 4.
  • the position detection means for this second embodiment comprise the same solutions described above for the disk-shaped motor, except that the rings of the optical 12a or magnetic detectors and the rotor windings of the resolver 16a are arranged on the needle cylinder 2, whereas the sensors 13a are in any case fixed to the bell 11, as more clearly illustrated in FIG. 3.
  • the electronic driver means receive in input the power supply phases 30, 31 and 32 which arrive from the electric mains and a velocity control 33 which arrives from electronic control means of the circular knitting machine.
  • the driver means 29 are electrically connected to the position detection means, here indicated by the reference numeral 36, by means of cables 34 and 35, and supply power to the electric motor 3 by means of the phases 37, 38 and 39.
  • the driver means 29 vary the angular velocity of the synchronous motor and provide the electronic control means with the current position of the electric motor 3 by means of a terminal 41.
  • the signal applied to the velocity control 33 varies between -10 volts and +10 volts.
  • the presence cf a negative sign and of a positive sign indicates that there are a preferential (positive) direction of rotation and an opposite (negative) direction of rotation. This is due to the particular application, which requires different velocities and different directions of rotation in order to manufacture a sock or stocking according to the preset program.
  • the signal in output from the terminal 41 is used by the electronic control means of the circular knitting machine to control the other parts of the machine, such as sliding needles, cams, and others, according to the angular position of the needle cylinder.
  • the electronic driver means 29 substantially comprise two control and power supply loops; the first one, termed current loop, supplies power to the electric motor 3; the second one, termed velocity loop, controls the velocity of the electric motor 3 by affecting the current loop.
  • the velocity loop comprises the velocity control terminal 33, downstream of which there is a subtractor 42 wherein the current velocity value arriving from a position sensor interface 46 is subtracted, with its sign, from the value of the velocity control in input to the electronic driver means 29, as explained hereinafter.
  • the signal produced by the subtractor can be considered as a velocity error signal, equal to the difference between the required velocity value and the measured value of the rotation velocity.
  • the output of the subtractor 42 constitutes the input for a PID (proportional integral derivative) controller of the velocity loop 43, which drives a current limiter 44.
  • the signal in output from the current limiter 44 constitutes the input for a sine function generator 45, which also receives as input the position of the electric motor from the position sensor interface 46.
  • the sine function generator 45 emits three signals in output toward a PID controller of the current loop 51, as explained hereinafter.
  • the last element of the velocity loop is the already mentioned position sensor interface 46, which supplies and receives the signals arriving from the sensor 36, regardless of its type, by means of the cables 34 and 35.
  • the position sensor interface 46 emits three signals: a signal representing the position of the motor, which is emitted by the electronic driver means 29 toward the electronic control elements of the circular knitting machine; a signal representing the angular velocity, which is input, with its sign, to the subtractor 42; and a signal representing the angular position, which is input to the sine function generator 45.
  • the velocity loop is intended to generate, by means of the sine function generator 45, three sinusoidal functions of a particular frequency which are always mutually offset by 120°, the frequency of which is a function of the signal sent by means of the velocity control 33, decreased or increased by the angular velocity which arrives from the position sensor interface 46, conveniently processed by the cascade constituted by the PID controller of the velocity loop 43 and by the current limiter 44, and is a function of the current velocity of the motor, detected by the position sensor interface 46.
  • the current loop comprises a power supply 47 and a braking unit 48, which receive in parallel the three phases of the mains 30, 31, and 32.
  • the power supply 47 emits a signal, obtained from the three phases, toward a transistor bridge 49 which has, as inputs, also three sinusoidal signals arriving from a pulse width modulator PWM 50, as better explained hereinafter.
  • the transistor bridge 49 emits three signals in output which constitute the power supplies 37, 38 and 39 for the motor 3.
  • the signal in output from the power supply 47 furthermore constitutes the input for the braking unit 48, which when requested electromagnetically brakes the needle cylinder 2 when enabling for the rotation of the needle cylinder, i.e. of the rotor of the motor 3, ceases.
  • a PID controller of the current loop 51 receives in input the three signals which are proportional to the three currents sent to the motor in output from the transistor bridge 49 and the three signals arriving from the sine function generator 45.
  • Said sine function generator 45 outputs three signals, which have a frequency equal to the frequency required by the velocity control, or rather produce a velocity adjustment which is directly linked to the velocity control of the electronic control element of the circular knitting machine.
  • the signals in input after being processed by the PID controller of the current loop 51, produce three output signals which are input to a pulse width modulator PWM 50, which produces the second degree of freedom of the electronic actuation means 29, since it allows to modulate the width of the signal or rather of the three phases of the current, thus selecting the mechanical torque of the rotor of the motor 3, i.e. of the needle cylinder 2.
  • the pulse width modulator PWM 50 emits three output signals, which have the frequency selected by means of the PID controller of the current loop 51 and the width modulated by the pulse width modulator PWM 50.
  • the signals thus emitted are sent into the transistor bridge 49, inside which the three phases of the power supply are provided by combining the signals which arrive from the pulse width modulator PWM 50 and the signal arriving from the power supply 47.
  • an electric circuit (not illustrated) which protects the driver 29 and the electric motor against short circuits, voltage surges, current surges, overheating and others.
  • the motor employed which is a brushless one, or rather one without sliding contacts such as brushes, carbon contacts or others between the power supply and the rotor, inverting the conventional structure of the motor, is a multiple-phase synchronous alternating-current electric motor, and in particular it is a disk-shaped motor in one of the preferred embodiments; said motor allows to obtain considerable advantages from the point of view of use and maintenance, since it in fact requires very little maintenance and has, from a mechanical point of view, a reduced space occupation and high dynamic performance, with the simultaneous advantage of having a substantially constant mechanical torque at all possible rotation rates.
  • the circular knitting machine according to the invention achieves the intended aim and objects, since it reduces mechanical complexity by eliminating the gear transmission and, by placing the rotor of the synchronous electric motor directly on the needle cylinder, it on one hand decreases the manufacturing costs of the machine and on the other hand increases the possibility of control of said needle cylinder.
  • the invention thus conceived is susceptible to numerous modifications and variations, all of which are within the scope of the inventive concept.
  • the motor 3 can be replaced with direct-current electric motors or with asynchronous electric motors, without obtaining all of the above described advantages, and most of all with an increase in the space occupation of the machine at least equal to one order of magnitude with respect to the synchronous electric motor. All the details may furthermore be replaced with other technically equivalent elements.
  • the materials employed, as well as the dimensions, may be any according to the requirements.

Abstract

The direct drive circular knitting machine has a main structure rotatably supporting a needle cylinder having a needle cylinder axis. An electric motor is provided for rotating the needle cylinder with respect to the main structure about the needle cylinder axis. The electric motor has a rotor rigidly and coaxially connected to the needle cylinder, and a stator located adjacent to the rotor and supported by the main structure.

Description

BACKGROUND OF THE INVENTION
The present invention relates to a circular knitting machine for manufacturing socks, stockings and the like.
As known, in circular knitting machines for manufacturing socks, stockings and the like, the needle cylinder is actuated so as to rotate about its own axis by means of an electric motor which is accommodated in the base of the machine and is connected to the needle cylinder by means of a transmission which is generally of the gear type.
The angular position of the needle cylinder is furthermore controlled, generally by means of a position sensor, by an electric control element which actuates the various elements of the machine according to a program.
Control of the angular position of the needle cylinder and the precision required in the actuation of various devices mounted on these machines, entail minimum play among the various gears of the transmission, complicating the manufacture and assembly of said transmission.
Also due to this fact, it is necessary to provide an abundant lubrication of the gear train in order to dissipate the heat developed by the transmission during operation of the machine.
The gear transmission also creates noise and is a source of vibrations which can interfere with the system for controlling the angular position of the needle cylinder, causing inaccuracy of the information which is transmitted by the sensor to the electronic control components of the machine.
SUMMARY OF THE INVENTION
The aim of the present invention is to eliminate the above described disadvantages by providing a circular knitting machine for manufacturing socks, stockings and the like, which has an extremely simplified needle cylinder actuation with respect to conventional machines.
Within this aim, an object of the present invention is to provide a circular knitting machine which considerably contains the rotating masses, thereby achieving better dynamics and precision with respect to conventional machines, of the same category.
Another object of the present invention is to provide a circular knitting machine which has lower operating costs than known machines.
The above described aim, the objects mentioned and others which will become apparent hereinafter ar®achieved by a circular knitting machine for manufacturing socks, stockings and the like according to the invention, which comprises a main structure which supports a needle cylinder which is rotatable about its own axis with respect to said main structure, an electric motor being provided for the rotary actuation of the needle cylinder about said axis, characterized in that said electric motor comprises a rotor which is rigidly and coaxially associated with said needle cylinder and a stator which is adjacent to said rotor and is supported by said main structure.
BRIEF DESCRIPTION OF THE DRAWINGS
Further characteristics and advantages of the invention will become apparent from the description of some preferred but not exclusive embodiments of a circular knitting machine for manufacturing socks, stockings and the like according to the invention, illustrated only by way of non-limitative example in the accompanying drawings, wherein:
FIG. 1 is a sectional view of a portion of the machine according to a first embodiment of the invention, taken along a plane which passes through the axis of the needle cylinder;
FIG. 2 is an enlarged view of a detail of FIG. 1;
FIG. 3 is a sectional view of the machine in a second embodiment, taken similarly to FIG. 2;
FIG. 4 is a sectional view of the machine in a third embodiment, taken similarly to FIG. 2; and
FIG. 5 is a block diagram of the structure of an electronic driver for the electric motor of the machine according to the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
With reference to FIGS. 1 and 2, a circular knitting machine for manufacturing socks, stockings and the like comprises a main structure, identified by the reference numeral 1, which supports a needle cylinder 2 which can rotate about its own axis with respect to the main structure 1. An electric motor, indicated by the reference numeral 3, is provided for the rotary actuation of the needle cylinder 2 about said axis. Said electric motor 3 comprises a rotor 4 which is rigidly and coaxially associated with the needle cylinder 2 and a stator 5 which is adjacent to the rotor 4 and is supported by the main structure 1.
The electric motor 3 is of the multiple-phase synchronous alternating-current type with electronic phase switching. It is well-known that it is usually complicated to vary its rotation rate, whereas there are considerable advantages with respect to direct-current motors or to asynchronous multiple-phase motors. The variation system which has been used is described hereinafter.
The electric motor 3 has, in a first embodiment, a disk-shaped rotor 4 which supports a plurality of permanent magnets 6 on a side 7 of the disk which faces the windings 8 which are supported by the stator 5. The disk furthermore supports means for detecting the position of said rotor 4. Further embodiments of the machine according to the invention arise depending on the type of position detection means employed.
In a first solution, FIGS. 1 and 2, the position detection means comprise an optical encoder which is arranged so that it has a stroboscopic ring 12 on the periphery of the disk and an optical sensor 13 supported by a bell housing or bell 11. The sensor 13 is electrically connected to an electronic driver of the motor by means of an electric cable 14 which exits from the bell 11 and is powered by electric cables 15 which enter said bell 11.
In a second solution, FIG. 4, the disk is flanged and the position detection means comprise a resolver, identified by the reference numeral 16, which has rotor windings 17 and 18 fixed to a distal portion 19 of the flanged disk and stator windings 20 and 21 fixed to the bell 11. The resolver 16 is connected to the electronic driver of the motor by means of electric cables 22 which exit from the bell 11.
In a third solution, instead of the resolver 16 there is a magnetic detector which is arranged so that it has a ring of magnetic or ferromagnetic material on the distal portion 19 of the flanged disk and a magnetic sensor supported by the bell 11.
All the position detection means, regardless of their description, are electrically connected to means for the electronic driving of said electric motor.
The electric motor 3 has, in a second embodiment thereof, a rotor 4 which comprises a plurality of permanent magnets 9 which are fixed on the surface of the needle cylinder 2, whereas the stator comprises a plurality of windings 10 which are fixed on a bell 11 of the main structure 1. The windings 10 are arranged around the rotor 4. The rotor furthermore supports means for detecting the position of said rotor 4.
The position detection means for this second embodiment comprise the same solutions described above for the disk-shaped motor, except that the rings of the optical 12a or magnetic detectors and the rotor windings of the resolver 16a are arranged on the needle cylinder 2, whereas the sensors 13a are in any case fixed to the bell 11, as more clearly illustrated in FIG. 3.
From the structural point of view, between the main structure 1 and the needle cylinder 2 there is a ball bearing 23 which supports the needle cylinder, withstanding a gravitational stress equal to the weight force of said needle cylinder 2. The execution of the circular knitting machine which uses a disk-shaped motor has a further advantage with respect to the known art. A magnetic attraction which opposes the weight force of the needle cylinder 2 is in fact exerted between the permanent magnets 6 and the gaps 24 of the windings even when the machine is at rest. When the machine is operating, this effect is augmented, and the magnetic attraction is further augmented, almost entirely canceling out the weight force which the needle cylinder applies to the bearing 23, reducing, and almost canceling out, the axial load applied to said bearing 23.
The electronic driver means, generally indicated by the reference numeral 29 in FIG. 5, receive in input the power supply phases 30, 31 and 32 which arrive from the electric mains and a velocity control 33 which arrives from electronic control means of the circular knitting machine. The driver means 29 are electrically connected to the position detection means, here indicated by the reference numeral 36, by means of cables 34 and 35, and supply power to the electric motor 3 by means of the phases 37, 38 and 39. The driver means 29 vary the angular velocity of the synchronous motor and provide the electronic control means with the current position of the electric motor 3 by means of a terminal 41.
The signal applied to the velocity control 33 varies between -10 volts and +10 volts. The presence cf a negative sign and of a positive sign indicates that there are a preferential (positive) direction of rotation and an opposite (negative) direction of rotation. This is due to the particular application, which requires different velocities and different directions of rotation in order to manufacture a sock or stocking according to the preset program.
The signal in output from the terminal 41 is used by the electronic control means of the circular knitting machine to control the other parts of the machine, such as sliding needles, cams, and others, according to the angular position of the needle cylinder.
The electronic driver means 29 substantially comprise two control and power supply loops; the first one, termed current loop, supplies power to the electric motor 3; the second one, termed velocity loop, controls the velocity of the electric motor 3 by affecting the current loop.
The velocity loop comprises the velocity control terminal 33, downstream of which there is a subtractor 42 wherein the current velocity value arriving from a position sensor interface 46 is subtracted, with its sign, from the value of the velocity control in input to the electronic driver means 29, as explained hereinafter. The signal produced by the subtractor can be considered as a velocity error signal, equal to the difference between the required velocity value and the measured value of the rotation velocity. The output of the subtractor 42 constitutes the input for a PID (proportional integral derivative) controller of the velocity loop 43, which drives a current limiter 44. The signal in output from the current limiter 44 constitutes the input for a sine function generator 45, which also receives as input the position of the electric motor from the position sensor interface 46.
The sine function generator 45 emits three signals in output toward a PID controller of the current loop 51, as explained hereinafter. The last element of the velocity loop is the already mentioned position sensor interface 46, which supplies and receives the signals arriving from the sensor 36, regardless of its type, by means of the cables 34 and 35.
The position sensor interface 46 emits three signals: a signal representing the position of the motor, which is emitted by the electronic driver means 29 toward the electronic control elements of the circular knitting machine; a signal representing the angular velocity, which is input, with its sign, to the subtractor 42; and a signal representing the angular position, which is input to the sine function generator 45.
In practice, the velocity loop is intended to generate, by means of the sine function generator 45, three sinusoidal functions of a particular frequency which are always mutually offset by 120°, the frequency of which is a function of the signal sent by means of the velocity control 33, decreased or increased by the angular velocity which arrives from the position sensor interface 46, conveniently processed by the cascade constituted by the PID controller of the velocity loop 43 and by the current limiter 44, and is a function of the current velocity of the motor, detected by the position sensor interface 46.
In this manner there is a first degree of freedom in the control of the electric motor, which is given by the frequency of the power supply phases, which control, as known, the angular velocity of the rotating magnetic field in the motor 3, i.e. the velocity, minus the losses in the gaps and in the windings and other mechanical losses, of the rotor of the motor 3.
The current loop comprises a power supply 47 and a braking unit 48, which receive in parallel the three phases of the mains 30, 31, and 32. The power supply 47 emits a signal, obtained from the three phases, toward a transistor bridge 49 which has, as inputs, also three sinusoidal signals arriving from a pulse width modulator PWM 50, as better explained hereinafter. The transistor bridge 49 emits three signals in output which constitute the power supplies 37, 38 and 39 for the motor 3.
The signal in output from the power supply 47 furthermore constitutes the input for the braking unit 48, which when requested electromagnetically brakes the needle cylinder 2 when enabling for the rotation of the needle cylinder, i.e. of the rotor of the motor 3, ceases.
A PID controller of the current loop 51 receives in input the three signals which are proportional to the three currents sent to the motor in output from the transistor bridge 49 and the three signals arriving from the sine function generator 45. Said sine function generator 45 outputs three signals, which have a frequency equal to the frequency required by the velocity control, or rather produce a velocity adjustment which is directly linked to the velocity control of the electronic control element of the circular knitting machine. The signals in input, after being processed by the PID controller of the current loop 51, produce three output signals which are input to a pulse width modulator PWM 50, which produces the second degree of freedom of the electronic actuation means 29, since it allows to modulate the width of the signal or rather of the three phases of the current, thus selecting the mechanical torque of the rotor of the motor 3, i.e. of the needle cylinder 2.
The pulse width modulator PWM 50 emits three output signals, which have the frequency selected by means of the PID controller of the current loop 51 and the width modulated by the pulse width modulator PWM 50. The signals thus emitted are sent into the transistor bridge 49, inside which the three phases of the power supply are provided by combining the signals which arrive from the pulse width modulator PWM 50 and the signal arriving from the power supply 47.
For the protection of the electronic driver means 29 there is an electric circuit (not illustrated) which protects the driver 29 and the electric motor against short circuits, voltage surges, current surges, overheating and others.
The motor employed, which is a brushless one, or rather one without sliding contacts such as brushes, carbon contacts or others between the power supply and the rotor, inverting the conventional structure of the motor, is a multiple-phase synchronous alternating-current electric motor, and in particular it is a disk-shaped motor in one of the preferred embodiments; said motor allows to obtain considerable advantages from the point of view of use and maintenance, since it in fact requires very little maintenance and has, from a mechanical point of view, a reduced space occupation and high dynamic performance, with the simultaneous advantage of having a substantially constant mechanical torque at all possible rotation rates.
It has been observed that the circular knitting machine according to the invention achieves the intended aim and objects, since it reduces mechanical complexity by eliminating the gear transmission and, by placing the rotor of the synchronous electric motor directly on the needle cylinder, it on one hand decreases the manufacturing costs of the machine and on the other hand increases the possibility of control of said needle cylinder.
The invention thus conceived is susceptible to numerous modifications and variations, all of which are within the scope of the inventive concept. The motor 3 can be replaced with direct-current electric motors or with asynchronous electric motors, without obtaining all of the above described advantages, and most of all with an increase in the space occupation of the machine at least equal to one order of magnitude with respect to the synchronous electric motor. All the details may furthermore be replaced with other technically equivalent elements.
In practice, the materials employed, as well as the dimensions, may be any according to the requirements.

Claims (12)

We claim:
1. Circular knitting machine for manufacturing socks, stockings and the like, comprising a main structure which supports a needle cylinder rotatable about an axis with respect to said main structure, an electric motor being provided for the rotary actuation of the needle cylinder about said axis, wherein said electric motor comprises a rotor rigidly and coaxially associated with said needle cylinder and a stator adjacent to said rotor and supported by said main structure.
2. Circular knitting machine according to claim 1, wherein said electric motor is of the multiple-phase synchronous alternating-current type with electronic phase switching.
3. Circular knitting machine according to claim 1, wherein said electric motor is of the multiple-phase synchronous alternating-current type with electronic phase switching and wherein said stator supports means for detecting the position of said rotor.
4. Circular knitting machine according to claim 3, wherein said position detection means comprises an optical encoder arranged so that said detection means has a stroboscopic ring on said rotor and an optical sensor supported by said stator.
5. Circular knitting machine according to claim 3, wherein said position detection means comprises a magnetic detector arranged so that said detection means has a ring of magnetic or ferromagnetic material on said rotor and has a magnetic sensor supported by said stator.
6. Circular knitting machine according to claim 3, wherein said position detection means comprise a resolver the rotor windings whereof are fixed to said rotor and the stator windings whereof are fixed to said stator.
7. Circular knitting machine according to claim 2, wherein said electric motor has a disk-shaped rotor for supporting a plurality of permanent magnets on a side thereof facing the windings supported by said stator.
8. Circular knitting machine according to claim 2, wherein said rotor comprises a plurality of permanent magnets fixed on the surface of said needle cylinder, whereas said stator comprises a plurality of windings fixed on a bell of said main structure and are arranged around said rotor.
9. Circular knitting machine according to claim 3, wherein electronic driver means receives in input the power supply phases arriving from an electric mains and a velocity variation control arriving from electronic control means of said circular knitting machine, said driver means being electrically connected to said position detection means and supplying said electric motor, said electronic driver means being suitable for varying the velocity of the synchronous motor and for supplying said electronic control means with the current position of said electric motor.
10. Circular knitting machine according to claim 1, wherein said electric motor has a disk-shaped rotor for supporting a plurality of permanent magnets on a side thereof facing the windings supported by said stator and wherein a magnetic attraction arises between the permanent magnets of said disk and the gaps of said windings and, when the motor rotates, opposes the weight force acting on the needle cylinder, said magnetic attraction being suitable for substantially reducing the gravitational force, at least partially relieving the load acting on a bearing arranged between said needle cylinder and said main structure.
11. Circular knitting machine according to claim 1, wherein said electric motor is a direct-current motor.
12. Circular knitting machine according to claim 1, wherein said electric motor is an asynchronous multiple-phase motor.
US07/790,060 1991-11-12 1991-11-12 Direct drive circular knitting machine Expired - Fee Related US5170645A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP91119181A EP0541838B1 (en) 1991-11-12 1991-11-11 Circular knitting machine for manufacturing socks, stockings and the like
US07/790,060 US5170645A (en) 1991-11-12 1991-11-12 Direct drive circular knitting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/790,060 US5170645A (en) 1991-11-12 1991-11-12 Direct drive circular knitting machine

Publications (1)

Publication Number Publication Date
US5170645A true US5170645A (en) 1992-12-15

Family

ID=25149535

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/790,060 Expired - Fee Related US5170645A (en) 1991-11-12 1991-11-12 Direct drive circular knitting machine

Country Status (2)

Country Link
US (1) US5170645A (en)
EP (1) EP0541838B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522124A (en) * 1994-05-18 1996-06-04 Cogsdill Tool Products, Inc. Roller burnishing apparatus having directly driven, coaxially disposed burnishing head assembly
US6176104B1 (en) * 1998-12-23 2001-01-23 Luigi Omodeo Zorini Actuator device for the controlled movement of members in knitting machines
US6519980B1 (en) 2002-04-03 2003-02-18 Sara Lee Corporation Hosiery dewrinkling system and method for circular knitting machines
US20070152856A1 (en) * 2005-12-08 2007-07-05 Takeshi Yamamoto Encoder count error detection circuitry and encoder count error detection method
US7793523B1 (en) 2009-10-01 2010-09-14 Innovative Designs, LLC Circular knitting machine with bearing-stabilized cylinder
CN109338581A (en) * 2018-12-20 2019-02-15 北京爱尼机电有限公司 A kind of disc type electric machine transmission device of driving circular knitting machine operation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1279945B1 (en) * 1995-06-13 1997-12-23 Matec Srl ANNULAR POSITION TRANSDUCER, PARTICULARLY FOR CIRCULAR HOSING MACHINE
DE102007012868A1 (en) * 2007-03-17 2008-09-18 Schaeffler Kg Circular knitting machine drive
CN104593940B (en) * 2015-01-27 2016-10-05 绍兴汉翔精密机械制造有限公司 A kind of high-speed silk stocking machine head drive device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283664A (en) * 1979-12-21 1981-08-11 Siemens Aktiengesellschaft Control signal generator for the commutating device of a brushless electronics motor
US4295085A (en) * 1979-05-25 1981-10-13 General Electric Company Phase lock loop commutation position control and method
US4334405A (en) * 1979-09-29 1982-06-15 Palitex Project-Company Gmbh Stator section for a spindle, more especially a two-for-one spinning or twisting spindle
US4629920A (en) * 1983-10-03 1986-12-16 Mavilor Systeme Sa Alternating current synchronous servomotor
US4651067A (en) * 1984-02-24 1987-03-17 Hitachi, Ltd. Apparatus for driving brushless motor
US4794293A (en) * 1985-08-20 1988-12-27 Fujisaki Kyonori Direct current electric motor
US4943748A (en) * 1988-07-16 1990-07-24 Yugen Kaisha Chubuseimitsu Motor with cup-shaped rotor having cylindrical portions of different diameter
US4972186A (en) * 1989-03-20 1990-11-20 Allen-Bradley Company, Inc. Resolver excitation circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB397793A (en) * 1932-03-24 1933-08-31 Sinfra A G Improvements in and relating to electrically driven machines for producing mesh fabric and particularly to knitting machines
CH351701A (en) * 1956-04-05 1961-01-31 Siemens Ag Drive device for knitting machines
US3406539A (en) * 1966-05-02 1968-10-22 Marshall John D Speed control system for knitting machine
GB2151044A (en) * 1983-11-02 1985-07-10 Sangiacomo Off Mec Regulating the speed and position of hosiery and knitting machines

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295085A (en) * 1979-05-25 1981-10-13 General Electric Company Phase lock loop commutation position control and method
US4334405A (en) * 1979-09-29 1982-06-15 Palitex Project-Company Gmbh Stator section for a spindle, more especially a two-for-one spinning or twisting spindle
US4283664A (en) * 1979-12-21 1981-08-11 Siemens Aktiengesellschaft Control signal generator for the commutating device of a brushless electronics motor
US4629920A (en) * 1983-10-03 1986-12-16 Mavilor Systeme Sa Alternating current synchronous servomotor
US4651067A (en) * 1984-02-24 1987-03-17 Hitachi, Ltd. Apparatus for driving brushless motor
US4794293A (en) * 1985-08-20 1988-12-27 Fujisaki Kyonori Direct current electric motor
US4943748A (en) * 1988-07-16 1990-07-24 Yugen Kaisha Chubuseimitsu Motor with cup-shaped rotor having cylindrical portions of different diameter
US4972186A (en) * 1989-03-20 1990-11-20 Allen-Bradley Company, Inc. Resolver excitation circuit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522124A (en) * 1994-05-18 1996-06-04 Cogsdill Tool Products, Inc. Roller burnishing apparatus having directly driven, coaxially disposed burnishing head assembly
US6176104B1 (en) * 1998-12-23 2001-01-23 Luigi Omodeo Zorini Actuator device for the controlled movement of members in knitting machines
US6519980B1 (en) 2002-04-03 2003-02-18 Sara Lee Corporation Hosiery dewrinkling system and method for circular knitting machines
US20070152856A1 (en) * 2005-12-08 2007-07-05 Takeshi Yamamoto Encoder count error detection circuitry and encoder count error detection method
US7397393B2 (en) 2005-12-08 2008-07-08 Dr. Johannes Heidenhain Gmbh Encoder count error detection circuitry and encoder count error detection method
US7793523B1 (en) 2009-10-01 2010-09-14 Innovative Designs, LLC Circular knitting machine with bearing-stabilized cylinder
US20110079052A1 (en) * 2009-10-01 2011-04-07 Innovative Designs, LLC Circular knitting machine with bearing-stabilized cylinder
US8079235B2 (en) 2009-10-01 2011-12-20 Innovative Designs, LLC Circular knitting machine with bearing-stabilized cylinder
CN109338581A (en) * 2018-12-20 2019-02-15 北京爱尼机电有限公司 A kind of disc type electric machine transmission device of driving circular knitting machine operation
CN109338581B (en) * 2018-12-20 2024-01-26 北京爱尼机电有限公司 Disc type motor transmission device for driving circular knitting machine to operate

Also Published As

Publication number Publication date
EP0541838A1 (en) 1993-05-19
EP0541838B1 (en) 1995-12-27

Similar Documents

Publication Publication Date Title
KR100420714B1 (en) Transition magnetoresistive drive system, position transducer for 2-phase switching magnetoresistance machine and output control method of 2-phase switching magnetoresistance machine
US6328136B1 (en) Drive machine for elevators with drive sheave position detector
JP5892628B2 (en) Bearingless motor
US5170645A (en) Direct drive circular knitting machine
JPH06141550A (en) Inverter and motor control system
US6049187A (en) Speed control for brushless repulsion motor
JP2900293B2 (en) Circular knitting machine that manufactures socks and stockings
GB1379156A (en) System of control for a polyphase alternating current synchronous motor
JP2003174751A (en) Electric motor
JPH0743265B2 (en) Rotation angle sensor
US6349796B1 (en) Starting drive control for elevator
EP0524384A1 (en) An electric motor including a connectable-disconnectable encoder comprising a hall-effect sensor arranged between the field poles of the stator
JP5418281B2 (en) Synchronous rotating machine control device and synchronous rotating machine control method
CZ281299B6 (en) Circular knitting machine for producing socks, stockings and the like
US6344089B1 (en) Drive control for elevator
KR102449033B1 (en) How to control a synchronous double stator electromechanical
JP2000175498A (en) Motor device
JPH0854205A (en) Rotational position detector for electric rotating
IT9067373A1 (en) BRUSHLESS MOTOR AND PROGRAMMABLE CONTROL SYSTEM FROM EPROM OR FROM PC
IT9021400A1 (en) CIRCULAR MACHINE FOR KNITWEAR, FOOTWEAR OR SIMILAR.
KR20200027717A (en) BLDC motor driven by compensating error according to attachment position of all sensor and Method for controlling thereof
JPH10257730A (en) Concentric multishaft motor
JP2876423B2 (en) Hanging positioning control system
JP2535944B2 (en) Stationary encoder
JP2004150489A (en) Magnetic bearing device

Legal Events

Date Code Title Description
AS Assignment

Owner name: S.F.I.M. S.R.L.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:LONATI, FRANCESCO;LONATI, ETTORE;LONATI, FAUSTO;AND OTHERS;REEL/FRAME:005912/0127

Effective date: 19911028

AS Assignment

Owner name: S.F.I.M. DI LONATI CAV. FRANCESCO & C. SOCIETA IN

Free format text: CHANGE OF LEGAL STATUS;ASSIGNOR:S.F.I.M. S.R.L.;REEL/FRAME:007779/0782

Effective date: 19950531

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 20001215

AS Assignment

Owner name: GAS TECHNOLOGY INSTITUTE, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GAS RESEARCH INSTITUTE;REEL/FRAME:017448/0282

Effective date: 20060105

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362