US5131615A - Support column - Google Patents
Support column Download PDFInfo
- Publication number
- US5131615A US5131615A US07/644,545 US64454591A US5131615A US 5131615 A US5131615 A US 5131615A US 64454591 A US64454591 A US 64454591A US 5131615 A US5131615 A US 5131615A
- Authority
- US
- United States
- Prior art keywords
- bush
- support column
- set forth
- receiver
- radially
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47C—CHAIRS; SOFAS; BEDS
- A47C3/00—Chairs characterised by structural features; Chairs or stools with rotatable or vertically-adjustable seats
- A47C3/20—Chairs or stools with vertically-adjustable seats
- A47C3/30—Chairs or stools with vertically-adjustable seats with vertically-acting fluid cylinder
Definitions
- Support columns are used for height adjustable chairs and tables.
- Such a support column comprises a foot structure and a stand tube.
- a gas spring is received by the stand tube.
- the cylinder of the gas spring is guided within an upper end portion of the stand tube, and the lower end of the piston rod is connected to the bottom of the stand tube.
- a seat plate is connected to the upper end of the cylinder of the gas spring.
- the cylinder of the gas spring is slidingly guided in a guide unit inserted into the upper end portion of the stand tube.
- a further object of the invention is to provide a less complicated construction at low cost.
- a support column comprises a stand tube having an axis, a bottom part and an upper end portion.
- a receiver bush is inserted into the upper end portion.
- a telescopic positioning device has a lower terminal portion connected to the bottom part of the stand tube and a cylindrical member extending through the receiver bush.
- the cylindrical member has an outer cylindrical surface guided within said receiver bush in substantially axial direction with respect to the stand tube.
- the outer cylindrical surface is in sliding engagement with at least one bearing bush.
- This bearing bush is radially supported by the receiver bush.
- the bearing bush is radially supported by the receiver bush through radially elastic transmission means.
- These radially elastic transmission means are radially prestressed.
- the bearing bush is radially prestressed against the outer cylindrical surface by the radial prestress of the transmission means.
- the telescopic positioning device may be a pneumatic spring of usual design.
- the gas spring may comprise one or two or even three coaxial cylindrical tubes.
- the respective outermost cylindrical tube provides the outer cylindrical surface guided within the respective receiver bush.
- the bearing bush may be completely transversed by a substantially axially and radially extending slot. Due to this slot, the bearing bush adapts itself smoothingly to the outer cylindrical surface of the cylindrical member of the telescopic positioning device. The prestress of the transmission means is fully transmitted to the outer cylindrical surface. It is to be noted, however, that this slot can be easily avoided, if the bearing bush is made of a relatively thin and elastic material. In this case, the bearing bush may be circumferentially compressed, even if no slot is provided, such that again the prestress of the transmission means is transmitted to the outer cylindrical surface of the cylindrical member.
- the radially elastic transmission means may comprise a radially elastic transmission ring.
- This radially elastic transmission ring may be coherent with said bearing bush, e. g. by adhesive or by shape-locking engagement or by two-layer injection-moulding.
- the radially elastic transmission ring may be at least partially received by a corresponding annular recess provided at a radially inner surface of the receiver bush.
- the respective bearing bush may also be partially received by the annular recess so that both the elastic transmission ring and the bearing bush are positively secured in axial direction with respect to the receiver bush.
- the radially elastic transmission ring may have a convex radially outer surface supported by a respective radially inner concave surface of the receiver bush. This embodiment has the advantage of easy manufacturing.
- the radially elastic transmission means may comprise a plurality of elastic buffer members distributed around the axis. Preferably, at least three elastic buffers are provided. These buffer members may be at least partially received by respective cavities within the receiver bush. The buffer members may be adherent to the receiver bush. E. g., one can provide buffer members with a pressure-sensitive adhesive on the respective surface to be accommodated within the cavities. Further, it is possible to provide the buffer members within the cavities by injection-moulding.
- the receiver bush may be subdivided into a plurality of receiver bush segments, e. g. two or three segments. By separating the receiver bush into segments, the assembling of the receiver bush with the elastic transmission means and the bearing bush is facilitated.
- the receiver bush segments may be connected to each other by segment connection means, e. g. press button type connection means. These connection means facilitate the assembling.
- the receiver bush may be provided with a plurality of recesses in a radially outer surface thereof.
- the elastic transmission means may be made of an elastomeric material substantially softer in radial direction than the material of the receiver bush.
- the radially elastic transmission means may be made of a rubber elastic material or a foam plastic material.
- the receiver bush may be made of a synthetic plastic material, such as nylon.
- the bearing bush may be made of a synthetic plastic material, which has a low coefficient of friction.
- the bearing bush may be made of a graphite containing plastic material.
- the plastic material used for manufacturing the bearing bush may be a material on a polyamide basis or PTFE basis.
- the bearing bush may also be made of a metal sheet material coated with a bearing surface layer. This embodiment is particularly applicable, if the bearing bush is slotted.
- a plurality of bearing bushes may be provided along the axis. Preferably, two such bearing bushes are provided. In the case of two or more bearing bushes, axial misalignment may be compensated for by the elasticity of the respective elastic transmission means. It is, however, not excluded that a ball bearing member is provided for at least one of the bearing bushes as described in U.S. Pat. No. 4,848,524 (German Publication 36 27 138). Such a ball bearing member may be combined with the elastic transmission means of this invention.
- each of the bearing bushes may be combined with separate radially elastic transmission means allocated thereto.
- the lower terminal portion of the telescopic positioning device may have a radial play with respect to the bottom part of the stand tube. This is also a possibility of compensating for axial misalignment.
- the telescopic positioning device is preferably a cylinder-piston rod device having at least one cylinder member and a piston rod.
- the piston rod may be connected to the bottom part of the stand tube, and the cylinder member provides in this case the outer cylindrical surface.
- the cylinderpiston rod device may be a pneumatic spring.
- the stand tube may be adapted for being connected with a foot structure, and the cylindrical member may be adapted for being connected with a load member, such as a seat plate or a table plate.
- the present invention further relates to a method of assembling a support column as defined above.
- This method may comprise the providing of a preassembled guide unit consisting of the receiver bush, the radially elastic transmission means and the bearing bush.
- This preassembled guide unit is inserted into the upper end portion of the stand tube.
- the telescopic positioning device is inserted into the stand tube through the preassembled guide unit.
- the bearing bush should have an internal diameter equal to or smaller than the outer diameter of the outer cylindrical surface before inserting the telescopic positioning device into the stand tube.
- the radially elastic transmission means are then radially prestressed by inserting the outer cylindrical surface of the cylindrical member through the bearing bush.
- the cylindrical member may be provided, when applying the above method, with at least one tapered spreading surface for expanding the bearing bush, when the cylindrical member is axially inserted through the preassembled guide unit.
- An alternative method comprises preassembling the receiver bush, the radially elastic transmission means and the bearing bush around the outer cylindrical surface of the cylindrical member.
- the receiver bush provides an external diameter equal or somewhat larger than the internal diameter of the upper end portion of the stand tube.
- the telescopic positioning device is then inserted together with the receiver bush, the elastic transmission means and the bearing bush into the stand tube, while radially compressing the receiver bush before or during being inserted into the upper end portion of the stand tube against the elastic resistance of the elastic transmission means.
- At least one of the stand tube and the receiver bush may be provided with a tapered face for radially compressing the receiver bush when being inserted into the upper end portion of the stand tube.
- FIG. 1 shows a partial longitudinal section through a chair column of adjustable height
- FIG. 2 shows a cross-section along the section line II--II in FIG. 1, in enlarged illustration
- FIG. 3 shows a chair column in longitudinal section, which differs as regards the guide unit
- FIG. 4 shows a cross-section along the section line IV--IV in FIG. 3, in enlarged representation.
- the chair column consists of a gas spring the downwardly emerging piston rod of which is made fast axially but arranged movably in the radial and circumferential direction in a bottom part 20 of a stand tube 3.
- the upper end portion 3a of the stand tube 3 is provided with a guide unit 4, which consists of a receiver bush 5, a bearing bush 6 and a radially elastic ring member 7 arranged therebetween.
- the cylindrical outer surface 2a of the gas spring cylinder 2 slides in the bearing bush 6 in height adjustment or inward spring movement of the gas spring 1.
- the piston rod 21 is releasably fixed to the bottom part 20 and has a radial play with respect to the bottom part 20.
- the receiver bush 5 comprises a number of recesses 8 arranged uniformly over the circumference in the region of the external diameter. Since according to FIG. 2 the gas spring 1 is not yet introduced into the bearing bushes 6, the ends of the bearing bushes collide in the region of the slot 13.
- the internal diameter formed by the bearing bush 6 is equal to or slightly smaller than the diameter of the cylindrical outer surface of the blockable gas spring.
- the internal diameter of the bearing bush 6 is 0.05 mm smaller than that of the cylindrical outer surface 2a of the gas spring cylinder 2.
- the receiver bush 5 consists of two bush segments 5a, 5b into which the bearing bush 6 and the radially elastic ring member 7 are laid, before being pressed into the upper end portion 3a of the stand tube 3. Later, the gas spring cylinder 2 is inserted through the bearing bushes 6.
- the gas spring cylinder 2 is provided with tapered faces 2b and 2 c, which facilitate passage of the gas spring cylinder 2 across the upper edges of the bearing bushes 6.
- the bearing bushes 6 are spread by the insertion of the gas spring cylinder 2, such that the radially elastic rings 7 are radially prestressed, and the bearing bushes 6 are prestressed against the cylindrical surface 2a.
- the guide unit 4 comprises a receiver bush 9 which is formed from three segments. These segments may be premounted by press button means (not shown).
- elastic buffers 10 in uniform distribution over the circumference are secured in appropriate cavities 11. These elastic buffers 10 consist either of rubber or synthetic plastic material foam and press against the bearing bush 6.
- recesses 12 are provided between the elastic buffers 10 in the receiver bush 9.
- the internal diameter of the bearing bush 6 is chosen slightly smaller than the diameter of the cylindrical outer surface 2a of the gas spring cylinder 2, only after the pushing of the cylindrical outer surface 2a into the bearing bush 6 a gap is formed in the region of the slot 13.
- the elastic buffers 10 present in the receiver bush 9 act upon the bearing bush 6 with prestress. It is possible for this bearing bush 6 to be formed for example as a bearing bush of synthetic plastics material and then so deformed that the resultant diameter is smaller than the diameter of the cylindrical outer surface 2a.
- the bearing bush is manufactured from metal and has a coating of plain bearing material on the internal surface.
- the lay-out of the elastic components is such that the prestress acting upon the bearing bush 6 under bending or transverse loadings produces no non-elastic deformation of the bearing bushes.
- the elastic buffers 10 generate a constant prestress of the bearing bushes 6 on the cylindrical outer surface 2a of the gas spring cylinder 2 and effect an absolute freedom from play in the region of the guide unit 4.
- the bearing bushes 6 are received by annular recesses 22 in the inner surface of the receiver bush segments 9a, and the bearing bushes 6 are axially fixed with respect to the receiver bush 9.
- the gas spring 1 is of conventional design.
- the piston rod 21 is combined with a piston 24 which separates two working chambers within the cylinder 2 from each other.
- the working chambers 25 and 26 are interconnectable through a valve unit, which may be opened by pushing down a control pin 27. As long as the valve unit is closed, a predetermined height of the gas spring 1 exists. When the valve unit is opened by pushing down the control member 27, the length of the gas spring 1 may be varied by gas exchange between the chambers 25 and 26.
- a downward directed axial force must be applied to the gas spring cylinder 2. Axial upward movement is obtained by the pressurized gas acting upon the cross-sectional area of the piston rod 21.
- the upper end of the gas spring cylinder 2 is provided with a tapered face 2d, on which a seat or table carrier may be fastened.
Landscapes
- Vibration Prevention Devices (AREA)
- Sliding-Contact Bearings (AREA)
- Support Of The Bearing (AREA)
- Chairs Characterized By Structure (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4003245A DE4003245C2 (de) | 1990-02-03 | 1990-02-03 | Führung für teleskopartig ineinander verschiebbare zylindrische Teile |
DE4003245 | 1990-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5131615A true US5131615A (en) | 1992-07-21 |
Family
ID=6399383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/644,545 Expired - Fee Related US5131615A (en) | 1990-02-03 | 1991-01-23 | Support column |
Country Status (5)
Country | Link |
---|---|
US (1) | US5131615A (ja) |
EP (1) | EP0441267A1 (ja) |
JP (1) | JPH0767740A (ja) |
AU (1) | AU624036B2 (ja) |
DE (1) | DE4003245C2 (ja) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5333968A (en) * | 1992-01-14 | 1994-08-02 | Suspa Compart Aktiengesellschaft | Length-adjustable column for tables, chairs or the like |
US5413414A (en) * | 1992-01-25 | 1995-05-09 | Suspa Compart Aktiengesellschaft | Guide sleeve for a length-adjustable column for chairs or tables |
US5433409A (en) * | 1992-08-20 | 1995-07-18 | Stabilus Gmbh | Height-adjustable support device, in particular for the seat of a chair |
US5443573A (en) * | 1992-10-05 | 1995-08-22 | Stabilus Gmbh | Guide means for telescoping cylindrical parts and a column unit comprising such guide means |
US5601372A (en) * | 1995-06-05 | 1997-02-11 | Kerk Motion Products, Inc. | Vibration reducing brushing |
US5765804A (en) * | 1992-06-15 | 1998-06-16 | Herman Miller, Inc. | Pneumatic support colunm for a chair |
US5857657A (en) * | 1997-03-17 | 1999-01-12 | Sugan Co., Ltd. | Stand for medical instruments |
US6098937A (en) * | 1998-01-08 | 2000-08-08 | Carnahan; Garnett | Support stand, assembly using the same, and method of making the same |
US6601818B1 (en) | 2000-10-12 | 2003-08-05 | Lord Corporation | Tilting mount with integral flange |
US20040041063A1 (en) * | 2002-06-18 | 2004-03-04 | Stabilus Gmbh | Furniture pillar |
US20040079854A1 (en) * | 2002-10-16 | 2004-04-29 | Ma Dong Kwan | Column unit |
US20040124570A1 (en) * | 2002-12-31 | 2004-07-01 | Song Huh | Gas cylinder |
US20040234178A1 (en) * | 2003-05-20 | 2004-11-25 | Suspa Holding Gmbh | Sliding bearing and method for the manufacture thereof |
US20050013519A1 (en) * | 2003-07-18 | 2005-01-20 | Honeywell International Inc. | Compliant linear bearing |
US20070182075A1 (en) * | 2005-11-24 | 2007-08-09 | Frank Kellner | Stand with a damping element |
US20090015051A1 (en) * | 2006-03-10 | 2009-01-15 | F.I.S.A.-Fabbrica Italiana Sedili Autoferroviari- SRL | Vertical springing device of a telescopic element with respect to a fixed element |
US20090033135A1 (en) * | 2006-03-10 | 2009-02-05 | Eugenio Fraenkel Haeberle | Guide device for the axial sliding of a telescopic element with respect to a fixed element |
US20130101241A1 (en) * | 2011-10-20 | 2013-04-25 | Applied Materials, Inc. | Substrate support bushing |
US20130118846A1 (en) * | 2010-06-24 | 2013-05-16 | Guenther Zimmer | Pneumatic deceleration arrangement with constant performance |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW392808U (en) * | 1997-10-16 | 2000-06-01 | Suspa Compart Ag | Guide bush and length adjustable column with a guide bush |
KR20020081844A (ko) * | 2001-04-20 | 2002-10-30 | 주식회사 삼홍사 | 칼럼 유니트 |
DE10323773A1 (de) * | 2003-05-22 | 2004-12-09 | Heinrich J. Kesseböhmer KG | Teleskopauszug |
DE102006019041A1 (de) * | 2006-04-25 | 2007-11-08 | Kretzschmar Engineering Limited | Längenverstellbare Vorrichtung |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3683754A (en) * | 1969-11-27 | 1972-08-15 | Hydraudyne Nv | Hydraulic cylinder |
US3828651A (en) * | 1967-11-30 | 1974-08-13 | Stabilus Ind Handels Gmbh | Column of adjustable length |
FR2291406A1 (fr) * | 1974-11-15 | 1976-06-11 | Messier Hispano Sa | Element de palier de guidage sans frottement pour mouvements rectilignes de faible course |
US4093196A (en) * | 1976-08-26 | 1978-06-06 | Suspa Federungstechnik Fritz Bauer & Sohne Ohg | Length-adjustable gas spring |
US4244627A (en) * | 1979-06-08 | 1981-01-13 | Clark Equipment Company | Lift cylinder assembly |
US4257582A (en) * | 1974-12-16 | 1981-03-24 | Stabilus Gmbh | Support column of adjustable length |
US4848524A (en) * | 1986-08-09 | 1989-07-18 | Stabilus Gmbh | Telescopic appliance |
EP0325726A1 (de) * | 1988-01-28 | 1989-08-02 | SUSPA COMPART Aktiengesellschaft | Blockierbare Hubvorrichtung zum stufenlosen Verstellen von Möbelteilen und Führungsbüchse für eine solche Hubvorrichtung |
US4946143A (en) * | 1988-05-26 | 1990-08-07 | Fritz Bauer & Sohne Ohg | Gas spring |
US4949941A (en) * | 1988-07-23 | 1990-08-21 | Fritz Bauer + Sohne Ohg | Longitudinally controllable adjustment device |
US5079992A (en) * | 1989-07-26 | 1992-01-14 | Bauer Hans J | Longitudinally controllable adjustment device |
-
1990
- 1990-02-03 DE DE4003245A patent/DE4003245C2/de not_active Expired - Fee Related
-
1991
- 1991-01-23 AU AU69928/91A patent/AU624036B2/en not_active Ceased
- 1991-01-23 US US07/644,545 patent/US5131615A/en not_active Expired - Fee Related
- 1991-02-01 EP EP91101381A patent/EP0441267A1/en not_active Ceased
- 1991-02-01 JP JP3012195A patent/JPH0767740A/ja active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3828651A (en) * | 1967-11-30 | 1974-08-13 | Stabilus Ind Handels Gmbh | Column of adjustable length |
US3683754A (en) * | 1969-11-27 | 1972-08-15 | Hydraudyne Nv | Hydraulic cylinder |
FR2291406A1 (fr) * | 1974-11-15 | 1976-06-11 | Messier Hispano Sa | Element de palier de guidage sans frottement pour mouvements rectilignes de faible course |
US4257582A (en) * | 1974-12-16 | 1981-03-24 | Stabilus Gmbh | Support column of adjustable length |
US4093196A (en) * | 1976-08-26 | 1978-06-06 | Suspa Federungstechnik Fritz Bauer & Sohne Ohg | Length-adjustable gas spring |
US4244627A (en) * | 1979-06-08 | 1981-01-13 | Clark Equipment Company | Lift cylinder assembly |
US4848524A (en) * | 1986-08-09 | 1989-07-18 | Stabilus Gmbh | Telescopic appliance |
EP0325726A1 (de) * | 1988-01-28 | 1989-08-02 | SUSPA COMPART Aktiengesellschaft | Blockierbare Hubvorrichtung zum stufenlosen Verstellen von Möbelteilen und Führungsbüchse für eine solche Hubvorrichtung |
US4946143A (en) * | 1988-05-26 | 1990-08-07 | Fritz Bauer & Sohne Ohg | Gas spring |
US4949941A (en) * | 1988-07-23 | 1990-08-21 | Fritz Bauer + Sohne Ohg | Longitudinally controllable adjustment device |
US5079992A (en) * | 1989-07-26 | 1992-01-14 | Bauer Hans J | Longitudinally controllable adjustment device |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5333968A (en) * | 1992-01-14 | 1994-08-02 | Suspa Compart Aktiengesellschaft | Length-adjustable column for tables, chairs or the like |
US5413414A (en) * | 1992-01-25 | 1995-05-09 | Suspa Compart Aktiengesellschaft | Guide sleeve for a length-adjustable column for chairs or tables |
US5496115A (en) * | 1992-01-25 | 1996-03-05 | Suspa Compart Aktiengesellschaft | Guide sleeve for a length-adjustable column for chairs or tables |
US5765804A (en) * | 1992-06-15 | 1998-06-16 | Herman Miller, Inc. | Pneumatic support colunm for a chair |
US5433409A (en) * | 1992-08-20 | 1995-07-18 | Stabilus Gmbh | Height-adjustable support device, in particular for the seat of a chair |
US5443573A (en) * | 1992-10-05 | 1995-08-22 | Stabilus Gmbh | Guide means for telescoping cylindrical parts and a column unit comprising such guide means |
US5601372A (en) * | 1995-06-05 | 1997-02-11 | Kerk Motion Products, Inc. | Vibration reducing brushing |
US5857657A (en) * | 1997-03-17 | 1999-01-12 | Sugan Co., Ltd. | Stand for medical instruments |
US6098937A (en) * | 1998-01-08 | 2000-08-08 | Carnahan; Garnett | Support stand, assembly using the same, and method of making the same |
US6601818B1 (en) | 2000-10-12 | 2003-08-05 | Lord Corporation | Tilting mount with integral flange |
US20040041063A1 (en) * | 2002-06-18 | 2004-03-04 | Stabilus Gmbh | Furniture pillar |
US6866238B2 (en) * | 2002-06-18 | 2005-03-15 | Stabilus Gmbh | Furniture pillar |
US20040079854A1 (en) * | 2002-10-16 | 2004-04-29 | Ma Dong Kwan | Column unit |
US20040124570A1 (en) * | 2002-12-31 | 2004-07-01 | Song Huh | Gas cylinder |
US7059592B2 (en) | 2002-12-31 | 2006-06-13 | Sam Hong Sa Co., Ltd. | Gas cylinder |
US7497014B2 (en) * | 2003-05-20 | 2009-03-03 | Suspa Holding Gmbh | Sliding bearing and method for the manufacture thereof |
US20040234178A1 (en) * | 2003-05-20 | 2004-11-25 | Suspa Holding Gmbh | Sliding bearing and method for the manufacture thereof |
US6964521B2 (en) * | 2003-07-18 | 2005-11-15 | Honeywell International Inc. | Compliant linear bearing |
US20050013519A1 (en) * | 2003-07-18 | 2005-01-20 | Honeywell International Inc. | Compliant linear bearing |
US20070182075A1 (en) * | 2005-11-24 | 2007-08-09 | Frank Kellner | Stand with a damping element |
US7841588B2 (en) * | 2005-11-24 | 2010-11-30 | Ondal Holding Gmbh | Stand with a damping element |
US20090033135A1 (en) * | 2006-03-10 | 2009-02-05 | Eugenio Fraenkel Haeberle | Guide device for the axial sliding of a telescopic element with respect to a fixed element |
US20090015051A1 (en) * | 2006-03-10 | 2009-01-15 | F.I.S.A.-Fabbrica Italiana Sedili Autoferroviari- SRL | Vertical springing device of a telescopic element with respect to a fixed element |
US20130118846A1 (en) * | 2010-06-24 | 2013-05-16 | Guenther Zimmer | Pneumatic deceleration arrangement with constant performance |
US9127493B2 (en) * | 2010-06-24 | 2015-09-08 | Guenther Zimmer | Pneumatic deceleration arrangement with constant performance |
US20130101241A1 (en) * | 2011-10-20 | 2013-04-25 | Applied Materials, Inc. | Substrate support bushing |
US8911151B2 (en) * | 2011-10-20 | 2014-12-16 | Applied Materials, Inc. | Substrate support bushing |
Also Published As
Publication number | Publication date |
---|---|
DE4003245A1 (de) | 1991-08-08 |
DE4003245C2 (de) | 1997-08-21 |
AU6992891A (en) | 1991-08-08 |
JPH0767740A (ja) | 1995-03-14 |
AU624036B2 (en) | 1992-05-28 |
EP0441267A1 (en) | 1991-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5131615A (en) | Support column | |
US6395039B1 (en) | Prosthetic suspension unit including an elastomeric energy storage element | |
CA1232187A (en) | Support column with gravity dependent retention means | |
US5511759A (en) | Hydraulic chair height adjustment mechanism | |
CN100472088C (zh) | 用于可移动的家具元件的阻尼器 | |
US4934493A (en) | Frictional damper | |
EP0465887B1 (en) | Cylinder piston device | |
JPH0531968Y2 (ja) | ||
JPH11503810A (ja) | 可調節ロッカブル装置 | |
GB2061427A (en) | Frictional damper | |
US20050242542A1 (en) | Suspension strut top mount | |
EP3569891B1 (en) | Hydraulic damper with a hydraulic stop arrangement | |
US5888214A (en) | Prosthetic leg apparatus and method | |
EP0591901B1 (en) | A guide means for telescoping cylindrical parts and a column unit comprising such guide means | |
US5570873A (en) | Longitudinally adjustable gas spring with a longitudinally adjustable column | |
JPH05154023A (ja) | 荷重を支承する調節可能な支柱のためのプラスチック製鉛直パイプ支持体 | |
US20020031396A1 (en) | Compliant pivot socket for automotive steering | |
US6105739A (en) | Guide bushing | |
CN101297094B (zh) | 制动缓冲器 | |
EP0292881B1 (en) | Suspension strut with selectively controllable differential rebound and jounce damping | |
AU593651B2 (en) | Improved frictionally damped suspension strut | |
US3495859A (en) | Pin joint assembly | |
JPH109280A (ja) | 自在継手の十字部材ユニット | |
US20030070898A1 (en) | 3-D misalignment isolator bearing | |
US4647225A (en) | Support and guide roller for extension guide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: STABILUS GMBH, WALLERSHEIMER WEG 100, D-5400 KOBLE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:HOSAN, HANS-JOSEF;KNOPP, AXEL;REEL/FRAME:005592/0813 Effective date: 19910116 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19960724 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |