US5093429A - Multiplex ethylene copolymer, process for preparation thereof and cured product thereof - Google Patents

Multiplex ethylene copolymer, process for preparation thereof and cured product thereof Download PDF

Info

Publication number
US5093429A
US5093429A US07/480,382 US48038290A US5093429A US 5093429 A US5093429 A US 5093429A US 48038290 A US48038290 A US 48038290A US 5093429 A US5093429 A US 5093429A
Authority
US
United States
Prior art keywords
double bond
group
carbon
monomer
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/480,382
Other languages
English (en)
Inventor
Yoshihiro Moteki
Toshiyuki Iwashita
Hitoshi Funada
Naotoshi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Assigned to SHOWA DENKO KABUSHIKI KAISHA reassignment SHOWA DENKO KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FUNADA, HITOSHI, IWASHITA, TOSHIYUKI, MOTEKI, YOSHIHIRO, WATANABE, NAOTOSHI
Priority to US07/797,986 priority Critical patent/US5252675A/en
Application granted granted Critical
Publication of US5093429A publication Critical patent/US5093429A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/30Chemical modification of a polymer leading to the formation or introduction of aliphatic or alicyclic unsaturated groups

Definitions

  • the present invention relates to a curable ethylene copolymer, a process for the preparation thereof and a cured product thereof. More particularly, the present invention relates to a curable ethylene copolymer which can provide, by ordinary sulfur curing or peroxide curing, an elastomer having excellent heat resistance, solvent resistance, weatherability, ultraviolet ray resistance, ozone resistance and low-temperature characteristics, a process for the preparation thereof, and a cured product thereof obtained by sulfur curing or peroxide curing.
  • Rubbers excellent in such physical properties as heat resistance and oil resistance are now desired mainly in the field of automobile parts.
  • a copolymer of ethylene with a monomer having a polar group, such as an acrylic acid ester is manufactured on an industrial scale and is utilized in various fields.
  • Various preparation processes and physical properties are known in connection with this elastomer.
  • U.S. Pat. No. 3,956,248 discloses a process in which an alternating copolymer of ethylene with an alkyl acrylate and a halogen-containing acrylate is prepared in the presence of a special catalyst. It is stated that according to this process, an elastomer having excellent oil resistance and heat resistance can be obtained by crosslinking with a peroxide or curing with hexamethylene diamine carbamate.
  • U.S. Pat. No. 3,883,472 discloses a process in which an acrylate/1,4-butenedionic acid monoester copolymer or a terpolymer thereof with ethylene is crosslinked with a polyamine and a curing promoter. Furthermore, U.S. Pat. No. 3,904,588 discloses a process in which a similar terpolymer is cured with hexamethylene diamine carbamate.
  • U.S. Pat. No. 4,304,887 and U.S. Pat. No. 4,307,007 propose that a chromium (III) compound or a phosphate is added as an agent for improving the green strength or an anti-blocking agent to a terpolymer as described above.
  • U.S. Pat. No. 4,399,263 proposes the combined use of a monoamine with a polyamine for improving the storage stability or scorching property.
  • U.S. Pat. No. 4,412,043 proposes a process in which an ethylene/acrylate/4-dialkylamino-4-oxo-2-butanoic acid copolymer obtained by reacting a terpolymer such an ethylene/acrylate/maleic anhydride terpolymer with a dialkylamine is cured with a diamine or a polyamine.
  • ethylene/acrylate copolymer elastomers are prepared by using carboxyl groups present in the polymer chain as curing sites and curing them with a diamine, a polyamine or a derivative thereof.
  • a monoamine is added to reduce the amount of remaining carboxyl groups for improving the storage stability or scorching property. Accordingly, in the conventional techniques, trials have not been made to introduce carbon-to-carbon double bonds as sulfur-curable sites into the polymer chain by copolymerization or modification or to cure such a copolymer with sulfur.
  • crosslinking sites are carboxyl groups in the above-mentioned curable copolymer
  • the copolymer can be crosslinked with a diamine or with an ion.
  • crosslinking reaction is readily advanced even at normal temperature and hence, the storage stability is poor.
  • scorching is readily caused during the crosslinking operation.
  • a multiplex ethylene copolymer comprising (a) 50 to 94.8 mole% of units derived from ethylene, which are represented by the following formula (I):
  • a process for the preparation of a modified multiplex ethylene copolymer which comprises modifying a multiplex ethylene copolymer comprising (a) 50 to 94.8 mole% of units derived from ethylene, which are represented by the following formula (I):
  • the above-mentioned multiplex ethylene copolymer is cured with sulfur and/or a sulfur donor or crosslinked with a peroxide to form a rubbery copolymer having excellent oil resistance and heat resistance.
  • the amount of ethylene units represented by the formula (I) is 50 to 94.8 mole%, preferably 53 to 86.6 mole%. If the amount of ethylene units represented by the formula (I) is too small, the low-temperature characteristics of the cured product are degraded, and if the amount of ethylene units represented by the formula (I) is too large, the permanent elongation or compression permanent strain of the cured product is increased and the rubbery elasticity is decreased.
  • the units represented by the formula (II) are derived from a monomer selected from alkyl acrylates and alkyl methacrylates having 1 to 10 carbon atoms in the alkyl group and vinyl esters and isopropenyl esters of aliphatic monocarboxylic acids having 2 to 11 carbon atoms.
  • the amount of the units represented by the formula (II) is 5 to 45 mole%, preferably 10 to 45 mole%, especially preferably 13 to 45 mole%. If the amount of the units represented by the formula (II) is smaller than 5 mole%, the rubbery elasticity of the cured product is lost and the tension permanent set or compression permanent set is increased. In contrast, if the amount of the units represented by the formula (II) exceeds 45 mole%, the low-temperature brittleness characteristics of the cured product are degraded.
  • the units derived from a monomer having a radical-polymerizable ethylenic double bond and at least one carbon-to-carbon double bond different from a double bond of an aromatic nucleus there are generally used units derived from monomers containing at least one atom selected from oxygen and nitrogen in the molecule.
  • Preferred units are represented by the following formula (III): ##STR7## wherein R 4 stands for a hydrogen atom or ##STR8## (in which R 6 stands for a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), R 7 stands for a hydrogen atom or a methyl group, R 8 stands for a hydrocarbon residue having up to 40 carbon atoms, which contains at least one carbon-to-carbon double bond different from a double bond of an aromatic nucleus, and Y is a divalent group selected from divalent groups represented by the following formulae (IV) through (IX): ##STR9## wherein Q in the formulae (VIII) and (IX) is --NR 9 --, ##STR10## and R 9 in the formula (VII) and the definition of Q stands for a hydrocarbon residue having up to 40 carbon atoms, which contains at least one carbon-to-carbon double bond different from a double bond of an aromatic nucleus, an alkyl, aryl or aralkyl group having
  • More preferable units are selected from units represented by the following formulae (X), (XI), (XII) and (XVI): ##STR11## wherein R 7 and R 10 stand for a hydrogen atom or a methyl group, R 11 stands for a hydrocarbon residue having 6 to 20 carbon atoms, which contains a carbon-to-carbon double bond different from a double bond of an aromatic nucleus, R 12 stands for a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and Z and Z' independently stand for ##STR12##
  • the units derived from the radical-polymerizable monomer are contained in the copolymer in an amount of 0.2 to 5 mole%, preferably 0.5 to 5 mole%. If the amount of the units is smaller than 0.2 mole%, even when curing is sufficiently carried out, a cured product having desired rubbery elasticity and heat resistance cannot be obtained. In contrast, if the amount of the units exceeds 5 mole%, the softness of the cured product is degraded and the intended rubbery properties cannot be obtained.
  • the multiplex ethylene copolymer may contain units derived from other monomer in addition to the units represented by the formula (I), the units represented by the formula (II) and the units derived from the radical-polymerizable monomer.
  • the amount of the units derived from other monomer is up to 20 mole%.
  • the multiplex ethylene copolymer of the present invention can be prepared according to processes described below, which are roughly divided into two types.
  • ethylene forming units represented by the formula (I) is copolymerized with a monomer forming units represented by the formula (II) and a monomer comprising a radical-polymerizable ethylenic double bond and at least one carbon-to-carbon double bond different from a double bond of an aromatic nucleus
  • ethylene forming units represented by the formula (I) is copolymerized with a monomer forming units represented by the formula (II) and a monomer having a radical-polymerizable ethylenic double bond and a functional group selected from an acid anhydride group, a carboxyl group and an epoxy group to form a multiplex ethylene copolymer having such a functional group, and the copolymer is modified with a low-molecular-weight modifier having an amino group, hydroxyl group or carboxyl
  • ethylene forming units represented by the formula (I) is copolymerized with a monomer forming units represented by the formula (II), the obtained copolymer is graft-polymerized with a monomer having a functional group selected from an acid anhydride group, a carboxyl group and an epoxy group, and the grafted copolymer is modified with a low-molecular-weight modifier as described above.
  • ethylene forming units represented by the formula (I) is copolymerized with (ii) a monomer forming units represented by the formula (II) (that is, a monomer selected from alkyl acrylates and alkyl methacrylates having 1 to 10 carbon atoms and vinyl esters and isopropenyl esters of aliphatic monocarboxylic acids having 2 to 11 carbon atoms) and (iii) a monomer having a radical-polymerizable ethylenic double bond and at least one carbon-to-carbon double bond different from a double bond of an aromatic nucleus, preferably a monomer represented by the following formula (III'): ##STR13## wherein R 4 , R 7 , Y and R 8 are as defined above in the formula (III).
  • radical-polymerizable monomer (iii) be selected from monomers represented by the following formulae (X'), (XI'), (XII') and (XVI'): ##STR14## wherein R 7 , R 10 , R 12 , Z and Z' are as defined above in the formulae (X), (XI), (XII) and (XVI).
  • radical-polymerizable monomers represented by the formulae (III'), (X'), (XI'), (XII') and (XVI') there can be mentioned the following compounds (a) through (h).
  • Acrylic acid esters or methacrylic acid esters comprising as the alcohol component an alcohol having at least one carbon-to-carbon double bond different from a double bond of an aromatic nucleus and up to 40 carbon atoms, in which Y in the formula (III') is equal to the formula (IV), such as oleyl acrylate and oleyl methacrylate.
  • the copolymerization ratios of the respective monomers are set so that the ethylene copolymer having the above-mentioned composition can be obtained.
  • Methyl methacrylate, methyl acrylate, ethyl acrylate and vinyl acetate are especially preferred.
  • the copolymerization may be carried out at 50° to 200° C. under 5 to 200 kg/cm 2 in the presence of an organic solvent such as benzene, toluene, hexane or heptane, or at 120° to 260° C. under 500 to 2,500 kg/cm 2 in the absence of a solvent.
  • an organic solvent such as benzene, toluene, hexane or heptane
  • the polymerization initiator there may be used t-butyl perpivalate, t-butyl peroxide, 2,5-dimethyl-di-t-butyl peroxide, benzoyl peroxide and azobisisobutyronitrile.
  • the contents (mole%) of the structural units (I), (II) and (III) can be controlled by appropriately selecting the ratio of the reacted monomers according to the kinds of monomers used and the copolymerization reaction conditions, and for example, the melt index (MI) of the copolymer may be adjusted by controlling the kind and amount of the polymerization initiator according to the kinds of monomers used and the copolymerization reaction conditions.
  • ethylene forming the units represented by the formula (I) is copolymerized with a monomer forming the units represented by the formula (II) and a radical-polymerizable monomer having functional group selected from an acid anhydride group, a carboxyl group and an epoxy group to form an ethylene copolymer having a functional group.
  • ethylene forming the units represented by the formula (I) is copolymerized with a monomer forming the units represented by the formula (II), and the obtained copolymer is graft-polymerized with a radical-polymerizable monomer having a functional group selected from an acid anhydride group, a carboxyl group and an epoxy group.
  • radical-polymerizable monomer having an acid anhydride group as the functional group there can be mentioned maleic anhydride, norbornene-dicarboxylic anhydride and cyclohexene-dicarboxylic anhydride, and maleic anhydride is preferred.
  • radical-polymerizable monomer having a carboxyl group as the functional group there can be mentioned acrylic acid, methacrylic acid, maleic acid, fumaric acid, monomethyl maleate and monoethyl maleate
  • monomer having an epoxy group there can be mentioned glycidyl acrylate and glycidyl methacrylate.
  • the copolymerization procedures in the second preparation process may be the same as those in the first preparation process.
  • the graft polymerization with a monomer such as maleic anhydride may be carried out in the presence of a radical polymerization initiator by using a kneading machine such as a Banbury mixer or a vent type single or twin screw extruder.
  • the copolymerization ratios of the respective monomers can be set as in the first preparation process.
  • the monomer forming the units represented by the formula (II) may be selected from the compounds specifically mentioned above with respect to the first preparation process.
  • ethylene is copolymerized with an alkyl acrylate or alkyl methacrylate forming the units represented by the formula (II), and the units of the formula (II) (possessed by the ester groups) in the obtained copolymer are partially hydrolyzed to convert some ester groups to carboxyl groups.
  • This hydrolysis can be accomplished by treating the copolymer with a saponifying agent such as an alkali metal hydroxide, an alkaline earth metal hydroxide, an alcoholate, an alkali metal salt of a weak carboxylic acid or an alkali metal salt of a weak inorganic acid.
  • a saponifying agent such as an alkali metal hydroxide, an alkaline earth metal hydroxide, an alcoholate, an alkali metal salt of a weak carboxylic acid or an alkali metal salt of a weak inorganic acid.
  • the copolymer treated with the saponifying agent is treated with an acid to effect neutralization.
  • the melt index (measured at a temperature of 190° C. and a load of 2.16 kg according to JIS K-7210; hereinafter referred to as "MI") of the ethylene copolymer is ordinarily 0.01 to 1000 g/10 min, preferably 0.1 to 500 g/10 min, especially preferably 0.1 to 300 g/10 min.
  • MI melt index
  • the copolymer or grafted copolymer is treated with a low-molecular-weight modifier having an amino group and/or a hydroxyl group (which may have a carboxyl group in addition to the amino group and/or hydroxyl group when the radical-polymerizable monomer (iii) is a monomer having an epoxy group) and having a carbon-to-carbon double bond different from a double bond of an aromatic nucleus to react it with the functional group, whereby carbon-to-carbon double bonds are introduced as the curing sites in the side chains of the polymer.
  • a low-molecular-weight modifier having an amino group and/or a hydroxyl group (which may have a carboxyl group in addition to the amino group and/or hydroxyl group when the radical-polymerizable monomer (iii) is a monomer having an epoxy group) and having a carbon-to-carbon double bond different from a double bond of an aromatic nucleus to react it with the functional group, whereby carbon-to
  • the low-molecular-weight modifiers having amino, hydroxyl and carboxyl groups there may be used unsaturated amines, unsaturated alcohols and unsaturated carboxylic acids (in the case where a monomer containing an epoxy group is used as the radical-polymerizable monomer (iii)) having at least one carbon-to-carbon double bond different from a double bond of an aromatic nucleus.
  • the unsaturated amine used in the present invention is a compound having at least one carbon-to-carbon double bond different from a double bond of an aromatic nucleus and an amino group, and a compound represented by the following general formula is especially preferred: ##STR15## wherein R 15 and R 16 stand for a hydrogen atom, or at least one of them is a hydrocarbon group having at least one double bond, with the proviso that the case where both of them simultaneously stand for a hydrogen atom is excluded.
  • each hydrocarbon group has up to 40 carbon atoms, and a hydrocarbon group having up to 30 carbon atoms, especially 1 to 20 carbon atoms, is preferred. Furthermore, an unsaturated amine which is liquid or solid at normal temperature or a reaction temperature described below, is preferred.
  • 1-amino-9-nonadecene 1-amino-9-octadecene, 1-amino-7-hexadecene, 1-amino-5-pentadecene, 1-amino-4-tetradecene, 1-amino-4-tridecene, 1-amino-3-dodecene, 1-amino-2-decene, 1-amino-2-octene, 1-amino-2-hexene, aminoethyl acrylate and diallyl amine.
  • 1-amino-9-octadecene is especially preferred.
  • the unsaturated alcohol used in the present invention is a compound having at least one double bond different from a double bond of an aromatic nucleus and having a hydroxyl group.
  • the carbon number is up to 40, and it is preferred that the carbon number be up to 30, more preferably up to 25.
  • An aliphatic or aromatic compound having one hydroxyl group is preferred.
  • unsaturated alcohol there can be mentioned unsaturated aliphatic alcohols such as 1-hydroxy-9-octadecene, 1-hydroxy-7-heptadecene, 1-hydroxy-5-tetradecene, 1-hydroxy-5-dodecene, 1-hydroxy-3-octene, allyl alcohol and hydroxyethyl methacrylate, and unsaturated aromatic alcohols (or phenols) such as p-vinylphenol, vinylhydroxybiphenyl and vinylnaphthol.
  • unsaturated aliphatic alcohols such as 1-hydroxy-9-octadecene, 1-hydroxy-7-heptadecene, 1-hydroxy-5-tetradecene, 1-hydroxy-5-dodecene, 1-hydroxy-3-octene, allyl alcohol and hydroxyethyl methacrylate
  • unsaturated aromatic alcohols or phenols
  • the unsaturated carboxylic acid that can be used in the present invention when a monomer containing an epoxy group is used as the radical-polymerizable monomer (iii) is an unsaturated carboxylic acid having a carbon-to-carbon double bond different from a double bond of an aromatic nucleus and having 3 to 40 carbon atoms.
  • methacrylic acid is especially preferred.
  • the amount of the low-molecular-weight modifier such as the unsaturated amine, unsaturated alcohol or unsaturated carboxylic acid is 0.2 to 5.0 mole, preferably 0.2 to 2.0 moles, more preferably 0.5 to 2.0 moles, per mole of the total amount of the structural units derived from the radical-polymerizable monomer having a functional group. If the amount of the low-molecular-weight modifier is smaller than 0.2 mole per mole of the total amount of the structural units derived from the radical-polymerizable monomer having a functional group, a modified ethylene copolymer having a desired modifying effect cannot be obtained.
  • the amount of the modifier exceeds 5.0 moles per mole of the total amount of the radical-polymerizable monomer, the unreacted unsaturated amine or unsaturated alcohol remains in the modified ethylene copolymer to cause bleeding or smelling.
  • the modification with the low-molecular-weight modifier is accomplished, for example, according to the following procedures.
  • the ethylene copolymer having the above-mentioned specific structure and the modifier are dissolved in a solvent and the solution is heated at 50° to 200° C., or the copolymer and modifier are not dissolved in a solvent but are kneaded at a temperature of at least the melting point of the ethylene copolymer but lower than the thermal decomposition temperature (that is, 120° to 300° C.) for 0.5 to 20 minutes (preferably 3 to 15 minutes) by a kneading machine such as a Banbury mixer or a vent type single or twin screw extruder.
  • a kneading machine such as a Banbury mixer or a vent type single or twin screw extruder.
  • a small amount of a catalyst may be used for the modification.
  • the MI of the modified ethylene copolymer is ordinarily 0.01 to 1000 g/10 min, and preferably 0.05 to 50 g/10 min, especially preferably 0.1 to 300 g/10 min. If MI of the modified ethylene copolymer is smaller than 0.01 g/10 min, when the modified copolymer is mixed with additives described below and, sulfur, sulfur donors, peroxides and curing promoters, the kneading property is poor and the moldability is degraded
  • the ethylene copolymer of the present invention may be cured with sulfur or a sulfur donor or crosslinked with a peroxide.
  • the cured product obtained by curing has a very rich rubbery elasticity and the permanent elongation is lower than 45% at room temperature (20° C.). Furthermore, the weatherability is extremely excellent, and when the cured product is allowed to stand at 190° C. for more than 70 hours, the residual ratio of the elongation at break is at least 50%. Moreover, the cured product has an extremely excellent in oil resistance, heat resistance, solvent resistance and low-temperature brittleness resistance. Accordingly, the cured product is especially suitable for the production of hoses and packings to be arranged around an automobile engine. Moreover, the cured product is suitable for hoses to be used in cold districts and for the soles of boots.
  • Curing with sulfur or a sulfur donor may be carried out according to the following procedures.
  • the ethylene copolymer is kneaded with sulfur or a sulfur donor and other additives, for example, a curing assistant such as zinc flower, a filler such as carbon black, titanium while (TiO 2 ) or calcium carbonate (CaCO 3 ), a plasticizer such as a fatty acid ester, a polyester type plasticizer or a polybutene oligomer and a parting agent such as stearic acid by using a kneader or the like.
  • kneading is carried out at a temperature higher than 30° C.
  • the mixture is molded into a sheet or other optional intended shape by using a roll, a calender roll or an extruder, and the molded body is steam-cured or press-cured to obtain a cured product.
  • Sulfur or the sulfur donor is used in an amount of 0.1 to 10 parts by weight per 100 parts by weight of the ethylene copolymer.
  • Curing promoters customarily used in the art of rubbers such as aldehyde-ammonia type promoters, aldehyde-amine type promoters, thiourea type promoters, guanidine type promoters, thiazole type promoters, sulfenamide type promoters, thiuram type promoters, dithiocarbamate type promoters, xanthate type promoters, oxime type promoters and morpholine type promoters, are ordinarily used as the sulfur donor.
  • tetramethylthiuram disulfide dipentamethylenethiuram tetrasulfide, 2-mercaptobenzothiazole and 2-(4'-morpholinodithio)benzothiazole.
  • Curing with a peroxide may be carried out according to customary procedures by using peroxides customarily used, for example, ketone peroxides such as methylethyl ketone peroxide, diacyl peroxides such as benzoyl peroxide, hydroperoxides such as t-butyl hydroperoxide, dialkyl peroxides such as dicumyl peroxide, and alkyl peresters such as t-butyl peracetate.
  • the copolymer is kneaded with a peroxide and a crosslinking assistant in a laboratory plastomill at a temperature lower than the decomposition temperature of the crosslinking agent for a short time (3 to 40 minutes). The mixture is placed in a mold and crosslinked at a temperature higher than the decomposition temperature by a press.
  • the amount of the peroxide used is 0.0005 to 0.02 mole per 100 g of the ethylene copolymer. If the crosslinking agent is used in combination with the peroxide, the amount of the peroxide used can be reduced and the physical properties of the cured product can be improved. Ordinarily, 0.0001 to 0.002 mole of the peroxide and 0.5 to 5 g of the crosslinking agent are used per 100 g of the ethylene copolymer.
  • the crosslinking assistant there can be used, for example, polyfunctional monomers such as triallyl isocyanurate, triallyl cyanurate, diallyl phthalate, triallyl trimethacrylate and trimethylolpropane methacrylate.
  • the melt index (MI) of the ethylene copolymer was measured at a temperature of 190° C. and a load of 2.16 kg according to the method of JIS K-7210.
  • the conversion of the unsaturated amine or unsaturated alcohol was calculated by extracting the modified ethylene copolymer with a non-solvent by using a Soxhlet extractor and determining the amount of the unreacted amine or alcohol in the extract by gas chromatography. Similarly, the conversion was calculated by extracting the modified ethylene copolymer with a non-solvent (carbon tetrachloride/methyl alcohol liquid mixture having a volume ratio of 6/4) by using a Soxhlet extractor and determining the iodine value of the unreacted unsaturated amine or unsaturated alcohol in the extract.
  • a non-solvent carbon tetrachloride/methyl alcohol liquid mixture having a volume ratio of 6/4
  • the tensile test was carried out according to JIS K-6301.
  • the Shore hardness (A) was measured according to JIS K-6301.
  • the heat resistance was tested by allowing the sample to stand at a temperature of 190° C. for 79 hours and measuring the elongation according to JIS K-6301.
  • the Izod impact strength was measured according to ASTM D-256.
  • the maleic anhydride content was determined by the nuclear magnetic resonance and infrared absorption spectrum methods.
  • Ethylene was copolymerized with methyl methacrylate and maleic anhydride according to procedures described below.
  • a monomer mixture comprising 88.8% by weight of ethylene, 10.9% by weight of methyl methacrylate and 0.3% by weight of maleic anhydride and t-butylperoxy-2-ethyl hexanoate in an amount of 550 ppm based on the whole monomers were continuously fed and polymerization was continuously carried out at a temperature of 153° C. under a pressure of 1,750 kg/cm 2 .
  • the thus-obtained ethylene copolymers were modified with oleyl amine according to procedures described below. Namely, a modifier (see Table 2) was added to the ethylene copolymer in an amount of 1 mole or 2 moles per mole of the maleic anhydride units in the copolymer as shown in Table 1, and kneading reaction was carried out at 80° C. and 40 rpm for 20 minutes in a laboratory plastomill. The reaction ratio of oleyl amine with the maleic anhydride units in the copolymer was 64% when oleyl amine was added in an equimolar amount or 91% when oleyl amine was added in an amount of 2 moles per mole of the maleic anhydride units. Other polymers were similarly modified.
  • the thus-obtained modified ethylene copolymer was mixed with a curing agent and a curing assistant at ratios shown in Table 2, and the mixture was kneaded at 80° C. and 80 rpm for 5 minutes in a laboratory plastomill and press-cured under curing conditions shown in Table 2.
  • copolymer (1) 20 g of a terpolymer comprising 79 mole% of ethylene, 18.5 mole% of methyl acrylate and 1.5 mole% of maleic anhydride (having an MI of 220 g/10 min; hereinafter referred to as "copolymer (1)") was dissolved in 200 ml of toluene. To the solution were added 100 ml of water and triethyl amine in an amount of 3 moles per mole of maleic anhydride in the copolymer. The mixture was heated (hydrolyzed) at 80° C. for 5 hours with stirring. Then, hydrochloric acid was added to effect neutralization, and hydrochloric acid was further added so that the reaction mixture became weakly acidic.
  • the mixture was allowed to stand overnight. Then, hexane was added as a precipitating solvent to precipitate the formed polymer. Hexane was exchanged with fresh hexane several times to wash the polymer, and the polymer was vacuum-dried at 40° C. overnight.
  • the hydrolysis ratio was calculated from decrease of the absorption at 1,760 cm -1 , attributed to the acid anhydride, in the infrared absorption spectrum (the same method was adopted in the subsequent examples). It was found that the hydrolysis ratio was 100%.
  • Oleyl amine was added to the hydrolyzed copolymer in an amount of 0.5 mole per mole of the dicarboxyl group in the thus-obtained hydrolysis product of the copolymer (1), and reaction was carried out while kneading the mixture at 120° C. and 40 rpm for 20 minutes in a laboratory plastomill. Oleyl amine was reacted at a ratio of 84% of the theoretical value (Example 4).
  • the thus-obtained half-esterified product of the copolymer (2) was modified with oleyl amine (Example 6) or oleyl alcohol (Example 7) in the same manner as described in Example 4 or Example 2.
  • the conversions were 85% and 78%, respectively.
  • a terpolymer comprising 83 mole% of ethylene, 15.5 mole% of ethyl acrylate and 1.5 mole% of maleic anhydride (having an MI of 212 g/10 min; hereinafter referred to as "copolymer (3)") was half-esterified, washed and dried in the same manner as described above with respect to the copolymer (2). It was found that the copolymer (3) was half-esterified at a ratio of 80%.
  • the thus-obtained half esterification product of the copolymer (3) was modified with oleyl amine (Example 8) or oleyl alcohol (Example 9) in the same manner as described in Example 4 or Example 2.
  • the conversions were 87% and 72%, respectively.
  • a copolymer comprising 90 mole% of ethylene and 10 mole% of methyl methacrylate (having an MI of 250 g/10 min) was used instead of the copolymer (1) used in Example 4, and oleyl amine was added and reaction was carried out in the same manner as described in Example 4 (since the copolymer did not contain a maleic anhydride group, the copolymer was not hydrolyzed nor reacted with oleyl amine) (Comparative Example 3).
  • a copolymer comprising 74 mole% of ethylene and 26 mole% of methyl methacrylate (having MI of 94 g/10 min) was used instead of the copolymer (2) used in Example 6, and oleyl amine was added and reaction was carried out in the same manner as described in Example 6 (for the reason described with respect to Comparative Example 3, the copolymer was not hydrolyzed nor reacted with oleyl amine) (Comparative Example 4).
  • a copolymer comprising 79 mole% of ethylene, 11 mole% of methyl methacrylate and 10 mole% of maleic anhydride (having an MI of 300 g/10 min) was used instead of the copolymer (1) used in Example 4, and hydrolysis, neutralization, washing and drying were carried out in the same manner as described in Example 4. The hydrolysis ratio was 100%.
  • oleyl amine was added to the hydrolyzed polymer and reaction was carried out. Oleyl amine was reacted at a ratio of 80% of the theoretical value (Comparative Example 5).
  • a copolymer comprising 96.7 mole% of ethylene, 1.0 mole% of methyl methacrylate and 2.3 mole% of maleic anhydride (having an MI of 6.7 g/10 min) was used instead of the copolymer (1) used in Example 4, and hydrolysis, neutralization, washing and drying were carried out in the same manner as described in Example 4. The hydrolysis ratio was 100%.
  • the hydrolyzed polymer was reacted with oleyl amine under the same conditions as described in Example 4. Oleyl amine was reacted at a ratio of 80% of the theoretical value (Comparative Example 6).
  • the obtained kneaded mixture was press-cured at 150° C. under a pressure of 60 kg/cm 2 for 40 minutes.
  • the cured product was subjected to the tensile test and heat resistance test and the Shore hardness (A) and permanent elongation were determined.
  • the obtained results are shown in Table 4.
  • the modified polymer was mixed with a curing agent and curing assistant of a recipe shown in Table 6 and the mixture was kneaded under conditions wherein the copolymer could be kneaded. Then, the kneaded composition was press-cured under conditions shown in Table 6.
  • Example 10 In the same manner as described in Example 10, an ethylene/methyl acrylate/acrylic acid copolymer C-2 having a composition shown in Table 5 was treated and cured under conditions (modifiers, amounts, recipes and curing conditions) shown in Table 6. The physical properties are shown in Table 6. Note, in the modification with oleyl alcohol in Example 13, 0.01 part by weight of p-toluene-sulfonic acid was used as a catalyst.
  • the amount grafted of maleic anhydride was 1.35% by weight as the content.
  • This copolymer C-3 was modified and cured in the same manner as in Examples 10 through 13.
  • the reaction conditions and physical properties are shown in Table 6.
  • a maleic anhydride-grafted copolymer C-4 was used in the same manner as described in Example 14 except that an ethylene/methyl methacrylate copolymer having a methyl methacrylate content of 48.0% by weight was used as the base polymer.
  • the thus-obtained polymer was modified and cured in the same manner as described in Example 10. The physical properties are shown in Table 6.
  • An ethylene/methyl methacrylate/maleic anhydride copolymer C-6 having a composition shown in Table 5 or an ethylene/methyl methacrylate/monoethyl maleate copolymer C-7 having a composition shown in Table 5 was reacted with oleyl amine in the same manner as described in Example 10.
  • the amount of oleyl amine reacted was equimolar to the maleic anhydride groups, and the conversion was 85% or 87%.
  • the thus-obtained oleyl amine-modified copolymer was mixed with 2 PHR of dicumyl peroxide, and the mixture was kneaded at 100° C. and 40 rpm for 3 minutes.
  • the kneaded composition was press-crosslinked under conditions shown in Table 7.
  • the physical properties of the thus-obtained crosslinked product are shown in Table 7 (Examples 19 and 20).
  • the peroxide was not added, the polymer was not crosslinked and was molten even at 110° C. (Comparative Examples 9 and 10).
  • the modified copolymer obtained in Example 22 was allowed to stand in an atmosphere maintained at 200° C. for 6 hours. By this operation, an imide structure was formed and the physical properties and heat resistance of the cured product were improved Absorptions at 1640 cm -1 and 1540 cm -1 , attributed to the amide, disappeared, and an absorption of the imide appeared at 1700 cm -1 .
  • the copolymer C-9 was modified with stearyl amine, which is a saturated amine, in the same manner as described in Example 22. Curing of the polymer was attempted under additive and curing conditions shown in Table 7, but the polymer could not be cured (molten at 110° C.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
US07/480,382 1984-05-21 1990-02-15 Multiplex ethylene copolymer, process for preparation thereof and cured product thereof Expired - Fee Related US5093429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/797,986 US5252675A (en) 1984-05-21 1991-11-26 Cured product of a modified multiplex ethylene copolymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP59-100391 1984-05-21
JP59100391A JPS60245602A (ja) 1984-05-21 1984-05-21 加硫性変性エチレン共重合体
WOPCT/JP85/00276 1985-05-21

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US9876787A Continuation 1984-05-21 1987-09-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US07/797,986 Division US5252675A (en) 1984-05-21 1991-11-26 Cured product of a modified multiplex ethylene copolymer

Publications (1)

Publication Number Publication Date
US5093429A true US5093429A (en) 1992-03-03

Family

ID=14272692

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/480,382 Expired - Fee Related US5093429A (en) 1984-05-21 1990-02-15 Multiplex ethylene copolymer, process for preparation thereof and cured product thereof

Country Status (6)

Country Link
US (1) US5093429A (de)
EP (1) EP0181408B1 (de)
JP (1) JPS60245602A (de)
AU (1) AU578700B2 (de)
DE (1) DE3580242D1 (de)
WO (1) WO1985005363A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240544A (en) * 1988-04-05 1993-08-31 Sumitomo Chemical Company, Limited Adhesive composition
US5741889A (en) * 1996-04-29 1998-04-21 International Paper Company Modified rosin emulsion
WO1999040128A1 (en) * 1998-02-06 1999-08-12 Tci Incorporated A SOLID POLYMER SORBENT FOR Mo-99 EXTRACTION AND ITS METHOD OF PRODUCTION
US20020151657A1 (en) * 2001-04-16 2002-10-17 Cohen Gordon Mark Process for crosslinking of acrylic ester copolymers
US20020188841A1 (en) * 1995-07-27 2002-12-12 Jones Kevin C. Digital asset management and linking media signals with related data using watermarks
US20030023004A1 (en) * 2000-03-30 2003-01-30 Bendler Herbert Vernon Process for crosslinking of ethylene/acrylic ester copolymers
US6528586B2 (en) 2000-05-16 2003-03-04 Gordon Mark Cohen Compositions of elastomeric ethylene/(meth)acrylic (acid) ester copolymer and polylactone or polyether
US20040214954A1 (en) * 2003-04-28 2004-10-28 Cohen Gordon Mark Compositions containing elastomeric ethylene or (METH) acrylic ester copolymers
US8491770B2 (en) 2010-12-10 2013-07-23 Axalta Coating Systems IP Co. LLC Cathodic electrocoating compositions

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987199A (en) * 1987-09-24 1991-01-22 Sumitomo Chemical Company, Limited Ethylene-acrylic acid ester copolymer and process for producing the same
WO1996021445A1 (en) * 1995-01-13 1996-07-18 The General Hospital Corporation Methods of inhibiting neurodegenerative diseases
DE19645603A1 (de) * 1996-11-06 1998-05-07 Clariant Gmbh Co- und Terpolymere auf Basis von alpha, beta-ungesättigten Verbindungen und alpha, beta-ungesättigten Dicarbonsäureanhydriden
US7179656B2 (en) 2001-07-17 2007-02-20 E. I. Du Pont De Nemours And Company Sublimation screening test and apparatus
EP4215554A1 (de) * 2020-09-15 2023-07-26 Unimatec Co., Ltd. Kautschukzusammensetzung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2977334A (en) * 1956-10-04 1961-03-28 Monsanto Chemicals Derivatives of ethylene/maleic anhydride copolymers
US3035027A (en) * 1958-07-08 1962-05-15 Us Rubber Co Cross-linking copolymers of n-carbamylmaleimide
US3925326A (en) * 1971-04-07 1975-12-09 Du Pont Alternating copolymers of ethylene/alkyl acrylates/cure-site monomers and a process for their preparation
GB1548232A (en) * 1975-03-17 1979-07-04 Du Pont Alternating copolymers of ethylene and alkyl acrylates

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1495787A1 (de) * 1964-03-10 1970-01-29 Bayer Ag Herstellung von Mischpolymerisaten aus AEthylen und Vinylacetat
US3699185A (en) * 1970-12-21 1972-10-17 Ford Motor Co Rubber-modified acrylic copolymer thermoset
BE787415A (fr) * 1971-08-13 1973-02-12 Wacker Chemie Gmbh Dispersions adhesives
JPS5434011B2 (de) * 1973-07-23 1979-10-24
JPS52136290A (en) * 1976-05-11 1977-11-14 Kansai Paint Co Ltd Modified alternating copolymers
JPS5716004A (en) * 1980-07-02 1982-01-27 Lion Corp Production of partial amide of poly(olefin/maleic acid)
US4520183A (en) * 1982-12-22 1985-05-28 E. I. Du Pont De Nemours And Company Process for making random ethylene/alkyl acrylate copolymers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2977334A (en) * 1956-10-04 1961-03-28 Monsanto Chemicals Derivatives of ethylene/maleic anhydride copolymers
US3035027A (en) * 1958-07-08 1962-05-15 Us Rubber Co Cross-linking copolymers of n-carbamylmaleimide
US3925326A (en) * 1971-04-07 1975-12-09 Du Pont Alternating copolymers of ethylene/alkyl acrylates/cure-site monomers and a process for their preparation
GB1548232A (en) * 1975-03-17 1979-07-04 Du Pont Alternating copolymers of ethylene and alkyl acrylates

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240544A (en) * 1988-04-05 1993-08-31 Sumitomo Chemical Company, Limited Adhesive composition
US20020188841A1 (en) * 1995-07-27 2002-12-12 Jones Kevin C. Digital asset management and linking media signals with related data using watermarks
US5741889A (en) * 1996-04-29 1998-04-21 International Paper Company Modified rosin emulsion
US6048439A (en) * 1996-04-29 2000-04-11 International Paper Company Modified rosin emulsion
WO1999040128A1 (en) * 1998-02-06 1999-08-12 Tci Incorporated A SOLID POLYMER SORBENT FOR Mo-99 EXTRACTION AND ITS METHOD OF PRODUCTION
US5962597A (en) * 1998-02-06 1999-10-05 Tci Incorporated Solid polymer sorbent for MO-99 extraction and its method of production
US20030023004A1 (en) * 2000-03-30 2003-01-30 Bendler Herbert Vernon Process for crosslinking of ethylene/acrylic ester copolymers
US6803424B2 (en) * 2000-03-30 2004-10-12 E. I. Du Pont De Nemours And Company Process for crosslinking of ethylene/acrylic ester copolymers
US6528586B2 (en) 2000-05-16 2003-03-04 Gordon Mark Cohen Compositions of elastomeric ethylene/(meth)acrylic (acid) ester copolymer and polylactone or polyether
US20020151657A1 (en) * 2001-04-16 2002-10-17 Cohen Gordon Mark Process for crosslinking of acrylic ester copolymers
US20040214954A1 (en) * 2003-04-28 2004-10-28 Cohen Gordon Mark Compositions containing elastomeric ethylene or (METH) acrylic ester copolymers
US8491770B2 (en) 2010-12-10 2013-07-23 Axalta Coating Systems IP Co. LLC Cathodic electrocoating compositions

Also Published As

Publication number Publication date
EP0181408A1 (de) 1986-05-21
EP0181408B1 (de) 1990-10-24
EP0181408A4 (de) 1987-07-09
WO1985005363A1 (en) 1985-12-05
AU578700B2 (en) 1988-11-03
DE3580242D1 (de) 1990-11-29
JPS60245602A (ja) 1985-12-05
AU4298385A (en) 1985-12-13

Similar Documents

Publication Publication Date Title
US5093429A (en) Multiplex ethylene copolymer, process for preparation thereof and cured product thereof
US5026807A (en) Novel ester group-containing (meth)acrylic acid ester, novel (co)polymer thereof, composition comprising the (co)polymer and composition comprising the ester group containing (meth)acrylic acid ester
US4508885A (en) Elastomer of acrylic ester type copolymer
CA1131834A (en) Modified monoolefin copolymer elastomer with improved heat and oil resistance
US5252675A (en) Cured product of a modified multiplex ethylene copolymer
JP3981845B2 (ja) アクリルゴム組成物および加硫物
US4238577A (en) Novel elastomer composition and processes therefor
JPH0414123B2 (de)
CA2047967C (en) Crosslinkable acrylic rubber and method for producing the same
US4104329A (en) Acrylate-modified ethylene-vinyl acetate polymer
JP2606282B2 (ja) エラストマー組成物
US5214108A (en) Process for modifying the viscosity of copolymers of ethylene and unsaturated carboxylic acids
JP3348471B2 (ja) ゴム組成物
US4255547A (en) Novel elastomer composition and processes therefor
EP0570160A2 (de) Kautschuk-Zusammensetzung
CA1151800A (en) Emulsion process for preparing elastomeric vinyl acetate-ethylene copolymers
US4284740A (en) Acrylate copolymers grafted onto a polar, water-soluble backbone polymer
JPH03160008A (ja) アクリル系共重合体ゴムおよびその製造方法
JPS60118733A (ja) 耐候性耐衝撃性樹脂組成物
JPS644529B2 (de)
CA1131835A (en) Elastomer with improved heat and oil resistance based on modified chlorinated polyethylene
US4419493A (en) Sulfur-vulcanizable blends of ethylene-vinyl acetate copolymer elastomers and polyacrylate elastomers
US5610226A (en) (Meth)acrylate copolymer and its elastomer compositions
JPS62121747A (ja) 変性エチレン共重合体の架橋方法
JPS61266409A (ja) 変性エチレン共重合体およびその加硫物

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHOWA DENKO KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:MOTEKI, YOSHIHIRO;IWASHITA, TOSHIYUKI;FUNADA, HITOSHI;AND OTHERS;REEL/FRAME:005242/0235

Effective date: 19860113

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 20040303

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362