US5017257A - Variable length die cutter and method of cutting composite label - Google Patents
Variable length die cutter and method of cutting composite label Download PDFInfo
- Publication number
- US5017257A US5017257A US07/456,494 US45649489A US5017257A US 5017257 A US5017257 A US 5017257A US 45649489 A US45649489 A US 45649489A US 5017257 A US5017257 A US 5017257A
- Authority
- US
- United States
- Prior art keywords
- cutter
- label
- composite
- cutting
- blades
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 46
- 238000005520 cutting process Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000007246 mechanism Effects 0.000 claims abstract description 31
- 230000000694 effects Effects 0.000 claims abstract description 13
- 238000010030 laminating Methods 0.000 claims description 9
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims 4
- 239000005001 laminate film Substances 0.000 claims 1
- 238000004804 winding Methods 0.000 claims 1
- 101000821257 Homo sapiens Syncoilin Proteins 0.000 description 7
- 102100021919 Syncoilin Human genes 0.000 description 7
- 101100368146 Arabidopsis thaliana SYNC2 gene Proteins 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000011217 control strategy Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 230000007723 transport mechanism Effects 0.000 description 2
- 101100368147 Arabidopsis thaliana SYNC3 gene Proteins 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000002650 laminated plastic Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B31—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31D—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
- B31D1/00—Multiple-step processes for making flat articles ; Making flat articles
- B31D1/02—Multiple-step processes for making flat articles ; Making flat articles the articles being labels or tags
- B31D1/026—Cutting or perforating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D5/00—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D5/20—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D5/00—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D5/20—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
- B26D5/26—Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed wherein control means on the work feed means renders the cutting member operative
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/84—Specific machine types or machines suitable for specific applications
- B29C66/841—Machines or tools adaptable for making articles of different dimensions or shapes or for making joints of different dimensions
- B29C66/8412—Machines or tools adaptable for making articles of different dimensions or shapes or for making joints of different dimensions of different length, width or height
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B31—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
- B31D—MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
- B31D1/00—Multiple-step processes for making flat articles ; Making flat articles
- B31D1/02—Multiple-step processes for making flat articles ; Making flat articles the articles being labels or tags
- B31D1/021—Making adhesive labels having a multilayered structure, e.g. provided on carrier webs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1052—Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
- Y10T156/1082—Partial cutting bonded sandwich [e.g., grooving or incising]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1052—Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
- Y10T156/1084—Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing of continuous or running length bonded web
- Y10T156/1085—One web only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/12—Surface bonding means and/or assembly means with cutting, punching, piercing, severing or tearing
- Y10T156/137—Stamp from multiple row sheet type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/444—Tool engages work during dwell of intermittent workfeed
- Y10T83/4458—Work-sensing means to control work-moving or work-stopping means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/525—Operation controlled by detector means responsive to work
- Y10T83/531—With plural work-sensing means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/525—Operation controlled by detector means responsive to work
- Y10T83/541—Actuation of tool controlled in response to work-sensing means
Definitions
- the present invention relates to a novel apparatus for making die cut labels of any length using a fixed dimension die cutter.
- a label is a strip of material attached to an object that is marked with information relevant to the object.
- the form of the label which includes the material of the label itself as well as the format in which it is supplied), its dimensions, method of attachment and finally format; the second is the method of marking the label and the information contained in the marking.
- the most common form of label is that of a flexible material such as paper or imprintable plastic film that is coated on one side with an adhesive backing material, the adhesive coating side being laminated onto a coating material such as paper that has itself been treated with a release coating.
- This technique protects the adhesive side of the label until it is to be used, provides an easy way to separate the label from its backing, and further provides the way to attach the label to the object to be labeled.
- the label stock of this nature is supplied as a continuous roll, a fan-fold stack or as individual sheets.
- Labels to be useful must be cut to size.
- the label stock as supplied from a coating operation usually comes in the form of a large continuous roll. This roll is then subjected to a process known as conversion in which several steps take place. These steps include slitting and rewinding which results in a roll of continuous stock of reduced dimensions.
- further steps of die cutting and preprinting can be undertaken to produce labels whose size and possibly information content are predetermined. Other steps such as perforating, punching and folding may be taken to produce fan fold or cut sheet.
- the slitting step defines only the label width.
- Precutting and preprinting define not only the label length but also some if not all of the label content.
- Die cut stock restricts the label size in two dimensions but when used alone defines the label and does not require a further cutting step.
- Continuous stock restricts the label size in only one dimension but requires a cutting step after printing in order to produce an individual label. This cutting step may be done manually as with a pair of scissors or automatically as part of the printer Further, the cutting can be complete, i.e., both backing and label stock cut through, or partial, i.e., the label stock cut through but the backing material left intact.
- Complete cutting is suitable for tag stock but is usually unsatisfactory for adhesive backed labels because it is difficult to start to peel the label from the backing after it has been flush cut and because it causes a number of problems in attempting to apply labels automatically.
- Paper stock labels print well but are readily abraded or torn and are not waterproof.
- Plastic stock labels are strong and have good abrasion resistance as well as water and other solvent repellence but the printed image often remains on the surface of the label and is subject to smearing. Either stock can be protected by overlaminating the printed surface with a clear adhesive backed plastic film or laminate. As a rule, the laminate cannot be applied until after the label has been printed.
- laminating the labels wtill produces a continuous label which must then be cut to size. If the label stock is die cut, laminating the labels with a continuous film results in what is effectively a continuous label which must still be cut.
- the most general solution is to incorporate a laminating station and a cutter in conjunction with a printer as part of a machine to produce labels.
- the cutter may take several forms. Butt cutters make one straight cut across the width of the stock. The cut effectively separates the trailing edge of one label from the leading edge of the subsequent label.
- Butt cutters make one straight cut across the width of the stock. The cut effectively separates the trailing edge of one label from the leading edge of the subsequent label.
- a stationary knife cutter (“Cutting Device", U.S. Pat. No. 4,494,435) or a rotary synchronous cutter (application for letters patent Ser. No. 386,214, filed July 28, 1989) and are incorporated in printer laminators manufactured by Imtec, Inc., Bellows Falls, Vt.
- a die cut label is either necessary or desirable.
- Butt cut labels are rectangles with square corners.
- Die cut labels can have corner radii of whatever shape the die cut is to be.
- the label edges can be defined by curvilinear lines of arbitrary shape.
- the rounded corners or curvilinear edges can be designed to be aesthetically more pleasing, at least to some.
- a rotary cutter as referenced above can be fitted with a cutter roller that contains a die cut knife in place of the elongate blades. If such a cutter is operated synchronously with the label stock it will produce die cut labels of the same dimension as the die. Operation of a rotary die in this manner is well known and is used extensively in conversion applications.
- the problem with a rotary die operated in this manner is that the die defines the label length, that is, its longitudinal length herein.
- a new die must be machined for every label size.
- the diameter of the cutter roller must be changed, based on the label pitch (number of labels per unit distance of the label stock).
- the maximum and minimum diameters of the cutter roller There are physical limitations to the maximum and minimum diameters of the cutter roller.
- the linear velocity changes proportionally.
- the cutter rotational speed In order to keep the cutter surface speed equal to that of the label stock, the cutter rotational speed must be adjusted. In a conversion machine, this is normally done by standardizing on a number of diameters and having an appropriate number of drive gears. In a stand alone printer, the size and cost restrictions make this approach awkward if not infeasible.
- apparatus that includes a transporter mechanism for moving a label stock, a detector for identifying the exact position of the label in the transporter, a rotary die cutter of known length that is separately operable, and a controller that monitors label position and controls the operation of the die cutter in such a way as to produce die cut labels of varying length.
- FIG. 1 is a block diagram showing the interrelationships amongst the various mechanisms that compose the present invention
- FIG. 2 is a schematic representation of a machine embodying the concepts of the invention
- FIG. 3 is a view of a cutter assembly embodying the concepts of the present invention.
- FIG. 4 is a plane projection of the circumferential surface of the die cutter assembly
- FIGS. 5A-5G are cross sectional views of the die cutter portion of the cutter assembly of FIG. 3 (section lines omitted), taken along the line 5--5 in FIG. 3, looking in the direction of the arrows and depicting several angular positions of the die cutter for various control states of the controller;
- FIGS. 6A-6C are diagrams showing the positional relationship of the die cutter with respect to the label stock for the three conditions of label length with respect to die cutter length;
- FIG. 7 is a plane projection of the circumferential surface of a die cutter containing multiple curvilinear sections separated by parallel cutter sections;
- FIG. 8 is a plane projection of the circumferential surface of an alternate form of a die cutter in which the portion of the blades that are oriented principally parallel to the major axis of the cutter cylinder are skewed with respect to that axis by a small helical theta;
- FIG. 9 is a top view of a cutter assembly containing the cutter of FIG. 8.
- FIGS. 10A and 10B show a cutter and cut stock, respectively.
- the block diagram labeled 100 in FIG. 1 depicts a variable length die cutting system showing the interrelationships amongst the various elements that together form or constitute the present invention.
- a transport mechanism 101 arranged to move label stock 102 precisely in a direction (i.e., the longitudinal or length or X-direction herein).
- a detection mechanism 103 is arranged to determine the precise position of individual labels.
- a separately positioned controllable rotary die cutter 105 is arranged to make precise curvilinear--or other--cuts on the label stock.
- the transporter 101 and cutter 105 are interconnected with a controller 104 that operates the transporter 101 and cutter 105 in such a way as to advance the label stock through the transporter 101 and individually die cut the labels to the desired size.
- An optional laminator 106 is arranged to apply a laminating film over the label prior to cutting. (See the earlier Murphy patent applications.)
- FIG. 2 is a mechanical schematic of a preferred embodiment of the present invention.
- a transport mechanism consisting of a label supply reel 155, a capstan and pressure roller assembly 159, and a takeup reel 156 is arranged to transport label stock 160 under the control of a positionally controllable motor 154 past a printer station 150, an optional laminating station 151 and a rotary die cutter station 152.
- the die cutter station 152 is operated by a separate positionally controllable motor 153. Operation of the printer station 150, the capstan motor 154 and the die cutter motor 153 are all controlled individually by the controller 104.
- the printer operating in conjunction with the capstan motor 154 constitutes the detector 103 of the block diagram of FIG. 1 in that labels are defined by the location of the printing on the label.
- the distance 161 between the print point and the cut point on the label stock, labeled DIST in FIG. 2 is a known constant for any given configuration.
- the controller 104 serves to position the label stock precisely in the label length (i.e.,X) direction by means of the capstan motor 154 and capstan assembly and to control the printer 150 in such a way as to place desired indicia on the surface of the label.
- the printer 150 may be any type of printer suited for the purpose such as impact drum, dot matrix, thermal transfer, etc.
- the controller 104 operates the cutter motor 153 in such a way as will be explained hereinafter to cut the label stock into die cut labels of any desired length. (Programming the controller 104 to perform the various functions herein required is well within the skill of workers in this art which is quite sophisticated in programming techniques.)
- the detector can be an optical detector suitable for sensing preprinted marks, gaps between die cut labels, holes punched in the stock, printed data, etc.
- the rotary cutter station 152 is shown further in FIG. 3.
- the positionally controllable motor 153 drives a pulley 200 attached to the shaft of the cutter roller 209 through a pulley 207 and a timing belt 208.
- the cutter roller diameter, pulley drive ratio and position increment of the motor are chosen such that one position increment of the label stock through the positionally controllable motor 154 corresponds to an identical linear motion of the circumference of the cutter roller 209.
- the two precision machined surfaces 201A, 201B of the cutter roller 209 bear against a master roller 202 which in turn bears against bearings 210A, 210B.
- the rollers and bearings are supported by additional bearings, shafts and a rigid housing which, for clarity, are not shown in the figure.
- the diameter of the cutter roller 209 is fixed at a reference dimension at the outside precision surfaces 201A, 201B.
- the diameter everywhere else along the cutter roller 209 length is undercut by an amount greater than the maximum stock thickness everywhere except in those areas where it is desired to cut the stock; the cutter roller 209 is machined in the shape of a knife edge, the outline of the knife edge being the length and width desired for the label to be cut and the point of the knife edge being machined to a radius that is below the radius of the surfaces 201A, 201B by an amount equal to the thickness of the backing of the label stock.
- These knife edges are shown as 203, 204, 205 and 206 in the figures.
- FIG. 4 is a plane projection, diagrammatic in form of part of the circumference of a cutter roller 209 as it rotates.
- Each knife set is indicated by a literal suffix A, B, etc. (i.e., 209A, 209B . . . )
- a point midway between the trailing knife edge 206D, not shown, of one blade set and the leading edge 204A of the following set is marked HOMEA . . . .
- Each knife set 209B is then subdivided into three regions marked SYNC1, SLEW and SYNC2.
- a four-section die cutter is shown in the figure, but this use is illustrative rather than restrictive. In the concept of the present invention, there may be any number of knife sets 209A . . .
- the cutter roller 209 includes four cutters 209A . . . which have lateral cutters or blades 206A and 204A and parallel cutters 203A and 205A respectively to cut in the transverse or lateral direction and the parallel direction, respectively.
- the cutter roller 209 rotates about the Z-axis, as is explained elsewhere herein, and cuts labels from the backing as the two, as a composite, move in the X-direction.
- the cutter roller 209 is operated synchronously with respect to the label stock 102, the label stock will be cut to a shape that is identical to that of the die knives.
- To change the label length i.e., the X-direction
- a new die cutter be machined in the shape of the new label, and that the cutter roller diameter and motor gearing be adjusted so as to maintain linear motion synchronism with respect to the label stock.
- the region marked SYNC1A declares SYNC1, etc., generally and is characterized as that region in which the knife edge 204A has a significant dimension in the Z-direction, that is, perpendicular to the direction of travel of the label stock).
- the region marked SYNC2A is characterized as that region in which the trailing knife edge 206 (i.e., 206A . . . ) has a significant dimension in the Z-direction.
- the other region marked SLEWA in FIG. 4 is characterized as that portion of the cutter where the knife edges 203A . . . 205A . . . are essentially parallel to the direction of travel (X-direction) of the label stock and hence have no significant component in the Z direction.
- any relative motion of the die cutter roller 209 with respect to the label stock will result in forces on the label stock in the direction of travel of the label stock. These forces can affect operations up or downstream of the cutter roller 209, such as degrading print quality. They can also result in tearing of the label stock or peeling of the label from the liner. Therefore, whenever the die cutter is operating in a portion of the die that is characterized as having a significant cutting component of the knife blade in the Z-direction, the cutter roller 209 is operated synchronously with respect to the label stock.
- the die cutter roller 209 When the die cutter roller 209 is operated in a region where the knife edges are essentially parallel to the direction of motion of the label stock, i.e., when the blades 203A, 205A are cutting the label stock, shown for example as that marked SLEWA in FIG. 4, the effect of relative motion of the cutter roller 209 with respect to the label stock depends upon the direction of relative motion. If the cutter roller is turning faster than the label stock, then the knife blade simply slips through the already cut portion of the label stock. If the label stock is moving faster than the knife edge, then the label stock slides past the knife edge. In essence, the cutter roller 209 acts as a slitter when operating in this mode. The forces on the label stock in the X-direction are quite low under these conditions and will not affect operations upstream or downstream.
- FIG. 2 a sensor 162 is arranged to determine the home position of the cutter roller 105. This corresponds to the position marked HOME in FIG. 4.
- FIGS. 5A . . . show several positions of the cutter roller as it progresses through a cut cycle.
- FIG. 5A corresponds to the home position and is characterized as being that location midway between the trailing edge 206 of one knife set and the leading edge 204 of the following knife set. Normally the die cutter knives are laid out such the neither of the knife edges 204, 206 is in contact with the stock when the cutter roller 209 is in this position. This is done so that the stock can be threaded through the machine with the cutter in its home position and so that the stock can be driven through the machine with the cutter roller 209 at rest and with no cutting action taking place.
- the controller 104 of FIG. 2 is preprogrammed with the fixed distance 161 from the print point to the cut point on the label stock. As the controller 104 advances the label stock through the mechanism, it keeps track of the location of the printed label edges. When the leading edge of the first label gets sufficiently close to the cut point, the controller operates the cutter motor 153 in position synchronism with respect to the motion of the label, thereby causing the cutter roller 209 to rotate. As the cutter roller 209 rotates, the leading knife edge 204 contacts the label stock and begins to cut it. FIGS. 5B-5D show the knife edge 204 as it contacts, completely cuts and finally comes clear of the label stock. This portion of the rotational sequence is designated as SYNC1A in FIG. 4.
- the velocity of the label stock need not be and, in fact, normally is not constant at this or any other time in the cycle. It is the relative velocity or positional difference between the cutter knife and the label stock that must be maintained at zero.
- the cutter roller 209 can now be operated independently of the label stock since relative motion of the cutter with respect to the label stock has no effect on the stock except to slit it to a fixed width as determined by the spacing of the blades 203, 205. Since the controller determines the label length either by direct measurement, control of the printing process or from preprogramming, it can control the cutter roller 209 while the cutter roller 209 is in the SLEW portion of its cycle to obtain a variable length label.
- the controller 104 is preprogrammed with the exact length of label that would be cut by the die cutter roller if the roller were to be operated synchronously throughout a cycle. This length is shown as the length DIECUTTER in FIG. 6. Further, the length DIECUTTER is equal to the sum of the lengths SYNC1, SLEW and SYNC2 of FIG. 4. These three dimensions are also known to the controller 104. Once the controller 104 determines that the cutter has advanced past the portion of the cut cycle designated SYNC1, it calculates the difference between the label length (LABEL) and the diecutter length DIECUTTER.
- LABEL label length
- the label is the same size as the die cutter and the controller 104 will continue to operate the die cutter 105 synchronously with respect to the label stock throughout the remainder of the cut cycle.
- This is the condition shown in FIG. 6B, in which the horizontal axis represents motion of the label stock and the vertical axis motion of the cutter roller.
- the zero difference condition there is one for one correspondence between motion of the stock and motion of the cutter.
- the controller 104 causes the cutter roller 209 to effectively slow down during the portion of the cut cycle marked as SLEW in FIG. 4. This is referred to as the slide mode, in that the stock slides past the cutter blades 203, 205.
- the controller 104 can calculate the difference shown in FIG. 6A as EXCESS. It can then allow an amount of stock equal to EXCESS to pass through the machine before it resumes synchronous operation. In practice, the controller 104 would normally oscillate the cutter back and forth a small amount (dither) as the label stock passed through the machine in order to reduce friction between the cutter roller 209 and the thing cut, i.e., the label 310.
- Operation in this mode is illustrated in FIG. 6A as the region marked DITHER.
- the controller 104 can calculate the ratio R between the length of the label minus the distances SYCNC1 and SYNC2 divided by the distance SLEW. It can then use this ratio R to advance the cutter one position increment for every R position increments of the label stock. Operation in this mode is illustrated in FIG. 6A as the region marked SLOSYNC.
- the cutter roller 209 can be held stationary for the R-1 steps of the label stock, or it can be dithered to reduce friction.
- the controller 104 will resume synchronous operation.
- the positional correspondence between the die cutter roller 209 and the label stock for either of these strategies is shown in FIG. 6A. If the label length is greater than the distance between the print point and the cut point 161 in the FIG. 2, the controller 104 may not know the label length at that instant. This could well be the case if preprinted sense marks were being used on the label stock and they were spaced further apart than the distance 161. Under these conditions, the controller 104 can simply set the cutter roller 209 up to dither continuously until it finally does determine the label length, whereupon it can revert to either of the above strategies. There is no inherent limit in the length of the label that can be produced from a given die cutter using this strategy other than the amount of stock on the supply reel.
- the effect is one of generating a label of any arbitrary length greater than the die cutter length using a fixed length die cutter (i.e., a cutter that typically in the form of a polygon with two substanially parallel transverse knives and two substanially parallel parallel knives) .
- a fixed length die cutter i.e., a cutter that typically in the form of a polygon with two substanially parallel transverse knives and two substanially parallel parallel knives.
- a third possible condition is the case where the label length is shorter than the die cutter.
- the controller operates the cutter in what is referred to as the slip mode.
- the controller 104 determines the difference between the label length minus (SYNC1 plus SYNC2) and the SLEW distance of the die cutter. It then advances the die cutter roller 209 at high speed until it makes up this offset, taking into account any motion of the label stock as it progresses.
- the effect is to cause the die cutter knives 203, 205 (i.e., the knives parallel to the longitudinal or length direction) to slip through the stock until the cutter has come to a synchronous position.
- the positional relationships between the die cutter roller 209 and the label stock are shown in FIG. 6C.
- the controller 104 always monitors the cutter roller 209 position to be sure that it will never be operated in SLIP or SLIDE mode except when it is in the SLEW portion of its cut cycle. This implies that the smallest label that can be die cut with this system is one that is SYNC1 plus SYNC2 units long. In practice, it must be slightly longer than this if motion of the label stock during SLIP mode is permitted.
- control conditions described above are such that the cutter roller 209 has always gone back to the synchronous mode of operation by the time that the SYNC2 portion of the cutter is cutting the label stock. This condition is necessary to fulfill the requirements that there be no relative motion of the cutter roller 209 with respect to the stock during either of the SYNC portions of the cutter cycle.
- the distance SLEW may be broken up into two or more distances SLEW1, SLEW2, etc., separated by other distances SYNC3, etc., where the SYNCX distances have portions of the die knives that contain significant components in the Z direction and the SLEWX portions have no such Z direction components.
- the controller 104 need only know the relevant dimensions of the die cutter roller 209 and the corresponding label to carry out the same control strategies as disclosed above in generating labels of different sizes while using a fixed length die cutter, and all such modifications are deemed to fall within the scope of the present invention.
- the cutter roller 209 may have mutiple die knife sets 209A, 209B, etc., as shown in FIG. 4, for example.
- knife sets need not be identical and in fact can be substantially different as long as the controller 104 is preprogrammed with the knife set dimensions and the detector 162 can provide adequate position information of the cutter roller 209.
- multiple knife sets can be arranged in the axial or direction and they too fall within the scope of the present invention.
- FIG. 8 is a plane projection of an alternative die layout to that shown in FIG. 4.
- the knife blades 204', 206' of a cutter roller 209' are skewed by a small helical angle THETA with respect to the Z axis.
- the reason for doing this is to spread the actual cut out over a wide angle of rotation of the cutter.
- the cut starts at one edge of the label and progresses in the Z direction while the cutter rotates and the label stock moves in the X direction as described in the cited reference.
- the skewing of the leading and trailing edges of the label that would otherwise occur because of the helical angle is compensated by offsetting the entire cutter assembly an equal and opposite angular amount as shown in FIG. 9. This effectively restores the leading and trailing edges of the label itself to being perpendicular to the direction of travel of the label stock (X axis) while reducing the peak cutting forces significantly.
- the die system 100 of FIG. 1 includes a transporting mechanism 101 to receive a composite 300 in FIG. 10 that includes a plurality of labels 310A . . . on a backing 301 and adapted to transport the composite 300 in a longitudinal direction, that is, the X-direction herein.
- a detector 103 is operable to ascertain the exact location of individual labels 310A . . . , as well as, to provide signals to permit the transporting to be achieved with measured precision in the longitudinal direction.
- a fixed dimension, two-dimensional rotary cutter 209 is positioned and is operable to cut a label 310 from the composite 300 in a rotational mode as the composite is being transported in the longitudinal or X-direction without cutting the backing 301 of the composite 300.
- a drive mechanism and controller 104 serves to drive the rotary cutter 209 in rotary motion to effect cutting of the leading edge 304 of the label in FIG. 10 in a transverse direction orthogonal to the longitudinal X-direction and then at two sides 303,305 of the label parallel to the longitudinal, i.e., X-direction, as the composite 300 moves along, the drive mechanism 153, 164, 152 of FIG.
- controller 104 being adapted to stop--or to increase or decrease (SLIP or SLIDE, respectively)--rotary motion of the cutter roller 209 as the composite 300 moves along and while cutting of the sides 303,305 continues to cut the sides to lengths that are not limited by the dimensions of the cutter edges 303, 305 effecting cutting of the sides and being adapted, as well, to continue rotation of the rotary cutter 209 which then effects cutting of the trailing edge 306 of the label 310 whereby the lengths of the sides 303, 305 of the label 310 are precisely controllable in length.
- the drive mechanism is typically a stepper motor or a servomotor with its control.
- the mechanism 101 includes a detector that serves to provide precise position information with respect to position in the longitudinal direction of individual labels.
- the detector may take various forms, as discussed earlier herein and in the art of record.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Making Paper Articles (AREA)
- Labeling Devices (AREA)
Abstract
Description
Claims (32)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/456,494 US5017257A (en) | 1989-12-26 | 1989-12-26 | Variable length die cutter and method of cutting composite label |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/456,494 US5017257A (en) | 1989-12-26 | 1989-12-26 | Variable length die cutter and method of cutting composite label |
Publications (1)
Publication Number | Publication Date |
---|---|
US5017257A true US5017257A (en) | 1991-05-21 |
Family
ID=23812989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/456,494 Expired - Fee Related US5017257A (en) | 1989-12-26 | 1989-12-26 | Variable length die cutter and method of cutting composite label |
Country Status (1)
Country | Link |
---|---|
US (1) | US5017257A (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992005959A1 (en) * | 1990-09-27 | 1992-04-16 | Computype, Inc. | Rotary die cutting mechanism |
US5141572A (en) * | 1990-09-19 | 1992-08-25 | Gerber Garment Technology, Inc. | Labelling apparatus and method for a sheet material cutting system and a supply of labels for use therewith |
US5277734A (en) * | 1991-11-07 | 1994-01-11 | Fred Bayer Holdings Inc. | Electrically conductive circuit sheet and method and apparatus for making same |
US5314564A (en) * | 1990-09-26 | 1994-05-24 | Lintec Corporation | Apparatus for attaching bar codes to reticle cases |
US5380381A (en) * | 1993-06-03 | 1995-01-10 | B & H Manufacturing Company, Inc. | Labeling machine with variable speed cutting head |
US5413651A (en) * | 1993-03-23 | 1995-05-09 | B&H Manufacturing Company | Universal roll-fed label cutter |
EP0684129A2 (en) * | 1994-05-27 | 1995-11-29 | David John Instance | Labels and manufacture thereof |
US5518559A (en) * | 1993-08-12 | 1996-05-21 | Cmd Corporation | Method and apparatus for registration of a seal on a plastic bag |
NL9401720A (en) * | 1994-10-18 | 1996-06-03 | Drukkerij Stadler & Sauerbier | Leaf material carrier, device and method for recognizing bundles manufactured from an assembly of a number of layers of leaf material on such a carrier. |
US5660674A (en) * | 1993-08-12 | 1997-08-26 | Cmd Corporation | Method and apparatus for registration of a seal and perforation on a plastic bag |
US5805193A (en) * | 1994-04-07 | 1998-09-08 | Atlantek, Inc. | Die-punch cutting apparatus for a continuous web thermal printing device |
FR2760402A1 (en) * | 1997-03-07 | 1998-09-11 | Roland Man Druckmasch | METHOD FOR CUTTING A STRIP OF PRINTING MATERIAL IN THE LONGITUDINAL DIRECTION ACCORDING TO SECTIONS AND CUTTING DEVICE FOR USE THEREFOR |
US5861078A (en) * | 1993-08-12 | 1999-01-19 | Cmd Corporation | Method and apparatus for detecting a seal on a plastic bag |
FR2787058A1 (en) * | 1998-12-11 | 2000-06-16 | Clip Off | Ultrasonic welding of films to make packages and e.g. disposable nappies is carried out between sonotrode and form rotated by drum, with speed differential to elongate or foreshorten shape of weld |
US6223641B1 (en) * | 1996-11-12 | 2001-05-01 | Xynatech, Inc., | Perforating and slitting die sheet |
US6268032B1 (en) * | 1997-10-03 | 2001-07-31 | 3M Innovative Properties Company | Repositionable note sheets and method of formation thereof |
EP1163998A2 (en) * | 2000-06-16 | 2001-12-19 | Eul & Günther GmbH | Process and apparatus for making multilayered products and products obtained thereby |
US20030121615A1 (en) * | 2001-10-17 | 2003-07-03 | Ahearn & Soper Inc | Apparatus and method for applying labeling |
WO2003062839A1 (en) * | 2002-01-16 | 2003-07-31 | Paragon Trade Brands, Inc. | Superabsorbent polymer targeting registration of dry formed composite cores |
US6721060B1 (en) * | 1996-05-01 | 2004-04-13 | Canon Finetech Inc. | Recording medium cutter image forming device using same |
WO2006085318A2 (en) * | 2005-02-11 | 2006-08-17 | Uri Freiman | Laminating apparatus for tti-labels combined with cutting and applying the same |
DE102005042731A1 (en) * | 2005-09-05 | 2007-03-08 | Etifix Gmbh | Production process for carrier web with labels on both sides involves stamping label outlines on each side at different stamping points |
US20080119340A1 (en) * | 2004-10-19 | 2008-05-22 | Cmd Corporation | Rotary Bag Machine |
US20090284761A1 (en) * | 2008-05-19 | 2009-11-19 | Shelton Gerold K | Systems And Methods For Customized Printing And Cutting Of A Polymer Substrate |
US20120055297A1 (en) * | 2009-03-09 | 2012-03-08 | Sacmi Verona S.P.A. | Feeding apparatus and method |
US20120067502A1 (en) * | 2010-03-12 | 2012-03-22 | Krones Ag | Apparatus for processing strips of labels and methods of processing strips of labels |
US20140090533A1 (en) * | 2012-09-08 | 2014-04-03 | Mark Andy, Inc. | Die cutting system |
US8776857B1 (en) * | 2013-02-04 | 2014-07-15 | Computype, Inc. | Label application devices |
EP2777936A1 (en) * | 2013-03-14 | 2014-09-17 | Wilfried Jud | Method and device for producing lids |
US20150199159A1 (en) * | 2014-01-16 | 2015-07-16 | Xerox Corporation | Apparatus, system, and method for personalized medication labels |
US10179465B2 (en) | 2015-12-07 | 2019-01-15 | Avery Dennison Retail Information Services, Llc | Cutter accessory for printing system |
US10494131B2 (en) | 2017-05-01 | 2019-12-03 | Avery Dennison Retail Information Services, Llc | Combination printer and cutting apparatus |
DE102021118031A1 (en) | 2021-07-13 | 2023-01-19 | Koenig & Bauer Ag | Processing machine and method for setting a processing length of a shaping unit of a processing machine |
WO2023285008A1 (en) | 2021-07-13 | 2023-01-19 | Koenig & Bauer Ag | Processing machine, and method for adjusting a printing length and/or a processing length |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3749626A (en) * | 1971-06-28 | 1973-07-31 | H Buck | Rotary die apparatus and process for manufacturing labels or the like |
US4236955A (en) * | 1976-10-29 | 1980-12-02 | Prittie Allan R | Printing and die-cutting apparatus |
US4549454A (en) * | 1983-08-22 | 1985-10-29 | Koyo Jidoki Co., Ltd. | Method for cutting and supplying labels of various shapes |
US4661189A (en) * | 1984-11-14 | 1987-04-28 | Janus Label Corporation | Method for manufacturing discrete elements |
US4840696A (en) * | 1985-04-24 | 1989-06-20 | Smh Alcatel | Label dispenser and a franking machine equipped with said dispenser |
-
1989
- 1989-12-26 US US07/456,494 patent/US5017257A/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3749626A (en) * | 1971-06-28 | 1973-07-31 | H Buck | Rotary die apparatus and process for manufacturing labels or the like |
US4236955A (en) * | 1976-10-29 | 1980-12-02 | Prittie Allan R | Printing and die-cutting apparatus |
US4549454A (en) * | 1983-08-22 | 1985-10-29 | Koyo Jidoki Co., Ltd. | Method for cutting and supplying labels of various shapes |
US4661189A (en) * | 1984-11-14 | 1987-04-28 | Janus Label Corporation | Method for manufacturing discrete elements |
US4840696A (en) * | 1985-04-24 | 1989-06-20 | Smh Alcatel | Label dispenser and a franking machine equipped with said dispenser |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5141572A (en) * | 1990-09-19 | 1992-08-25 | Gerber Garment Technology, Inc. | Labelling apparatus and method for a sheet material cutting system and a supply of labels for use therewith |
US5314564A (en) * | 1990-09-26 | 1994-05-24 | Lintec Corporation | Apparatus for attaching bar codes to reticle cases |
US5286317A (en) * | 1990-09-27 | 1994-02-15 | Computyre Inc. | Rotary die cutting mechanism |
WO1992005959A1 (en) * | 1990-09-27 | 1992-04-16 | Computype, Inc. | Rotary die cutting mechanism |
US5277734A (en) * | 1991-11-07 | 1994-01-11 | Fred Bayer Holdings Inc. | Electrically conductive circuit sheet and method and apparatus for making same |
US5413651A (en) * | 1993-03-23 | 1995-05-09 | B&H Manufacturing Company | Universal roll-fed label cutter |
US5380381A (en) * | 1993-06-03 | 1995-01-10 | B & H Manufacturing Company, Inc. | Labeling machine with variable speed cutting head |
US5660674A (en) * | 1993-08-12 | 1997-08-26 | Cmd Corporation | Method and apparatus for registration of a seal and perforation on a plastic bag |
US5518559A (en) * | 1993-08-12 | 1996-05-21 | Cmd Corporation | Method and apparatus for registration of a seal on a plastic bag |
US5861078A (en) * | 1993-08-12 | 1999-01-19 | Cmd Corporation | Method and apparatus for detecting a seal on a plastic bag |
US5587032A (en) * | 1993-08-12 | 1996-12-24 | Cmd Corporation | Method and apparatus for registration of a seal on a plastic bag |
US5805193A (en) * | 1994-04-07 | 1998-09-08 | Atlantek, Inc. | Die-punch cutting apparatus for a continuous web thermal printing device |
EP0914940A2 (en) * | 1994-05-27 | 1999-05-12 | David John Instance | Labels and manufacture thereof |
EP0684129A2 (en) * | 1994-05-27 | 1995-11-29 | David John Instance | Labels and manufacture thereof |
US5674334A (en) * | 1994-05-27 | 1997-10-07 | Instance; David John | Labels and manufacture thereof |
EP0684129A3 (en) * | 1994-05-27 | 1997-01-29 | David John Instance | Labels and manufacture thereof. |
EP0914940A3 (en) * | 1994-05-27 | 2004-08-11 | David John Instance | Labels and manufacture thereof |
NL9401720A (en) * | 1994-10-18 | 1996-06-03 | Drukkerij Stadler & Sauerbier | Leaf material carrier, device and method for recognizing bundles manufactured from an assembly of a number of layers of leaf material on such a carrier. |
EP0710944A3 (en) * | 1994-10-18 | 1997-06-18 | Drukkerij Stadler & Sauerbier | Carrier made of sheet material, device and method for recognizing bundles made from an assembly of a number of layers of sheet material on such a carrier |
US6721060B1 (en) * | 1996-05-01 | 2004-04-13 | Canon Finetech Inc. | Recording medium cutter image forming device using same |
US6223641B1 (en) * | 1996-11-12 | 2001-05-01 | Xynatech, Inc., | Perforating and slitting die sheet |
FR2760402A1 (en) * | 1997-03-07 | 1998-09-11 | Roland Man Druckmasch | METHOD FOR CUTTING A STRIP OF PRINTING MATERIAL IN THE LONGITUDINAL DIRECTION ACCORDING TO SECTIONS AND CUTTING DEVICE FOR USE THEREFOR |
US6268032B1 (en) * | 1997-10-03 | 2001-07-31 | 3M Innovative Properties Company | Repositionable note sheets and method of formation thereof |
FR2787058A1 (en) * | 1998-12-11 | 2000-06-16 | Clip Off | Ultrasonic welding of films to make packages and e.g. disposable nappies is carried out between sonotrode and form rotated by drum, with speed differential to elongate or foreshorten shape of weld |
EP1163998A3 (en) * | 2000-06-16 | 2002-02-06 | Eul & Günther GmbH | Process and apparatus for making multilayered products and products obtained thereby |
EP1163998A2 (en) * | 2000-06-16 | 2001-12-19 | Eul & Günther GmbH | Process and apparatus for making multilayered products and products obtained thereby |
US20030121615A1 (en) * | 2001-10-17 | 2003-07-03 | Ahearn & Soper Inc | Apparatus and method for applying labeling |
WO2003062839A1 (en) * | 2002-01-16 | 2003-07-31 | Paragon Trade Brands, Inc. | Superabsorbent polymer targeting registration of dry formed composite cores |
US6703846B2 (en) | 2002-01-16 | 2004-03-09 | Paragon Trade Brands, Inc. | Superabsorbent polymer targeting registration of dry formed composite cores |
US20080119340A1 (en) * | 2004-10-19 | 2008-05-22 | Cmd Corporation | Rotary Bag Machine |
WO2006085318A2 (en) * | 2005-02-11 | 2006-08-17 | Uri Freiman | Laminating apparatus for tti-labels combined with cutting and applying the same |
WO2006085318A3 (en) * | 2005-02-11 | 2009-05-07 | Uri Freiman | Laminating apparatus for tti-labels combined with cutting and applying the same |
DE102005042731A1 (en) * | 2005-09-05 | 2007-03-08 | Etifix Gmbh | Production process for carrier web with labels on both sides involves stamping label outlines on each side at different stamping points |
US20090284761A1 (en) * | 2008-05-19 | 2009-11-19 | Shelton Gerold K | Systems And Methods For Customized Printing And Cutting Of A Polymer Substrate |
US20120055297A1 (en) * | 2009-03-09 | 2012-03-08 | Sacmi Verona S.P.A. | Feeding apparatus and method |
US8640579B2 (en) * | 2009-03-09 | 2014-02-04 | Sacmi Verona S.P.A. | Feeding apparatus and method |
US20120067502A1 (en) * | 2010-03-12 | 2012-03-22 | Krones Ag | Apparatus for processing strips of labels and methods of processing strips of labels |
US8696840B2 (en) * | 2010-03-12 | 2014-04-15 | Krones Ag | Apparatus for processing strips of labels and methods of processing strips of labels |
US20140090533A1 (en) * | 2012-09-08 | 2014-04-03 | Mark Andy, Inc. | Die cutting system |
US8776857B1 (en) * | 2013-02-04 | 2014-07-15 | Computype, Inc. | Label application devices |
US9169034B2 (en) | 2013-02-04 | 2015-10-27 | Computype, Inc. | Label application devices |
EP2777936A1 (en) * | 2013-03-14 | 2014-09-17 | Wilfried Jud | Method and device for producing lids |
US20150199159A1 (en) * | 2014-01-16 | 2015-07-16 | Xerox Corporation | Apparatus, system, and method for personalized medication labels |
US10179465B2 (en) | 2015-12-07 | 2019-01-15 | Avery Dennison Retail Information Services, Llc | Cutter accessory for printing system |
US10494131B2 (en) | 2017-05-01 | 2019-12-03 | Avery Dennison Retail Information Services, Llc | Combination printer and cutting apparatus |
US11045966B2 (en) | 2017-05-01 | 2021-06-29 | Avery Dennison Retail Information Services, Llc | Stand-alone cutting apparatus |
US11052559B2 (en) | 2017-05-01 | 2021-07-06 | Avery Dennison Retail Information Servives, LLC | Combination printer and cutting apparatus |
US11148846B2 (en) | 2017-05-01 | 2021-10-19 | Avery Dennison Retail Information Services, Llc | Method for reducing label waste using a cutting apparatus |
US12036688B2 (en) | 2017-05-01 | 2024-07-16 | Avery Dennison Retail Information Services Llc | Stand-alone cutting apparatus |
DE102021118031A1 (en) | 2021-07-13 | 2023-01-19 | Koenig & Bauer Ag | Processing machine and method for setting a processing length of a shaping unit of a processing machine |
WO2023285008A1 (en) | 2021-07-13 | 2023-01-19 | Koenig & Bauer Ag | Processing machine, and method for adjusting a printing length and/or a processing length |
WO2023285007A1 (en) | 2021-07-13 | 2023-01-19 | Koenig & Bauer Ag | Processing machine, and method for adjusting a processing length of a shaping unit of a processing machine |
US12005695B2 (en) | 2021-07-13 | 2024-06-11 | Koenig & Bauer Ag | Processing machine and method for adjusting a printing length and/or processing length |
US12030299B2 (en) | 2021-07-13 | 2024-07-09 | Koenig & Bauer Ag | Processing machine and method for adjusting a processing length of a shaping unit of a processing machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5017257A (en) | Variable length die cutter and method of cutting composite label | |
EP0653088B1 (en) | Labels and manufacture thereof | |
US5797305A (en) | On demand cross web perforation | |
GB2289665A (en) | Labels and manufacture thereof | |
US8056455B2 (en) | Method and apparatus for die cutting a web | |
US8371354B2 (en) | Apparatus and method for applying labels | |
DE69708094T2 (en) | METHOD AND DEVICE FOR APPLYING STRAPLESS MULTIPLE-USE LABELS ON ARTICLES | |
EP0278663B1 (en) | Pad forming method | |
US9199388B2 (en) | System for finishing printed labels using multiple X-Y cutters | |
CA2092908A1 (en) | Rotary die cutting mechanism | |
US6994005B2 (en) | Apparatus for slitting, merging, and cutting a continuous paperweb | |
IL113754A (en) | Labels and manufacture thereof | |
US20030089452A1 (en) | Apparatus and method for applying linerless labels | |
EP0942825B1 (en) | Manufacture of self-adhesive labels | |
US6082018A (en) | Pre-marked makeready tape | |
JP6307496B2 (en) | Longitudinal alignment of printed image on substrate roll with moving parts of web printing press | |
EP0675807B1 (en) | Pad, tape and forming methods | |
EP1026111A2 (en) | Injector for rotary web processing device with fixed diameter base | |
JP2005131782A (en) | Punching system or printing system | |
US5722178A (en) | Method for setting and regulating the position of webbing in a printing press using premarked makeready tape | |
EP1047532A1 (en) | Selectable phase cross-web perforator | |
AU768048B2 (en) | Transfer printing installation, in particular by gilding | |
US20030127192A1 (en) | Label laminating device | |
US8034425B1 (en) | Business form for laser and inkjet printing devices, and method for producing same | |
WO2000058929A1 (en) | Labels and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IMTEC INC., A CORP. OF DE, VERMONT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MURPHY, WILLIAM J.;REEL/FRAME:005209/0817 Effective date: 19891212 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment | ||
FEPP | Fee payment procedure |
Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS SMALL BUSINESS (ORIGINAL EVENT CODE: LSM2); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: BRADY WORLDWIDE, INC., WISCONSIN Free format text: SECURITY INTEREST;ASSIGNOR:SPRINGFIELD IMAGE, LLC;REEL/FRAME:013081/0412 Effective date: 20020325 Owner name: SPRINGFIELD IMAGE, LLC, VERMONT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BRADY WORLDWIDE, INC.;REEL/FRAME:013081/0409 Effective date: 20020304 |
|
AS | Assignment |
Owner name: BRADY WORLDWIDE, INC., WISCONSIN Free format text: MERGER;ASSIGNOR:IMTEC INC.;REEL/FRAME:013101/0126 Effective date: 20011231 |
|
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20030521 |