US4928458A - Engine control device for mower - Google Patents

Engine control device for mower Download PDF

Info

Publication number
US4928458A
US4928458A US07/367,582 US36758289A US4928458A US 4928458 A US4928458 A US 4928458A US 36758289 A US36758289 A US 36758289A US 4928458 A US4928458 A US 4928458A
Authority
US
United States
Prior art keywords
control device
engine
clutch
control means
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/367,582
Inventor
Fumio Muroya
Yoshiaki Kotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Assigned to HONDA GIKEN KOGYO KABUSHIKI KAISHA reassignment HONDA GIKEN KOGYO KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KOTANI, YOSHIAKI, MUROYA, FUMIO
Application granted granted Critical
Publication of US4928458A publication Critical patent/US4928458A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/67Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator
    • A01D34/68Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis hand-guided by a walking operator with motor driven cutters or wheels
    • A01D34/6806Driving mechanisms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • B60Y2200/223Ridable lawn mowers

Definitions

  • the present invention relates to a control device in a mower which is driven by an engine.
  • the engine rotation speed is generally lowered since the load applied to the engine is abruptly increased due to the inertial weight of the cutter blade.
  • Japanese Utility Model Application Publication No. 54-16992 discloses a technique in which a decrease in engine rotation speed due to the increase in engine load is compensated. According to this technique, idling rotation speed is increased when the requirement for engine output is increased due to initiation of the air cooling conditioning during engine idling.
  • the conventional technique is only available in a case where relatively large load is continuously applied to the engine. Therefore, the technique is not appropriate for solving the problem attendant to the temporary increase in the load as discussed above.
  • an object of the present invention to provide a control device in a mower in which the decrease in engine rotational speed can be minimized even if the engine load is temporarily increased due to a clutch coupling, which increase in load occurs by the employment of a cutter blade for mowing, and to provide such control device capable of promptly recovering an ordinary engine rotation speed.
  • a control device in a mower in which an engine output is transmitted to a cutter blade through a coupling of a clutch for performing mowing.
  • the device includes a blade engagement switch for sending a drive signal to engage the cutter blade, a first control means for electrically increasing the degree of opening of a throttle valve of the engine, a second control means for electrically performing coupling and decoupling of the clutch, a first timer circuit for actuating the first control means for a predetermined period upon closure of the blade engagement switch, and a second timer circuit for actuating the second control means to provide coupling of the clutch at a predetermined timing within the predetermined period after closure of the blade engagement switch.
  • the clutch is coupled through the second control means for driving the cutter blade within the predetermined period given by the first timer circuit and after the delay time given by the second timer circuit.
  • FIG. 1 is a block diagram showing a control system in a mower according to one embodiment of this invention
  • FIG. 2 is a schematic illustration showing a riding type mower suitable for a control device according to this invention
  • FIG. 3 is a view for description of the operation of a carburetor control
  • FIG. 4 is a graph for description of the controlling operation in the mower.
  • FIG. 2 shows a riding type mower, in which a cutter blade 3 for mowing or lawn mowing is driven by an engine 2 installed on a mower frame 1. Grass mowed by the cutter blade 3 is delivered to a duct 5 by an impeller 4, and accumulated in a grass bag 6. As shown in FIG. 1, the engine 2 is connected to the cutter blade 3 through the electromagnetic clutch 7 inclusive of a second control means. The degree of opening of a throttle valve 10 (see FIG. 3) in the carburetor 8 is controllable by an electromagnetic solenoid 9 which serves as a first control means.
  • FIG. 3 shows an adjusting mechanism for the throttle valve 10 of the carburetor 8.
  • a governor arm 11 is pivotally supported about a pivot shaft 11a.
  • the governor arm 11 has one end (rightward in the FIG. 3) connected to a governor slider of a centrifugal governor mechanism (not shown) or to a rod of an accumulator of a vacuum operating governor mechanism (not shown).
  • the arm 11 has another end connected to a throttle shaft 15 through a governor rod 13.
  • the governor arm 11 is urged toward the throttle valve opening direction by a governor spring 16.
  • a control arm 17 is secured to an upper end portion of the throttle shaft 15.
  • a biasing spring 19 is interposed between the control arm 17 and a control plate 18 which is rotatably provided on the throttle shaft 15.
  • a transmission member 22 is connected to a rotatable engaging rod 20.
  • the transmission member 22 has one end connected to a plunger 9a of the electromagnetic solenoid 9 and has another end abuttable on a pin 21 protruding from the control arm
  • the governor arm 11 is pivoted by the governor mechanism in counterclockwise direction in the FIG. 3 against the biasing force of the spring 16, so that the control plate 18 is rotated in a clockwise direction through the governor rod 13.
  • This rotation force is transmitted to the control arm 17 through the biasing spring 19 for rotating the throttle shaft 15 in a closing direction of the throttle valve 10, so that a control is performed in such a manner that the degree of opening of the throttle valve 10 is in conformance with the rotation speed defined by the governor.
  • the electromagnetic solenoid 9 is energized for retracting the plunger 9a. Therefore, the transmission member 22 is pivoted about an axis of the engaging rod 20 in a clockwise direction. By this pivotal movement, one end of the transmission member 22 is brought into abutment with the pin 21 and urges the latter. This urging force rotates the control arm 17 in the counterclockwise direction, so that the throttle shaft 15 directly connected to the control arm 17 is rotated in an opening direction of the throttle valve 10.
  • the first timer circuit 23 connected to the electromagnetic solenoid 9 is adapted for energizing the latter for a predetermined period when the blade engagement switch 25 which sends a drive signal for engagement of the cutter blade 3 is turned ON. That is, the throttle shaft 15 is rotated in a direction for opening the throttle valve 10 when the control arm 17 is rotated in counterclockwise direction in FIG. 3 as described above by energizing the solenoid 9.
  • the second timer circuit 24 connected to the electromagnetic clutch 7 is adapted for providing coupling of the electromagnetic clutch 7 after a predetermined time delay within the predetermined period preset in the first timer circuit 23, when the blade engagement switch 25 is turned ON.
  • the closing of the blade engagement switch 25 connects a power source 26 to the timer circuits 23, 24, so that the coupling of the electromagnetic clutch 7 is maintained during the entire time that the blade engagement switch 25 is ON.
  • the predetermined period B stored in the first timer circuit 23 is elapsed.
  • the electromagnetic solenoid 9 is deenergized, so that the rotation speed of the engine 2 becomes approximately equal to the speed which has been provided at the state prior to the closure of the blade engagement switch 25.
  • the broken line represents the decrease in engine rotation speed according to the conventional arrangement, whereas the solid line represents variation in engine rotation speed using the control device according to this invention. It is apparent from the graph that the variation is greatly improved in the present invention.
  • the blade engagement switch for sending a drive engagement signal to engage the cutter blade
  • the first control means for electrically increasing degree of opening of the throttle valve of the engine
  • the second control means for electrically performing coupling and decoupling of the clutch
  • the first timer circuit for actuating the first control means for a predetermined period upon closure of the blade engagement switch
  • the second timer circuit for actuating the second control means to provide coupling of the clutch at a predetermined timing within the predetermined period after closure of the blade engagement switch.
  • engine rotation speed can be temporarily increased during the predetermined period before and immediately after the coupling of the clutch, and accordingly, decrease in engine rotation speed due to inertial weight of the cutter blade can be reduced.
  • unsatisfactory driving feeling can be obviated, and normal mowing operation can be promptly achieved because of the prompt recovering of the engine rotation speed, thus enabling comfortable mowing.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Harvester Elements (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

A control device in a mower in which an engine output is transmitted to a cutter blade through a coupling of a clutch for performing mowing. A blade engagement switch is provided for sending a drive signal for engaging the cutter blade. A first control device receives the signal and electrically increases a degree of opening of a throttle valve of the engine. A second control device is provided for electrially performing coupling and decoupling of the clutch. A first timer circuit actuates the first control device a predetermined period upon closure of the blade engagement switch. A second timer circuit actuates the second control device to provide coupling of the clutch at a predetermined timing within the predetermined period after closure of the blade engagement switch.

Description

BACKGROUND OF THE INVENTION
The present invention relates to a control device in a mower which is driven by an engine.
In a conventional mower in which mowing is performed by a rotation of an engine, engine output is transmitted to a cutter blade through coupling of a clutch. During mowing, the engine is controlled to rotate at a constant rotation speed by means of a governor, etc., since generally no large load variation occurs during the mowing operation.
At the initial start-up period of the cutter blade, i.e. the time immediately after the coupling of the clutch, the engine rotation speed is generally lowered since the load applied to the engine is abruptly increased due to the inertial weight of the cutter blade.
Such abrupt lowering in engine speed due to such loa application to the engine is unfavorable for the engine per se, and further, an operator may occasionally have unsatisfactory feeling. Furthermore, there is a problem in that a relatively prolonged time delay may occur until the cutter blade reaches its ordinary rotation speed.
Japanese Utility Model Application Publication No. 54-16992 discloses a technique in which a decrease in engine rotation speed due to the increase in engine load is compensated. According to this technique, idling rotation speed is increased when the requirement for engine output is increased due to initiation of the air cooling conditioning during engine idling.
However, the conventional technique is only available in a case where relatively large load is continuously applied to the engine. Therefore, the technique is not appropriate for solving the problem attendant to the temporary increase in the load as discussed above.
It is therefore, an object of the present invention to provide a control device in a mower in which the decrease in engine rotational speed can be minimized even if the engine load is temporarily increased due to a clutch coupling, which increase in load occurs by the employment of a cutter blade for mowing, and to provide such control device capable of promptly recovering an ordinary engine rotation speed.
SUMMARY OF THE INVENTION
In order to attain the above described object, there is provided in the present invention a control device in a mower in which an engine output is transmitted to a cutter blade through a coupling of a clutch for performing mowing. The device includes a blade engagement switch for sending a drive signal to engage the cutter blade, a first control means for electrically increasing the degree of opening of a throttle valve of the engine, a second control means for electrically performing coupling and decoupling of the clutch, a first timer circuit for actuating the first control means for a predetermined period upon closure of the blade engagement switch, and a second timer circuit for actuating the second control means to provide coupling of the clutch at a predetermined timing within the predetermined period after closure of the blade engagement switch.
Operations of the first and second timer circuits are initiated upon activation of the blade engagement switch, so that the electromagnetic solenoid increases the degree of opening of the throttle valve through the first control means during the predetermined period given by the first timer circuit. The clutch is coupled through the second control means for driving the cutter blade within the predetermined period given by the first timer circuit and after the delay time given by the second timer circuit.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects and the attendant advantages of the present invention will become readily apparent by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
FIG. 1 is a block diagram showing a control system in a mower according to one embodiment of this invention;
FIG. 2 is a schematic illustration showing a riding type mower suitable for a control device according to this invention;
FIG. 3 is a view for description of the operation of a carburetor control; and
FIG. 4 is a graph for description of the controlling operation in the mower.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
One embodiment according to this invention will be described with reference to drawings.
FIG. 2 shows a riding type mower, in which a cutter blade 3 for mowing or lawn mowing is driven by an engine 2 installed on a mower frame 1. Grass mowed by the cutter blade 3 is delivered to a duct 5 by an impeller 4, and accumulated in a grass bag 6. As shown in FIG. 1, the engine 2 is connected to the cutter blade 3 through the electromagnetic clutch 7 inclusive of a second control means. The degree of opening of a throttle valve 10 (see FIG. 3) in the carburetor 8 is controllable by an electromagnetic solenoid 9 which serves as a first control means.
FIG. 3 shows an adjusting mechanism for the throttle valve 10 of the carburetor 8. In the mechanism, a governor arm 11 is pivotally supported about a pivot shaft 11a. The governor arm 11 has one end (rightward in the FIG. 3) connected to a governor slider of a centrifugal governor mechanism (not shown) or to a rod of an accumulator of a vacuum operating governor mechanism (not shown). The arm 11 has another end connected to a throttle shaft 15 through a governor rod 13. The governor arm 11 is urged toward the throttle valve opening direction by a governor spring 16. A control arm 17 is secured to an upper end portion of the throttle shaft 15. A biasing spring 19 is interposed between the control arm 17 and a control plate 18 which is rotatably provided on the throttle shaft 15. A transmission member 22 is connected to a rotatable engaging rod 20. The transmission member 22 has one end connected to a plunger 9a of the electromagnetic solenoid 9 and has another end abuttable on a pin 21 protruding from the control arm 17.
Therefore, during normal engine rotation, the governor arm 11 is pivoted by the governor mechanism in counterclockwise direction in the FIG. 3 against the biasing force of the spring 16, so that the control plate 18 is rotated in a clockwise direction through the governor rod 13. This rotation force is transmitted to the control arm 17 through the biasing spring 19 for rotating the throttle shaft 15 in a closing direction of the throttle valve 10, so that a control is performed in such a manner that the degree of opening of the throttle valve 10 is in conformance with the rotation speed defined by the governor.
If the blade engagement load is applied to the engine 2, as described later, the electromagnetic solenoid 9 is energized for retracting the plunger 9a. Therefore, the transmission member 22 is pivoted about an axis of the engaging rod 20 in a clockwise direction. By this pivotal movement, one end of the transmission member 22 is brought into abutment with the pin 21 and urges the latter. This urging force rotates the control arm 17 in the counterclockwise direction, so that the throttle shaft 15 directly connected to the control arm 17 is rotated in an opening direction of the throttle valve 10.
As shown in FIG. 1, the first timer circuit 23 connected to the electromagnetic solenoid 9 is adapted for energizing the latter for a predetermined period when the blade engagement switch 25 which sends a drive signal for engagement of the cutter blade 3 is turned ON. That is, the throttle shaft 15 is rotated in a direction for opening the throttle valve 10 when the control arm 17 is rotated in counterclockwise direction in FIG. 3 as described above by energizing the solenoid 9.
The second timer circuit 24 connected to the electromagnetic clutch 7 is adapted for providing coupling of the electromagnetic clutch 7 after a predetermined time delay within the predetermined period preset in the first timer circuit 23, when the blade engagement switch 25 is turned ON. The closing of the blade engagement switch 25 connects a power source 26 to the timer circuits 23, 24, so that the coupling of the electromagnetic clutch 7 is maintained during the entire time that the blade engagement switch 25 is ON.
Operation in accordance with this embodiment will next be described with reference to FIG. 4. When the blade engagement switch 25 is turned ON at a time tl during a running period of the engine 2, the electromagnetic solenoid 9 is energized by means of the first timer circuit 23, so that the throttle valve 10 of the carburetor 8 is moved further in its opening direction. That is, the rotation speed of the engine 2 is increased. Then, at the time t2 after time elapsing period A from the time tl, the electromagnetic clutch 7 is engaged to couple the engine to the blade (clutch coupling state) by means of the second timer circuit 24. As a result, the engine rotation speed is slightly decreased due to the rotational inertia of the cutter blade 3. However, the engine speed is promptly restored, and increased. At the time t3 after the time t2, the predetermined period B stored in the first timer circuit 23 is elapsed. At that time, the electromagnetic solenoid 9 is deenergized, so that the rotation speed of the engine 2 becomes approximately equal to the speed which has been provided at the state prior to the closure of the blade engagement switch 25.
In FIG. 4, the broken line represents the decrease in engine rotation speed according to the conventional arrangement, whereas the solid line represents variation in engine rotation speed using the control device according to this invention. It is apparent from the graph that the variation is greatly improved in the present invention.
In view of the foregoing, according to the present invention, in a control device in the mower in which the engine output is transmitted to the cutter blade through the coupling of the clutch for mowing operation, there are provided the blade engagement switch for sending a drive engagement signal to engage the cutter blade, the first control means for electrically increasing degree of opening of the throttle valve of the engine, the second control means for electrically performing coupling and decoupling of the clutch, the first timer circuit for actuating the first control means for a predetermined period upon closure of the blade engagement switch, and the second timer circuit for actuating the second control means to provide coupling of the clutch at a predetermined timing within the predetermined period after closure of the blade engagement switch. With this structure, engine rotation speed can be temporarily increased during the predetermined period before and immediately after the coupling of the clutch, and accordingly, decrease in engine rotation speed due to inertial weight of the cutter blade can be reduced. As a result, unsatisfactory driving feeling can be obviated, and normal mowing operation can be promptly achieved because of the prompt recovering of the engine rotation speed, thus enabling comfortable mowing.
It is readily apparent that the above-described has the advantage of wide commercial utility. It should be understood that the specific form of the invention hereinabove described is intended to be representative only, as certain modifications within the scope of these teachings will be apparent to those skilled in the art.
Accordingly, reference should be made to the following claims in determining the full scope of the invention.

Claims (4)

What is claimed is:
1. A control device in a mower in which an engine output is transmitted to a cutter blade through a coupling of a clutch for performing mowing, the control device comprising: a blade engagement switch for sending a drive signal for engaging the cutter blade; a first control means for electrically increasing a degree of opening of a throttle valve of the engine; a second control means for electrically performing coupling and decoupling of the clutch; a first timer circuit for actuating the first control means for a predetermined period upon closure of the blade engagement switch; and a second timer circuit for actuating the second control means to provide coupling of the clutch at a predetermined timing within the predetermined period after closure of the blade engagement switch.
2. The control device according to claim 1, wherein the first control means comprises a solenoid which forcibly moves the throttle valve toward its opening direction in response to an output signal from said first timer circuit.
3. The control device according to claim 1 wherein the second control means comprises an electromagnetic clutch disposed at a power transmission path along which the engine output is transmitted to the cutter blade
4. The control device according to claim 2 wherein the second control means comprises an electromagnetic clutch disposed at a power transmission path along which the engine output is transmitted to the cutter blade.
US07/367,582 1988-06-20 1989-06-19 Engine control device for mower Expired - Lifetime US4928458A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1988081494U JP2520161Y2 (en) 1988-06-20 1988-06-20 Control device for mowing machine
JP63-81494[U] 1988-06-20

Publications (1)

Publication Number Publication Date
US4928458A true US4928458A (en) 1990-05-29

Family

ID=13747943

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/367,582 Expired - Lifetime US4928458A (en) 1988-06-20 1989-06-19 Engine control device for mower

Country Status (2)

Country Link
US (1) US4928458A (en)
JP (1) JP2520161Y2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030372A1 (en) * 1997-01-07 1998-07-16 Crafco Incorporated Pavement cutting machine
WO1998056609A1 (en) * 1997-06-13 1998-12-17 Robert Rush Electrically activated vacuum actuator
US5950408A (en) * 1997-07-25 1999-09-14 Mtd Products Inc Bag-full indicator mechanism
WO1999048351A3 (en) * 1997-12-19 2000-04-13 Axel Schaedler Vacuum actuated control mechanism
EP1183935A1 (en) * 2000-09-01 2002-03-06 Ransomes Jacobsen Limited Grass cutting machine incorporating a vacuum actuator
EP1446996A2 (en) * 2003-02-11 2004-08-18 Textron Inc. Articulating handle for a walk-behind mower
US20050183270A1 (en) * 2004-02-25 2005-08-25 Roland Schmidt Portable handheld work apparatus
US7044260B2 (en) 2002-07-11 2006-05-16 Mtd Products Inc. Vacuum actuated direction and speed control mechanism
EP1859666A1 (en) * 2006-05-24 2007-11-28 HONDA MOTOR CO., Ltd. Power-transmission control mechanism for lawn mower
US20090277743A1 (en) * 2008-05-08 2009-11-12 Park David G Stall detection system for mower blade clutch engagement
US20100005768A1 (en) * 2008-07-10 2010-01-14 Silbernagel Carl S Adaptive soft start system for mower blade clutch engagement
US10590869B2 (en) 2014-12-23 2020-03-17 Husqvarna Ab Assembly and method for safe starting of an internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416992A (en) * 1977-07-07 1979-02-07 Mitsubishi Electric Corp Light emitting diode
US4159614A (en) * 1977-10-27 1979-07-03 Amf Incorporated Lawn mower controls
US4318266A (en) * 1980-12-15 1982-03-09 Max Taube Remotely controlled self-propelled power lawn mower
US4432191A (en) * 1981-04-23 1984-02-21 Conchemco Incorporated Method and apparatus for controlling blade clutch assembly
JPS5973544A (en) * 1982-09-22 1984-04-25 デイナミ−ト・ノ−ベル・アクチエンゲゼルシヤフト Manufacture of resolcin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939950A (en) * 1982-08-30 1984-03-05 Nissan Motor Co Ltd Idling speed controller of automotive engine
JPS62165540A (en) * 1986-01-17 1987-07-22 Yanmar Diesel Engine Co Ltd Prevent device for engine-speed drop

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416992A (en) * 1977-07-07 1979-02-07 Mitsubishi Electric Corp Light emitting diode
US4159614A (en) * 1977-10-27 1979-07-03 Amf Incorporated Lawn mower controls
US4318266A (en) * 1980-12-15 1982-03-09 Max Taube Remotely controlled self-propelled power lawn mower
US4432191A (en) * 1981-04-23 1984-02-21 Conchemco Incorporated Method and apparatus for controlling blade clutch assembly
JPS5973544A (en) * 1982-09-22 1984-04-25 デイナミ−ト・ノ−ベル・アクチエンゲゼルシヤフト Manufacture of resolcin

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6102022A (en) * 1997-01-07 2000-08-15 Crafco, Incorporated Pavement cutting machine
WO1998030372A1 (en) * 1997-01-07 1998-07-16 Crafco Incorporated Pavement cutting machine
WO1998056609A1 (en) * 1997-06-13 1998-12-17 Robert Rush Electrically activated vacuum actuator
US5918449A (en) * 1997-06-13 1999-07-06 Mtd Products Inc. Electrically activated vacuum actuator
US5950408A (en) * 1997-07-25 1999-09-14 Mtd Products Inc Bag-full indicator mechanism
US6073432A (en) * 1997-07-25 2000-06-13 Mtd Products Inc Bag-full indicator mechanism
WO1999048351A3 (en) * 1997-12-19 2000-04-13 Axel Schaedler Vacuum actuated control mechanism
EP1332660A1 (en) * 1997-12-19 2003-08-06 Axel Schaedler Vacuum actuated control mechanism
EP1332661A1 (en) * 1997-12-19 2003-08-06 Axel Schaedler Vacuum actuated control mechanism
EP1183935A1 (en) * 2000-09-01 2002-03-06 Ransomes Jacobsen Limited Grass cutting machine incorporating a vacuum actuator
US7044260B2 (en) 2002-07-11 2006-05-16 Mtd Products Inc. Vacuum actuated direction and speed control mechanism
EP1446996A2 (en) * 2003-02-11 2004-08-18 Textron Inc. Articulating handle for a walk-behind mower
EP1446996A3 (en) * 2003-02-11 2004-12-29 Textron Inc. Articulating handle for a walk-behind mower
US20050055992A1 (en) * 2003-02-11 2005-03-17 Textron Inc. Articulating handle for a walk-behind mower
US6904740B2 (en) 2003-02-11 2005-06-14 Textron Inc. Articulating handle for a walk-behind mower
US20050183270A1 (en) * 2004-02-25 2005-08-25 Roland Schmidt Portable handheld work apparatus
US7269904B2 (en) * 2004-02-25 2007-09-18 Andreas Stihl Ag & Co. Kg Portable handheld work apparatus
EP1859666A1 (en) * 2006-05-24 2007-11-28 HONDA MOTOR CO., Ltd. Power-transmission control mechanism for lawn mower
US20070275821A1 (en) * 2006-05-24 2007-11-29 Honda Motor Co., Ltd. Power-transmission control mechanism for lawn mower
EP1987711A2 (en) 2006-05-24 2008-11-05 HONDA MOTOR CO., Ltd. Power transmission control mechanism for lawn mower
US7666117B2 (en) 2006-05-24 2010-02-23 Honda Motor Co., Ltd. Power-transmission control mechanism for lawn mower
CN101077049B (en) * 2006-05-24 2011-04-20 本田技研工业株式会社 Power-transmission control mechanism for lawn mower
CN101803510B (en) * 2006-05-24 2012-02-15 本田技研工业株式会社 Power-transmission control mechanism for lawn mower
US20090277743A1 (en) * 2008-05-08 2009-11-12 Park David G Stall detection system for mower blade clutch engagement
US7669393B2 (en) 2008-05-08 2010-03-02 Deere & Company Stall detection system for mower blade clutch engagement
US20100005768A1 (en) * 2008-07-10 2010-01-14 Silbernagel Carl S Adaptive soft start system for mower blade clutch engagement
US8056695B2 (en) 2008-07-10 2011-11-15 Deere & Company Adaptive soft start system for mower blade clutch engagement
US10590869B2 (en) 2014-12-23 2020-03-17 Husqvarna Ab Assembly and method for safe starting of an internal combustion engine

Also Published As

Publication number Publication date
JP2520161Y2 (en) 1996-12-11
JPH023033U (en) 1990-01-10

Similar Documents

Publication Publication Date Title
US4928458A (en) Engine control device for mower
JP2781048B2 (en) Throttle valve device
US4725969A (en) Constant-speed driving system
CA1065703A (en) Throttle control for explosion motors, intended particularly for power saws
JP2953476B2 (en) Throttle valve for internal combustion engine
JPH0345219B2 (en)
US4721281A (en) Actuating device for throttle valve
US5235943A (en) Starting system for internal combustion engines
US5215056A (en) Engine speed control system for a working vehicle
JP2962818B2 (en) Engine throttle valve controller
US4771847A (en) Speed control actuator
JPH0759899B2 (en) Operation control device for internal combustion engine
JP3044584B2 (en) Engine throttle valve drive
JPH0431140Y2 (en)
JPH0355797Y2 (en)
JPH0530975Y2 (en)
JP2958566B2 (en) Mobile Farm Machine Engine Equipment
JP2871844B2 (en) Engine throttle valve controller
JP2582923B2 (en) Engine output control device for work vehicles
JPH04203218A (en) Throttle valve control device for engine
JP2876806B2 (en) Output adjustment means linked throttle valve device with motor
JPS6327085Y2 (en)
JPS5933869Y2 (en) Automatic idle rotation adjustment device for direct-coupled cooler engines
JP2519890Y2 (en) Constant speed running control device
JP2588028B2 (en) Control device in vaporizer

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONDA GIKEN KOGYO KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:MUROYA, FUMIO;KOTANI, YOSHIAKI;REEL/FRAME:005095/0064

Effective date: 19890526

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12