US4912941A - Method and apparatus for extracting and utilizing geothermal energy - Google Patents
Method and apparatus for extracting and utilizing geothermal energy Download PDFInfo
- Publication number
- US4912941A US4912941A US07/153,247 US15324788A US4912941A US 4912941 A US4912941 A US 4912941A US 15324788 A US15324788 A US 15324788A US 4912941 A US4912941 A US 4912941A
- Authority
- US
- United States
- Prior art keywords
- heat
- bore hole
- passages
- bore
- transmission medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000011435 rock Substances 0.000 claims abstract description 29
- 230000005540 biological transmission Effects 0.000 claims abstract description 27
- 239000000126 substance Substances 0.000 claims abstract description 22
- 230000000149 penetrating effect Effects 0.000 claims abstract description 20
- 239000012530 fluid Substances 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 238000005422 blasting Methods 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000004568 cement Substances 0.000 claims description 6
- 238000005553 drilling Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 238000011010 flushing procedure Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 239000002002 slurry Substances 0.000 claims 3
- 239000011236 particulate material Substances 0.000 claims 2
- 239000011440 grout Substances 0.000 claims 1
- 239000002609 medium Substances 0.000 description 24
- 238000000605 extraction Methods 0.000 description 13
- WHBHBVVOGNECLV-OBQKJFGGSA-N 11-deoxycortisol Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 WHBHBVVOGNECLV-OBQKJFGGSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 239000010438 granite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000006163 transport media Substances 0.000 description 1
- 231100000925 very toxic Toxicity 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/13—Methods or devices for cementing, for plugging holes, crevices or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
- F24T10/17—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T2010/50—Component parts, details or accessories
- F24T2010/56—Control arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Definitions
- the invention relates to a method of extracting and utilizing thermal energy present in the earth's interior, and to a geothermal plant for practicing the method.
- geothermal heat plants extract heat from deep in the earth in the form of hot water or steam which has flowed through geological rock formations containing geothermal heat, i.e., natural hot water or steam present in the ground. This sometimes produces a very toxic condensate which poses serious environmental problems.
- An object of the present invention is to provide an improved method of extracting and utilizing geothermal energy.
- Another object is to provide such a method which is considerably more efficient than the methods presently known.
- a further object is to provide a geothermal plant for performing this method.
- the method involves drilling a bore hole into the earth. In the bottom zone of the hole, passages are formed outwardly from the hole and penetrate into the surrounding rock. A heat-conducting substance is then injected into these passages from the bottom zone. A supply line and a return line for a heat transmission medium are provided in the bore hole, between the earth's surface and the bottom zone. The heat transmission medium is conveyed, in a closed circuit, to a heat exchanger at or near the bottom of the bore hole to extract part of its heat before recycling.
- the bore hole is drilled more than 1,500 meters into the earth. Preferably, it is drilled at least 5,000 meters into the earth.
- penetrating passages are formed and extend outwardly into the rock, in the shape of large and small clefts and rifts, etc.
- Penetrating passages are then formed in a region 1,500 meters to 2,000 meters long in the bottom portion of the bore hole by blasting, rock fracturing with high pressure liquids, gases or grouts, or other methods. These passages are then present in addition to those which exist naturally.
- the surrounding rock is alternately broken up by blasting and then flushed out. This is done in stages up from the bottom, after each one of which the hole is redrilled.
- the passages are then filled with a heat-conducting substance.
- the heat-conducting substance is preferably made up of water and cement as a base, and incorporates one or more of a siliceous gel and finely divided metal powder, preferably silver and/or copper and/or aluminum powder. This substance, in fluid form, is used for pressure grouting. After injection it is left to solidify.
- a closed-bottom casing is then inserted into the bore hole and bonded thermally to the heat-conducting substance.
- the bottom zone may be blasted or reamed to a greater diameter than the casing in order to form a roughly cylindrical underground chamber.
- the casing is then grouted to the surrounding rock (where the heat-conducting substance fills the penetrating passages) with a contact matrix, preferably cement with a strongly heat-conductive admixture of metal and/or a silicate.
- the casing forms the outer surface for a heat exchanger.
- a heat transmission medium return line in the form of an inner pipe is inserted into the supply pipe.
- the inner pipe is open at the bottom.
- the heat transmission medium is driven downward between the walls of the supply pipe and the return line where it absorbs heat, owing to the temperature difference between the medium and the rock in the bottom zone of the bore hole, with its enhanced heat conveyance capacity.
- the return pipe is, at least in its upper reaches, thermally insulated.
- the heat transmission medium may be water, for the sake of convenience. If necessary it contains corrosion inhibiting ingredients. Absorbed heat is transported by way of steam, or hot water, to the surface of the earth where it may be used in one f several well-known methods. When the steam has condensed, the water is re-introduced into the closed circuit and led to the bore hole.
- heat transmission medium may be alternately fed into and withdrawn from at least two separate bore holes of the type previously described. This results in a pulsating flow of the heat transmission medium.
- the heat transmission medium circulates in a closed circuit in one bore hole while it is temporarily not used for heat extraction. Its temperature rises to the level required for profitable heat extraction. In the meantime the energy is extracted from the heat transmission medium circulating in another bore hole.
- the pressure in the heat transmission medium (circulating in the idle bore hole) is preferably used as a criterion for deciding when to cut it into active heat extraction operation.
- FIGS. 1a-1c illustrate schematically in three steps, according to the requirements of the invention, the establishment of a bore hole driven into the earth's interior and penetrating passages formed outwardly from its bottom zone;
- FIG. 2 illustrates a schematically enlarged representation of a bore hole, fitted out according to the requirements of the invention with penetrating passages grouted with appropriate heat-conducting substance;
- FIG. 3 illustrates schematically the insertion of a closed bottom casing into the bore hole, according to the requirements of the invention
- FIG. 4 illustrates schematically a bore hole, its treatment completed by a method as shown in FIGS. 1-3, and with the addition of a heat transmission return line, according to the requirements of the invention
- FIG. 5 illustrates schematically a geothermal plant with several bore holes, according to the invention, where the heat to be extracted from the different bore holes is regulated as required for obtaining an approximately continuous yield.
- a deep bore hole 3 is driven into the bedrock 1 considerably deeper than 1,500 meters, preferably from 5,000 meters up to 10,000 meters. Then, as seen in FIG. 1b, the surrounding rock in the bottom zone 5 of the bore hole 3 is provided with penetrating passages 7, consisting of clefts, rifts, capillary cracks, etc., preferably by blasting or fluid pressure rock fracturing in bottom zone 5.
- the blasting may be performed by slow delayed blasting or, e.g., by the Bristar method. It is preferably followed by washing with chemicals, especially an acid.
- the heat conducting substance is injected as a fluid, preferably using water as a carrier.
- the substance is introduced from above into the penetrating passages 7, i.e, clefts, pores, etc.
- the substance preferably comprises a siliceous gel and metal powder in the form of finely divided silver, and/or aluminum, and/or copper.
- the more-or-less solid, heat-conducting substance S remains in the connecting passages 7 and in the clearance between the wall surface of the bore hole's bottom zone 5 and the external face of the casing tube, spreading sponge-like into the bedrock.
- the contact surface AF between the bore hole and the surrounding ground is enlarged and the rate at which heat can be extracted is drastically increased.
- a first, closed-end casing 9 is inserted into the bore hole 3 which, as previously discussed, is already treated with the heat-conducting substance S.
- This casing 9 has to be highly heat-conducting in its lower section, e.g., metallic.
- the exterior face of the casing 9, in bottom zone 5 is then brought into close contact thermally with the rock of bottom zone 5 and with the heat-conducting substance S.
- the compound M should contain mainly cement and/or a siliceous substance, interspersed with metal powder, metal fibers, etc. This substance M is injected under pressure along the exterior face of casing 9 as schematically depicted in FIG. 3.
- FIG. 4 shows the completed bore hole prepared according to the requirements of the invention.
- the heat transmission medium W is driven down between the interior wall of the casing 9 and the exterior face of the return pipe 11, and rises again in return pipe 11 for the transportation of heat from the earth's interior to the surface of the earth, as depicted. Because of the large contact surface, enhanced by penetrating passages 7 spreading outwardly, a considerable quantity of heat is fed from natural rock, the heat-conducting substance S and the heat-conducting contact substance M to the heat transmission medium W.
- the recirculation of the heat transmission medium and the extraction of heat at the surface of the earth is performed by one of the well-known methods, e.g., in steam power plants, district heating, etc.
- the heat transmission medium consists of water or other low-boiling liquids that evaporate in the bottom zone 5, condense after extraction of the exploitable heat, and flow in closed circuit through the bore hole.
- the bore hole prepared and fitted out according to the requirements of the invention with the aforedescribed devices, forms a geothermal "furnace", with a high efficiency. It is possible to extract a considerable quantity of heat from the earth, per unit of time, owing to a contact surface that is much larger than the cylindrical surface of the bore hole casing 9 itself, and the resulting greater heat inflow from the bedrock to the transmission fluid which carries heat to the surface.
- FIG. 5 illustrates a further alternate layout of a geothermal plant, according to the requirements of the invention. It comprises, e.g., three geothermal exploitation bore holes 13a-13c, each preferably constructed as depicted in FIGS. 1-4. These bore holes can be hydraulically connected or operated separately.
- bore holes may be situated in locations where Karstic formation is expected, at depths favorable for heat exploitation and/or preferably in rocks of high thermal conductivity, such as granite.
- heat transmission medium return pipes 15a-15c are linked, through control valves 17a-17c, to heat utilization units 19a and 19b, or are coupled in closed circuit to feed pipes 21a-21c for returning the heat transmission medium directly to bore holes 13a-13c.
- Valves 17a-17c are connected to a control unit 23 so that some of the born holes can be operated in closed circuit without being looped to extraction units 19b and 19c.
- control unit 23 can be temperature controlled and/or pressure controlled.
- the pressure, and/or the temperature is sensed in the pipes conducting heated liquid from the respective bore holes and connection to extraction units 19a and 19b is established when the pressure and/or temperature, has risen to a predetermined level.
- the increase of thermal conductivity of the rock mass through injection of metals in natural openings intercepted by the bore holes, or created by blasting the rock in place, may be roughly determined by cursory calculations, depending on the kind of rock.
- the increase in natural conductance amounts to approximately 2-10 fold in basalt, and 2-6 fold in granite.
- the lower value corresponds to using aluminum as the metal for injections, the higher values for copper or silver.
- These multipliers can be achieved, or exceeded, near the bore hole walls, and diminish more or less rapidly with increasing distance from the bore hole, depending on ground conditions.
- Geothermal plants built on this principle are as innocuous as existing hydroelectric or thermo-electric power stations, yet far more ecologically beneficial than the latter.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Mining & Mineral Resources (AREA)
- Sustainable Energy (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Road Paving Structures (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63183391A JPH0733819B2 (ja) | 1987-07-22 | 1988-07-22 | 地熱エネルギを抽出して利用する方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2785/87A CH677698A5 (fr) | 1987-07-22 | 1987-07-22 | |
CH2785/87 | 1987-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4912941A true US4912941A (en) | 1990-04-03 |
Family
ID=4241542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/153,247 Expired - Fee Related US4912941A (en) | 1987-07-22 | 1988-02-08 | Method and apparatus for extracting and utilizing geothermal energy |
Country Status (2)
Country | Link |
---|---|
US (1) | US4912941A (fr) |
CH (1) | CH677698A5 (fr) |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0457416A1 (fr) * | 1990-05-18 | 1991-11-21 | Diego Horten | Dispositif pour l'utilisation de l'énergie géothermique |
US5992507A (en) * | 1998-03-20 | 1999-11-30 | Phillips Petroleum Company | Geothermal community loop field |
US6250371B1 (en) | 1995-09-12 | 2001-06-26 | Enlink Geoenergy Services, Inc. | Energy transfer systems |
US6251179B1 (en) | 1999-03-23 | 2001-06-26 | The United States Of America As Represented By The Department Of Energy | Thermally conductive cementitious grout for geothermal heat pump systems |
US6267172B1 (en) | 2000-02-15 | 2001-07-31 | Mcclung, Iii Guy L. | Heat exchange systems |
US6276438B1 (en) | 1995-09-12 | 2001-08-21 | Thomas R. Amerman | Energy systems |
US6585047B2 (en) | 2000-02-15 | 2003-07-01 | Mcclung, Iii Guy L. | System for heat exchange with earth loops |
US6585036B2 (en) | 1995-09-12 | 2003-07-01 | Enlink Geoenergy Services, Inc. | Energy systems |
US20030209340A1 (en) * | 2000-02-15 | 2003-11-13 | Mcclung Guy L. | Microorganism enhancement with earth loop heat exchange systems |
US20030230086A1 (en) * | 2002-06-18 | 2003-12-18 | Brewington Doyle W. | Apparatus and method for generating electrical energy |
US6672371B1 (en) * | 1995-09-12 | 2004-01-06 | Enlink Geoenergy Services, Inc. | Earth heat exchange system |
US20040031585A1 (en) * | 1995-09-12 | 2004-02-19 | Johnson Howard E. | Earth loop energy systems |
US6694766B1 (en) | 2002-08-21 | 2004-02-24 | Enlink Geoenergy Services, Inc. | Power generation systems with earth heat transfer |
WO2005003648A1 (fr) * | 2003-07-03 | 2005-01-13 | Enlink Geoenergy Services, Inc. | Procede de construction d'un echangeur thermique geothermique |
US20050006049A1 (en) * | 2003-05-30 | 2005-01-13 | Ross Mark G. | Ground source heat exchange system |
US20050025355A1 (en) * | 2003-07-31 | 2005-02-03 | Simard Patrice Y. | Elastic distortions for automatic generation of labeled data |
US6860320B2 (en) | 1995-09-12 | 2005-03-01 | Enlink Geoenergy Services, Inc. | Bottom member and heat loops |
US20070056285A1 (en) * | 2005-09-12 | 2007-03-15 | Brewington Doyle W | Monocoque turbo-generator |
US20080169084A1 (en) * | 2007-01-16 | 2008-07-17 | Bullivant Roger A | Geothermal energy system |
EP1978314A1 (fr) * | 2007-04-03 | 2008-10-08 | Iride S.r.l. | Sonde géothermique |
US7438501B2 (en) | 2006-05-16 | 2008-10-21 | Layne Christensen Company | Ground freezing installation accommodating thermal contraction of metal feed pipes |
US20090101303A1 (en) * | 2006-04-24 | 2009-04-23 | Michael Henze | Artificial Underground Water Heat Accumulator |
US20090126923A1 (en) * | 2007-11-16 | 2009-05-21 | Conocophillips Company | Closed loop energy production from geothermal reservoirs |
WO2009151649A2 (fr) | 2008-06-13 | 2009-12-17 | Parrella Michael J | Système et procédé de capture de chaleur géothermique provenant de l’intérieur d’un puits foré afin de générer de l’électricité |
WO2010016921A2 (fr) * | 2008-08-05 | 2010-02-11 | Parrella Michael J | Système et procédé pour optimiser la conductibilité thermique et augmenter la résistance aux agents caustiques d'un lait de ciment |
US20100269501A1 (en) * | 2008-08-05 | 2010-10-28 | Parrella Michael J | Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat |
US20100270002A1 (en) * | 2008-08-05 | 2010-10-28 | Parrella Michael J | System and method of maximizing performance of a solid-state closed loop well heat exchanger |
US20100270001A1 (en) * | 2008-08-05 | 2010-10-28 | Parrella Michael J | System and method of maximizing grout heat conductibility and increasing caustic resistance |
US20100276115A1 (en) * | 2008-08-05 | 2010-11-04 | Parrella Michael J | System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model |
US7938904B1 (en) | 2005-02-28 | 2011-05-10 | B. Ryland Wiggs | Cementitious grout and methods of using same |
US20110139431A1 (en) * | 2010-09-28 | 2011-06-16 | Doyle Brewington | Energy producing device |
ITRM20100318A1 (it) * | 2010-06-11 | 2011-12-12 | Ignazio Congiu | Procedimento per la realizzazione nel sottosuolo di strati permeabili artificiali per lo sfruttamento dell energia geotermica. |
ITCO20110024A1 (it) * | 2011-07-08 | 2013-01-09 | Sergio Bonfiglio | Nanofluido per infiltrazioni termicamente conduttive |
ITCO20110023A1 (it) * | 2011-07-08 | 2013-01-09 | Sergio Bonfiglio | Metodo di preparazione di campi geotermali |
US20130032337A1 (en) * | 2011-08-02 | 2013-02-07 | Schlumberger Technology Corporation | Explosive pellet |
ITMI20120116A1 (it) * | 2012-01-31 | 2013-08-01 | Stefano Michele Gasparini | Sistema di sfruttamento dell'energia geotermica a impatto ambientale nullo |
US20140202655A1 (en) * | 2008-05-12 | 2014-07-24 | Tai-Her Yang | Temperature Equalization Apparatus Jetting Fluid for Thermal Conduction Used in Electrical Equipment |
WO2014125288A1 (fr) * | 2013-02-18 | 2014-08-21 | Avondale Associates Limited | Extraction d'énergie géothermique |
US8851066B1 (en) | 2009-04-01 | 2014-10-07 | Kelvin L. Kapteyn | Thermal energy storage system |
WO2015066764A1 (fr) * | 2013-11-06 | 2015-05-14 | Controlled Thermal Technologies Pty Ltd | Échangeur de chaleur enterré à boucle géothermique pour extraction d'énergie |
US9091460B2 (en) | 2013-03-21 | 2015-07-28 | Gtherm, Inc. | System and a method of operating a plurality of geothermal heat extraction borehole wells |
US20150354903A1 (en) * | 2012-11-01 | 2015-12-10 | Skanska Sverige Ab | Thermal energy storage comprising an expansion space |
WO2015159188A3 (fr) * | 2014-04-14 | 2015-12-30 | Ozols Ojars | Procédé d'agencement de trou de forage pour l'extraction d'énergie géothermique |
US9518787B2 (en) | 2012-11-01 | 2016-12-13 | Skanska Svergie Ab | Thermal energy storage system comprising a combined heating and cooling machine and a method for using the thermal energy storage system |
US9791217B2 (en) | 2012-11-01 | 2017-10-17 | Skanska Sverige Ab | Energy storage arrangement having tunnels configured as an inner helix and as an outer helix |
CN107860145A (zh) * | 2017-10-13 | 2018-03-30 | 中国科学院广州能源研究所 | 地热单井自然对流强化换热系统 |
CN108332440A (zh) * | 2018-03-22 | 2018-07-27 | 吉林大学 | 一种中深层地热地下增强型换热系统及换热方法 |
PL422353A1 (pl) * | 2017-07-25 | 2019-01-28 | Żakiewicz Bohdan Maciej | Sposób i układ do poboru energii cieplnej z formacji geologicznych |
US20190093641A1 (en) * | 2017-09-28 | 2019-03-28 | Hmfsf Ip Holdings, Llc | Systems and methods of generating electricity using heat from within the earth |
CN110234872A (zh) * | 2017-01-17 | 2019-09-13 | 海普赛尔斯公司 | 用于钻孔的声导航的系统 |
RU2701029C1 (ru) * | 2018-07-04 | 2019-09-24 | федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" | Способ извлечения петротермального тепла |
JP2020518767A (ja) * | 2017-05-04 | 2020-06-25 | ヴェス エナジー エス アール エルVes Energy S.R.L. | 地中熱源および関連するプラントからの、非従来的な電力の生産のためのシステム |
CN111837006A (zh) * | 2017-09-28 | 2020-10-27 | Hmfsf Ip控股有限责任公司 | 利用自地球内部的热产生电力的系统及方法 |
US10954924B2 (en) | 2015-09-24 | 2021-03-23 | Geothermic Solution, Llc | Geothermal heat harvesters |
US11125472B2 (en) | 2018-05-10 | 2021-09-21 | Eavor Technologies Inc. | Fluid for use in power production environments |
US11656002B2 (en) * | 2016-12-23 | 2023-05-23 | Element Coil Services Inc. | Enhancing geothermal energy production in a well |
WO2023224847A1 (fr) * | 2022-05-17 | 2023-11-23 | Geothermic Solution, Inc. | Compositions et procédés de prévention de reflux d'amélioration de portée thermique |
US11953238B1 (en) | 2022-02-01 | 2024-04-09 | Xgs Energy, Inc. | Systems and methods for thermal reach enhancement |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007003066A1 (de) * | 2007-01-20 | 2008-07-24 | Sasse, Heiko, Dipl.-Ing. | Anlage zur Erschließung und Nutzung thermischer Energie aus wärmeführenden Erdformationen |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3809149A (en) * | 1972-10-04 | 1974-05-07 | D Deutsch | Method of supporting a hot oil pipeline through permafrost |
US4030549A (en) * | 1976-01-26 | 1977-06-21 | Cities Service Company | Recovery of geothermal energy |
US4244805A (en) * | 1979-06-05 | 1981-01-13 | Exxon Research & Engineering Co. | Liquid yield from pyrolysis of coal liquefaction products |
US4715429A (en) * | 1985-07-02 | 1987-12-29 | Palne Mogensen | Method and means for applying a heat exchanger in a drill hole for the purpose of heat recovery or storage |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3105545A (en) * | 1960-11-21 | 1963-10-01 | Shell Oil Co | Method of heating underground formations |
US3786858A (en) * | 1972-03-27 | 1974-01-22 | Atomic Energy Commission | Method of extracting heat from dry geothermal reservoirs |
DE2919855A1 (de) * | 1979-05-16 | 1980-11-20 | Kohler Gmbh C | Erdreich-waermepumpenanlage |
NL7905625A (nl) * | 1979-07-19 | 1981-01-21 | Gils Adrianus Van | Werkwijze voor het aan de aarde onttrekken van warmte. |
DE2933855A1 (de) * | 1979-08-21 | 1981-03-26 | Heinrich Stade Bohrunternehmen GmbH & Co KG, 25746 Heide | Verfahren zur gewinnung von waerme aus grundwasser |
US4360056A (en) * | 1980-03-19 | 1982-11-23 | Spencertown Geo-Solar Associates | Geokinetic energy conversion |
HU193647B (en) * | 1983-02-14 | 1987-11-30 | Melyepitesi Tervezo Vallalat | Method and apparatus for utilizing geothermic energy |
-
1987
- 1987-07-22 CH CH2785/87A patent/CH677698A5/de not_active IP Right Cessation
-
1988
- 1988-02-08 US US07/153,247 patent/US4912941A/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3809149A (en) * | 1972-10-04 | 1974-05-07 | D Deutsch | Method of supporting a hot oil pipeline through permafrost |
US4030549A (en) * | 1976-01-26 | 1977-06-21 | Cities Service Company | Recovery of geothermal energy |
US4244805A (en) * | 1979-06-05 | 1981-01-13 | Exxon Research & Engineering Co. | Liquid yield from pyrolysis of coal liquefaction products |
US4715429A (en) * | 1985-07-02 | 1987-12-29 | Palne Mogensen | Method and means for applying a heat exchanger in a drill hole for the purpose of heat recovery or storage |
Cited By (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0457416A1 (fr) * | 1990-05-18 | 1991-11-21 | Diego Horten | Dispositif pour l'utilisation de l'énergie géothermique |
WO1991018205A1 (fr) * | 1990-05-18 | 1991-11-28 | Diego Horten | Dispositif pour l'exploitation de l'energie geothermique |
US5203173A (en) * | 1990-05-18 | 1993-04-20 | Diego Horton | Device for utilization of geothermal energy |
US20040031585A1 (en) * | 1995-09-12 | 2004-02-19 | Johnson Howard E. | Earth loop energy systems |
US6585036B2 (en) | 1995-09-12 | 2003-07-01 | Enlink Geoenergy Services, Inc. | Energy systems |
US7017650B2 (en) | 1995-09-12 | 2006-03-28 | Enlink Geoenergy Services, Inc. | Earth loop energy systems |
US6250371B1 (en) | 1995-09-12 | 2001-06-26 | Enlink Geoenergy Services, Inc. | Energy transfer systems |
US6276438B1 (en) | 1995-09-12 | 2001-08-21 | Thomas R. Amerman | Energy systems |
US6860320B2 (en) | 1995-09-12 | 2005-03-01 | Enlink Geoenergy Services, Inc. | Bottom member and heat loops |
US6672371B1 (en) * | 1995-09-12 | 2004-01-06 | Enlink Geoenergy Services, Inc. | Earth heat exchange system |
US5992507A (en) * | 1998-03-20 | 1999-11-30 | Phillips Petroleum Company | Geothermal community loop field |
US6251179B1 (en) | 1999-03-23 | 2001-06-26 | The United States Of America As Represented By The Department Of Energy | Thermally conductive cementitious grout for geothermal heat pump systems |
US20050205260A1 (en) * | 2000-02-15 | 2005-09-22 | Mcclung Guy L Iii | Wellbore rig with heat transfer loop apparatus |
US7128156B2 (en) | 2000-02-15 | 2006-10-31 | Mcclung Iii Guy L | Wellbore rig with heat transfer loop apparatus |
US6585047B2 (en) | 2000-02-15 | 2003-07-01 | Mcclung, Iii Guy L. | System for heat exchange with earth loops |
US20030209340A1 (en) * | 2000-02-15 | 2003-11-13 | Mcclung Guy L. | Microorganism enhancement with earth loop heat exchange systems |
US20100243201A1 (en) * | 2000-02-15 | 2010-09-30 | Mcclung Iii Guy Lamonte | Earth heat transfer loop apparatus |
US6267172B1 (en) | 2000-02-15 | 2001-07-31 | Mcclung, Iii Guy L. | Heat exchange systems |
US8176971B2 (en) | 2000-02-15 | 2012-05-15 | Mcclung Iii Guy Lamonte | Earth heat transfer loop apparatus |
US6338381B1 (en) | 2000-02-15 | 2002-01-15 | Mcclung, Iii Guy L. | Heat exchange systems |
US6896054B2 (en) | 2000-02-15 | 2005-05-24 | Mcclung, Iii Guy L. | Microorganism enhancement with earth loop heat exchange systems |
US7013645B2 (en) * | 2002-06-18 | 2006-03-21 | Power Tube, Inc. | Apparatus and method for generating electrical energy |
US20030230086A1 (en) * | 2002-06-18 | 2003-12-18 | Brewington Doyle W. | Apparatus and method for generating electrical energy |
US6694766B1 (en) | 2002-08-21 | 2004-02-24 | Enlink Geoenergy Services, Inc. | Power generation systems with earth heat transfer |
US20050006049A1 (en) * | 2003-05-30 | 2005-01-13 | Ross Mark G. | Ground source heat exchange system |
US7571762B2 (en) | 2003-05-30 | 2009-08-11 | 1438253 Ontario Inc. | Ground source heat exchange system |
US20070051492A1 (en) * | 2003-05-30 | 2007-03-08 | Ross Mark G | Ground source heat exchange system |
US7407003B2 (en) * | 2003-05-30 | 2008-08-05 | 1438253 Ontario Inc. | Ground source heat exchange system |
US6955219B2 (en) | 2003-07-03 | 2005-10-18 | Enlink Geoenergy Services, Inc. | Earth loop installation with sonic drilling |
US20060060353A1 (en) * | 2003-07-03 | 2006-03-23 | Johnson Howard E Jr | Earth loop installed with sonic apparatus |
US7270182B2 (en) * | 2003-07-03 | 2007-09-18 | Enlink Geoenergy Services, Inc. | Earth loop installed with sonic apparatus |
WO2005003648A1 (fr) * | 2003-07-03 | 2005-01-13 | Enlink Geoenergy Services, Inc. | Procede de construction d'un echangeur thermique geothermique |
US7093657B2 (en) | 2003-07-03 | 2006-08-22 | Enlink Geoenergy Services, Inc. | Earth loop installed with sonic apparatus |
US7418128B2 (en) | 2003-07-31 | 2008-08-26 | Microsoft Corporation | Elastic distortions for automatic generation of labeled data |
US20050025355A1 (en) * | 2003-07-31 | 2005-02-03 | Simard Patrice Y. | Elastic distortions for automatic generation of labeled data |
US7938904B1 (en) | 2005-02-28 | 2011-05-10 | B. Ryland Wiggs | Cementitious grout and methods of using same |
US7472549B2 (en) | 2005-09-12 | 2009-01-06 | Brewington Doyle W | Monocoque turbo-generator |
US20070056285A1 (en) * | 2005-09-12 | 2007-03-15 | Brewington Doyle W | Monocoque turbo-generator |
US20090101303A1 (en) * | 2006-04-24 | 2009-04-23 | Michael Henze | Artificial Underground Water Heat Accumulator |
US7438501B2 (en) | 2006-05-16 | 2008-10-21 | Layne Christensen Company | Ground freezing installation accommodating thermal contraction of metal feed pipes |
US20080169084A1 (en) * | 2007-01-16 | 2008-07-17 | Bullivant Roger A | Geothermal energy system |
EP1978314A1 (fr) * | 2007-04-03 | 2008-10-08 | Iride S.r.l. | Sonde géothermique |
US20090126923A1 (en) * | 2007-11-16 | 2009-05-21 | Conocophillips Company | Closed loop energy production from geothermal reservoirs |
US8708046B2 (en) * | 2007-11-16 | 2014-04-29 | Conocophillips Company | Closed loop energy production from geothermal reservoirs |
US20140202655A1 (en) * | 2008-05-12 | 2014-07-24 | Tai-Her Yang | Temperature Equalization Apparatus Jetting Fluid for Thermal Conduction Used in Electrical Equipment |
EP2313708A2 (fr) * | 2008-06-13 | 2011-04-27 | Michael J. Parrella | Systeme et procede de capture de chaleur geothermique provenant de l'interieur d'un puits fore afin de generer de l'electricite |
CN102105755A (zh) * | 2008-06-13 | 2011-06-22 | 迈克尔·J·帕雷拉 | 从钻井内获取地热来发电的系统和方法 |
EP2313708A4 (fr) * | 2008-06-13 | 2014-04-09 | Michael J Parrella | Systeme et procede de capture de chaleur geothermique provenant de l'interieur d'un puits fore afin de generer de l'electricite |
US8616000B2 (en) * | 2008-06-13 | 2013-12-31 | Michael J. Parrella | System and method of capturing geothermal heat from within a drilled well to generate electricity |
US9404480B2 (en) | 2008-06-13 | 2016-08-02 | Pardev, Llc | System and method of capturing geothermal heat from within a drilled well to generate electricity |
WO2009151649A2 (fr) | 2008-06-13 | 2009-12-17 | Parrella Michael J | Système et procédé de capture de chaleur géothermique provenant de l’intérieur d’un puits foré afin de générer de l’électricité |
AU2009258086B2 (en) * | 2008-06-13 | 2016-07-07 | Michael J. Parrella | System and method of capturing geothermal heat from within a drilled well to generate electricity |
US20090320475A1 (en) * | 2008-06-13 | 2009-12-31 | Parrella Michael J | System and method of capturing geothermal heat from within a drilled well to generate electricity |
WO2010016921A2 (fr) * | 2008-08-05 | 2010-02-11 | Parrella Michael J | Système et procédé pour optimiser la conductibilité thermique et augmenter la résistance aux agents caustiques d'un lait de ciment |
US20100270002A1 (en) * | 2008-08-05 | 2010-10-28 | Parrella Michael J | System and method of maximizing performance of a solid-state closed loop well heat exchanger |
WO2010016921A3 (fr) * | 2008-08-05 | 2010-05-27 | Parrella Michael J | Système et procédé pour optimiser la conductibilité thermique et augmenter la résistance aux agents caustiques d'un lait de ciment |
US20100269501A1 (en) * | 2008-08-05 | 2010-10-28 | Parrella Michael J | Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat |
US9423158B2 (en) * | 2008-08-05 | 2016-08-23 | Michael J. Parrella | System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model |
WO2010144073A1 (fr) * | 2008-08-05 | 2010-12-16 | Parrella Michael J | Système et procédé pour maximiser le transfert de chaleur au fond d'un puits au moyen d'éléments thermoconducteurs et d'un modèle de prévision |
US8534069B2 (en) * | 2008-08-05 | 2013-09-17 | Michael J. Parrella | Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat |
US20100276115A1 (en) * | 2008-08-05 | 2010-11-04 | Parrella Michael J | System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model |
US20100270001A1 (en) * | 2008-08-05 | 2010-10-28 | Parrella Michael J | System and method of maximizing grout heat conductibility and increasing caustic resistance |
US8851066B1 (en) | 2009-04-01 | 2014-10-07 | Kelvin L. Kapteyn | Thermal energy storage system |
ITRM20100318A1 (it) * | 2010-06-11 | 2011-12-12 | Ignazio Congiu | Procedimento per la realizzazione nel sottosuolo di strati permeabili artificiali per lo sfruttamento dell energia geotermica. |
WO2011154984A2 (fr) | 2010-06-11 | 2011-12-15 | Ignazio Congiu | Processus de création de couches artificielles perméables dans un substrat pour l'exploitation de l'énergie géothermique |
WO2011154984A3 (fr) * | 2010-06-11 | 2012-08-09 | Ignazio Congiu | Processus de création de couches artificielles perméables dans un substrat pour l'exploitation de l'énergie géothermique |
US20110139431A1 (en) * | 2010-09-28 | 2011-06-16 | Doyle Brewington | Energy producing device |
US8261551B2 (en) | 2010-09-28 | 2012-09-11 | Doyle Brewington | Energy producing device |
ITCO20110023A1 (it) * | 2011-07-08 | 2013-01-09 | Sergio Bonfiglio | Metodo di preparazione di campi geotermali |
ITCO20110024A1 (it) * | 2011-07-08 | 2013-01-09 | Sergio Bonfiglio | Nanofluido per infiltrazioni termicamente conduttive |
AU2012326644B2 (en) * | 2011-08-02 | 2016-05-12 | Schlumberger Technology B.V. | Explosive pellet |
US9334719B2 (en) * | 2011-08-02 | 2016-05-10 | Schlumberger Technology Corporation | Explosive pellet |
US20130032337A1 (en) * | 2011-08-02 | 2013-02-07 | Schlumberger Technology Corporation | Explosive pellet |
ITMI20120116A1 (it) * | 2012-01-31 | 2013-08-01 | Stefano Michele Gasparini | Sistema di sfruttamento dell'energia geotermica a impatto ambientale nullo |
US9791217B2 (en) | 2012-11-01 | 2017-10-17 | Skanska Sverige Ab | Energy storage arrangement having tunnels configured as an inner helix and as an outer helix |
US20150354903A1 (en) * | 2012-11-01 | 2015-12-10 | Skanska Sverige Ab | Thermal energy storage comprising an expansion space |
US9823026B2 (en) * | 2012-11-01 | 2017-11-21 | Skanska Sverige Ab | Thermal energy storage with an expansion space |
US9518787B2 (en) | 2012-11-01 | 2016-12-13 | Skanska Svergie Ab | Thermal energy storage system comprising a combined heating and cooling machine and a method for using the thermal energy storage system |
US9657998B2 (en) | 2012-11-01 | 2017-05-23 | Skanska Sverige Ab | Method for operating an arrangement for storing thermal energy |
WO2014125288A1 (fr) * | 2013-02-18 | 2014-08-21 | Avondale Associates Limited | Extraction d'énergie géothermique |
US9091460B2 (en) | 2013-03-21 | 2015-07-28 | Gtherm, Inc. | System and a method of operating a plurality of geothermal heat extraction borehole wells |
WO2015066764A1 (fr) * | 2013-11-06 | 2015-05-14 | Controlled Thermal Technologies Pty Ltd | Échangeur de chaleur enterré à boucle géothermique pour extraction d'énergie |
WO2015159188A3 (fr) * | 2014-04-14 | 2015-12-30 | Ozols Ojars | Procédé d'agencement de trou de forage pour l'extraction d'énergie géothermique |
US11703036B2 (en) | 2015-09-24 | 2023-07-18 | Xgs Energy, Inc. | Geothermal heat harvesters |
US10954924B2 (en) | 2015-09-24 | 2021-03-23 | Geothermic Solution, Llc | Geothermal heat harvesters |
US11656002B2 (en) * | 2016-12-23 | 2023-05-23 | Element Coil Services Inc. | Enhancing geothermal energy production in a well |
CN110234872A (zh) * | 2017-01-17 | 2019-09-13 | 海普赛尔斯公司 | 用于钻孔的声导航的系统 |
JP2020518767A (ja) * | 2017-05-04 | 2020-06-25 | ヴェス エナジー エス アール エルVes Energy S.R.L. | 地中熱源および関連するプラントからの、非従来的な電力の生産のためのシステム |
WO2019021066A1 (fr) * | 2017-07-25 | 2019-01-31 | Zakiewicz Bohdan Maciej | Procédé et système de collecte d'énergie thermique à partir de formations géologiques |
PL422353A1 (pl) * | 2017-07-25 | 2019-01-28 | Żakiewicz Bohdan Maciej | Sposób i układ do poboru energii cieplnej z formacji geologicznych |
US10598160B2 (en) * | 2017-09-28 | 2020-03-24 | Hmfsf Ip Holdings, Llc | Systems and methods of generating electricity using heat from within the earth |
US20190093641A1 (en) * | 2017-09-28 | 2019-03-28 | Hmfsf Ip Holdings, Llc | Systems and methods of generating electricity using heat from within the earth |
CN111837006A (zh) * | 2017-09-28 | 2020-10-27 | Hmfsf Ip控股有限责任公司 | 利用自地球内部的热产生电力的系统及方法 |
US20220282716A1 (en) * | 2017-09-28 | 2022-09-08 | Hmfsf Ip Holdings, Llc | Systems and methods of generating electricity using heat from within the earth |
US11788516B2 (en) * | 2017-09-28 | 2023-10-17 | Hmfsf Ip Holdings, Llc | Systems and methods of generating electricity using heat from within the earth |
CN107860145B (zh) * | 2017-10-13 | 2019-10-08 | 中国科学院广州能源研究所 | 地热单井自然对流强化换热系统 |
CN107860145A (zh) * | 2017-10-13 | 2018-03-30 | 中国科学院广州能源研究所 | 地热单井自然对流强化换热系统 |
CN108332440A (zh) * | 2018-03-22 | 2018-07-27 | 吉林大学 | 一种中深层地热地下增强型换热系统及换热方法 |
US11125472B2 (en) | 2018-05-10 | 2021-09-21 | Eavor Technologies Inc. | Fluid for use in power production environments |
RU2701029C1 (ru) * | 2018-07-04 | 2019-09-24 | федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" | Способ извлечения петротермального тепла |
US11953238B1 (en) | 2022-02-01 | 2024-04-09 | Xgs Energy, Inc. | Systems and methods for thermal reach enhancement |
WO2023224847A1 (fr) * | 2022-05-17 | 2023-11-23 | Geothermic Solution, Inc. | Compositions et procédés de prévention de reflux d'amélioration de portée thermique |
Also Published As
Publication number | Publication date |
---|---|
CH677698A5 (fr) | 1991-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4912941A (en) | Method and apparatus for extracting and utilizing geothermal energy | |
CN109403917B (zh) | 提高地热井产热能力的工艺 | |
CN102105755B (zh) | 从钻井内获取地热来发电的系统和方法 | |
US20070245729A1 (en) | Directional geothermal energy system and method | |
US4054176A (en) | Multiple-completion geothermal energy production systems | |
US3957108A (en) | Multiple-completion geothermal energy production systems | |
RU2269728C2 (ru) | Способ и система для обмена земной энергией между земными телами и энергообменником, использующим природную тепловую энергию, прежде всего для получения электрического тока | |
US4044830A (en) | Multiple-completion geothermal energy production systems | |
JP2022539108A (ja) | 熱生産的な地層を獲得するための動作プロトコル | |
JPH041837B2 (fr) | ||
CN211177029U (zh) | 中深层地热能取热不取水模式供暖系统 | |
US3938592A (en) | Rock-exploitation method based on thermodynamic cycles utilizing in-situ energy source | |
US4505322A (en) | Method of storing heat and heat store for carrying out the method | |
CN106839478A (zh) | 一种深层地热热传导根系的建造方法 | |
US4051677A (en) | Multiple-completion geothermal energy production systems | |
CN1206097A (zh) | 提取地热能量的方法和装置 | |
CN110863800A (zh) | 一种干热岩单井闭式开发方法 | |
WO2012023881A1 (fr) | Procédé de production d'énergie à partir de sources géothermales et dispositif de sa mise en oeuvre | |
CN108278787B (zh) | 一种基于地热开发井的能源高效利用开采设备及方法 | |
CN211950450U (zh) | 一种用于干热岩压裂的筛管串结构 | |
JPH0733819B2 (ja) | 地熱エネルギを抽出して利用する方法 | |
CN202470523U (zh) | 一种从地壳增温层获取热量的装置 | |
US5253926A (en) | Process for making general use of the earth's heat and obtaining minerals in the zone of weakness (at depths of 13-30 km) | |
KR20070091487A (ko) | 지중열을 이용하는 열교환시스템 | |
CN113756748A (zh) | 一种热交换完井装置及开发方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19980408 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |