RU2701029C1 - Способ извлечения петротермального тепла - Google Patents
Способ извлечения петротермального тепла Download PDFInfo
- Publication number
- RU2701029C1 RU2701029C1 RU2018124493A RU2018124493A RU2701029C1 RU 2701029 C1 RU2701029 C1 RU 2701029C1 RU 2018124493 A RU2018124493 A RU 2018124493A RU 2018124493 A RU2018124493 A RU 2018124493A RU 2701029 C1 RU2701029 C1 RU 2701029C1
- Authority
- RU
- Russia
- Prior art keywords
- heat
- casing
- pipe
- well
- hydraulic fracturing
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Изобретение относится к способам извлечения петротермальной энергии с последующим применением в системах теплоснабжения и хладоснабжения. Из скважины с температурным градиентом по обсадной трубе теплоноситель подается в подземный котел-теплообменник, нагревается, поднимается по концентрично опущенной в обсадную трубу трубе и передает тепло потребителю при помощи теплового насоса. Затем теплоноситель охлаждается и снова поступает в скважину, цикл повторяется. В теплый период используется для нужд хладоснабжения, включая в работу второй тепловой насос. Для создания подземного котла-теплообменника методом многоступенчатого гидравлического разрыва пласта выполнены смещенные по глубине отверстия в оконечной части обсадной трубы и трубы, концентрично опущенной в обсадную трубу. Для образования подземного котла-теплообменника жидкость для гидравлического разрыва подается сначала по трубе, концентрично опущенной в обсадную трубу для образования трещин, после промывается кислотным раствором для снижения сопротивления движению жидкости в трещинах, а затем по обсадной трубе с удалением промывочной жидкости через трубу, концентрично опущенную в обсадную трубу. Техническим результатом является снижение глубины бурения без потери тепловой мощности. 2 з.п. ф-лы, 1 ил.
Description
Изобретение относится к способам извлечения петротермального тепла глубинных пород для использования в системах энергоснабжения.
Известен способ извлечения геотермального тепла с помощью парового котла на подземном тепле (патент РФ №2099649, 20.12.1997. Паровой котел на подземном тепле), с водяным пространством и пространством парообразования с пароотводящей трубой, двумя трубами разного диаметра, из которых большего диаметра установлена в земной скважине, а вторая труба размещена внутри первой с примыканием к ее внутренней стороне и дополнительно снабжена обратным клапаном.
В трубу меньшего диаметра поступает самотеком или накачивается вода, обратный клапан под давлением воды открывается, и вода поступает в трубу большего диаметра (котел) до определенного уровня в водном пространстве. Под действием подземного тепла образовавшийся пар отводится трубой большего диаметра потребителю, например к паровой машине с электрогенератором или для обогрева теплиц, зданий и т.д.
Недостатком известного способа является то, что водяной пар при подъеме отдает тепло грунтам, температура которых уменьшается по мере приближения к поверхности, что приводит к «экологическому тепловому загрязнению» поверхностных слоев грунта.
Известен способ извлечения тепла земных недр (заявка РФ №2003113562, 27.10.2004. Установка для выработки геотермальной энергии) с помощью установки для выработки геотермальной энергии, включающей вертикальный нагнетательный ствол скважины, идущий от поверхности в толщу земли и вертикальный выходной ствол скважины, идущий также от поверхности в толщу земли, находящиеся на расстоянии друг от друга, горизонтальный ствол скважины, который соединяет указанные два вертикальные ствола скважины вместе, причем горизонтальный ствол скважины расположен в горячей горной породе, при этом все указанные вертикальные и горизонтальные скважины имеют обсадные трубы, предотвращающие протекание жидкости через стенки скважины и контакт ее с почвой или с грунтовыми водами. Нагнетательный ствол скважины выполнен с возможностью приема воды, а выходной ствол скважины выполнен с возможностью отвода из него пара, причем предусмотрены средства для пропускания воды из нагнетательного ствола скважины через горизонтальный ствол скважины для того, чтобы превратить воду в пар; вода из выходного ствола скважины или вода, полученная после конденсации пара из выходного ствола скважины, возвращается в нагнетательный ствол скважины и используется повторно.
Недостатком известного способа является необходимость бурения трех скважин, что существенно увеличивает капитальные затраты.
Также известны технологии извлечения тепла из горячих сухих подземных коллекторов (НВК) [Петрогеотермальные ресурсы как новый вид энергии XXI века. Маркшейдерия и недропользование №3(41), май-июнь 2009 г.]. Сущность НВК технологии заключается в следующем.
Пробуривается 2-3 скважины до глубин с температурами, отвечающими требованиям теплоснабжения или производства электроэнергии. Одна из них является нагнетательной, подающей под давлением воду в зону нагрева, другие 1-2 скважины - эксплуатационные, по ним образующийся пар с необходимой температурой поступает на поверхность. Если естественная проницаемость раскаленного массива пород недостаточна, то осуществляется его гидроразрыв для образования подземного «котла».
Методы гидроразрыва пластов и наклонного бурения скважин хорошо освоены нефтегазовой промышленностью и применяются для интенсификации притоков флюидов, однако применение гидроразрыва возможно для создания петротермальных циркуляционных систем (ПЦС). Трещины, образовавшиеся в результате гидроразрыва, поддерживаются в раскрытом состоянии гидростатическим давлением жидкости. При этом потери теплоносителя в окружающий массив составят около 1% его общего объема теплоносителя.
Недостатком известного способа является необходимость бурения не менее двух скважин, что существенно увеличивает капитальные затраты.
Наиболее близким к предложенному является способ извлечения геотермального тепла (Патент РФ №2288413, 27.11.2006), при котором из скважины с температурным градиентом по обсадной трубе при помощи теплоносителя, циркулирующего в контуре, и используемого для нужд теплоснабжения, охлажденный теплоноситель подается в обсадную трубу, а нагретый -поднимается по трубе, концентрично опущенной в обсадную трубу, и передает тепло потребителю при помощи теплового насоса.
Недостатком известного способа является то, что необходима большая глубина скважины, что связано с существенными капитальными затратами, т.к. основная проблема извлечения петротермальной энергии заключается в низкой теплоотдаче грунтов скважины (тепловая мощность скважины достигает 1-1,2 МВт при глубине до 3000 м). Это связано с низкими коэффициентами теплопроводности грунтов (термическая характеристика горных пород в основном определяется физическими свойствами, зависящими от их структурно-текстурных особенностей, свойств породообразующих минералов и среды, заполняющей пространство между минералами), что приводит к низким значениям коэффициента теплопередачи, и низкими температурными градиентами скважин (gradT=(20÷90)°С/км).
Техническим результатом заявляемого изобретения является создание экологически чистых энергоустановок, снижение глубины бурения без потери тепловой мощности, увеличение теплоотдачи, ускорение запуска установки в эксплуатацию при использовании отработанных нефтяных и газовых скважин. Создание комбинированной установки по теплоснабжению и хладоснабжению.
Указанный технический результат достигается за счет того, что теплоноситель подается в обсадную трубу, контактирует с разогретой сухой горной породой (подземным котлом - теплообменником) и нагретый - поднимается по трубе, концентрично опущенной в обсадную трубу, передает тепло теплообменнику теплового насоса, охлаждается и возвращается обратно в обсадную трубу. Тепловой насос в свою очередь передает энергию в систему теплоснабжения потребителя тепла. Для образования подземного котла - теплообменника методом многоступенчатого гидравлического разрыва пласта выполнены смещенные по глубине отверстия в оконечной части обсадной трубы и трубы, концентрично опущенной в обсадную трубу. Диаметр отверстий определяется по известным формулам в зависимости от расчетной мощности скважины, т.е. их количество и диаметр зависят от расхода теплоносителя. Жидкость для гидравлического разрыва подается сначала по трубе, концентрично опущенной в обсадную трубу, для образования трещин, после промывается кислотным раствором для увеличения площади теплообмена и снижения сопротивления движению жидкости в трещинах, а затем по обсадной трубе с удалением промывочной жидкости через трубу, концентрично опущенную в обсадную трубу. В связи с повсеместным распространением петротермальных источников указанная технология может быть использована для круглогодичного теплоснабжения обособленных и удаленных объектов, и создания экологически чистых энергоустановок, а также хладоснабжения в летний период за счет установки в контуре трехходового крана и дополнительного теплового насоса, который в свою очередь передает выработанное тепло в скважину по имеющемуся контуру для аккумуляции тепла в подземном котле теплообменнике. Снижение капитальных затрат на бурение скважины достигается за счет снижения глубины бурения и внедрение технических и технологических решений энергоэффективного использования возобновляемых источников энергии.
На фиг. 1 представлена схема извлечения петротермального тепла по предлагаемому способу. Схема включает в себя следующие элементы: скважину с обсадной трубой 1; трубу 2, концентрично опущенную в обсадную трубу; подземный котел - теплообменник 3; тепловой насос 4 (для теплоснабжения); потребитель тепла 5; тепловой насос 6 (для хладоснабжения); трехходовой кран 7; участок труб со смещенными по глубине отверстиями 8.
Способ осуществляется следующим образом.
Воду полученную из артезианской скважины или иного резервуара с водой, подготавливают и закачивают в скважину по обсадной трубе 1 в подземный котел теплообменник 3, где происходит контакт воды с разогретой горной породой, процесс теплообмена, затем нагретая до t1 вода поднимается по трубе 2 концентрично опущенной в обсадную трубу 1 и подается в теплообменник теплового насоса 4, затем на выходе из теплообменника, охлаждается имея температуру t2, поступает к нагнетательным насосам 5 и закачивается через обсадную трубу 1 скважины в подземный котел теплообменник 3, таким образом контур замыкается и цикл повторятся. В период работы установки на теплоснабжение и хладоснабжение, в систему включается второй тепловой насос 6 при помощи трехходового крана 7 который открывает дополнительный контур системы не нарушая цикл.
Применение теплового насоса позволяет увеличить теплоотдачу скважины за счет понижения температуры обратной воды t2, закачиваемой в скважину. При этом исключается необходимость тепловой изоляции оголовка скважины. Скважина предназначается для круглогодичного использования потребителем: в холодный период - на производственные нужды и коммунально-бытовые (отопление, вентиляцию и горячее водоснабжение); в теплый период - на производственные нужды, коммунально-бытовые (горячее водоснабжение, хладоснабжение).
ПРИМЕР осуществления способа.
Основываясь на основном законе теплопередачи
Q=kFΔt,
где Q - тепловая мощность, Вт;
k - коэффициент теплопередачи, Вт/(м2К);
Δt - среднелогарифмический температурный напор, °С;
F - площадь поверхности теплообмена, м2,
для повышения теплоотдачи петротермальной скважины при одинаковых температурном напоре Δt и коэффициенте теплопередачи к необходимо увеличение поверхности контакта грунтов с теплоносителем (площади поверхности теплообмена F).
Перспективным видится с точки зрения экологичности и снижения капитальных затрат способ многоступенчатого гидравлического разрыва пласта при бурении одиночной петротермальной скважины, который применяется в настоящее время для увеличения нефтеотдачи нефтеносного пласта. А также промывка полученной сети каналов подземного котла - теплообменника кислотными растворами для увеличения площади теплообмена и проницаемости трещин. Многоступенчатым гидравлическим разрывом называется процесс, при котором давление жидкости воздействует непосредственно на породу пласта вплоть до ее разрушения и образования трещины, проходящий в несколько этапов (ступеней). Продолжающееся воздействие давления жидкости расширяет трещину вглубь от точки разрыва. В закачиваемую жидкость добавляется расклинивающий материал, например, песок, керамические шарики или агломерированный боксит. Назначение этого материала - держать созданную трещину в раскрытом состоянии после сброса давления жидкости. Таким образом, создается новый, более просторный канал притока. Канал объединяет существующие природные трещины и создает дополнительную площадь теплообмена. Кислотный раствор увеличивает площадь теплообмена и способствует уменьшению сопротивления движению теплоносителя в канале - трещине.
Для создания подземного котла - теплообменника методом многоступенчатого гидравлического разрыва пласта выполнены смещенные по глубине относительно друг друга на равные расстояния отверстия на участке 8; в оконечной части обсадной трубы 1 и трубы 2, концентрично опущенной в обсадную трубу 1, диаметр отверстий зависит от проектируемой тепловой мощности скважины, наличие смещенных отверстий в трубах 1 и 2., отличает данный способ от способа многоступенчатого гидравлического разрыва пласта применяемого в нефтегазодобыче.
Жидкость для гидравлического разрыва подается сначала по трубе 2, концентрично опущенной в обсадную трубу 1 для образования трещин, а затем по обсадной трубе 1 с удалением промывочной жидкости через трубу 2 (на фиг. 1 показано стрелками направление движения жидкости), концентрично опущенную в обсадную трубу 1., трещины могут быть горизонтальными, вертикальными и наклонными. Пространственная ориентация трещины определяется напряженным состоянием горных пород в зоне скважины и изменениями обусловленными распределением напряжений. Напряжения формируются главным образом под действием гравитационных сил. Технология многоступенчатого гидравлического разрыва пластов достаточно хорошо отработана на нефтяных скважинах и не требует разработки специализированного оборудования. Также в качестве петротермальных скважин могут использоваться отработанные нефтяные скважины, что существенно ускорит процесс строительства и запуска в эксплуатацию системы, снизит капитальные затраты на обустройство скважины, которые являются основными. Таким образом, поверхность контакта теплоносителя с грунтом может быть увеличена на 30-60%, что, как ожидается, приведет к увеличению теплоотдачи петротермальной скважины также на 30-60% или снижения глубины бурения на ту же величину.
В свою очередь теплоотдача скважины увеличивается с увеличением глубины бурения в связи с увеличением температуры грунтов. Однако, применение многоступенчатого гидравлического разрыва пласта, как показано выше, позволяет увеличить теплоотдачу за счет увеличения площади теплообмена и получения глубоких вертикальных трещин, в результате чего возможно снижение глубины бурения скважины без потери тепловой мощности петротермальной скважины, при одновременном снижении капитальных затрат, т.к. технология многоступенчатого гидравлического разрыва пласта менее затратная по сравнению с глубинным бурением.
Известно, что капитальные затраты на бурение скважины находятся в квадратичной зависимости от глубины бурения
R=kL2, тыс.руб.,
где L - глубина скважины, км;
k - стоимостной коэффициент.
Тогда при одинаковых значениях (k) при снижении глубины бурения на 30-60% капитальные затраты снижаются в 2-5 раз.
Таким образом, задачей оптимизации с целью снижения капитальных затрат является определение требуемой глубины скважины и площади поверхности раскрытия трещин при гидравлическом разрыве для обеспечения заданной тепловой мощности.
Claims (3)
1. Способ извлечения петротермального тепла из скважины с температурным градиентом по обсадной трубе при помощи теплоносителя, циркулирующего в контуре и используемого для нужд теплоснабжения, при котором охлажденный в тепловом насосе теплоноситель подается в обсадную трубу, контактирует с горной породой, нагревается, поднимается по концентрично опущенной в обсадную трубу трубе и передает тепло потребителю при помощи теплового насоса, отличающийся тем, что теплоноситель нагревается от разогретой породы в подземном котле-теплообменнике, образованном методом многоступенчатого гидравлического разрыва пласта.
2. Способ по п. 1, отличающийся тем, что для образования подземного котла-теплообменника методом многоступенчатого гидравлического разрыва пласта выполнены смещенные относительно друг друга на равные расстояния отверстия с диаметром, зависящим от расчетной мощности скважины, расположенные на обсадной и концентрично опущенной трубах в зоне создаваемого подземного котла-теплообменника.
3. Способ по п. 1, отличающийся тем, что жидкость для гидравлического разрыва подается сначала по трубе, концентрично опущенной в обсадную трубу, для образования трещин, после промывается кислотным раствором для увеличения площади теплообмена и снижения сопротивления движению жидкости в трещинах, а затем по обсадной трубе с удалением промывочной жидкости через трубу, концентрично опущенную в обсадную трубу.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018124493A RU2701029C1 (ru) | 2018-07-04 | 2018-07-04 | Способ извлечения петротермального тепла |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018124493A RU2701029C1 (ru) | 2018-07-04 | 2018-07-04 | Способ извлечения петротермального тепла |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2701029C1 true RU2701029C1 (ru) | 2019-09-24 |
Family
ID=68063380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018124493A RU2701029C1 (ru) | 2018-07-04 | 2018-07-04 | Способ извлечения петротермального тепла |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2701029C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2823425C1 (ru) * | 2023-05-12 | 2024-07-23 | Общество с ограниченной ответственностью "Петротермал инженерные решения" | Способ извлечения низкотемпературного петротермального тепла |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4912941A (en) * | 1987-07-22 | 1990-04-03 | Buechi Hans F | Method and apparatus for extracting and utilizing geothermal energy |
WO2005090747A1 (en) * | 2004-03-24 | 2005-09-29 | Halliburton Energy Services, Inc. | Methods of isolating hydrajet stimulated zones |
RU2288413C1 (ru) * | 2005-04-29 | 2006-11-27 | Государственное образовательное учреждение высшего профессионального образования "Северо-Кавказский государственный технический университет" | Способ извлечения геотермального тепла |
EA201170019A1 (ru) * | 2008-06-13 | 2011-08-30 | Майкл Дж. Паррелла | Система и способ отбора геотермального тепла из пробуренной скважины для выработки электроэнергии |
RU2529769C2 (ru) * | 2010-06-10 | 2014-09-27 | Василий Григорьевич Найда | Петротермальная электростанция и устройство монтажа теплоотборной системы петротермальной электростанции |
RU2644807C1 (ru) * | 2016-11-15 | 2018-02-14 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ гидравлического разрыва пласта |
-
2018
- 2018-07-04 RU RU2018124493A patent/RU2701029C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4912941A (en) * | 1987-07-22 | 1990-04-03 | Buechi Hans F | Method and apparatus for extracting and utilizing geothermal energy |
WO2005090747A1 (en) * | 2004-03-24 | 2005-09-29 | Halliburton Energy Services, Inc. | Methods of isolating hydrajet stimulated zones |
RU2288413C1 (ru) * | 2005-04-29 | 2006-11-27 | Государственное образовательное учреждение высшего профессионального образования "Северо-Кавказский государственный технический университет" | Способ извлечения геотермального тепла |
EA201170019A1 (ru) * | 2008-06-13 | 2011-08-30 | Майкл Дж. Паррелла | Система и способ отбора геотермального тепла из пробуренной скважины для выработки электроэнергии |
RU2529769C2 (ru) * | 2010-06-10 | 2014-09-27 | Василий Григорьевич Найда | Петротермальная электростанция и устройство монтажа теплоотборной системы петротермальной электростанции |
RU2644807C1 (ru) * | 2016-11-15 | 2018-02-14 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ гидравлического разрыва пласта |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2823425C1 (ru) * | 2023-05-12 | 2024-07-23 | Общество с ограниченной ответственностью "Петротермал инженерные решения" | Способ извлечения низкотемпературного петротермального тепла |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3114349B1 (en) | Process and system for producing geothermal power | |
US5515679A (en) | Geothermal heat mining and utilization | |
US9541309B2 (en) | Geothermal loop in-ground heat exchanger for energy extraction | |
US20200011573A1 (en) | Geothermal system operable between heat recovery and heat storage modes | |
US3786858A (en) | Method of extracting heat from dry geothermal reservoirs | |
US8430166B2 (en) | Geothermal energy extraction system and method | |
US20070245729A1 (en) | Directional geothermal energy system and method | |
CN204252967U (zh) | 干热岩多循环加热系统 | |
WO2017146712A1 (en) | Geotherman heat recobery from high-temperatute, low-permeability geologic formations for power generation using closed-loop systems | |
US11674718B2 (en) | Well completion converting a hydrocarbon production well into a geothermal well | |
US20120018120A1 (en) | Geothermal energy extraction system and method | |
CN103453571A (zh) | 一种封闭循环采暖系统 | |
CN211177029U (zh) | 中深层地热能取热不取水模式供暖系统 | |
CN112856562A (zh) | 中深层地热能取热不取水模式供暖系统 | |
US6035949A (en) | Methods for installing a well in a subterranean formation | |
CN106839478A (zh) | 一种深层地热热传导根系的建造方法 | |
CN110863800A (zh) | 一种干热岩单井闭式开发方法 | |
CN105546860A (zh) | 一种提取利用地热能的装置及方法 | |
GB2549832A (en) | Geothermal power system | |
WO2015132404A1 (en) | Geothermal plant using hot dry rock fissured zone | |
WO2012023881A1 (ru) | Способ получения энергии из петротермальных источников и устройство для его осуществления | |
CA2916811A1 (en) | A linear geothermal heat exchange device | |
RU2701029C1 (ru) | Способ извлечения петротермального тепла | |
WO2021240121A1 (en) | Storing and extracting thermal energy in a hydrocarbon well | |
RU2823425C1 (ru) | Способ извлечения низкотемпературного петротермального тепла |