PL422353A1 - Sposób i układ do poboru energii cieplnej z formacji geologicznych - Google Patents

Sposób i układ do poboru energii cieplnej z formacji geologicznych

Info

Publication number
PL422353A1
PL422353A1 PL422353A PL42235317A PL422353A1 PL 422353 A1 PL422353 A1 PL 422353A1 PL 422353 A PL422353 A PL 422353A PL 42235317 A PL42235317 A PL 42235317A PL 422353 A1 PL422353 A1 PL 422353A1
Authority
PL
Poland
Prior art keywords
well
flow
receiving medium
heat receiving
activated
Prior art date
Application number
PL422353A
Other languages
English (en)
Inventor
Bohdan Maciej ŻAKIEWICZ
Original Assignee
Żakiewicz Bohdan Maciej
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Żakiewicz Bohdan Maciej filed Critical Żakiewicz Bohdan Maciej
Priority to PL422353A priority Critical patent/PL422353A1/pl
Priority to PCT/IB2018/050270 priority patent/WO2019021066A1/en
Publication of PL422353A1 publication Critical patent/PL422353A1/pl

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T50/00Geothermal systems 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/56Control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Road Paving Structures (AREA)

Abstract

Sposób ciągłego poboru energii cieplnej z formacji geologicznych, w którym w jednostce eksploatacyjnej zawierającej układ odbierający ciepło (4) odbiera się ciepło poprzez czynnik odbierający ciepło przepływający w co najmniej dwóch biegnących w głąb ziemi odwiertach (2, 3), w którym wyznacza się czas regeneracji każdego odwiertu (2, 3), wyznacza się odległość pomiędzy odwiertami (2, 3), wyznacza się zadany spadek temperatury aktywujący przepływ czynnika odbierającego ciepło w każdym z odwiertów (2, 3), aktywuje się przepływ czynnika odbierającego ciepło w pierwszym odwiercie (2), dezaktywuje się przepływ w pierwszym odwiercie (2) przy zadanym spadku temperatury czynnika odbierającego ciepło na okres czasu równy wyznaczonemu czasowi regeneracji pierwszego odwiertu (2) i z wyprzedzeniem lub jednocześnie aktywuje się przepływ czynnika odbierającego ciepło w drugim odwiercie (3), dezaktywuje się przepływ w drugim odwiercie (3) przy zadanym spadku temperatury czynnika odbierającego ciepło na okres czasu równy wyznaczonemu czasowi regeneracji drugiego odwiertu (3) i z wyprzedzeniem lub jednocześnie aktywuje się przepływ czynnika odbierającego ciepło w pierwszym (2) lub kolejnym odwiercie, w zależności od tego czy upłynął już wyznaczony czas regeneracji pierwszego odwiertu (2). Układ do realizacji sposobu ciągłego poboru energii cieplnej zawierający jednostkę eksploatacyjną, elementy wymuszające przepływ (6), czujniki temperatury (8), przy czym czujniki temperatury (8) są połączone z elementami wymuszającymi przepływ (6) poprzez jednostkę sterującą (4).
PL422353A 2017-07-25 2017-07-25 Sposób i układ do poboru energii cieplnej z formacji geologicznych PL422353A1 (pl)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL422353A PL422353A1 (pl) 2017-07-25 2017-07-25 Sposób i układ do poboru energii cieplnej z formacji geologicznych
PCT/IB2018/050270 WO2019021066A1 (en) 2017-07-25 2018-01-16 METHOD AND SYSTEM FOR COLLECTING THERMAL ENERGY FROM GEOLOGICAL FORMATIONS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL422353A PL422353A1 (pl) 2017-07-25 2017-07-25 Sposób i układ do poboru energii cieplnej z formacji geologicznych

Publications (1)

Publication Number Publication Date
PL422353A1 true PL422353A1 (pl) 2019-01-28

Family

ID=61622626

Family Applications (1)

Application Number Title Priority Date Filing Date
PL422353A PL422353A1 (pl) 2017-07-25 2017-07-25 Sposób i układ do poboru energii cieplnej z formacji geologicznych

Country Status (2)

Country Link
PL (1) PL422353A1 (pl)
WO (1) WO2019021066A1 (pl)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021001153A1 (de) 2021-03-01 2022-09-15 Zbigniew Roch Verfahren und System zur Entnahme von Wärmeenergie aus geologischen Formationen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137719A (en) * 1977-03-17 1979-02-06 Rex Robert W Method for energy extraction from hot dry rock systems
US4912941A (en) * 1987-07-22 1990-04-03 Buechi Hans F Method and apparatus for extracting and utilizing geothermal energy
US20090320475A1 (en) * 2008-06-13 2009-12-31 Parrella Michael J System and method of capturing geothermal heat from within a drilled well to generate electricity
US20120174581A1 (en) * 2011-01-06 2012-07-12 Vaughan Susanne F Closed-Loop Systems and Methods for Geothermal Electricity Generation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461876A (en) * 1994-06-29 1995-10-31 Dressler; William E. Combined ambient-air and earth exchange heat pump system
US20040206085A1 (en) * 2003-04-16 2004-10-21 Koenig Albert A. Geothermal systems with improved control strategies
DE102007008039B4 (de) * 2007-02-17 2008-11-13 Geowatt Ag Verfahren zur Bestimmung vertikaler Variationen der Wärmeleitfähigkeit
US8534069B2 (en) * 2008-08-05 2013-09-17 Michael J. Parrella Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat
US8020382B1 (en) * 2008-12-23 2011-09-20 Geothermic Solution LLC Closed loop, hot dry rock heat recovery process
DE102011111704B3 (de) * 2011-06-21 2012-10-11 Wq-Tec Ag Erdkollektorsystem, Verfahren zur Steuerung und Verfahren zur Errichtung
DE202011052120U1 (de) * 2011-11-28 2013-03-04 Rehau Ag + Co. Erdwärmesondenanordnung
DE102012013337A1 (de) * 2012-07-06 2014-01-09 Jürgen Vogel Energiepfahl zur Erdwärmenutzung
US20140133519A1 (en) * 2012-11-13 2014-05-15 Braun Intertec Geothermal, Llc Equipment and methods for designing geothermal heat exchange systems
WO2016048801A1 (en) * 2014-09-24 2016-03-31 Sisler John R Weight-based phase composition ratio determination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137719A (en) * 1977-03-17 1979-02-06 Rex Robert W Method for energy extraction from hot dry rock systems
US4912941A (en) * 1987-07-22 1990-04-03 Buechi Hans F Method and apparatus for extracting and utilizing geothermal energy
US20090320475A1 (en) * 2008-06-13 2009-12-31 Parrella Michael J System and method of capturing geothermal heat from within a drilled well to generate electricity
US20120174581A1 (en) * 2011-01-06 2012-07-12 Vaughan Susanne F Closed-Loop Systems and Methods for Geothermal Electricity Generation

Also Published As

Publication number Publication date
WO2019021066A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
Zeng et al. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field
Zeng et al. Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field
Adams et al. A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions
Yang et al. Prediction of wellbore and formation temperatures during circulation and shut-in stages under kick conditions
US11236596B2 (en) Real-time diversion control for stimulation treatments using fiber optics with fully-coupled diversion models
PH12018501789A1 (en) Geothermal heat recovery from high-temperature, low-permeability geologic formations for power generation using closed loop systems
Gao et al. Fully coupled thermo-hydro-mechanical model for extraction of coal seam gas with slotted boreholes
Satman et al. The effect of calcite deposition on geothermal well inflow performance
SA517390219B1 (ar) أنظمة وطرق لتحديد خصائص مواد خارج تغليف
Bielinski et al. Monitoring of CO2 plumes during storage in geological formations using temperature signals: Numerical investigation
Chen et al. Optimizing heat mining strategies in a fractured geothermal reservoir considering fracture deformation effects
Zhang et al. A simplified assessment method for estimating recoverable geothermal resources
Le Lous et al. Performance of an open-loop well-doublet scheme located in a deep aquitard–aquifer system: Insights from a synthetic coupled heat and flow model
PL422353A1 (pl) Sposób i układ do poboru energii cieplnej z formacji geologicznych
Chuanzhi et al. Identification and quantitative description of large pore path in unconsolidated sandstone reservoir during the ultra-high water-cut stage
Taylor et al. Quantifying thermally driven fracture geometry during CO2 storage
Eppner et al. Investigation of thermo-hydro-geochemical processes in a standing column well intersected by a fracture
Sminchak et al. Well test results and reservoir performance for a carbon dioxide injection test in the Bass Islands Dolomite in the Michigan Basin
Ganguly et al. Numerical modeling and analytical validation for transient temperature distribution in a heterogeneous geothermal reservoir due to cold-water reinjection
Kudapa et al. Modeling of gas flow within the shale fracture network
Gudala et al. Doublet Huff and Puff (Dhp): A New Technology Towards Optimum Scco2 Sequestration with Stable Geothermal Recovery
Truesdell Evolution of the Cerro Prieto reservoirs under exploitation
de La Bernardie et al. Characterization of shallow geothermal efficiency in fractured media through thermal tracer tests and numerical modeling
Wei et al. Numerical simulation on hydro-mechanical coupling during gas transport in shale
Pouladiborj et al. Quantification of the real-time flow contribution of the fractures in fractured wellbores using Distributed Temperature Data