US4828009A - Method of manufacturing a complex body of sintered ceramic material and metal - Google Patents

Method of manufacturing a complex body of sintered ceramic material and metal Download PDF

Info

Publication number
US4828009A
US4828009A US07/073,173 US7317387A US4828009A US 4828009 A US4828009 A US 4828009A US 7317387 A US7317387 A US 7317387A US 4828009 A US4828009 A US 4828009A
Authority
US
United States
Prior art keywords
ceramic material
sintered ceramic
hole
metal
complex body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/073,173
Inventor
Masato Taniguchi
Yoshinori Narita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Assigned to NGK SPARK PLUG CO., LTD. reassignment NGK SPARK PLUG CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: NARITA, YOSHINORI, TANIGUCHI, MASATO
Application granted granted Critical
Publication of US4828009A publication Critical patent/US4828009A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product

Definitions

  • the present invention relates to a method of manufacturing a complex body of a sintered ceramic material and a metal.
  • shrink fitting is a simple means of forming this combination, it has disadvantages because the shapes of ceramic material capable of being shrink fitted are quite limited and stress will act on the shrink fitted combination only in a fixed direction. For these reasons, the types and uses of products formed by shrink fitting are limited.
  • the cast-embedding method has advantages because ceramic material is strong against compressive stress and the cast-embedding method can be used to form a product of complicated shape.
  • the cast-embedding method has a problem because it results in a cavity being formed between the ceramic material and the metal, thus rendering the casting of the metal on the ceramic material imperfect.
  • This cavity formation is caused by a number of factors such as the low wettability of the ceramic material by the molten metal, gas in the molten metal, and moisture in the ceramic material if it is porous.
  • a stress differential arises between a product portion which has a cavity between the ceramic material and the metal and another product portion where the ceramic material and the metal are in contact with each other. As a result, the ceramic material undergoes a shear fracture.
  • conventional measures such as preheating the ceramic material and coating the surface of the ceramic material have been taken. However, these measures are not completely effective and increase the cost of production.
  • An object of the present invention is to eliminate the above-mentioned problems in the prior art.
  • a through-hole for the release of gas is provided in the sintered ceramic material before the material is cast-embedded in the metal.
  • the through-hole may be provided in the sintered ceramic material either before or after the material is sintered.
  • the through-hole is located in a position where a cavity formed in a preparatory test in which the sintered ceramic material was cast-embedded in the metal without providing the through-hole.
  • the diameter of the through-hole is less than 0.5 mm, the gas does not flow out well. If the diameter is more than 3 mm, molten metal is likely to flow into the through-hole. Therefore, it is preferable that the diameter of the through-hole is between 0.5 mm and 3 mm.
  • a gas permeable heat-resistant material may be used to fill the through-hole to prevent molten metal from flowing into the hole. The likelihood of the molten metal flowing into the through-hole depends on the wetting property of the molten metal to the sintered ceramic material and the viscosity of the molten metal.
  • the metal and the sintered ceramic material are properly combined with each other and the sintered ceramic material is not as susceptible to fracture.
  • FIGS. 1 and 2 show sectional views of complex bodies consisting of a sintered ceramic material and a metal produced by a conventional prior art manufacturing method
  • FIG. 3 (A) shows a sectional view of a complex body consisting of a sintered ceramic material and a metal produced by a manufacturing method which is a first embodiment of the present invention
  • FIG. 3 (B) shows a sectional view of a complex body constituting an auxiliary chamber of an internal combustion engine formed by the method which is a first embodiment of the present invention.
  • FIG. 4 shows a sectional view of a complex body consisting of a sintered ceramic material and a metal produced in a manufacturing method which is a second embodiment of the present invention.
  • FIGS. 1 and 2 show sectional views of complex bodies 31 and 41 consisting of sintered ceramic materials 32 and 42 and metals 34 and 44.
  • Complex bodies 31 and 41 are produced under the same conditions as the complex bodies 11 and 21 of FIGS. 3 and 4 except that through-holes were not provided in the sintered ceramic materials 32 and 42.
  • cavities 39, 49a, and 49b formed between the sintered ceramic materials 32 and 42 and the metals 34 and 44 of the complex bodies 31 and 41.
  • FIG. 3 (A) shows a sectional view of a complex body 11 consisting of a sintered ceramic material 12 and a metal 14 produced by a manufacturing method which is a first embodiment of the present invention.
  • the sintered ceramic material 12 was a hollow hemispherical piece made primarily of aluminum titanate having an outside diameter of 30 mm, a height of 25 mm, and a thickness of 3 mm.
  • a through-hole 13 having a diameter of 1 mm was provided in the sintered ceramic material 12 near the center of the top thereof.
  • the metal 14 was an aluminum alloy (AC-4B) in which the sintered ceramic material 12 was cast-embedded as a core and remained fitted in the internal opening of the sintered ceramic material 12 having the through-hole 13. After the cast-embedding was performed, the core was removed.
  • the complex body 11 was thus produced without a cavity forming between the sintered ceramic material 12 and the metal 14. As a result, the sintered ceramic material 12 has a reduced tendency to undergo shear fracture.
  • FIG. 3 (B) shows a sectional view of the complex body 11 comprising an auxiliary chamber of an internal combustion engine.
  • a glow plug hole 15 and a nozzle hole 16 are provided in the sintered ceramic material 12 and the metal 14 for the auxiliary chamber by drilling.
  • a plug 18 made of Si 3 N 4 was fitted together with an interposed gasket 17 in the opening of the sintered ceramic material 12 to complete the auxiliary chamber. If a hole such as the glow plug hole 15 or the nozzle hole 16 is drilled in the same position as the through-hole was located, the through-hole preferably can be eliminated from the finished complex body 11.
  • FIG. 4 shows a sectional view of a complex body 21 consisting of a sintered ceramic material 22 and a metal 24 produced by a manufacturing method which is a second embodiment of the present invention.
  • the sintered ceramic material 22 was made primarily of aluminum titanate and shaped as the port liner of an internal combustion engine. Through-holes 23a and 23b, each having a diameter of 0.8 mm, were provided in the inner and outer curved portions of the sintered ceramic material 22.
  • the metal 24 was an aluminum alloy (AC-4B) in which the sintered ceramic material 22 was cast-embedded. After the cast-embedding was performed, a core was removed.
  • the complex body 21 was thus produced without a cavity forming between the sintered ceramic material 22 and the metal 24. As a result, the sintered ceramic material 22 will not as readily undergo shear fracture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Ceramic Products (AREA)

Abstract

A method of forming a complex body of a sintered ceramic material and a metal. A through-hole is provided in the sintered ceramic material before it is cast-embedded in the metal. The through-hole provides for the release of gas to prevent the formation of a cavity between the sintered ceramic material and the metal.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of manufacturing a complex body of a sintered ceramic material and a metal.
2. Description of the Prior Art
Although ceramic materials have relatively a high compressive strength, they have a low tensile strength and impact resistance. To compensate for these weaknesses, the combination of a ceramic material with a metal has recently been studied. Shrink fitting and cast-embedding are well known methods of forming such a combination.
Although shrink fitting is a simple means of forming this combination, it has disadvantages because the shapes of ceramic material capable of being shrink fitted are quite limited and stress will act on the shrink fitted combination only in a fixed direction. For these reasons, the types and uses of products formed by shrink fitting are limited.
In contrast with the above, the cast-embedding method has advantages because ceramic material is strong against compressive stress and the cast-embedding method can be used to form a product of complicated shape. However, the cast-embedding method has a problem because it results in a cavity being formed between the ceramic material and the metal, thus rendering the casting of the metal on the ceramic material imperfect. This cavity formation is caused by a number of factors such as the low wettability of the ceramic material by the molten metal, gas in the molten metal, and moisture in the ceramic material if it is porous. A stress differential arises between a product portion which has a cavity between the ceramic material and the metal and another product portion where the ceramic material and the metal are in contact with each other. As a result, the ceramic material undergoes a shear fracture. To prevent the formation of the cavity, conventional measures such as preheating the ceramic material and coating the surface of the ceramic material have been taken. However, these measures are not completely effective and increase the cost of production.
SUMMARY OF THE INVENTION
An object of the present invention is to eliminate the above-mentioned problems in the prior art.
Accordingly, it is an object of the present invention to provide a method of cast-embedding a sintered ceramic material in a metal without forming a cavity between the ceramic material and the metal.
In order to obtain the above-mentioned object, a through-hole for the release of gas is provided in the sintered ceramic material before the material is cast-embedded in the metal. The through-hole may be provided in the sintered ceramic material either before or after the material is sintered. The through-hole is located in a position where a cavity formed in a preparatory test in which the sintered ceramic material was cast-embedded in the metal without providing the through-hole.
When the sintered ceramic material having the through-hole is cast-embedded in the metal, gas which would normally stay in between the sintered ceramic material and the metal creating a cavity flows out the through-hole into the atmosphere.
If the diameter of the through-hole is less than 0.5 mm, the gas does not flow out well. If the diameter is more than 3 mm, molten metal is likely to flow into the through-hole. Therefore, it is preferable that the diameter of the through-hole is between 0.5 mm and 3 mm. A gas permeable heat-resistant material may be used to fill the through-hole to prevent molten metal from flowing into the hole. The likelihood of the molten metal flowing into the through-hole depends on the wetting property of the molten metal to the sintered ceramic material and the viscosity of the molten metal.
Since a cavity is not formed between the sintered ceramic material and the metal in the method of the present invention, the metal and the sintered ceramic material are properly combined with each other and the sintered ceramic material is not as susceptible to fracture.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1 and 2 show sectional views of complex bodies consisting of a sintered ceramic material and a metal produced by a conventional prior art manufacturing method;
FIG. 3 (A) shows a sectional view of a complex body consisting of a sintered ceramic material and a metal produced by a manufacturing method which is a first embodiment of the present invention;
FIG. 3 (B) shows a sectional view of a complex body constituting an auxiliary chamber of an internal combustion engine formed by the method which is a first embodiment of the present invention; and
FIG. 4 shows a sectional view of a complex body consisting of a sintered ceramic material and a metal produced in a manufacturing method which is a second embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Embodiments of the present invention are hereafter described in detail with reference to the accompanying drawings.
FIGS. 1 and 2 show sectional views of complex bodies 31 and 41 consisting of sintered ceramic materials 32 and 42 and metals 34 and 44. Complex bodies 31 and 41 are produced under the same conditions as the complex bodies 11 and 21 of FIGS. 3 and 4 except that through-holes were not provided in the sintered ceramic materials 32 and 42. As a result, cavities 39, 49a, and 49b formed between the sintered ceramic materials 32 and 42 and the metals 34 and 44 of the complex bodies 31 and 41.
FIG. 3 (A) shows a sectional view of a complex body 11 consisting of a sintered ceramic material 12 and a metal 14 produced by a manufacturing method which is a first embodiment of the present invention. The sintered ceramic material 12 was a hollow hemispherical piece made primarily of aluminum titanate having an outside diameter of 30 mm, a height of 25 mm, and a thickness of 3 mm. A through-hole 13 having a diameter of 1 mm was provided in the sintered ceramic material 12 near the center of the top thereof. The metal 14 was an aluminum alloy (AC-4B) in which the sintered ceramic material 12 was cast-embedded as a core and remained fitted in the internal opening of the sintered ceramic material 12 having the through-hole 13. After the cast-embedding was performed, the core was removed. The complex body 11 was thus produced without a cavity forming between the sintered ceramic material 12 and the metal 14. As a result, the sintered ceramic material 12 has a reduced tendency to undergo shear fracture.
FIG. 3 (B) shows a sectional view of the complex body 11 comprising an auxiliary chamber of an internal combustion engine. A glow plug hole 15 and a nozzle hole 16 are provided in the sintered ceramic material 12 and the metal 14 for the auxiliary chamber by drilling. A plug 18 made of Si3 N4 was fitted together with an interposed gasket 17 in the opening of the sintered ceramic material 12 to complete the auxiliary chamber. If a hole such as the glow plug hole 15 or the nozzle hole 16 is drilled in the same position as the through-hole was located, the through-hole preferably can be eliminated from the finished complex body 11.
FIG. 4 shows a sectional view of a complex body 21 consisting of a sintered ceramic material 22 and a metal 24 produced by a manufacturing method which is a second embodiment of the present invention. The sintered ceramic material 22 was made primarily of aluminum titanate and shaped as the port liner of an internal combustion engine. Through- holes 23a and 23b, each having a diameter of 0.8 mm, were provided in the inner and outer curved portions of the sintered ceramic material 22. The metal 24 was an aluminum alloy (AC-4B) in which the sintered ceramic material 22 was cast-embedded. After the cast-embedding was performed, a core was removed. The complex body 21 was thus produced without a cavity forming between the sintered ceramic material 22 and the metal 24. As a result, the sintered ceramic material 22 will not as readily undergo shear fracture.
Having described preferred embodiments of the present invention, it is understood that variation and modification thereof will become apparent to one skilled in the art, and, as such, these will fall within the scope of the appended claims.

Claims (6)

What is claimed is:
1. A method of forming a complex body of a sintered ceramic material and a metal, comprising:
providing a through-hole in the sintered ceramic material for the release of gas, said through-hole having a diameter of between 0.5-3 mm; and cast-embedding said sintered ceramic material in the metal.
2. The method of claim 1, wherein the sintered ceramic material is primarily aluminum titanate.
3. The method of claim 1, wherein a gas permeable heat resistant material is disposed in the through-hole prior to cast-embedding.
4. A method of forming a complex body of a sintered ceramic material and a metal, comprising:
providing a through-hole in the sintered ceramic material for the release of gas;
cast-embedding the sintered ceramic material in the metal; and
providing a second hole in the sintered ceramic material and the metal, said second hole being larger than the through-hole and being provided at the same location in the sintered ceramic material as the through-hole.
5. The method of claim 4, wherein the complex body formed is an auxiliary chamber of an internal combustion engine and the second larger hole is a glow plug hole.
6. The method of claim 4, wherein the complex body formed is an auxiliary chamber of an internal combustion engine and the second larger hole is a nozzle hole.
US07/073,173 1986-07-21 1987-07-14 Method of manufacturing a complex body of sintered ceramic material and metal Expired - Lifetime US4828009A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-171458 1986-07-21
JP61171458A JPS6330168A (en) 1986-07-21 1986-07-21 Production of ceramic-metal composite body

Publications (1)

Publication Number Publication Date
US4828009A true US4828009A (en) 1989-05-09

Family

ID=15923478

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/073,173 Expired - Lifetime US4828009A (en) 1986-07-21 1987-07-14 Method of manufacturing a complex body of sintered ceramic material and metal

Country Status (3)

Country Link
US (1) US4828009A (en)
JP (1) JPS6330168A (en)
DE (1) DE3723763A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908923A (en) * 1988-10-05 1990-03-20 Ford Motor Company Method of dimensionally stabilizing interface between dissimilar metals in an internal combustion engine
US5251683A (en) * 1991-03-11 1993-10-12 General Motors Corporation Method of making a cylinder head or other article with cast in-situ ceramic tubes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3804801A1 (en) * 1988-02-16 1989-08-24 Audi Ag Method for the production of light-alloy castings
DE4102358C2 (en) * 1991-01-26 2000-05-11 Volkswagen Ag Molded part to be produced in the die casting process, method for producing the molded part and hollow body for insertion into the molded part
DE10062468A1 (en) * 2000-12-14 2002-06-20 Bayerische Motoren Werke Ag Casting mold for light metal casting machine
DE102008053633B4 (en) * 2008-10-29 2011-08-25 Kindler, Thomas, 10405 Method of making a permanent bond between metal and stone

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232978A (en) * 1983-06-10 1984-12-27 日本特殊陶業株式会社 Ceramic-metal composite body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116168B2 (en) * 1972-11-01 1976-05-22
JPS5618161B2 (en) * 1972-11-10 1981-04-27
DE3227315C2 (en) * 1982-07-22 1986-08-07 Rolls-Royce Ltd., London Ceramic mold core for casting components with channel-like recesses
JPS606909A (en) * 1983-06-27 1985-01-14 Fujitsu Ltd Adjustment type optical connector
JPS60175750A (en) * 1984-02-23 1985-09-09 Ngk Insulators Ltd Ceramic chilled piston
DE3530924A1 (en) * 1985-08-29 1987-03-12 Alcan Aluminiumwerke HEAT-RESISTANT COMPONENT AND METHOD FOR THE PRODUCTION THEREOF

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232978A (en) * 1983-06-10 1984-12-27 日本特殊陶業株式会社 Ceramic-metal composite body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908923A (en) * 1988-10-05 1990-03-20 Ford Motor Company Method of dimensionally stabilizing interface between dissimilar metals in an internal combustion engine
US5251683A (en) * 1991-03-11 1993-10-12 General Motors Corporation Method of making a cylinder head or other article with cast in-situ ceramic tubes

Also Published As

Publication number Publication date
DE3723763C2 (en) 1990-05-23
DE3723763A1 (en) 1988-01-28
JPS6330168A (en) 1988-02-08

Similar Documents

Publication Publication Date Title
US4582678A (en) Method of producing rocket combustors
US4735128A (en) Piston
US5263530A (en) Method of making a composite casting
US4676207A (en) Auxiliary combustion chamber
US4584171A (en) Method of producing rocket combustors
US4828009A (en) Method of manufacturing a complex body of sintered ceramic material and metal
US4966221A (en) Method of producing aluminum alloy castings and piston made of aluminum alloy
US4890663A (en) Method for producing a ceramic-coated metallic component
DE4102358C2 (en) Molded part to be produced in the die casting process, method for producing the molded part and hollow body for insertion into the molded part
EP0347627B1 (en) Method for producing a piston with cavity
US4508680A (en) Method of manufacturing a rocket combustion chamber
US4592268A (en) Method of making and apparatus for composite pistons
US4827795A (en) Connecting rod for internal combustion engine and method of manufacture
JPH07102917A (en) Sodium-enclosed hollow engine valve manufacturing method
EP0101948B1 (en) Method of manufacturing a surface composite reinforced member
US5016348A (en) Process for the manufacture of a tubular crankshaft
US6673449B2 (en) Net molded tantalum carbide rocket nozzle throat and method of making
EP0280480A2 (en) Ceramic wall structures for engines and method of manufacture
GB2295784A (en) Casting process including a cast-in insert
SU1407675A1 (en) Method of compacting composite articles from powder
EP0305746B1 (en) Method for the production of mechanical parts provided with a wear- and/or corrosion-resistant coating
US20040005237A1 (en) Post-delubrication peening for forged powder metal components
JPS63109202A (en) Manufacturing method for lightweight engine valve
JPS6221456A (en) Production of hollow casting
JPS60203353A (en) Production of cylinder for internal-combustion engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: NGK SPARK PLUG CO., LTD.,NO. 14-18, TAKATSUJI-CHO,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:TANIGUCHI, MASATO;NARITA, YOSHINORI;REEL/FRAME:004747/0555

Effective date: 19870706

Owner name: NGK SPARK PLUG CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANIGUCHI, MASATO;NARITA, YOSHINORI;REEL/FRAME:004747/0555

Effective date: 19870706

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12