US4769400A - Heat-curable binder mixture - Google Patents

Heat-curable binder mixture Download PDF

Info

Publication number
US4769400A
US4769400A US06/890,988 US89098886A US4769400A US 4769400 A US4769400 A US 4769400A US 89098886 A US89098886 A US 89098886A US 4769400 A US4769400 A US 4769400A
Authority
US
United States
Prior art keywords
resin
groups
binder
weight
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/890,988
Inventor
Michael Geist
Gunther Ott
Georg Schon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Farben und Fasern AG
Original Assignee
BASF Farben und Fasern AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6195860&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US4769400(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF Farben und Fasern AG filed Critical BASF Farben und Fasern AG
Assigned to BASF LACKE & FARBEN AG, POSTFACH 6123, D 4400 MUNSTER, WEST GERMANY reassignment BASF LACKE & FARBEN AG, POSTFACH 6123, D 4400 MUNSTER, WEST GERMANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GEIST, MICHAEL, OTT, GUNTHER, SCHON, GEORG
Application granted granted Critical
Publication of US4769400A publication Critical patent/US4769400A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4284Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • C08G59/58Amines together with other curing agents with polycarboxylic acids or with anhydrides, halides, or low-molecular-weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4488Cathodic paints
    • C09D5/4496Cathodic paints characterised by the nature of the curing agents

Definitions

  • the invention relates to a heat-curable binder mixture comprising an organic synthetic resin A and a crosslinking agent B.
  • Electropainting has in recent years become widely established as a method of priming electrically conductive substrates.
  • Interest has hitherto concentrated on anodic electropainting.
  • the resin binders used for this purpose belong to the carboxyl-containing resins, for example to the maleate oils, maleated epoxy resins, alkyd resins, acrylic resins and in particular to the maleated polybutadienes. These resins were water-solubilized by salt formation, chiefly with amines, and were electrodeposited in the electrocoating bath at the anode.
  • the anodic electropriming process however, has serious disadvantages. For instance, oxygen evolves at the anode in the course of the electrodeposition and can have a serious, adverse effect on the resins being deposited at the anode.
  • metal ions pass into solution at the anode and end up as flaws in the baked film.
  • the metal ions can be the cause of discoloration and spotting. They are in particular responsible for qualitative disadvantages as a result of salt formation, which reduces the resistance to water and the level of corrosion protection.
  • the cathodic electropriming process which has come of age, commercially, in recent years, is increasingly displacing the anodic process, since the deficiencies described above are largely avoided.
  • the gas which evolves at the cathode--where the paint film is now deposited-- is hydrogen, which has no effect on the resin binder. Since cathodic deposition can take place at approximately neutral pH virtually no metal ions go into solution.
  • the binders suitable for cathodic deposition mainly contain amino groups, which are neutralized with acids to achieve water-solubilization.
  • the binder mixture of the invention shall help to reduce the environmental pollution accompanying the application of the corresponding coating agents.
  • the coating agents based on the binder mixture according to the invention shall be suitable for any type of application process, ie. it should be possible to use the binder mixture for baking finishes which are applied conventionally, for powder finishes, for aqueous powder slurries, and for electrocoating baths.
  • the binder mixture shall have improved reactivity and, if used for aqueous systems, improved dispersion stability.
  • This object is achieved in an inventive manner for a binder mixture of the type specified at the outset when synthetic resin A is free of epoxy groups and is an epoxy resin, polyester resin or acrylate resin having a number average molecular weight of 500 to 20,000 and at least 0.2 equivalent per 100 g of resin of primary and/or secondary amino groups and/or hydroxyl groups, and crosslinking agent B is an organic compound having at least 2 ⁇ -alkoxyalkyl ester groups per molecule.
  • the binder mixture in addition to components A and B, advantageously contains, as component C, pigments, fillers, crosslinking catalysts, corrosion inhibitors and further paint auxiliaries.
  • the proportion of component A is 40-95% by weight and that of component B is 5-60% by weight, the total amount of components A and B being 100%.
  • the ⁇ -alkoxyalkyl ester groups of component B react with the primary and/or secondary amino groups and/or hydroxyl groups of component A to form an amide bond and/or ester bond.
  • the basic nitrogen of the amino group of the resin of component A is thus converted in the baked film into a pH-neutral amide nitrogen.
  • the baked film thus contains no basic flaws.
  • the principle of the crosslinking mechanism is described in the following reaction equation: ##STR1##
  • crosslinking reactions are critically favored in the design according to the invention by the -I-effect of the alkoxy group which is in ⁇ -position relative to the ester group of the crosslinking agent.
  • the ⁇ -positioned alkoxy oxygen and its neighboring group effect come in particularly useful in the metalcatalyzed aminolysis or alcoholysis.
  • the ⁇ -hydroxyalkyl ethers which are split off have a boiling point such that they advantageously act as flow-control agents during the baking.
  • European Patent No. 12,463 describes a similar crosslinking mechanism in which, however, during baking hydroxyl groups react with ⁇ -hydroxyalkyl ester groups, the eliminated products being 1,2-diols. These, as any skilled worker will now, have a high boiling point. For instance, butane-1,2-diol, with a molecular weight of 90, has a boiling point of 192° C. In contrast, isomeric 2-ethoxyethanol has a boiling point of 135° C.
  • the subsequent application of finish can give rise to intermediate adhesion problems. These problems are likewise bypassed by means of the binders according to the invention.
  • the amide bond formed during baking has a very advantageous effect on the adhesion of the film, in particular to metal substrates. The resilience of the film is thereby similarly increased. This crosslinking mechanism confers high resistance of the paint film to solvents, alkalis and salt spray mist. Even on sheet metal which has not been pretreated the films form very resistant coatings even without corrosion inhibitors.
  • Component A of the binder mixture has a number average molecular weight of 500 to 20,000, preferably 600 to 10,000.
  • Component A is an organic resin having primary and/or secondary amino groups and/or hydroxyl groups. Tertiary amino groups may be additionally present as well.
  • synthetic resin A is not critical. It can be chosen according to the required properties of the binder mixture. For instance, it can be an epoxy resin, a polyester resin or an acrylate resin. The significant point is that the resins have a sufficient number of primary and/or secondary amino groups and/or hydroxyl groups which are capable of reacting with crosslinking agent B in accordance with the mechanism described above.
  • the primary and/or secondary amino groups are preferably introduced into the organic resin, in the preparation of component A, by reacting a polyamine and/or an amino- and/or hydroxyl-containing ketimine with resins which contain at least one, preferably at least two, epoxy groups or isocyanate groups per molecule.
  • hydroxyl groups are advantageously introduced into these binders via secondary (hydroxyalkyl)alkylamines or dihydroxyalkylamines.
  • component A can be prepared in a particularly suitable manner with epoxy-containing resins having preferably terminal epoxy groups and being a member of the group consisting of polyglycidyl ethers, polyglycidyl esters and polyglycidylamines.
  • the epoxy-containing resin can advantageously also be a copolymer of glycidyl acrylate and/or methacrylate or any other glycidyl-bearing olefinically unsaturated polymerizable compound with alkyl and/or hydroxyalkyl esters of acrylic and/or methacrylic acid and/or vinyl compounds such as styrene, vinyltoluene or vinylcarbazole.
  • Partially epoxidized polybutadiene oils are another particularly suitable group of resins.
  • R 3 R 1 , halogen and preferably H
  • n 0 to 5.
  • the polyglycidyl ethers of the general formula shown have a number average molecular weight of about 340 to 5,000 and correspondingly an epoxy equivalent weight of 170 to 2,500.
  • the epoxy resins may also be used in a completely or partially hydrogenated state. To control the film properties, some of the reactive groups of the epoxy resin may be reacted with other compounds. Suitable for this purpose are:
  • carboxyl-containing compounds such as saturated or unsaturated monocarboxylic acids (for example benzoic acid, linoleic acid, 2-ethylhexoic acid, or Versatic acid), aliphatic, cycloaliphatic and/or aromatic dicarboxylic acids of various chain lengths (for example adipic acid, sebacic acid, isophthalic acid or dimeric fatty acids), hydroxyalkylcarboxylic acids (for example lactic acid, or dimethylolpropionic acid) and carboxyl-containing polyesters or
  • monocarboxylic acids for example benzoic acid, linoleic acid, 2-ethylhexoic acid, or Versatic acid
  • aliphatic, cycloaliphatic and/or aromatic dicarboxylic acids of various chain lengths for example adipic acid, sebacic acid, isophthalic acid or dimeric fatty acids
  • hydroxyalkylcarboxylic acids for example lactic acid, or dimethylolpropi
  • amino-containing compounds such as diethylamine or ethylhexylamine or diamines having secondary amino groups, such as, for example, N,N'-dialkylalkylenediamine, such as dimethylethylenediamine, N,N'-dialkylpolyoxyalkyleneamine, such as N,N'-dimethylpolyoxypropylenediamine, polyamino-amides, such as Versamides or the reaction product of one mole of diaminohexane with two moles of monoglycidyl ether or monoglycidyl ester, especially glycidyl esters of ⁇ -branched fatty acids, such as Versatic acid, or
  • hydroxyl-containing compounds such as neopentylglycol, bisethoxylated neopentylglycol, neopentylglycol hydroxypivalate, dimethlyhydantoin-N,N'-diethanol, hexane-1,6-diol, hexane-2,5-diol, but-2-ene-1,4-diol, but-2-yne-1,4-diol, hex-3-yn-2,5-diol or other alkynediols, 1,4-bis(hydroxymethyl)-cyclohexane, 1,1-isopropylidene-bis-(p-phenoxy)-2-propanol, trimethylolpropane, pentaerythritol or aminoalcohols, such as triethanolamine, methyldiethanolamine or hydroxyl-containing alkylketimines such as aminomethylpropan
  • polyglycidyl ethers based on bisphenol A it is also possible to use polyglycidyl ethers based on other components, such as triglycidyl isocyanurate, heterocyclic diglycidyl compounds or diglycidylhydantoins.
  • Suitable as polyglycidyl esters are reaction products of, for example, bisglycidyl terephthalate or bisglycidyl isophthalate with, for example, bisphenol A.
  • the epoxy equivalent weight of these products is between 200 and 2,500.
  • some of the remaining reactive glycidyl groups may be reacted with other compounds. Suitable for this purpose are for example the compounds mentioned above under a, b and c.
  • polyglycidylamines are glycidyl-containing resins which are obtained by introducing glycidyl groups (via, for example, epichlorohydrin) into NH 2 -functional resins.
  • the esters of acrylic acid with C 2 - to C 8 -alcohols and the esters of methacrylic acid with C 1 - to C 4 -alcohols are preferred.
  • the copolymers may contain further monomers, such as hydroxyalkyl (meth)acrylate or (meth)acrylamide.
  • copolymerization is effected in well known form by solution, suspension or emulsion polymerization with the addition of freeradical initiators such as peroxides, hydroperoxides, peresters or thermolabile azo compounds and, if desired, molecular weight regulators.
  • freeradical initiators such as peroxides, hydroperoxides, peresters or thermolabile azo compounds and, if desired, molecular weight regulators.
  • partially epoxidized polybutadiene oils are reaction products which are obtained by reacting commercially available polybutadiene oils with peracids or organic acid/H 2 O 2 mixtures.
  • the method of preparation is described, for example, in Chemiker-Zeitung 95, 857 et seq. (1971).
  • the epoxy-containing resins are reacted with polyamines and/or an amino- and/or hydroxyl-containing ketimine. If the addition reaction is carried out with the compounds carrying the primary and secondary amino groups in the form of their ketimines, the reaction conditions should be controlled in such a way that no ketimine-decomposing substances remain in the reaction product.
  • the preferred ketimines are reaction products of ketones and alkylamines or alkyldiamines containing hydroxyl or secondary amino groups and having the general structure RNH-R-NH 2 or HO-R-NH 2 respectively.
  • R' --C m H 2m+1 , --C 6 H 11
  • the ketones used for the reaction with the primary amino groups are generally aliphatic ketones, such as methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone or ethyl n-propyl ketone and cycloaliphatic ketones such as cyclopentanone and cyclohexanone.
  • the preferred aminoalkylamines and alkanolamines are chiefly diethylenetriamine, N-methylethylenediamine, N-methylpropylenediamine, N-aminoethylpiperazine, 2-aminoethanol, 1-aminopropan-2-ol, 1-aminopropan-3-ol, 2-amino-2-methylpropan1-ol, 3-amino-2,2-dimethylpropan-1-ol, 1,5-diaminopentan-3-ol or N-(2-aminoethyl)-N-(2-hydroxyethyl)-ethylenediamine.
  • the secondary amines containing hydroxyl groups can be introduced into the molecule in similar fashion.
  • the base resin of binder component A can also be a base resin having at least 2 isocyanate groups.
  • Resins containing isocyanate groups are preferably higher-functional polyisocyanates which are prepared by trimerization or oligomerization from diisocyanates or polyisocyanates and polyfunctional OH- or NH-containing compounds.
  • Typical isocyanates are toluylene diisocyanate, hexamethylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,6-diisocyanato-2,2,4-trimethylhexane and 1-isocyanatomethyl-3-isocyanato-1,5,5-trimethylcyclohexane.
  • isocyanate-containing prepolymers based on polyglycol ethers, polyester-polyols, polyetherpolyols, polycaprolactone-polyols, polycaprolactam-polyols or polyamino-amides.
  • Binder component B is a compound which contains at least 2 ⁇ -alkoxyalkyl ester groups.
  • the crosslinking agent can be a low molecular weight compound or an appropriately substituted resin. If the esterification is performed not with an alcohol having an alkoxy group at the ⁇ -carbon atom but with alcohols such as methyl, ethyl or butyl alcohol, the amidation or transesterification reaction proceeds significantly more slowly.
  • crosslinking rate is in this case too low, and the baked film is not sufficiently resistant to solvent.
  • ⁇ -alkoxylalkyl esters are used for the amidation or transesterification reaction.
  • the compounds which form the crosslinking agent are preferably polyester resins, but it is also possible to use other compounds which contain free carboxyl groups and are accessible to esterification.
  • the crosslinking component is thus a poly(2-alkoxyalkyl)ester of a polycarboxylic acid.
  • a dicarboxylic anhydride phthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride or succinic anhydride
  • a polyol glycerol, trimethylolpropane, pentaerythritol or dipentaerythritol.
  • the resulting acid intermediate is then esterified to give the end product.
  • a further method of preparation consists in reacting a 2-alkoxyalcohol with equimolar amounts of a dicarboxylic anhydride to give the corresponding 2-alkoxyalkyl half-ester, which is subsequently reacted with polyglycidyl compounds in an equivalent ratio, based on the glycidyl groups.
  • This last reaction can be advantageously carried out in the presence of catalysts of the type also customary for reactions of carboxylic acids with epoxy compounds.
  • the ratio of acid half-ester to polyepoxy compound is particularly advantageous to choose the ratio of acid half-ester to polyepoxy compound to be such that the ⁇ -hydroxy groups formed through the addition of the half-ester onto the epoxy groups are partly or wholly esterified by the remaining excess of half-ester in a condensation reaction at elevated temperatures, with or without catalysts.
  • the binder mixture according to the invention can be in finely divided solid form or in the form of a solution in an organic solvent.
  • the binder mixture is in the form of an aqueous solution or dispersion.
  • the water-solubility of the binder component is brought about by neutralizing the primary, secondary and/or tertiary amino groups therein with acids.
  • Organic acids are particularly suitable acids.
  • the amino groups are preferably neutralized with formic acid, acetic acid, malonic acid, lactic acid or citric acid.
  • Said acids can also be used if the solubilizing groups of the binder component are introduced by addition of an ammonium group onto the binder.
  • the degree of neutralization of the solubilizing groups is, based on these groups, between 0.2 and 1.0 equivalent and preferably between 0.25 and 0.6 equivalent of acid.
  • the neutralization can be carried out as follows.
  • the acid is initially introduced into water, together with the dispersing auxiliary if one is used, and the resin solution is stirred into the water at room temperature or, if desired, at elevated temperatures.
  • the acid can also be added to the resin solution directly.
  • the neutralized resin solution can then be stirred into the water, or it is also possible slowly to stir the water into the resin solution.
  • the dispersion may contain up to 20% of organic solvent. If, as a result of the chosen method of preparation, the batch contains an excessive amount of solvent or even contains solvent which impairs the properties, it is possible to distill these solvents out of the resin solution before the dispersing, or they are distilled out of the aqueous dispersion. A very low organic solvent content is beneficial for the properties as a whole.
  • the solids content of a deposition bath which is made up on the basis of the dispersion according to the invention is 7-35 parts by weight, preferably 12-25 parts by weight.
  • the deposition bath is at pH 4-8, preferably 5-7.5.
  • the anodes of the deposition bath are non-corroding steel anodes or graphite anodes.
  • the temperature of the made-up bath should be between 15° and 35° C., preferably between 20° and 30° C.
  • the deposition period and voltage are so chosen that the desired film thickness is obtained.
  • the coated article is rinsed off and is ready for baking.
  • the paint film is crosslinked by baking at temperatures of 130° to 200° C. for 10-60 minutes, preferably at 150° to 180° C. for 15-30 minutes.
  • the amidation and/or esterification reaction may be additionally speeded up by means of suitable catalysts.
  • suitable catalysts Suitable for this purpose are in particular ammonium compounds such as benzyltrimethylammonium hydroxide, benzyltrimethylammonium chloride, trimethylcetylammonium bromide or tetraammonium iodide and organic tin compounds such as dibutyltin dilaurate and iron(III) acetylacetonate, zinc acetate, zinc 2-ethylhexoate, cobalt naphthenate, lead acetate or butyl titanate.
  • ammonium compounds such as benzyltrimethylammonium hydroxide, benzyltrimethylammonium chloride, trimethylcetylammonium bromide or tetraammonium iodide
  • organic tin compounds such as dibutyltin dilaurate and iron(III) acetylacetonate, zinc
  • the pigment is introduced in well known fashion, namely by grinding the pigments and the customary additives such as fillers, corrosion inhibitors and antifoams in one of the two binder components.
  • the grinding can be done in, for example, sand mills, ball mills or threeroll mills.
  • the make-up of the finish can be completed in commonly known fashion, namely by grinding the pigments and the customary additives, such as fillers, corrosion inhibitors and antifoams, either in the binder component or in the crosslinking component.
  • This grinding can be done in, for example, sand mills, ball mills or threeroll mills.
  • component C can be mixed in the form of their concentrated solutions and then can be dispersed together. However, it is also possible to disperse components A and B individually, the pigments having been ground into A or B, and to mix the dispersions of the individual components in the required ratio.
  • the invention further relates to a process for preparing surface coatings by applying to a substrate in the form of a film, and baking, a coating agent which contains a binder mixture of an organic synthetic resin A and a crosslinking agent B, wherein said synthetic resin A is an epoxy resin, polyester resin or acrylate resin having a number average molecular weight of 500 to 20,000 and at least 0.2 equivalent per 100 g of resin of primary and/or secondary amino groups and/or hydroxyl groups, and said crosslinking agent B is an organic compound having at least 2 ⁇ -alkoxyalkyl ester groups per molecule.
  • said synthetic resin A is an epoxy resin, polyester resin or acrylate resin having a number average molecular weight of 500 to 20,000 and at least 0.2 equivalent per 100 g of resin of primary and/or secondary amino groups and/or hydroxyl groups
  • said crosslinking agent B is an organic compound having at least 2 ⁇ -alkoxyalkyl ester groups per molecule.
  • the invention also relates to the use of a binder mixture comprising an organic synthetic resin A and a crosslinking agent B for preparing surface coatings, wherein said synthetic resin A is an epoxy resin, polyester resin or acrylate resin having a number average molecular weight of 500 to 20,000 and at least 0.2 equivalent per 100 g of resin of primary and/or secondary amino groups and/or hydroxyl groups, and said crosslinking agent B is an organic compound having at least 2 ⁇ -alkoxyalkyl ester groups per molecule.
  • said synthetic resin A is an epoxy resin, polyester resin or acrylate resin having a number average molecular weight of 500 to 20,000 and at least 0.2 equivalent per 100 g of resin of primary and/or secondary amino groups and/or hydroxyl groups
  • said crosslinking agent B is an organic compound having at least 2 ⁇ -alkoxyalkyl ester groups per molecule.
  • 1,462 g of hexylglycol (10 moles) are introduced into a reaction vessel which can be heated with heatcarrying oil and is equipped with a water separator, a reflux condenser and a Raschig column in between, and 1,000 g of succinic anhydride (10 moles) are added with stirring, while inert gas is fed in as well.
  • the reaction mixture is heated to 120° C., the temperature being briefly raised to 130° C. by the exothermic nature of the reaction. Said temperature is maintained until the acid number is 230 mg of KOH/g.
  • Solids content 95.2% by weight (measured after 1-hour heating at 130° C.).
  • Viscosity 480 mPas (measured at 25° C. after dilution with methyl isobutyl ketone to 70% by weight).
  • the crosslinking agent 1 is repeated, except that 1,141 g of glutaric anhydride are used in place of the succinic anhydride.
  • Solids content 96.4% by weight (1 hour at 130° C.).
  • Viscosity 425 mPas (measured at 25° C. after dilution with methyl isobutyl ketone to 70% by weight).
  • 1,786 g of a polyglycidyl ether based in bisphenol A and having an epoxy equivalent weight of 893 and 350 g of a 4:1 mixture of methyl isobutyl ketone and xylene are heated to 80° C. in a reaction vessel equipped with stirrer, reflux condenser and inert gas supply line. When all the contents have melted, 280 g of diethanolamine are added with stirring. The temperature rises to 105° C. as a result of the exothermic reaction and is maintained at that level for 2 hours. The clear resin solution then has added to it 940 g of crosslinking agent (Agent 1) and 160 g of hexylglycol and is homogenized at 80° C. for 15 minutes.
  • Agent 1 crosslinking agent
  • a dispersing bath is prepared by adding 2,000 g of the resin mixture described above, which is still warm, with stirring to 37.4 g of glacial acetic acid, 42.1 g of auxiliary emulsifier solution and 1,288 g of deionized water.
  • the result is a dispersion mixture having a 50% solids content, which is stirred for an additional 2 hours.
  • 50.5 g of a lead(II) octoate solution (24% of Pb) are then stirred in, and the resulting mixture is gradually further diluted by adding 1,375.6 g of deionized water.
  • Solids content 36.2% (1 hour at 130° C.).
  • AEQ base 0.67 milliequivalent/g of solid.
  • Example leading to binder dispersion 1 is repeated, except that the 208 g of diethanolamine are replaced by 352 g of a 70% strength solution of diethylenetriamine-bis(methylisobutylketimine) in methyl isobutyl ketone and 105 g of diethanolamine, which are added in that order.
  • Solids content 33.4% (1 hour at 130° C.).
  • Example 1 is repeated, except that crosslinking agent 1 is replaced by the same weight of crosslinking agent 2.
  • Solids content 36.4% (1 hour at 130° C.).
  • Example 2 is repeated, except that crosslinking agent 1 is replaced by the same weight of crosslinking agent 2.
  • Solids content 33.6% (1 hour at 130° C.).
  • MEQ base 1.31 milliequivalents/g of solid.
  • 1,800 parts of this product are combined with 2,447 parts of deionized water, and this combination is mixed with 2,460 parts of TiO 2 , 590 parts of an extender based on aluminum silicate, 135 parts of lead silicate and 37 parts of carbon black. This mixture is reduced in a mill to a Hegman fineness of 5-7. 1,255 parts of the deionized water are then added in order to achieve the desired paste consistency.
  • This gray paste has a very long shelf-life.
  • Coating baths are made up from the binder dispersions described above and the gray pigment paste described above.
  • a bath contains:
  • the paint films are deposited at a bath temperature of 26° C. in the course of 120 seconds by connecting zinc-phosphatized metal sheets as the cathode and coating them.
  • the deposited films are cured at 185° C. in an air-circulation oven in the course of 20 minutes.
  • the resulting powder is homogenized in an extruder with 60% by weight of titanium dioxide (rutile type).
  • the customary working-up produces a powder finish suitable for the electrostatic powder spraying process.
  • the films are baked at 180° C. for 20 minutes. The result is white, shiny films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Paints Or Removers (AREA)
  • Epoxy Resins (AREA)

Abstract

The invention relates to a heat-curable binder mixture which comprises an organic synthetic resin A and a crosslinking agent B. Said synthetic resin A can be an epoxy resin, a polyester resin or an acrylate resin having a number average molecular weight of 500 to 20,000 and at least 0.2 equivalent per 100 g of resin of primary and/or secondary amino groups and/or hydroxyl groups, and said crosslinking agent B is an organic compound having at least 2 β-alkoxyalkyl ester groups per molecule.

Description

This application is a continuation-in-part of application Ser. No. 653,247, filed Aug. 31, 1984, filed as PCT DE84/00074 on Mar. 30, 1984, published as WO84/04099 on Oct. 25, 1984, now abandoned.
BACKGROUND OF THE INVENTION
The invention relates to a heat-curable binder mixture comprising an organic synthetic resin A and a crosslinking agent B.
Various chemical reactions have been proposed and are indeed used for curing the binders in paint films by crosslinking. The chemical bonds formed in the course of the crosslinking reaction frequently do not meet all the demands which are made on the paint films.
Electropainting has in recent years become widely established as a method of priming electrically conductive substrates. Interest has hitherto concentrated on anodic electropainting. The resin binders used for this purpose belong to the carboxyl-containing resins, for example to the maleate oils, maleated epoxy resins, alkyd resins, acrylic resins and in particular to the maleated polybutadienes. These resins were water-solubilized by salt formation, chiefly with amines, and were electrodeposited in the electrocoating bath at the anode. The anodic electropriming process, however, has serious disadvantages. For instance, oxygen evolves at the anode in the course of the electrodeposition and can have a serious, adverse effect on the resins being deposited at the anode. Furthermore, metal ions pass into solution at the anode and end up as flaws in the baked film. The metal ions can be the cause of discoloration and spotting. They are in particular responsible for qualitative disadvantages as a result of salt formation, which reduces the resistance to water and the level of corrosion protection.
The cathodic electropriming process, which has come of age, commercially, in recent years, is increasingly displacing the anodic process, since the deficiencies described above are largely avoided. For instance, the gas which evolves at the cathode--where the paint film is now deposited--is hydrogen, which has no effect on the resin binder. Since cathodic deposition can take place at approximately neutral pH virtually no metal ions go into solution. The binders suitable for cathodic deposition mainly contain amino groups, which are neutralized with acids to achieve water-solubilization.
SUMMARY OF THE INVENTION
It is the object of the invention to provide a binder mixture for preparing coating agents which produce surface coatings having good technical properties. The binder mixture of the invention shall help to reduce the environmental pollution accompanying the application of the corresponding coating agents. Furthermore, the coating agents based on the binder mixture according to the invention shall be suitable for any type of application process, ie. it should be possible to use the binder mixture for baking finishes which are applied conventionally, for powder finishes, for aqueous powder slurries, and for electrocoating baths. Furthermore the binder mixture shall have improved reactivity and, if used for aqueous systems, improved dispersion stability.
This object is achieved in an inventive manner for a binder mixture of the type specified at the outset when synthetic resin A is free of epoxy groups and is an epoxy resin, polyester resin or acrylate resin having a number average molecular weight of 500 to 20,000 and at least 0.2 equivalent per 100 g of resin of primary and/or secondary amino groups and/or hydroxyl groups, and crosslinking agent B is an organic compound having at least 2 β-alkoxyalkyl ester groups per molecule.
The binder mixture, in addition to components A and B, advantageously contains, as component C, pigments, fillers, crosslinking catalysts, corrosion inhibitors and further paint auxiliaries.
Advantageously the proportion of component A is 40-95% by weight and that of component B is 5-60% by weight, the total amount of components A and B being 100%.
In the course of baking, then, the β-alkoxyalkyl ester groups of component B react with the primary and/or secondary amino groups and/or hydroxyl groups of component A to form an amide bond and/or ester bond. The basic nitrogen of the amino group of the resin of component A is thus converted in the baked film into a pH-neutral amide nitrogen. The baked film thus contains no basic flaws. The principle of the crosslinking mechanism is described in the following reaction equation: ##STR1##
The hydroxyl groups react with the β-alkoxyalkyl ester groups in analogous manner: ##STR2##
These crosslinking reactions are critically favored in the design according to the invention by the -I-effect of the alkoxy group which is in β-position relative to the ester group of the crosslinking agent. Moreover, the β-positioned alkoxy oxygen and its neighboring group effect come in particularly useful in the metalcatalyzed aminolysis or alcoholysis. Furthermore, the β-hydroxyalkyl ethers which are split off have a boiling point such that they advantageously act as flow-control agents during the baking.
European Patent No. 12,463 describes a similar crosslinking mechanism in which, however, during baking hydroxyl groups react with β-hydroxyalkyl ester groups, the eliminated products being 1,2-diols. These, as any skilled worker will now, have a high boiling point. For instance, butane-1,2-diol, with a molecular weight of 90, has a boiling point of 192° C. In contrast, isomeric 2-ethoxyethanol has a boiling point of 135° C.
If the eliminated products remain in or on the baked film the subsequent application of finish can give rise to intermediate adhesion problems. These problems are likewise bypassed by means of the binders according to the invention. The amide bond formed during baking has a very advantageous effect on the adhesion of the film, in particular to metal substrates. The resilience of the film is thereby similarly increased. This crosslinking mechanism confers high resistance of the paint film to solvents, alkalis and salt spray mist. Even on sheet metal which has not been pretreated the films form very resistant coatings even without corrosion inhibitors.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Component A of the binder mixture has a number average molecular weight of 500 to 20,000, preferably 600 to 10,000.
Component A is an organic resin having primary and/or secondary amino groups and/or hydroxyl groups. Tertiary amino groups may be additionally present as well.
The chemical nature of synthetic resin A is not critical. It can be chosen according to the required properties of the binder mixture. For instance, it can be an epoxy resin, a polyester resin or an acrylate resin. The significant point is that the resins have a sufficient number of primary and/or secondary amino groups and/or hydroxyl groups which are capable of reacting with crosslinking agent B in accordance with the mechanism described above.
The primary and/or secondary amino groups are preferably introduced into the organic resin, in the preparation of component A, by reacting a polyamine and/or an amino- and/or hydroxyl-containing ketimine with resins which contain at least one, preferably at least two, epoxy groups or isocyanate groups per molecule.
The hydroxyl groups are advantageously introduced into these binders via secondary (hydroxyalkyl)alkylamines or dihydroxyalkylamines.
It has been found that component A can be prepared in a particularly suitable manner with epoxy-containing resins having preferably terminal epoxy groups and being a member of the group consisting of polyglycidyl ethers, polyglycidyl esters and polyglycidylamines.
The epoxy-containing resin can advantageously also be a copolymer of glycidyl acrylate and/or methacrylate or any other glycidyl-bearing olefinically unsaturated polymerizable compound with alkyl and/or hydroxyalkyl esters of acrylic and/or methacrylic acid and/or vinyl compounds such as styrene, vinyltoluene or vinylcarbazole.
Partially epoxidized polybutadiene oils are another particularly suitable group of resins.
For the purposes of this invention, polyglycidyl ethers preferably have the general formula ##STR3## where ##STR4## R1 =H or Cn H2n +1 R2 =(CR2 1)n
R3 =R1, halogen and preferably H
n=0 to 5.
The polyglycidyl ethers of the general formula shown have a number average molecular weight of about 340 to 5,000 and correspondingly an epoxy equivalent weight of 170 to 2,500. The epoxy resins may also be used in a completely or partially hydrogenated state. To control the film properties, some of the reactive groups of the epoxy resin may be reacted with other compounds. Suitable for this purpose are:
(a) carboxyl-containing compounds such as saturated or unsaturated monocarboxylic acids (for example benzoic acid, linoleic acid, 2-ethylhexoic acid, or Versatic acid), aliphatic, cycloaliphatic and/or aromatic dicarboxylic acids of various chain lengths (for example adipic acid, sebacic acid, isophthalic acid or dimeric fatty acids), hydroxyalkylcarboxylic acids (for example lactic acid, or dimethylolpropionic acid) and carboxyl-containing polyesters or
(b) amino-containing compounds such as diethylamine or ethylhexylamine or diamines having secondary amino groups, such as, for example, N,N'-dialkylalkylenediamine, such as dimethylethylenediamine, N,N'-dialkylpolyoxyalkyleneamine, such as N,N'-dimethylpolyoxypropylenediamine, polyamino-amides, such as Versamides or the reaction product of one mole of diaminohexane with two moles of monoglycidyl ether or monoglycidyl ester, especially glycidyl esters of α-branched fatty acids, such as Versatic acid, or
(c) hydroxyl-containing compounds, such as neopentylglycol, bisethoxylated neopentylglycol, neopentylglycol hydroxypivalate, dimethlyhydantoin-N,N'-diethanol, hexane-1,6-diol, hexane-2,5-diol, but-2-ene-1,4-diol, but-2-yne-1,4-diol, hex-3-yn-2,5-diol or other alkynediols, 1,4-bis(hydroxymethyl)-cyclohexane, 1,1-isopropylidene-bis-(p-phenoxy)-2-propanol, trimethylolpropane, pentaerythritol or aminoalcohols, such as triethanolamine, methyldiethanolamine or hydroxyl-containing alkylketimines such as aminomethylpropane-1,3-diol-methylisobutylketimine or tris(hydroxymethyl)-aminomethane-cyclohexanone ketimine as well as polyglycol ether, polyester-polyols, polyetherpolyols and polycaprolactone-polyols, of various functionalities and molecular weights.
Instead of using polyglycidyl ethers based on bisphenol A it is also possible to use polyglycidyl ethers based on other components, such as triglycidyl isocyanurate, heterocyclic diglycidyl compounds or diglycidylhydantoins.
Suitable as polyglycidyl esters are reaction products of, for example, bisglycidyl terephthalate or bisglycidyl isophthalate with, for example, bisphenol A. The epoxy equivalent weight of these products is between 200 and 2,500. To control the film properties, some of the remaining reactive glycidyl groups may be reacted with other compounds. Suitable for this purpose are for example the compounds mentioned above under a, b and c.
For the purposes of this invention, polyglycidylamines are glycidyl-containing resins which are obtained by introducing glycidyl groups (via, for example, epichlorohydrin) into NH2 -functional resins.
Also particularly suitable are copolymers of glycidyl acrylate and/or methacrylate or of any other glycidyl-bearing olefinically unsatured polymerizable compound with esters of acrylic and/or methacrylic acid as well as polymerizable vinyl compounds which have a number average molecular weight of 700 to 10,000 and an epoxy equivalent weight of 600 to 3,000. The esters of acrylic acid with C2 - to C8 -alcohols and the esters of methacrylic acid with C1 - to C4 -alcohols are preferred. The copolymers may contain further monomers, such as hydroxyalkyl (meth)acrylate or (meth)acrylamide. The copolymerization is effected in well known form by solution, suspension or emulsion polymerization with the addition of freeradical initiators such as peroxides, hydroperoxides, peresters or thermolabile azo compounds and, if desired, molecular weight regulators.
For the purposes of this invention, partially epoxidized polybutadiene oils are reaction products which are obtained by reacting commercially available polybutadiene oils with peracids or organic acid/H2 O2 mixtures. The method of preparation is described, for example, in Chemiker-Zeitung 95, 857 et seq. (1971).
The epoxy-containing resins are reacted with polyamines and/or an amino- and/or hydroxyl-containing ketimine. If the addition reaction is carried out with the compounds carrying the primary and secondary amino groups in the form of their ketimines, the reaction conditions should be controlled in such a way that no ketimine-decomposing substances remain in the reaction product. The preferred ketimines are reaction products of ketones and alkylamines or alkyldiamines containing hydroxyl or secondary amino groups and having the general structure RNH-R-NH2 or HO-R-NH2 respectively. The ketimines have for example the following structure: ##STR5## where: X=--(CR2)n --
R=--H, --R'
R'=--Cm H2m+1, --C6 H11
U=--R, --Y ##STR6## Z=>CO, --X n=1-6
m=1-12
The ketones used for the reaction with the primary amino groups are generally aliphatic ketones, such as methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone or ethyl n-propyl ketone and cycloaliphatic ketones such as cyclopentanone and cyclohexanone. The preferred aminoalkylamines and alkanolamines are chiefly diethylenetriamine, N-methylethylenediamine, N-methylpropylenediamine, N-aminoethylpiperazine, 2-aminoethanol, 1-aminopropan-2-ol, 1-aminopropan-3-ol, 2-amino-2-methylpropan1-ol, 3-amino-2,2-dimethylpropan-1-ol, 1,5-diaminopentan-3-ol or N-(2-aminoethyl)-N-(2-hydroxyethyl)-ethylenediamine.
The exothermic addition of the aminoketimines described above onto the epoxy groups of the base resin of binder component A is generally carried out at room temperature. To complete the reaction it is frequently finished off at temperatures between 50° and 125° C.
The secondary amines containing hydroxyl groups can be introduced into the molecule in similar fashion.
The base resin of binder component A can also be a base resin having at least 2 isocyanate groups. Resins containing isocyanate groups are preferably higher-functional polyisocyanates which are prepared by trimerization or oligomerization from diisocyanates or polyisocyanates and polyfunctional OH- or NH-containing compounds. Typical isocyanates are toluylene diisocyanate, hexamethylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,6-diisocyanato-2,2,4-trimethylhexane and 1-isocyanatomethyl-3-isocyanato-1,5,5-trimethylcyclohexane. It is furthermore possible to use with advantage isocyanate-containing prepolymers based on polyglycol ethers, polyester-polyols, polyetherpolyols, polycaprolactone-polyols, polycaprolactam-polyols or polyamino-amides.
Binder component B, the crosslinking agent, is a compound which contains at least 2 β-alkoxyalkyl ester groups. The crosslinking agent can be a low molecular weight compound or an appropriately substituted resin. If the esterification is performed not with an alcohol having an alkoxy group at the β-carbon atom but with alcohols such as methyl, ethyl or butyl alcohol, the amidation or transesterification reaction proceeds significantly more slowly.
The crosslinking rate is in this case too low, and the baked film is not sufficiently resistant to solvent. These disadvantages are bypassed if, as directed by the invention, β-alkoxylalkyl esters are used for the amidation or transesterification reaction. The compounds which form the crosslinking agent are preferably polyester resins, but it is also possible to use other compounds which contain free carboxyl groups and are accessible to esterification.
The crosslinking component is thus a poly(2-alkoxyalkyl)ester of a polycarboxylic acid. It can be advantageously prepared as follows. First of all, equivalent proportions of a dicarboxylic anhydride (phthalic anhydride, hexahydrophthalic anhydride, trimellitic anhydride or succinic anhydride) is reacted at temperatures below 145° C. with a polyol (glycerol, trimethylolpropane, pentaerythritol or dipentaerythritol). The resulting acid intermediate is then esterified to give the end product.
A further method of preparation consists in reacting a 2-alkoxyalcohol with equimolar amounts of a dicarboxylic anhydride to give the corresponding 2-alkoxyalkyl half-ester, which is subsequently reacted with polyglycidyl compounds in an equivalent ratio, based on the glycidyl groups. This last reaction can be advantageously carried out in the presence of catalysts of the type also customary for reactions of carboxylic acids with epoxy compounds. It is particularly advantageous to choose the ratio of acid half-ester to polyepoxy compound to be such that the β-hydroxy groups formed through the addition of the half-ester onto the epoxy groups are partly or wholly esterified by the remaining excess of half-ester in a condensation reaction at elevated temperatures, with or without catalysts.
Component B is advantageously a polyacrylate resin comprising the following monomers:
(a) 10-50% by weight of an alkyl acrylate having 1 to 18 carbon atoms in the alkyl radical and/or methacrylate having 2 to 18 carbon atoms in the alkyl radical,
(b) 0-60% by weight of methyl methacrylate,
(c) 0-35% by weight of styrene, α-methylstyrene, o- and/or p-chlorostyrene, p-tert.butylstyrene, vinyltoluene and/or or vinylcarbazole and
(d) 2-35% by weight of β-alkoxyalkyl acrylate and/or methacrylate or of any other olefinic unsaturated polymerizable compound containing β-alkoxyalkyl ester groups, the proportions of a, b, c and d adding up to 100%.
The binder mixture according to the invention can be in finely divided solid form or in the form of a solution in an organic solvent.
For electrocoating purposes it is necessary that, after protonation with acid, the binder mixture is in the form of an aqueous solution or dispersion. The water-solubility of the binder component is brought about by neutralizing the primary, secondary and/or tertiary amino groups therein with acids. Organic acids are particularly suitable acids. The amino groups are preferably neutralized with formic acid, acetic acid, malonic acid, lactic acid or citric acid.
Said acids can also be used if the solubilizing groups of the binder component are introduced by addition of an ammonium group onto the binder.
The degree of neutralization of the solubilizing groups is, based on these groups, between 0.2 and 1.0 equivalent and preferably between 0.25 and 0.6 equivalent of acid.
The neutralization can be carried out as follows. The acid is initially introduced into water, together with the dispersing auxiliary if one is used, and the resin solution is stirred into the water at room temperature or, if desired, at elevated temperatures. The acid, however, can also be added to the resin solution directly. The neutralized resin solution can then be stirred into the water, or it is also possible slowly to stir the water into the resin solution.
To control its viscosity, the deposition voltage, and the flow, the dispersion may contain up to 20% of organic solvent. If, as a result of the chosen method of preparation, the batch contains an excessive amount of solvent or even contains solvent which impairs the properties, it is possible to distill these solvents out of the resin solution before the dispersing, or they are distilled out of the aqueous dispersion. A very low organic solvent content is beneficial for the properties as a whole.
The solids content of a deposition bath which is made up on the basis of the dispersion according to the invention is 7-35 parts by weight, preferably 12-25 parts by weight. The deposition bath is at pH 4-8, preferably 5-7.5. The anodes of the deposition bath are non-corroding steel anodes or graphite anodes. The temperature of the made-up bath should be between 15° and 35° C., preferably between 20° and 30° C. The deposition period and voltage are so chosen that the desired film thickness is obtained.
After the deposition the coated article is rinsed off and is ready for baking.
Irrespective of the method chosen for applying the coating agents prepared on the basis of the binder mixture according to the invention, the paint film is crosslinked by baking at temperatures of 130° to 200° C. for 10-60 minutes, preferably at 150° to 180° C. for 15-30 minutes.
The amidation and/or esterification reaction may be additionally speeded up by means of suitable catalysts. Suitable for this purpose are in particular ammonium compounds such as benzyltrimethylammonium hydroxide, benzyltrimethylammonium chloride, trimethylcetylammonium bromide or tetraammonium iodide and organic tin compounds such as dibutyltin dilaurate and iron(III) acetylacetonate, zinc acetate, zinc 2-ethylhexoate, cobalt naphthenate, lead acetate or butyl titanate.
The pigment is introduced in well known fashion, namely by grinding the pigments and the customary additives such as fillers, corrosion inhibitors and antifoams in one of the two binder components. The grinding can be done in, for example, sand mills, ball mills or threeroll mills.
The make-up of the finish can be completed in commonly known fashion, namely by grinding the pigments and the customary additives, such as fillers, corrosion inhibitors and antifoams, either in the binder component or in the crosslinking component. This grinding can be done in, for example, sand mills, ball mills or threeroll mills.
Individual components A and B and, if used, component C can be mixed in the form of their concentrated solutions and then can be dispersed together. However, it is also possible to disperse components A and B individually, the pigments having been ground into A or B, and to mix the dispersions of the individual components in the required ratio.
The invention further relates to a process for preparing surface coatings by applying to a substrate in the form of a film, and baking, a coating agent which contains a binder mixture of an organic synthetic resin A and a crosslinking agent B, wherein said synthetic resin A is an epoxy resin, polyester resin or acrylate resin having a number average molecular weight of 500 to 20,000 and at least 0.2 equivalent per 100 g of resin of primary and/or secondary amino groups and/or hydroxyl groups, and said crosslinking agent B is an organic compound having at least 2 β-alkoxyalkyl ester groups per molecule.
Advantageous embodiments of the process according to the invention are given in the subclaims.
The invention also relates to the use of a binder mixture comprising an organic synthetic resin A and a crosslinking agent B for preparing surface coatings, wherein said synthetic resin A is an epoxy resin, polyester resin or acrylate resin having a number average molecular weight of 500 to 20,000 and at least 0.2 equivalent per 100 g of resin of primary and/or secondary amino groups and/or hydroxyl groups, and said crosslinking agent B is an organic compound having at least 2 β-alkoxyalkyl ester groups per molecule.
Advantageous embodiments of the use according to the invention are given in the subclaims.
Below the invention is explained in more detail by reference to illustrative embodiments.
Preparation of a β-alkoxyalkyl ester crosslinking agent 1
1,462 g of hexylglycol (10 moles) are introduced into a reaction vessel which can be heated with heatcarrying oil and is equipped with a water separator, a reflux condenser and a Raschig column in between, and 1,000 g of succinic anhydride (10 moles) are added with stirring, while inert gas is fed in as well. The reaction mixture is heated to 120° C., the temperature being briefly raised to 130° C. by the exothermic nature of the reaction. Said temperature is maintained until the acid number is 230 mg of KOH/g.
400 g of xylene, 5 g of N-cetyl-N,N,N-trimethylammonium bromide and 940 g of a bisphenol A epoxy resin having an epoxy equivalent weight of 188 (2.5 moles) are then added. The temperature is again raised to 130° C., in the course of 1 hour, and is maintained there until the epoxy value has dropped to zero. After addition of 2 g of p-toluenesulfonic acid solution (25% strength in n-propanol) the temperature is raised to 200° C. in the course of 4 hours during which the water of reaction being formed is continuously separated out. After a further raise to 220° C. the temperature is maintained until about 90 g of water have been separated off, and the acid number has dropped to below 2 mg of KOH/g of solid resin. The mixture is then cooled and discharged without dilution.
Solids content: 95.2% by weight (measured after 1-hour heating at 130° C.).
Acid number: 1.1 mg of KOH/g of solid resin.
Viscosity: 480 mPas (measured at 25° C. after dilution with methyl isobutyl ketone to 70% by weight).
Preparation of a β-alkoxyalkyl ester crosslinking agent 2
The crosslinking agent 1 is repeated, except that 1,141 g of glutaric anhydride are used in place of the succinic anhydride.
Solids content: 96.4% by weight (1 hour at 130° C.).
Acid number: 0.9 mg of KOH/g of solid resin.
Viscosity: 425 mPas (measured at 25° C. after dilution with methyl isobutyl ketone to 70% by weight).
EXAMPLE 1 Preparation of binder dispersion 1
1,786 g of a polyglycidyl ether based in bisphenol A and having an epoxy equivalent weight of 893 and 350 g of a 4:1 mixture of methyl isobutyl ketone and xylene are heated to 80° C. in a reaction vessel equipped with stirrer, reflux condenser and inert gas supply line. When all the contents have melted, 280 g of diethanolamine are added with stirring. The temperature rises to 105° C. as a result of the exothermic reaction and is maintained at that level for 2 hours. The clear resin solution then has added to it 940 g of crosslinking agent (Agent 1) and 160 g of hexylglycol and is homogenized at 80° C. for 15 minutes.
In the meantime a dispersing bath is prepared by adding 2,000 g of the resin mixture described above, which is still warm, with stirring to 37.4 g of glacial acetic acid, 42.1 g of auxiliary emulsifier solution and 1,288 g of deionized water. The result is a dispersion mixture having a 50% solids content, which is stirred for an additional 2 hours. 50.5 g of a lead(II) octoate solution (24% of Pb) are then stirred in, and the resulting mixture is gradually further diluted by adding 1,375.6 g of deionized water.
Solids content: 36.2% (1 hour at 130° C.).
AEQ base: 0.67 milliequivalent/g of solid.
MEQ acid: 0.38.
pH: 5.9.
EXAMPLE 2 Preparation of binder dispersion 2
The Example leading to binder dispersion 1 is repeated, except that the 208 g of diethanolamine are replaced by 352 g of a 70% strength solution of diethylenetriamine-bis(methylisobutylketimine) in methyl isobutyl ketone and 105 g of diethanolamine, which are added in that order.
The result is a binder dispersion having the following parameters:
Solids content: 33.4% (1 hour at 130° C.).
MEQ base: 1.32 milliequivalents/g of solid.
MEQ acid: 0.39 milliequivalent/g.
pH: 7.2. EXAMPLE 3 Preparation of binder dispersion 3
Example 1 is repeated, except that crosslinking agent 1 is replaced by the same weight of crosslinking agent 2.
Parameters:
Solids content: 36.4% (1 hour at 130° C.).
MEQ base: 0.69 milliequivalent/g of solid.
MEQ acid: 0.39 milliequivalent/g of solid.
pH: 6.0.
EXAMPLE 4 Preparation of binder dispersion 4
Example 2 is repeated, except that crosslinking agent 1 is replaced by the same weight of crosslinking agent 2.
Parameters:
Solids content: 33.6% (1 hour at 130° C.).
MEQ base: 1.31 milliequivalents/g of solid.
MEQ acid: 0.42 milliequivalent/g of solid.
pH: 7.2
Preparation of a gray pigment paste
To 953 parts of a commercially available epoxy resin based on bisphenol A and having an epoxy equivalent weight of 890 are added 800 parts of butylglycol. The mixture is heated to 80° C. To this resin solution are then added 221 parts of a product crosslinked from 101 parts of diethanolamine and 120 parts of 80% strength aqueous lactic acid. The reaction is carried out at 80° C. until the acid number has dropped to below 1.
1,800 parts of this product are combined with 2,447 parts of deionized water, and this combination is mixed with 2,460 parts of TiO2, 590 parts of an extender based on aluminum silicate, 135 parts of lead silicate and 37 parts of carbon black. This mixture is reduced in a mill to a Hegman fineness of 5-7. 1,255 parts of the deionized water are then added in order to achieve the desired paste consistency. This gray paste has a very long shelf-life.
Preparation of electrocoating baths
Coating baths are made up from the binder dispersions described above and the gray pigment paste described above.
A bath contains:
2,280 parts of deionized water
25 parts of 10% strength acetic acid
1,920 parts of binder dispersion
775 parts of pigment paste
The paint films are deposited at a bath temperature of 26° C. in the course of 120 seconds by connecting zinc-phosphatized metal sheets as the cathode and coating them. The deposited films are cured at 185° C. in an air-circulation oven in the course of 20 minutes.
Deposition results
The deposition results are given in the following Tables.
______________________________________                                    
Deposition data                                                           
Binder dispersion                                                         
                 1       2       3     4                                  
Deposition voltage                                                        
                 300     280     310   290                                
Film thickness (μm)                                                    
                 17      19      18    19                                 
Physicotechnological parameters                                           
Example          1       2       3     4                                  
Erichsen deep-drawing (mm)                                                
                 5.5     5.0     6.7   6.3                                
Cross hatch      0       0       0     0                                  
Bending test     o.k.    o.k.    o.k.  o.k.                               
Impact (inch-pound)                                                       
                 40      50      50    40                                 
______________________________________                                    
Preparation of a powder finish
64 g of diethanolamine are introduced into a reaction vessel and heated to 80° C. 1,482 g of a 75% strength solution of Epikote 1007 in methyl ethyl ketone are added in the course of 3 hours. The temperature is then raised to 90° C. and maintained there for one hour.
295 g of the crosslinking agent are then added. The components are thoroughly mixed, and the solvents are carefully removed in vacuo at 110° C. The resulting resin melt is poured into a copper trough and is allowed to cool down, and when cold it is broken into pieces and ground.
The resulting powder is homogenized in an extruder with 60% by weight of titanium dioxide (rutile type). The customary working-up produces a powder finish suitable for the electrostatic powder spraying process. The films are baked at 180° C. for 20 minutes. The result is white, shiny films.

Claims (11)

What is claimed is:
1. A heat-curable binder consisting essentially of a mixture of an organic resin A free of epoxy groups and a cross-linking agent B wherein said organic resin A is selected from the group consisting of epoxy resins and mixtures of said epoxy resins with polyester resins and acrylate resins, said resin A having a number average molecular weight of 500 to 20,000 and per 100 grams of resin A having at least 0.2 equivalent groups selected from the group consisting of primary amino groups, secondary amino groups, hydroxyl groups and mixtures thereof and said cross-linking agent B is a substituted resin having at least two Beta-alkoxyalkyl ester groups per molecule and a number average molecular weight of 200 to 10,000.
2. A heat-curable binder consisting essentially of a mixture of an organic resin A free of epoxy groups and a cross-linking agent B wherein said organic resin A is selected from the group consisting of epoxy resins and mixtures of said epoxy resins with polyester resins and acrylate resins, said resin A having a number average molecular weight of 500 to 20,000 and per 100 grams of resin A having at least 0.2 equivalent groups selected from the group consisting of primary amino groups, secondary amino groups, hydroxyl groups and mixtures thereof and said cross-linking agent B is an organic compound having at least two Beta-alkoxyalkyl ester groups per molecule.
3. The binder of claim 1 or 2, wherein said organic resin A is an epoxy resin.
4. The binder of claim 1 or 2, wherein said organic resin A is a mixture of epoxy resins, polyester resins and acrylate resins.
5. The binder of claim 1 or 2, further comprising a component C selected from the group consisting of pigments, fillers, cross-linking catalysts, corrosion inhibitors and paint auxiliaries.
6. The binder mixture of claim 1 or 2, wherein the proportion of component A is 40 to 95% by weight and that of component B is 5-60% by weight, the proportions of components A and B adding up to 100%.
7. The binder mixture of claim 1 or 2, wherein component A has a number average molecular weight of 600 to 10,000.
8. The binder mixture of claim 1, wherein component B is a polyacrylate resin comprising the following monomers:
(a) 10-50% by weight of an alkyl acrylate having 1 to 18 carbon atoms in the alkyl radical, alkyl methacrylate having 2 to 18 carbon atoms in the alkyl radical, or mixtures thereof;
(b) 0-60% by weight of methyl methacrylate;
(c) 0-35% by weight of styrene, α-methylstyrene, o-chlorostyrene, p-chlorostyrene, p-tert.-butylstyrene, vinyltoluene, vinylcarbazole, of mixtures thereof;
(d) 2-35% by weight of β-alkoxyalkyl acrylate, β-alkoxyalkyl methacrylate, any other olefinic unsaturated polymerizable compound containing β-alkoxyalkyl ester groups, or mixtures thereof, the proportions of a, b, c and d adding up to 100%.
9. The binder mixture of claim 1 or 2, which is in finely divided solid form.
10. The binder mixture of claim 1 or 2, which is in the form of a solution in an organic solvent.
11. The binder mixture of claim 1 or 2, which, after protonation with acid, is in the form of an aqueous solution or dispersion.
US06/890,988 1983-04-09 1986-07-30 Heat-curable binder mixture Expired - Fee Related US4769400A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3312814 1983-04-09
DE19833312814 DE3312814A1 (en) 1983-04-09 1983-04-09 HEAT-CURABLE BINDING MIXTURE

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06653247 Continuation-In-Part 1984-08-31

Publications (1)

Publication Number Publication Date
US4769400A true US4769400A (en) 1988-09-06

Family

ID=6195860

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/890,988 Expired - Fee Related US4769400A (en) 1983-04-09 1986-07-30 Heat-curable binder mixture

Country Status (8)

Country Link
US (1) US4769400A (en)
EP (1) EP0138922B1 (en)
JP (1) JPS60501012A (en)
BR (1) BR8406513A (en)
DE (2) DE3312814A1 (en)
ES (1) ES531434A0 (en)
IT (1) IT1221749B (en)
WO (1) WO1984004099A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983266A (en) * 1988-12-27 1991-01-08 The Sherwin-Williams Company Curable coating compositions comprising self-crosslinkable components
AU637653B2 (en) * 1989-12-01 1993-06-03 Basf Corporation Process for producing aqueos pigment pastes and pigment pastes produced thereby
US5231120A (en) * 1991-12-19 1993-07-27 E. I. Du Pont De Nemours And Company Cathodic electrodeposition coatings containing an amino ester crosslinking agent
US5352740A (en) * 1990-04-10 1994-10-04 Nippon Oil And Fats Company, Limited Thermosetting compositions, thermal latent carboxyl compounds and methods of preparation thereof
US5419929A (en) * 1990-04-10 1995-05-30 Nippon Oil And Fats Company, Limited Thermosetting compositions, thermal latent acid catalysts, methods of coating and coated articles
US5468811A (en) * 1989-11-02 1995-11-21 National Patent Development Corporation Hydrophilic composite polymer articles formed from a settable paste comprising a mixture of hydrophilic polymer and unsaturated monomer
CN1033982C (en) * 1990-05-28 1997-02-05 无锡市化工研究设计院 Production of transparent solf seal adhesive with epoxy double component
EP0774497A2 (en) 1995-11-16 1997-05-21 Basf Corporation Cathodic electrocoat compositions containing self-crosslinking polymers
US5661219A (en) * 1993-09-06 1997-08-26 Nof Corporation Curable composition, thermal latent acid catalyst, method of coating, coated article, method of molding and molded article
US5869191A (en) * 1996-11-25 1999-02-09 Shell Oil Company Acid functional and epoxy functional polyster resins
US6683280B1 (en) 2003-03-12 2004-01-27 Jeffrey S. Wofford Apparatus and method for prosthesis securement
US20060105099A1 (en) * 2004-11-09 2006-05-18 Jsr Corporation Biological substance related article and method of manufacturing the same, and biological substance adsorption preventive coating composition and method of using the same
WO2014074234A1 (en) 2012-11-09 2014-05-15 Basf Coatings Gmbh Method for improving coating cure for article coated in phosphate-contaminated electrocoat coating composition and electrocoat coating composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3436346C2 (en) * 1984-10-04 1986-09-11 Herberts Gmbh, 5600 Wuppertal Externally cross-linking, epoxy-group-free amino-poly (meth) acrylate resin for water-thinnable paints, process for its production and its use for coating objects
DE3628124A1 (en) * 1986-08-19 1988-03-03 Herberts Gmbh AQUEOUS COATING AGENT, METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF
DE3733182A1 (en) * 1987-10-01 1989-04-20 Hoechst Ag HARDENING COMPONENT AND THEIR USE
IL93049A0 (en) * 1989-01-17 1990-11-05 Sartomer Co Inc Thermoplastic elastomer composed of macromolecular monomers and alkoxyalkyl acrylate monomers
DE69001932T2 (en) * 1989-03-20 1993-11-11 Kansai Paint Co Ltd Thermosetting resin-based coating.
US5100735A (en) * 1990-07-25 1992-03-31 E. I. Du Pont De Nemours And Company Waterborne basecoat/high solids clear finish for automotive substrates having an improved appearance

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917573A (en) * 1972-09-28 1975-11-04 American Cyanamid Co Process for the preparation of water emulsifiable anionic resins and the resins thus produced
US3954719A (en) * 1973-10-13 1976-05-04 Deutsche Texaco Aktiengesellschaft Process for the production of a single-component powder resin for use in electrostatic powder spray coating processes
US3960983A (en) * 1973-02-12 1976-06-01 American Cyanamid Company Composition of matter comprising a blend of a polyether polyol and an aminoplast cross-linking agent
US4069275A (en) * 1973-12-19 1978-01-17 Ford Motor Company Power paint blend of an epoxy and hydroxy-functional copolymer and an anhydride-functional copolymer
JPS5386790A (en) * 1977-01-10 1978-07-31 Kansai Paint Co Ltd Production of oxidatively curable, nonionic and water-soluble resin
US4238577A (en) * 1978-12-08 1980-12-09 American Cyanamid Company Novel elastomer composition and processes therefor
US4246089A (en) * 1979-11-30 1981-01-20 E. I. Du Pont De Nemours And Company Graft copolymer useful in electrodeposition
US4255547A (en) * 1980-03-10 1981-03-10 American Cyanamid Company Novel elastomer composition and processes therefor
GB2067571A (en) * 1980-01-15 1981-07-30 Ppg Industries Inc Coating compositions of vinyl addition resins and amine modified resins
US4303560A (en) * 1979-03-17 1981-12-01 Denki Kagaku Kogyo Kabushiki Kaisha Rubbery polymer composition
US4362847A (en) * 1980-05-22 1982-12-07 Shell Oil Company Heat-curable thermosetting resin binder compositions comprising a non-acidic resinous compound, a non-acidic polyester cross-linking agent, and a transesterification catalyst
US4405763A (en) * 1978-12-11 1983-09-20 Shell Oil Company Thermosetting resinous binder compositions, their preparation, and use as coating materials
US4434278A (en) * 1982-09-27 1984-02-28 Celanese Corporation Phosphate esters of acrylated epoxides
US4460746A (en) * 1981-01-17 1984-07-17 Th. Goldschmidt Ag Process for flexibilizing epoxide resins
US4539385A (en) * 1983-06-24 1985-09-03 Basf Farben & Fasern Ag Self-crosslinking, heat-curable grinding resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB988171A (en) * 1960-04-14 1965-04-07 Vinyl Products Ltd Improvements in or relating to thermosetting resin compositions
DE2641107C3 (en) * 1976-09-13 1979-03-01 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt A method for producing a carboxyl group-containing acrylic resin and its use

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917573A (en) * 1972-09-28 1975-11-04 American Cyanamid Co Process for the preparation of water emulsifiable anionic resins and the resins thus produced
US3960983A (en) * 1973-02-12 1976-06-01 American Cyanamid Company Composition of matter comprising a blend of a polyether polyol and an aminoplast cross-linking agent
US3954719A (en) * 1973-10-13 1976-05-04 Deutsche Texaco Aktiengesellschaft Process for the production of a single-component powder resin for use in electrostatic powder spray coating processes
US4069275A (en) * 1973-12-19 1978-01-17 Ford Motor Company Power paint blend of an epoxy and hydroxy-functional copolymer and an anhydride-functional copolymer
JPS5386790A (en) * 1977-01-10 1978-07-31 Kansai Paint Co Ltd Production of oxidatively curable, nonionic and water-soluble resin
US4238577A (en) * 1978-12-08 1980-12-09 American Cyanamid Company Novel elastomer composition and processes therefor
US4405763A (en) * 1978-12-11 1983-09-20 Shell Oil Company Thermosetting resinous binder compositions, their preparation, and use as coating materials
US4303560A (en) * 1979-03-17 1981-12-01 Denki Kagaku Kogyo Kabushiki Kaisha Rubbery polymer composition
US4246089A (en) * 1979-11-30 1981-01-20 E. I. Du Pont De Nemours And Company Graft copolymer useful in electrodeposition
GB2067571A (en) * 1980-01-15 1981-07-30 Ppg Industries Inc Coating compositions of vinyl addition resins and amine modified resins
US4255547A (en) * 1980-03-10 1981-03-10 American Cyanamid Company Novel elastomer composition and processes therefor
US4362847A (en) * 1980-05-22 1982-12-07 Shell Oil Company Heat-curable thermosetting resin binder compositions comprising a non-acidic resinous compound, a non-acidic polyester cross-linking agent, and a transesterification catalyst
US4460746A (en) * 1981-01-17 1984-07-17 Th. Goldschmidt Ag Process for flexibilizing epoxide resins
US4434278A (en) * 1982-09-27 1984-02-28 Celanese Corporation Phosphate esters of acrylated epoxides
US4539385A (en) * 1983-06-24 1985-09-03 Basf Farben & Fasern Ag Self-crosslinking, heat-curable grinding resin

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983266A (en) * 1988-12-27 1991-01-08 The Sherwin-Williams Company Curable coating compositions comprising self-crosslinkable components
US5468811A (en) * 1989-11-02 1995-11-21 National Patent Development Corporation Hydrophilic composite polymer articles formed from a settable paste comprising a mixture of hydrophilic polymer and unsaturated monomer
AU637653B2 (en) * 1989-12-01 1993-06-03 Basf Corporation Process for producing aqueos pigment pastes and pigment pastes produced thereby
US5660937A (en) * 1990-04-10 1997-08-26 Nippon Oil And Fats Company, Limited Thermosetting compositions, methods of coating and coated articles
US5352740A (en) * 1990-04-10 1994-10-04 Nippon Oil And Fats Company, Limited Thermosetting compositions, thermal latent carboxyl compounds and methods of preparation thereof
US5516839A (en) * 1990-04-10 1996-05-14 Nippon Oil And Fats Company, Limited Thermal latent carboxyl compounds and methods of preparation thereof
US5521011A (en) * 1990-04-10 1996-05-28 Nippon Oil And Fats Company, Limited Thermosetting compositions, thermal latent acid catalysts, methods of coating and coated articles
US5549932A (en) * 1990-04-10 1996-08-27 Nippon Oil And Fats Company, Limited Thermosetting compositions, methods of coating and coated articles
US5578677A (en) * 1990-04-10 1996-11-26 Nippon Oil And Fats Company, Limited Thermosetting compositions
US5419929A (en) * 1990-04-10 1995-05-30 Nippon Oil And Fats Company, Limited Thermosetting compositions, thermal latent acid catalysts, methods of coating and coated articles
CN1033982C (en) * 1990-05-28 1997-02-05 无锡市化工研究设计院 Production of transparent solf seal adhesive with epoxy double component
US5231120A (en) * 1991-12-19 1993-07-27 E. I. Du Pont De Nemours And Company Cathodic electrodeposition coatings containing an amino ester crosslinking agent
US6030571A (en) * 1993-09-06 2000-02-29 Nof Corporation Methods of molding and molded articles made thereby
US5661219A (en) * 1993-09-06 1997-08-26 Nof Corporation Curable composition, thermal latent acid catalyst, method of coating, coated article, method of molding and molded article
US5922633A (en) * 1993-09-06 1999-07-13 Nof Corporation Thermal latent acid catalyst
EP0774497A2 (en) 1995-11-16 1997-05-21 Basf Corporation Cathodic electrocoat compositions containing self-crosslinking polymers
US5869191A (en) * 1996-11-25 1999-02-09 Shell Oil Company Acid functional and epoxy functional polyster resins
US6683280B1 (en) 2003-03-12 2004-01-27 Jeffrey S. Wofford Apparatus and method for prosthesis securement
US20060105099A1 (en) * 2004-11-09 2006-05-18 Jsr Corporation Biological substance related article and method of manufacturing the same, and biological substance adsorption preventive coating composition and method of using the same
EP1655354A3 (en) * 2004-11-09 2008-01-16 JSR Corporation A biological substance absorption preventing coating composition, an article coated therewith and a method of using the same
US7569622B2 (en) 2004-11-09 2009-08-04 Jsr Corporation Biological substance related article and method of manufacturing the same, and biological substance adsorption preventive coating composition and method of using the same
US20090221743A1 (en) * 2004-11-09 2009-09-03 Jsr Corporation Biological substance related article and method of manufacturing the same, and biological substance adsorption preventive coating composition and method of using the same
US7754806B2 (en) 2004-11-09 2010-07-13 Jsr Corporation Biological substance related article and method of manufacturing the same, and biological substance adsorption preventive coating composition and method of using the same
WO2014074234A1 (en) 2012-11-09 2014-05-15 Basf Coatings Gmbh Method for improving coating cure for article coated in phosphate-contaminated electrocoat coating composition and electrocoat coating composition

Also Published As

Publication number Publication date
EP0138922B1 (en) 1987-08-26
DE3465600D1 (en) 1987-10-01
IT8420422A0 (en) 1984-04-06
IT1221749B (en) 1990-07-12
EP0138922A1 (en) 1985-05-02
DE3312814A1 (en) 1984-10-11
JPS60501012A (en) 1985-07-04
ES8503710A1 (en) 1985-03-16
ES531434A0 (en) 1985-03-16
BR8406513A (en) 1985-03-12
WO1984004099A1 (en) 1984-10-25

Similar Documents

Publication Publication Date Title
US4769400A (en) Heat-curable binder mixture
US4686249A (en) Heat-hardenable binder mixture of amino resin and hydroxy epoxides
US4557976A (en) Heat-hardenable binder mixture
US4476261A (en) Aqueous coating composition
EP0178531B1 (en) Aqueous electrodip-lacquering coating composition and its use in coating objects
JPH04506374A (en) Methods for coating conductive supports, methods for producing water-based paints and epoxide amine adducts
US4176099A (en) Self-crosslinking cationic resin emulsions for use in electrodeposition paints
JPS6191201A (en) Epoxy group-free outside bridgeable aminopoly(meth)acrylic resin, manufacture and ced bath containing same
US4495335A (en) Self-crosslinking heat-curable binder
DE3122641A1 (en) CATHODICALLY DEPOSITABLE AQUEOUS ELECTRODESCENT COATING AGENT
JP3529418B2 (en) Electrodeposition coating composition comprising crosslinked microparticles
EP0136411B1 (en) Heat-curable binder composition
DE2936356A1 (en) PRE-CONDENSED, HEAT-CURABLE AQUEOUS LACQUER COATING AGENT AND THE USE THEREOF FOR CATHODICAL DEPOSITION ON ELECTRICALLY CONDUCTING SURFACES
JPH09505328A (en) Method for coating electric immersion paint and conductive substrate
JPS6035059A (en) Thermosettable binder mixture and manufacture of coating
US4661410A (en) Heat-hardenable binder mixture
JP3494724B2 (en) Cathodic electrodeposition coating method using cyclic carbonate crosslinkable coating composition
US4454264A (en) Heat curable aqueous lacquer coating composition, its use for electrical deposition, and a process of cathodic deposition onto an electrical conductive substrate
US4769420A (en) Binder which is rendered water-dilutable by protonation with an acid, from carboxyl terminated butadiene/acrylonitrile copolymers
US4547409A (en) Self-crosslinking heat-curable binder
EP0595356A2 (en) Cationic electrocoating composition
MXPA04002331A (en) Aqueous dispersions and aqueous electrodepositable primers.
US4477642A (en) Selfcrosslinking heat-hardenable binder
JPH0442427B2 (en)
JPH03281672A (en) Cathodic electrodeposition primer containing water-insoluble organic lead compound as corrosion inhibitor

Legal Events

Date Code Title Description
AS Assignment

Owner name: BASF LACKE & FARBEN AG, POSTFACH 6123, D 4400 MUNS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:GEIST, MICHAEL;OTT, GUNTHER;SCHON, GEORG;REEL/FRAME:004817/0865

Effective date: 19861003

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19920906

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362