US4733379A - Line array transducer assembly - Google Patents

Line array transducer assembly Download PDF

Info

Publication number
US4733379A
US4733379A US06/840,603 US84060386A US4733379A US 4733379 A US4733379 A US 4733379A US 84060386 A US84060386 A US 84060386A US 4733379 A US4733379 A US 4733379A
Authority
US
United States
Prior art keywords
elements
transducer assembly
array
piezoelectric elements
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/840,603
Inventor
Robert A. Lapetina
Gordon L. Snow
David P. Baird
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edo Western Corp
Original Assignee
Edo Western Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edo Western Corp filed Critical Edo Western Corp
Priority to US06/840,603 priority Critical patent/US4733379A/en
Assigned to EDO CORPORATION/WESTERN DIVISION reassignment EDO CORPORATION/WESTERN DIVISION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BAIRD, DAVID P., LAPETINA, ROBERT A., SNOW, GORDON L.
Priority to EP86113279A priority patent/EP0237616A3/en
Priority to DE198686113279T priority patent/DE237616T1/en
Priority to CA000519824A priority patent/CA1281123C/en
Priority to JP61238191A priority patent/JPS62220885A/en
Application granted granted Critical
Publication of US4733379A publication Critical patent/US4733379A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0629Square array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern
    • G01V1/201Constructional details of seismic cables, e.g. streamers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals

Definitions

  • FIG. 1 shows a perspective, partially cut-away view of a portion of a flexible line array transducer assembly made in accordance with the principles of the present invention
  • FIG. 4 is an exploded view of an alternative embodiment of a line array transducer assembly utilizing the piezoelectric element shown in FIG. 3.
  • the piezoelectric elements 4 By proper orientation and poling of the piezoelectric elements 4 in the array of FIG. 1, the elements are effectively immunized against vibration movement or other mechanical perturbations operating longitudinally or laterally along the array. On the other hand, the piezoelectric elements 4 maintain a high hydrostatic sensitivity.
  • the array of FIG. 1 would generally be used for underwater acoustical energy detection while being towed behind a tow vehicle.
  • the foam material 8 is provided to maintain the relative position of the piezoelectric elements and to mechanically isolate the elements from one another.
  • the foam material would have a porosity of from 12 to 20 pores per centimeter and a density of about 0.028 grams per cubic centimeter.
  • An illustrative foam material is SIF type Z polyurethane open-cell foam, either ether based or ester based. Alternative materials or support arrangements could also be used to mechanically isolate the piezoelectric elements.
  • an electrically conductive, flexible cloth sleeve 12 Formed around the foam material 8 is an electrically conductive, flexible cloth sleeve 12 provided to shield the piezoelectric elements 4 from electromagnetic waves.
  • the sleeve 12 could illustratively be a commerically available metalized cloth or a conductive elastomer.
  • a flexible water-tight outer jacket 16 is formed about the conductive shield 12 to enclose the porous material 8 and piezoelectric elements 4.
  • the jacket 16 is provided to prevent the external access of fluid to the piezoelectric elements 4.
  • the jacket may be made of a compliant flexible elastomer material such as neoprenes, polyurethanes, rubbers, and vinyles. If the array of piezoelectric elements 4 were part of a more extensive hydrophone structure which, itself had a water-tight jacket, then the outer jacket 16 may not be necessary.
  • Conductor 24 is connected to the opposite surface areas on the piezoelectric elements, namely to an electrode 44 placed on the bottom surface of piezoelectric element 4a, to an electrode 48 placed on the far side surface area of element 4b, to electrode 52 placed on the top surface of element 4c, and then to electrode 56 placed on the near side surface area of element 4d, etc.
  • Poling and orienting the piezoelectric elements 4 in the manner shown in FIG. 1 has been found to be especially advantageous to minimizing the effects of internally generated noises and noises generated in the turbulent boundary layer adjacent to the towed array.
  • conductors 20 and 24 would exit the outer jacket 16 through sealed openings so as to maintain the water-tight integrity of the assembly, and connect to conventional circuitry for processing signals carried by the conductors to, for example, produce spectrograms representing the detected acoustical signals.
  • Conductors 20 and 24 are composed of flexible, braided wires and loosely interconnect the piezoelectric elements.
  • each conductor 20 and 24 might advantageously consist of 25 strands of 46 gauge wire braided together. Provision of the flexible, loosely interconnected conductors 20 and 24 ensures the mechanical isolation of each piezoelectric element from the others, and minimizes the chance of flexure fractures in the conductors.
  • the electrodes 28, 32, etc., formed on the piezoelectric elements 4 cover substantially the entire surface areas on which they are placed.
  • the conductors 20 and 24 are spot soldered or welded to the electrodes to allow for ease of manufacture and assembly.
  • the electrodes advantageously are made of thin sheets of silver, gold, copper, nickel, or other conductive metals attached to the piezoelectric elements by a conductive adhesive.
  • FIG. 2 shows an alternative embodiment for interconnecting piezoelectric elements 104 by conductors 120 and 124.
  • conductor 120 is coupled to electrodes formed on the upper surface areas of the piezoelectric elements and conductor 124 is coupled to electrodes formed on the bottom surface areas of the elements. Poling of the elements is still in a transverse direction to the linear axis of the array, as with the arrangement of FIG. 1, but the polarity of the elements is all in the same direction with the FIG. 2 arrangement.
  • the piezoelectric elements 104 would be encapsulated in a foam material, surrounded by a conductive shield and outer jacket as with the FIG. 1 arrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

A flexible line array transducer assembly for detecting underwater acoustical signals. The assembly includes an array of spaced-apart piezoelectric elements arranged generally in a line and selected to have low cross-coupling characteristics, low sensitivity to incoherent mechanical perturbations in the directions longitudinal and lateral to the axis of the array, and high sensitivity to coherent mechanical perturbations such as acoustical signals. The elements are polarized in a direction generally transverse to the array and each include opposing surface areas which are generally parallel with the linear axis of the array. Electrodes are disposed on the opposing surface areas of the elements and are coupled to conductors which carry signals produced by the piezoelectric elements when the elements are stressed by acoustical signals. A porous, open-cell material is disposed about the piezoelectric elements as an encasement to maintain the elements in place and mechanically isolate the elements. An outer, water-tight jacket encloses the open cell material and holds a fill fluid carried within the open-cell material. An electrically conductive flexible sleeve may be placed either about the open-cell material or about the outer jacket to shield the piezoelectric elements from electromagnetic waves.

Description

BACKGROUND OF THE INVENTION
This is a continuation-in-part application of Ser. No. 06/661,082, filed Oct. 15, 1984.
This invention relates to a transducer assembly having a linear array of piezoelectric elements held in a flexible casing.
Piezoelectric elements, primarily crystals and ceramics, are employed in a variety of devices including crystal microphones, ultrasonic devices, accelerometers and oscillators. One of the most common uses of piezoelectric elements is in underwater sonar equipment in which a piezoelectric sonar transducer is stimulated by electrical signals to emit sonar signals which radiate out from the transducer. The sonar signals are reflected from underwater objects and the reflected signals are detected by the transducer which produces electrical signals carrying information about the underwater objects.
New applications in anti-submarine warfare have created a need for sonar listening (only) arrays which can be formed in very long, thin configurations for towing through the water behind a vessel. It is desireable that these arrays be capable of detecting very low level signals in the presence of relatively high level self-generated noise (which occurs as a result of towing the long arrays through the water at high speeds). Three major areas where self-generated noise limits the target noise levels that can be detected by passive listening sonar systems are as follows:
a. axial or longitudinal pressure waves generated within the array due to longitudinal acceleration forces resulting from towing at high speeds;
b. radial or transverse pressure waves generated when the line array undulates vertically or horizontally as it is towed through the water; and
c. turbulent boundary layer (TBL) noise generated along the array by the flow of water passing over the outer jacket of the array as it is towed at high speed through the water.
Typical transducers utilized in passive array systems consist of single crystal or ceramic elements located at discrete locations along or in the array. Although flexible arrays of piezoelectric elements have been proposed, they typically suffer from the well known problems of high sensitivity to the above stated self generated incoherent noise sources, which prevents detection of coherent noise sources generated by the targets of interest. In addition, utilization of prior art sensors to attempt to reduce the detrimental effects of the self generated noise are oftentimes complex in construction and costly to manufacture. Some examples of prior art line array transducers are disclosed in U.S. Pat. Nos. 3,359,537, 3,375,488 and 3,346,838.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a flexible line array transducer assembly which is simple and inexpensive to construct.
It is also an object of the invention to provide such an assembly which is relatively insensitive to internally generated noise, and axial and transverse motions of the array.
It is a further object of the invention to provide such an assembly which has high hydrostatic mode (a mode of operation whereby the active material is exposed to acoustic energy on all surfaces).
It is an additional object of the invention to provide such an assembly which exhibits low dissipation and high figure of merit (a measure of the assembly's quality of operation; qualitatively it is the ratio of the assembly's signal to self noise).
The above and other objects of the invention are realized in an illustrative embodiment of a flexible line array transducer assembly especially adapted for towing underwater by a tow vehicle to detect acoustic signals. The assembly includes a plurality of spaced-apart piezoelectric elements arranged generally in a line. The elements are selected to have low cross-coupling characteristics, low sensitivity to incoherent mechanical perturbations in the directions longitudinal and lateral to the axis of the array, and high sensitivity to coherent mechanical perturbations such as the reception of acoustic waves. Each of the elements includes opposed surface areas which are generally parallel to the linear axis of the array, and the elements are polarized across the opposed surface areas. Conductors are coupled to electrodes formed on the opposed surface areas to carry therefrom electrical signals produced by the elements when they are mechanically stressed by acoustical signals. A porous open-cell foam is disposed about the piezoelectric elements as an encasement to hold the elements in place, and an outer water-tight jacket is formed about the open-cell material to prevent access of water to the elements. A fill fluid is carried by the open-cell material within the jacket.
With this configuration, a high signal-to-noise ratio is achieved resulting in more accurate and efficient underwater acoustical measurements.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects, features and advantages of the invention will become apparent from a consideration of the following detailed description presented in connection with the accompanying drawings in which:
FIG. 1 shows a perspective, partially cut-away view of a portion of a flexible line array transducer assembly made in accordance with the principles of the present invention;
FIG. 2 is a perspective view of another embodiment for interconnecting the piezoelectric elements of the array of FIG. 1;
FIG. 3 is a perspective view of a hollow, cylindrical piezoelectric element coupled to two conductor wires; and
FIG. 4 is an exploded view of an alternative embodiment of a line array transducer assembly utilizing the piezoelectric element shown in FIG. 3.
DETAILED DESCRIPTION
Referring to FIG. 1, there is shown an illustrative embodiment of a portion of a flexible line array transducer assembly. The assembly includes a plurality of piezoelectric elements 4 spaced-apart generally in a line and held in place in a porous, open-cell, flexible foam material 8. The piezoelectric elements 4, which may be either crystal or ceramic, are formed of elongate bars having top and bottom generally opposing surface areas, and two side generally opposing surface areas. The elements are made of a material selected to have low cross-coupling characteristics, i.e., acoustic energy received along one direction or axis of the elements is not manifested by mechanical deformation in another direction or axis of the element. The elements are also selected and oriented to have low sensitivity to incoherent mechanical perturbations or movement in the directions longitudinal or lateral to the axis of the array and to have high sensitivity to coherent mechanical perturbations, such as reception of acoustical signals. The elements are polarized in a direction transverse to the linear axis of the array and across pairs of opposing surface areas of the elements (the top and bottom and two side surface areas of the elements are generally parallel with the linear axis of the array).
Exemplary material from which the elements 4 may be fabricated to have the characteristics mentioned above are lead metaniobate, lead titanate, perforated lead zirconate titanate, perforated barium titanate, polyvinylidene flouride, and co-polymer of polyvinylidene flourides.
By proper orientation and poling of the piezoelectric elements 4 in the array of FIG. 1, the elements are effectively immunized against vibration movement or other mechanical perturbations operating longitudinally or laterally along the array. On the other hand, the piezoelectric elements 4 maintain a high hydrostatic sensitivity. The array of FIG. 1 would generally be used for underwater acoustical energy detection while being towed behind a tow vehicle.
The foam material 8 is provided to maintain the relative position of the piezoelectric elements and to mechanically isolate the elements from one another. Advantageously, the foam material would have a porosity of from 12 to 20 pores per centimeter and a density of about 0.028 grams per cubic centimeter. An illustrative foam material is SIF type Z polyurethane open-cell foam, either ether based or ester based. Alternative materials or support arrangements could also be used to mechanically isolate the piezoelectric elements.
Formed around the foam material 8 is an electrically conductive, flexible cloth sleeve 12 provided to shield the piezoelectric elements 4 from electromagnetic waves. The sleeve 12 could illustratively be a commerically available metalized cloth or a conductive elastomer.
A flexible water-tight outer jacket 16 is formed about the conductive shield 12 to enclose the porous material 8 and piezoelectric elements 4. The jacket 16 is provided to prevent the external access of fluid to the piezoelectric elements 4. The jacket may be made of a compliant flexible elastomer material such as neoprenes, polyurethanes, rubbers, and vinyles. If the array of piezoelectric elements 4 were part of a more extensive hydrophone structure which, itself had a water-tight jacket, then the outer jacket 16 may not be necessary.
Carried by the foam material 8 for the free flow therethrough is a fill fluid such as isopar M. This fluid transmits mechanical perturbations from the outside to the piezoelectric elements, aids in preventing damage to the assembly by external water pressures, and provides some buoyancy (if required) to the assembly to help in maintaining a fairly constant depth underwater when the assembly is being towed.
A pair of conductors 20 and 24 interconnect the piezoelectric elements 4 to carry electrical signals produced when the elements are stressed by the receipt of acoustical signals. Conductor 20 is connected to the positive electrode of each of the elements and conductor 24 is connected to the negative electrode. The conductors are connected to the elements in a helical fashion with, for example, conductor 20 being connected to an electrode 28 placed on the upper surface of the piezoelectric element 4a, then to an electrode 32 placed on the side surface area of piezoelectric element 4b, next to an electrode 36 placed on the bottom surface of element 4c, onto an electrode 40 placed on the side surface area of element 4d, etc. Conductor 24 is connected to the opposite surface areas on the piezoelectric elements, namely to an electrode 44 placed on the bottom surface of piezoelectric element 4a, to an electrode 48 placed on the far side surface area of element 4b, to electrode 52 placed on the top surface of element 4c, and then to electrode 56 placed on the near side surface area of element 4d, etc. Poling and orienting the piezoelectric elements 4 in the manner shown in FIG. 1 has been found to be especially advantageous to minimizing the effects of internally generated noises and noises generated in the turbulent boundary layer adjacent to the towed array.
Although not specifically shown in FIG. 1, the conductors 20 and 24 would exit the outer jacket 16 through sealed openings so as to maintain the water-tight integrity of the assembly, and connect to conventional circuitry for processing signals carried by the conductors to, for example, produce spectrograms representing the detected acoustical signals. Conductors 20 and 24 are composed of flexible, braided wires and loosely interconnect the piezoelectric elements. For example, each conductor 20 and 24 might advantageously consist of 25 strands of 46 gauge wire braided together. Provision of the flexible, loosely interconnected conductors 20 and 24 ensures the mechanical isolation of each piezoelectric element from the others, and minimizes the chance of flexure fractures in the conductors.
The electrodes 28, 32, etc., formed on the piezoelectric elements 4 cover substantially the entire surface areas on which they are placed. The conductors 20 and 24 are spot soldered or welded to the electrodes to allow for ease of manufacture and assembly. The electrodes advantageously are made of thin sheets of silver, gold, copper, nickel, or other conductive metals attached to the piezoelectric elements by a conductive adhesive.
An alternative to placing the conductive shield 12 about the foam material 8 would be to simply paint the outside of the outer jacket 16 (or inside) with a conductive film such as a conductive elastomer. Still another alternative would be to place a conductive, flexible cloth sleeve about the exterior of the jacket 16.
FIG. 2 shows an alternative embodiment for interconnecting piezoelectric elements 104 by conductors 120 and 124. In this embodiment, conductor 120 is coupled to electrodes formed on the upper surface areas of the piezoelectric elements and conductor 124 is coupled to electrodes formed on the bottom surface areas of the elements. Poling of the elements is still in a transverse direction to the linear axis of the array, as with the arrangement of FIG. 1, but the polarity of the elements is all in the same direction with the FIG. 2 arrangement. The piezoelectric elements 104 would be encapsulated in a foam material, surrounded by a conductive shield and outer jacket as with the FIG. 1 arrangement.
FIG. 3 shows a perspective view of another embodiment of the piezoelectric elements used in the transducer assembly. In this embodiment, a hollow, cylindrical piezoelectric element 204 is provided, with an outer electrode 208 and an inner electrode 212 being formed respectively on the outer and inner surface areas of the element. Electrode 208 includes a cutout section 216 to allow a portion of the inner electrode 212 to extend about the lip of the cylinder to form a portion 220 positioned on the exterior surface of the element. The portion 220 is electrically connected to the inner electrode 212 and a conductor 224 is spot soldered or welded to the portion 220 and then extends through the interior of the hollow cylinder to the next piezoelectric element. A conductor 226 is spot soldered or welded at location 230 to the outer electrode 208. Successive piezoelectric elements are connected in the same fashion to the conductors 224 and 226.
FIG. 4 shows hollow, cylindrical piezoelectric elements 304 and 308 connected together as they would be in an array and as shown in FIG. 3. Shown in exploded view are the coverings formed about the piezoelectric elements, the first of which is the porous, open-cell foam 312. The foam 312 would be disposed about the exterior of the piezoelectric elements, but would not be disposed in the hollow interiors thereof. The conductive, flexible cloth sleeve 316 for shielding the piezoelectric elements from electromagnetic waves would then be placed about the porous material 312. Finally, the outer jacket 320 encloses the other elements of the assembly and prevents external access of water to the interior thereof.
It is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention and the appended claims are intended to cover such modifications and arrangements.

Claims (27)

What is claimed is:
1. A flexible transducer assembly comprising
an array of spaced-apart piezoelectric elements arranged generally in a line and selected to have low cross-coupling characteristics, low sensitivity to incoherent mechanical perturbations in the directions longitudinal and lateral to the axis of the array, and high sensitivity to coherent mechanical perturbations, said elements being polarized in a direction generally transverse to the linear axis of the array, and each element including opposing surface areas which are generally parallel with the linear axis of the array,
a plurality of electrodes disposed on said opposing surface areas of the piezoelectric elements,
conductor means coupled to the electrodes of the piezoelectric elements to carry therefrom electrical signals produced by the elements when the elements are stressed by acoustical signals, and
wherein at least some of said elements are arranged with their opposing surfaces aligned in a direction different from the direction of alignment of other of said elements.
2. A transducer assembly as in claim 1 further comprising
porous, open-cell material disposed about the piezoelectric elements as an encasement to maintain the elements in place and to mechanically isolate the elements from one another, said material adapted to allow the flow therethrough of a fluid,
an outer, water-tight jacket for enclosing the open-cell material,
a fluid carried by the open-cell material within the jacket, and
an electrically conductive shield means disposed to circumscribe the piezoelectric elements to shield the elements from electromagnetic waves.
3. A transducer assembly as in claim 2 wherein the shield means comprises an electrically conductive cloth material enclosing the open cell material.
4. A transducer assembly as in claim 2 wherein the shield means comprises an electrically conductive coating applied to the jacket.
5. A transducer assembly as in claim 1 wherein said electrodes cover substantially the entire surface areas on which they are disposed.
6. A transducer assembly as in claim 5 wherein said electrodes are comprised of a conductive sheet of material.
7. A transducer assembly as in claim 1 wherein the piezoelectric elements comprise elongate bars having generally opposing top and bottom surfaces, and generally opposing first and second side surfaces, wherein the electrodes are disposed on opposing surfaces of each element, and wherein the conductor means comprise a pair of conductors, one of which is coupled to one of the electrodes of each element and the other of which is coupled to the other electrode of each element.
8. A transducer assembly as in claim 7 wherein the conductors are spot soldered to the lectrodes.
9. A transducer assembly as in claim 7 wherein the electrodes are disposed on corresponding opposing surfaces of each element in the array so that the elements are all polarized in substantially the same transverse direction.
10. A transducer as in claim 7 wherein the electrodes are disposed alternately on the top and bottom surfaces and then the side surfaces of the elements in the array so that every other element in the array is polarized through the top and bottom surfaces, and the remaining elements are polarized through the side surfaces.
11. A transducer assembly as in claim 10 wherein one of said conductors is coupled successively to the top surface, first side surface, bottom surface, and second side surface in a helical fashion of a grouping of four successive piezoelectric elements, and the other of said conductors is coupled to the respective opposing surfaces of the elements of said grouping of four successive elements also in a helical fashion.
12. A transducer assembly as in claim 1 wherein said elements are made of material selected from the group consisting of lead metaniobate, lead titanate, perforated lead zirconate titanate, perforated barium titanate, polyvinylidene flouride, and co-polymer polyvinylidene flourides, with the direction of greater sensitivity of the material oriented transversely of the linear axis of the array.
13. A transducer assembly as in claim 1 wherein the conductor means comprise a pair of flexible wire conductors, loosely interconnecting the piezoelectric elements.
14. A transducer assembly as in claim 13 wherein each wire conductor comprises a plurality of wires braided together.
15. A transducer assembly as in claim 14 wherein said wires are composed of cadmium bronze.
16. A transducer assembly as in claim 2 wherein said porous, open-cell material comprises an inert solid foam having a porosity of from about 12 to 20 pores/centimeter.
17. A transducer assembly as in claim 16 wherein said foam is a polyurethane open-cell foam base selected from the group consisting of ether and ester.
18. A transducer assembly as in claim 16 wherein said foam is a polyethylene open-cell foam.
19. A transducer assembly as in claim 2 wherein said fill fluid has a positive buoyancy in water.
20. A flexible transducer assembly comprising
an array of piezoelectric elements spaced-apart generally in a line, and selected to have low cross-coupling characteristics, low sensitivity to incoherent mechanical perturbations or movement along the longitudinal and lateral axis of the array, and high sensitivity to coherent acoustical signals, each of said elements including oppositely facing surface areas which are generally parallel to the axis of the array, and being polarized across said oppositely facing surfaces,
conductor means coupled to the piezoelectric elements on the oppositely facing surfaces thereof for carrying electrical signals produced by the elements when they are stressed by acoustical signals,
means for supporting and maintaining the piezoelectric elements in position in the array while allowing transverse flexure of the array, and
said piezoelectric elements being oriented so that the oppositely facing surfaces of selected ones of the elements are aligned in directions different from the directions of alignment of other of said elements.
21. A flexible transducer assembly as in claim 20 further comprising
jacket means enclosing the supporting means, conductor means and piezoelectric elements for preventing external access of fluid to the elements,
means disposed within jacket means for mechanically coupling the piezoelectric elements to the jacket means, and
a flexible electrically conductive shield means disposed to shield the piezoelectric elements from externally generated electromagnetic waves.
22. A flexible transducer assembly as in claim 21 wherein said shield means comprises a flexible, electrically conductive cloth sleeve disposed about the elements.
23. A transducer assembly as in claim 21 wherein said supporting means comprises a porous, open-cell material disposed about and between the piezoelectric elements to maintain them in place and provide mechanical isolation between elements, said open-cell material being adapted to allow flow therethrough of fluid, and wherein said mechanical coupling means comprises a fluid carried by the open-cell material within the jacket means.
24. A transducer assembly as in claim 23 wherein said conductor means comprise a pair of flexible wire conductors connected loosely from one piezoelectric element to the next element in the array.
25. A transducer assembly as in claim 20 wherein said piezoelectric elements comprise elongate bars having top and bottom surfaces and first and second side surfaces, and wherein one of the wire conductors is coupled to one of the surfaces of each element and the other conductor is coupled to the opposite surface of each corresponding element.
26. A transducer assembly as in claim 25 wherein one of the conductors is coupled successively to selected ones of the top surface, first side surface, bottom surface, or second side surface, of the piezoelectric elements, with said one conductor being coupled to different surfaces of adjacent elements, and wherein the other conductor is coupled to the surface of each element opposite that to which the first conductor is coupled.
27. A transducer assembly as in claim 24 wherein the piezoelectric elements are made of material selected from the group consisting of lead metaniobate, lead titanate, perforated lead zirconate titanate, perforated barium titanate and copolymer polyvinylidene flourides.
US06/840,603 1984-10-15 1986-03-17 Line array transducer assembly Expired - Lifetime US4733379A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US06/840,603 US4733379A (en) 1984-10-15 1986-03-17 Line array transducer assembly
EP86113279A EP0237616A3 (en) 1986-03-17 1986-09-26 Line array transducer assembly
DE198686113279T DE237616T1 (en) 1986-03-17 1986-09-26 LINEAR GROUPED CONVERTER ARRANGEMENT.
CA000519824A CA1281123C (en) 1986-03-17 1986-10-06 Line array transducer assembly
JP61238191A JPS62220885A (en) 1986-03-17 1986-10-08 Linear row type converter assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US66108284A 1984-10-15 1984-10-15
US06/840,603 US4733379A (en) 1984-10-15 1986-03-17 Line array transducer assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US66108284A Continuation-In-Part 1984-10-15 1984-10-15

Publications (1)

Publication Number Publication Date
US4733379A true US4733379A (en) 1988-03-22

Family

ID=25282777

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/840,603 Expired - Lifetime US4733379A (en) 1984-10-15 1986-03-17 Line array transducer assembly

Country Status (5)

Country Link
US (1) US4733379A (en)
EP (1) EP0237616A3 (en)
JP (1) JPS62220885A (en)
CA (1) CA1281123C (en)
DE (1) DE237616T1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862428A (en) * 1986-11-19 1989-08-29 The Commonwealth Of Australia Distributed array hydrophone
US4876675A (en) * 1987-09-12 1989-10-24 Ngk Spark Plug Co., Ltd. Towed piezoelectric cable
US4935903A (en) * 1989-05-30 1990-06-19 Halliburton Geophysical Services, Inc. Reinforcement of surface seismic wavefields
US4937793A (en) * 1989-05-30 1990-06-26 Halliburton Geophysical Services, Inc. Processing method for marine seismic surveying utilizing dual streamers
US4951265A (en) * 1987-12-16 1990-08-21 Mobil Oil Corporation Oil fill procedure for seismic marine streamer
US4979150A (en) * 1989-08-25 1990-12-18 Halliburton Geophysical Services, Inc. System for attenuation of water-column reverberations
US4995013A (en) * 1988-12-20 1991-02-19 Thomson-Csf Directional modular linear hydrophonic antenna
DE4125461A1 (en) * 1991-08-01 1993-02-04 Prakla Seismos Gmbh METHOD AND MEASURING ARRANGEMENT FOR MARINE-ICE MIXED DATA ACQUISITION WITH STRINGERS BROUGHT FROM A SHIP
US5343109A (en) * 1990-09-06 1994-08-30 Siemens Aktiengesellschaft Ultrasonic transducer for measuring the travel time of ultrasonic pulses in a gas
US5367499A (en) * 1993-09-23 1994-11-22 Whitehall Corporation Vibration isolation module for towed hydrophone streamer
US5400298A (en) * 1993-09-23 1995-03-21 Whitehall Corporation Towed hydrophone streamer with distributed electronics housings
US5408442A (en) * 1993-09-23 1995-04-18 Whitehall Corporation Hydrophone element with filter circuit
US5412621A (en) * 1993-09-23 1995-05-02 Whitehall Corporation Encapsulated hydrophone element for towed hydrophone array
US5450369A (en) * 1993-09-23 1995-09-12 Whitehall Corporation Telemetry transmission protocol for towed hydrophone streamer
US5521885A (en) * 1992-02-21 1996-05-28 Gec Marconi Systems Pty Limited Hydrophone arrangement
US5523983A (en) * 1993-09-23 1996-06-04 Whitehall Corporation Dual rope vibration isolation module for towed hydrophone streamer
US5583824A (en) * 1993-09-23 1996-12-10 Whitehall Corporation Telemetry data transmission circuit having selectable clock source
US5621699A (en) * 1995-07-07 1997-04-15 Pgs Ocean Bottom Seismic, Inc. Apparatus and method of calibrating vertical particle velocity detector and pressure detector in a sea-floor cable with in-situ passive monitoring
US5754492A (en) * 1996-02-12 1998-05-19 Pgs Tensor, Inc. Method of reverberation removal from seismic data and removal of dual sensor coupling errors
US5774416A (en) * 1995-04-07 1998-06-30 Pgs, Tensor, Inc. Method and device for attenuating water column reverberations using co-located hydrophones and geophones in ocean bottom seismic processing
US5902430A (en) * 1995-02-10 1999-05-11 Thomson Marconi Sonar Pty Limited Process for manufacturing an acoustic linear antenna
FR2800880A1 (en) * 1999-11-10 2001-05-11 Thomson Marconi Sonar Sas LOW NOISE TOWED ACOUSTIC LINEAR ANTENNA
US6404701B1 (en) * 2001-07-16 2002-06-11 The United States Of America As Represented By The Secretary Of The Navy Encapsulated volumetric acoustic array in the shape of a towed body
US6426464B1 (en) * 2000-10-10 2002-07-30 The United States Of America As Represented By The Secretary Of The Navy Cable sectional assembly which houses concatenated electronic modules
US6570819B1 (en) 2002-03-08 2003-05-27 The United States Of America As Represented By The Secretary Of The Navy Low frequency acoustic projector
US6693849B1 (en) * 2002-10-03 2004-02-17 Adolf Eberl Piezoelectric audio transducer
US20060226842A1 (en) * 2005-04-11 2006-10-12 Schlumberger Technology Corporation Remotely operable measurement system and method employing same
CN1860643B (en) * 2003-09-30 2010-04-21 皇家飞利浦电子股份有限公司 Electroacoustic cable for magnetic resonance applications
WO2012092372A1 (en) * 2010-12-28 2012-07-05 Solid Seismic, Llc Passive noise cancelling piezoelectric sensor apparatus and method of use thereof
WO2012092368A1 (en) * 2010-12-28 2012-07-05 Solid Seismic, Llc Method and apparatus for a flexible syntactic elastomer based solid seismic streamer to use in marine seismic surveys
WO2013062962A1 (en) * 2011-10-24 2013-05-02 Baker Hughes Incorporated Methodologies to improve reliability of transducer electrical interconnections
US8737172B2 (en) 2010-08-04 2014-05-27 Lockheed Martin Corporation Hull mounted linear sonar array
WO2020207891A1 (en) * 2019-04-09 2020-10-15 Atlas Elektronik Gmbh Hydrophone having a tube comprising a first and a second portion each having an internal electrode
CN114383715A (en) * 2022-03-24 2022-04-22 青岛国数信息科技有限公司 Micro-column piezoelectric acoustic current sensor device and underwater vehicle
WO2022252227A1 (en) * 2021-06-04 2022-12-08 Abb Schweiz Ag Sensing assembly for use in piezoelectric liquid level sensor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG46529A1 (en) * 1993-04-06 1998-02-20 Gec Marconi Systems Pty Ltd Hydrophone carrier
NO305266B1 (en) * 1997-06-09 1999-04-26 Alsthom Cge Alcatel Seismic cable and method for making such cable
EP1312423A4 (en) * 2000-05-22 2005-08-31 Miwa Science Lab Inc Ultrasonic irradiation apparatus
JP4562032B2 (en) * 2005-01-19 2010-10-13 株式会社オーディオテクニカ Condenser microphone
EP1804084A1 (en) * 2005-12-30 2007-07-04 Integrated Dynamics Engineering GmbH Electromagnetically shielded seismometer unit with geophon
JP4753887B2 (en) * 2006-04-07 2011-08-24 株式会社オーディオテクニカ Microphone connector and shielding method thereof
EP4152054B1 (en) 2017-12-15 2024-05-01 PGS Geophysical AS Seismic pressure and acceleration sensor
DE102018222034A1 (en) * 2018-12-18 2020-06-18 Atlas Elektronik Gmbh Underwater antenna with a swelling substance around an underwater sound receiver
DE102018222736A1 (en) * 2018-12-21 2020-06-25 Atlas Elektronik Gmbh Underwater antenna comprising a space filled with a fluid and an underwater sound receiver
IT202000001804A1 (en) 2020-01-30 2021-07-30 Intersurgical S P A SYSTEM FOR ARTIFICIAL BREATHING OF PATIENTS
IT202100009506A1 (en) 2021-04-15 2022-10-15 Intersurgical S P A HELMET FOR THERAPY OF PATIENTS
IT202100010982A1 (en) 2021-04-30 2022-10-30 Intersurgical S P A HELMET FOR THERAPY OF PATIENTS
IT202100026048A1 (en) 2021-10-12 2023-04-12 Intersurgical S P A SYSTEM FOR ARTIFICIAL BREATHING OF PATIENTS

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US32123A (en) * 1861-04-23 Improvement in looms
US3286227A (en) * 1953-02-20 1966-11-15 Gerard T Aldrich Line hydrophone
US3346838A (en) * 1965-05-03 1967-10-10 Mandrel Industries Pressure sensitive detector for marine seismic exploration
US3359537A (en) * 1964-06-30 1967-12-19 Westinghouse Electric Corp Transducer
US3603921A (en) * 1968-12-18 1971-09-07 Magnavox Co Sound transducer
US3659258A (en) * 1970-07-23 1972-04-25 Us Navy Low frequency electroceramic sonar transducer
US4035049A (en) * 1976-02-10 1977-07-12 Trw Inc. Universal solderless termination system
US4160229A (en) * 1976-07-08 1979-07-03 Honeywell Inc. Concentric tube hydrophone streamer
US4300218A (en) * 1980-05-01 1981-11-10 Shell Oil Company Free flooding hydrophone mounting
GB2145226A (en) * 1983-08-18 1985-03-20 Mobil Oil Corp Low noise digital seismic streamer and method of marine seismic exploration
US4636998A (en) * 1984-04-18 1987-01-13 Allied Corporation Elongated retaining and electromagnetic shielding member for a towed underwater acoustic array

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930033A (en) * 1974-02-04 1975-12-30 Miles Lab Simulated bacon product and process therefor
EP0085072B1 (en) * 1981-08-13 1986-07-02 The Commonwealth Of Australia Hydrophone cable
JPS6032394B2 (en) * 1981-10-08 1985-07-27 防衛庁技術研究本部長 underwater receiver
DE181506T1 (en) * 1984-10-15 1987-07-02 Edo Corp./Western Division, Salt Lake City, Utah FLEXIBLE PIEZOELECTRIC CONVERTER ARRANGEMENT.

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US32123A (en) * 1861-04-23 Improvement in looms
US3286227A (en) * 1953-02-20 1966-11-15 Gerard T Aldrich Line hydrophone
US3359537A (en) * 1964-06-30 1967-12-19 Westinghouse Electric Corp Transducer
US3346838A (en) * 1965-05-03 1967-10-10 Mandrel Industries Pressure sensitive detector for marine seismic exploration
US3603921A (en) * 1968-12-18 1971-09-07 Magnavox Co Sound transducer
US3659258A (en) * 1970-07-23 1972-04-25 Us Navy Low frequency electroceramic sonar transducer
US4035049A (en) * 1976-02-10 1977-07-12 Trw Inc. Universal solderless termination system
US4160229A (en) * 1976-07-08 1979-07-03 Honeywell Inc. Concentric tube hydrophone streamer
US4300218A (en) * 1980-05-01 1981-11-10 Shell Oil Company Free flooding hydrophone mounting
GB2145226A (en) * 1983-08-18 1985-03-20 Mobil Oil Corp Low noise digital seismic streamer and method of marine seismic exploration
US4636998A (en) * 1984-04-18 1987-01-13 Allied Corporation Elongated retaining and electromagnetic shielding member for a towed underwater acoustic array

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862428A (en) * 1986-11-19 1989-08-29 The Commonwealth Of Australia Distributed array hydrophone
US4876675A (en) * 1987-09-12 1989-10-24 Ngk Spark Plug Co., Ltd. Towed piezoelectric cable
US4951265A (en) * 1987-12-16 1990-08-21 Mobil Oil Corporation Oil fill procedure for seismic marine streamer
US4995013A (en) * 1988-12-20 1991-02-19 Thomson-Csf Directional modular linear hydrophonic antenna
US4935903A (en) * 1989-05-30 1990-06-19 Halliburton Geophysical Services, Inc. Reinforcement of surface seismic wavefields
US4937793A (en) * 1989-05-30 1990-06-26 Halliburton Geophysical Services, Inc. Processing method for marine seismic surveying utilizing dual streamers
US4979150A (en) * 1989-08-25 1990-12-18 Halliburton Geophysical Services, Inc. System for attenuation of water-column reverberations
US5343109A (en) * 1990-09-06 1994-08-30 Siemens Aktiengesellschaft Ultrasonic transducer for measuring the travel time of ultrasonic pulses in a gas
DE4125461A1 (en) * 1991-08-01 1993-02-04 Prakla Seismos Gmbh METHOD AND MEASURING ARRANGEMENT FOR MARINE-ICE MIXED DATA ACQUISITION WITH STRINGERS BROUGHT FROM A SHIP
US5521885A (en) * 1992-02-21 1996-05-28 Gec Marconi Systems Pty Limited Hydrophone arrangement
US5412621A (en) * 1993-09-23 1995-05-02 Whitehall Corporation Encapsulated hydrophone element for towed hydrophone array
US5408442A (en) * 1993-09-23 1995-04-18 Whitehall Corporation Hydrophone element with filter circuit
US5367499A (en) * 1993-09-23 1994-11-22 Whitehall Corporation Vibration isolation module for towed hydrophone streamer
US5450369A (en) * 1993-09-23 1995-09-12 Whitehall Corporation Telemetry transmission protocol for towed hydrophone streamer
US5400298A (en) * 1993-09-23 1995-03-21 Whitehall Corporation Towed hydrophone streamer with distributed electronics housings
US5523983A (en) * 1993-09-23 1996-06-04 Whitehall Corporation Dual rope vibration isolation module for towed hydrophone streamer
US5583824A (en) * 1993-09-23 1996-12-10 Whitehall Corporation Telemetry data transmission circuit having selectable clock source
US5631874A (en) * 1993-09-23 1997-05-20 Whitehall Corporation Telemetry transmission protocol for towed hydrophone streamer
US5902430A (en) * 1995-02-10 1999-05-11 Thomson Marconi Sonar Pty Limited Process for manufacturing an acoustic linear antenna
US5774416A (en) * 1995-04-07 1998-06-30 Pgs, Tensor, Inc. Method and device for attenuating water column reverberations using co-located hydrophones and geophones in ocean bottom seismic processing
US5621699A (en) * 1995-07-07 1997-04-15 Pgs Ocean Bottom Seismic, Inc. Apparatus and method of calibrating vertical particle velocity detector and pressure detector in a sea-floor cable with in-situ passive monitoring
US5754492A (en) * 1996-02-12 1998-05-19 Pgs Tensor, Inc. Method of reverberation removal from seismic data and removal of dual sensor coupling errors
FR2800880A1 (en) * 1999-11-10 2001-05-11 Thomson Marconi Sonar Sas LOW NOISE TOWED ACOUSTIC LINEAR ANTENNA
WO2001035123A1 (en) * 1999-11-10 2001-05-17 Thomson Marconi Sonar S.A.S. Low-noise towed acoustic linear antenna
US6570821B1 (en) 1999-11-10 2003-05-27 Thales Underwater Systems S.A.S. Low-noise towed acoustic linear antenna
US6426464B1 (en) * 2000-10-10 2002-07-30 The United States Of America As Represented By The Secretary Of The Navy Cable sectional assembly which houses concatenated electronic modules
US6404701B1 (en) * 2001-07-16 2002-06-11 The United States Of America As Represented By The Secretary Of The Navy Encapsulated volumetric acoustic array in the shape of a towed body
US6570819B1 (en) 2002-03-08 2003-05-27 The United States Of America As Represented By The Secretary Of The Navy Low frequency acoustic projector
US6693849B1 (en) * 2002-10-03 2004-02-17 Adolf Eberl Piezoelectric audio transducer
CN1860643B (en) * 2003-09-30 2010-04-21 皇家飞利浦电子股份有限公司 Electroacoustic cable for magnetic resonance applications
US20060226842A1 (en) * 2005-04-11 2006-10-12 Schlumberger Technology Corporation Remotely operable measurement system and method employing same
GB2425182A (en) * 2005-04-11 2006-10-18 Schlumberger Holdings Remotely operable marine measurement system
US7295013B2 (en) 2005-04-11 2007-11-13 Schlumberger Technology Corporation Remotely operable measurement system and method employing same
GB2425182B (en) * 2005-04-11 2008-01-02 Schlumberger Holdings Remotely operable measurement system and method employing same
US8737172B2 (en) 2010-08-04 2014-05-27 Lockheed Martin Corporation Hull mounted linear sonar array
US8695431B2 (en) 2010-12-28 2014-04-15 Solid Seismic, Llc Flexible microsphere coated piezoelectric acoustic sensor apparatus and method of use therefor
WO2012092368A1 (en) * 2010-12-28 2012-07-05 Solid Seismic, Llc Method and apparatus for a flexible syntactic elastomer based solid seismic streamer to use in marine seismic surveys
WO2012092372A1 (en) * 2010-12-28 2012-07-05 Solid Seismic, Llc Passive noise cancelling piezoelectric sensor apparatus and method of use thereof
US9207341B2 (en) 2010-12-28 2015-12-08 Solid Seismic, Llc Combination motion and acoustic piezoelectric sensor apparatus and method of use therefor
US9256001B2 (en) 2010-12-28 2016-02-09 Solid Seismic, Llc Bandwidth enhancing liquid coupled piezoelectric sensor apparatus and method of use thereof
US11163078B2 (en) 2010-12-28 2021-11-02 Seamap Usa, Llc Combination motion and acoustic piezoelectric sensor apparatus and method of use therefor
NO346148B1 (en) * 2010-12-28 2022-03-21 Solid Seismic Llc PASSIVE NOISE CANCELING PIEZOELETRIC SENSOR DEVICE AND PROCEDURE FOR USE IT
WO2013062962A1 (en) * 2011-10-24 2013-05-02 Baker Hughes Incorporated Methodologies to improve reliability of transducer electrical interconnections
GB2509681A (en) * 2011-10-24 2014-07-09 Baker Hughes Inc Methodologies to improve reliability of transducer electrical interconnections
WO2020207891A1 (en) * 2019-04-09 2020-10-15 Atlas Elektronik Gmbh Hydrophone having a tube comprising a first and a second portion each having an internal electrode
WO2022252227A1 (en) * 2021-06-04 2022-12-08 Abb Schweiz Ag Sensing assembly for use in piezoelectric liquid level sensor
CN114383715A (en) * 2022-03-24 2022-04-22 青岛国数信息科技有限公司 Micro-column piezoelectric acoustic current sensor device and underwater vehicle
CN114383715B (en) * 2022-03-24 2022-07-29 青岛国数信息科技有限公司 Microcolumn piezoelectric acoustic current sensor device and underwater vehicle

Also Published As

Publication number Publication date
JPS62220885A (en) 1987-09-29
EP0237616A2 (en) 1987-09-23
EP0237616A3 (en) 1988-06-29
DE237616T1 (en) 1988-02-04
CA1281123C (en) 1991-03-05

Similar Documents

Publication Publication Date Title
US4733379A (en) Line array transducer assembly
US5361240A (en) Acoustic sensor
US4866683A (en) Integrated acoustic receiver or projector
US3660809A (en) Pressure sensitive hydrophone
US5646470A (en) Acoustic transducer
US4864179A (en) Two-dimensional piezoelectric transducer assembly
US4166229A (en) Piezoelectric polymer membrane stress gage
US4536862A (en) Seismic cable assembly having improved transducers
US3718898A (en) Transducer
US4805157A (en) Multi-layered polymer hydrophone array
US3713086A (en) Hydrophone
CA1053363A (en) Acceleration-insensitive hydrophone
US6160763A (en) Towed array hydrophone
EP0460789B1 (en) Position-independent vertically sensitive seismometer
CA1264371A (en) Flexible piezoelectric transducer assembly
CA1241432A (en) End weighted reed sound transducer
US3603921A (en) Sound transducer
US4926397A (en) Depth alarm for a seismic sensor
US6275448B1 (en) Pressure-compensated acceleration-insensitive hydrophone
US5742562A (en) Hydrophone array
US5257243A (en) Flexible acoustic array with polymer hydrophones
US20100246330A1 (en) Vertical Line Hydrophone Array
Hurmila et al. Ultrasonic transducers using PVDF
US4236235A (en) Integrating hydrophone sensing elements
US4131874A (en) Inertial balanced dipole hydrophone

Legal Events

Date Code Title Description
AS Assignment

Owner name: EDO CORPORATION/WESTERN DIVISION, 2645 SOUTH 300 W

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:LAPETINA, ROBERT A.;SNOW, GORDON L.;BAIRD, DAVID P.;REEL/FRAME:004582/0179

Effective date: 19860616

Owner name: EDO CORPORATION/WESTERN DIVISION,UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAPETINA, ROBERT A.;SNOW, GORDON L.;BAIRD, DAVID P.;REEL/FRAME:004582/0179

Effective date: 19860616

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12