US4698157A - Filter membrane and method of manufacturing it - Google Patents

Filter membrane and method of manufacturing it Download PDF

Info

Publication number
US4698157A
US4698157A US06/763,305 US76330585A US4698157A US 4698157 A US4698157 A US 4698157A US 76330585 A US76330585 A US 76330585A US 4698157 A US4698157 A US 4698157A
Authority
US
United States
Prior art keywords
layer
slip
grains
membrane
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/763,305
Inventor
Jacques Gillot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceraver SA
Original Assignee
Ceraver SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceraver SA filed Critical Ceraver SA
Assigned to CERAVER, 12, RUE DE LA BAUME 75008 PARIS, FRANCE, reassignment CERAVER, 12, RUE DE LA BAUME 75008 PARIS, FRANCE, ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GILLOT, JACQUES
Application granted granted Critical
Publication of US4698157A publication Critical patent/US4698157A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0046Inorganic membrane manufacture by slurry techniques, e.g. die or slip-casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2003Glass or glassy material
    • B01D39/2006Glass or glassy material the material being particulate
    • B01D39/201Glass or glassy material the material being particulate sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness

Definitions

  • the present invention relates to a filter membrane constituted by a sintered inorganic material including at least one fine-pored surface layer acting as the filter layer.
  • the depressions and projections on the surface of the membrane thus reduce the overall permeability of the membrane and make it necessary to unclog the membrane more frequently, thereby complicating the use of the filter.
  • Preferred implementations of the present invention mitigate these drawbacks by providing a filter membrane which clogs up relatively slowly, which can be quickly and easily unclogged, eg. by applying reverse pressure, and which can be used for filtration or ultrafiltration of very hot and/or corrosive liquids or gases.
  • the present invention provides a filter membrane including at least one filter layer and constituted by a sintered inorganic material comprising grains which are fixedly connected to one another, the improvement wherein the average roughness of the surface of said filter layer over a distance along said surface equal to at least five times the average grain size is less than one fifth of the average grain size in the region in question.
  • the roughness is less than one tenth of the average grain size.
  • At least 90% by weight of the grains in the surface layer are less than twice the average grain size, and at least 90% by weight of said grains are more than half the average grain size.
  • the porosity of the filter layer may be in the range 30% to 40% by volume.
  • the filter layer may be deposited on a support layer which has greater porosity and which may be constituted by several sub-layers of different porosity.
  • All the layers and sub-layers are made of grains which are fixedly connected to one another, and the various layers and sub-layers are also fixedly connected to one another.
  • the filter layer and the support layer are advantageously of the same nature, and may be constituted by at least one material chosen from the group constituted by metal oxides, silicon carbide, silicon nitride, silicon and aluminium oxynitrides (SiALON), borides, and glasses.
  • the material may thus be alumina which is at least 99.9% pure.
  • the invention also provides a method of manufacturing a filter membrane, in particular where the surface filter layer is supported on a support layer.
  • the method comprises preparing a slip comprising fine grains of the inorganic material which is to constitute the filter layer, together with a dispersing agent so as to obtain a thoroughly deflocculated suspension of fine grains, the slip is then applied to the support layer, excess slip is removed and the deposited thin layer is dried. Then the support layer with the thin layer it is supporting are baked at a temperature suitable for sintering the grains of the inorganic material.
  • an organic thickening agent may be added to the slip provided that it does not hinder deflocculation.
  • the slip before the slip is applied to the support layer, it may advantageously be subjected to prolonged grinding in order to break up any agglomerations of particles and to ensure that the particles are thoroughly dispersed throughout the suspension.
  • the measured value of roughness would include not only local projections and depressions due to grains which are irregularly placed relative to one another, and therefore a hinderance to good filtering, but also gently sloping surface undulations which have no deleterious effects on filtering.
  • Grain size is defined as being the average diameter of a sphere of same density as the grain which, when placed in a liquid, would sediment at the same speed as the grain in question. This is the definition used in well known particle size measuring apparatus using the sedimentation method, and it is the method which was used to determine the grain sizes specified in the examples.
  • the average size of a set of grains is designated below as D 50 and is the size such that 50% by weight of the grains in the set are larger than D 50 leaving 50% by weight which are smaller than D 50 .
  • the average roughness of the membrane surface is defined as follows:
  • the average height is defined as h, where: ##EQU1##
  • a signal from a detector is filtered so as to take into account only high frequencies corresponding to variations in height over a short distance.
  • Any given cut-off frequency of the filter corresponds to a particular length (in microns) along the surface over which the instrument is measuring.
  • the roughness measurement only takes account of variations in height equal to one or a few grains. If a low cut-off frequency is used, the measured roughness combines grain-sized variations in height together with larger surface undulations.
  • the average roughness R a of a filter membrane in accordance with the invention is such that:
  • the pore diameter may lie in the range 0.01 microns to 20 microns, with the average grain size lying in the range 0.02 microns to 50 microns.
  • the pore diameter may lie in the range 2 to 50 microns, with the average grain size lying in the range 5 to 200 microns.
  • a membrane in accordance with the invention may be constituted as follows:
  • a support layer comprising a first sub-layer which is 1.5 to 2 mm thick and which has pores of average size in the range 10 to 20 microns; and a second sub-layer which is about 20 microns thick and which has pore of average size in the range 1 to 3 microns;
  • said support layer is advantageously in the form of a tube with an inside diameter of 7 to 15 mm for example and with the second sub-layer on its inside surface;
  • a filter layer on the second sub-layer being 10 to 20 microns thick and having an average pore size in the range 0.2 to 0.8 microns.
  • the various layers are preferably 30% to 40% porous by volume.
  • the membrane is preferably made of sintered inorganic material as indicated above, but it could alternatively be made of carbon prepared by baking carbon grains which have been agglomerated by an organic binder.
  • the membrane is generally in the form of a bundle of tubes, with the layer of finest porosity being on the inside of each tube, however a plane membrane may also be made.
  • the membranes are made from metal oxide grains by preparing a thoroughly deflocculated slip of oxide particles whose grain sizes have small dispersion. With the average particle size as measured by sedimentation designated D 50 , at least 90% by weight of the particles are less than twice D 50 , and 90% by weight of the particles are greater than half D 50 .
  • any dispersing agent or other additive which ensures a high degree of deflocculation may be used; the important thing is for each particle to be in suspension in isolation from the other particles, ie. for there to be no, or at least very few, agglomerations of several particles. The suspension must be sufficiently viscous to prevent the particles sedimenting too rapidly.
  • a thickening agent is added to the slip, taking care to avoid agents which may have a deleterious effect on the deflocculation.
  • the slip must sediment in the form of a dense sediment constituted by a compact heap of particles. A large proportion (at least 40%) is constituted by the particles with the remainder being constituted by the volume of liquid in between the particles. It is thus necessary to choose a thickening agent which, in conjunction with the wetting agent, makes it possible to obtain a dense sediment at least 40% of which is constituted by particles. Thickening agents which prevent this from happening must be avoided.
  • the slip is applied to the surface of the membrane which is to receive the smooth surface layer in such a manner as to leave a uniform film of slip on said surface.
  • the slip deposit is dried and then baked to sinter the particles so that they weld together and so that the layer which they constitute is also welded to the layer on which it is deposited.
  • a smooth surface layer may also be obtained by filtering the slip through the membrane so that the liquid passes through the membrane leaving the particles which were in suspension trapped at the first porous layer of the membrane through which they could not pass.
  • a two layer tubular membrane is prepared using the method described in published French patent application No. 2 463 636. Tubes are thus obtained having a first, or support, layer which is 1.5 mm thick with an average pore diameter of 15 microns, and a second layer on the inside surface of the tube which is 20 to 30 microns thick with an average pore diameter of 1 micron.
  • a slip is prepared having the following composition:
  • the slip is ground for 24 hours in a 25 liter ball grinder for the purpose of breaking up any grain agglomerations and to thoroughly disperse the particles.
  • the grinder contains:
  • the tube is filled with the slip after grinding and allowed to empty under gravity.
  • a film of slip remains on the inside surface of the tube.
  • This film is dried and then baked under an oxidizing atmosphere at 1300° C. to form a layer which is 20 to 30 microns thick with an average pore diameter of 0.26 microns and a substantially smooth surface, whose degree of roughness is given in a table below.
  • Membranes have also been prepared using the same procedure except that the polyethylene glycol (Carbowax 4000 ) in the slip was replaced with ethylhydroxyethylcellulose (Bermocoll) and that no dispersing agent was added. These membranes have a rough surface, with a degree of roughness given in the table below.
  • a single layer tubular membrane is prepared using the method described in published French patent application No. 2 463 636, and stopping once the support tube thus obtained is 2 mm thick with an average pore diameter of 15 microns,
  • Example 1 a slip having the same composition as in Example 1 is prepared, except that the average grain size of the alumina is 1.2 microns after grinding.
  • the tube is filled with the slip after grinding and is allowed to empty under gravity.
  • a film of slip remains on the inside surface of the tube.
  • This film is dried and then baked under an oxidizing atmosphere at about 1500° C. to form a layer which is 20 to 30 microns thick with an average pore diameter of 1.8 microns and a substantially smooth surface, whose degree of roughness is given in a table below.
  • Membranes have also been prepared using the same procedure except that the polyethylene glycol (Carbowax 4000) in the slip was replaced with ethylhydroxyethylcellulose (Bermocoll) and that no wetting agent was added. These membranes have a rough surface, with a degree of roughness given in the table below.
  • the starting product has alumina particles of 1.6 microns average size, and baking takes place at about 1550° C.
  • the average pore size is 2 microns when wetting agent is used and 1.8 microns when wetting agent is not used.
  • the following table applies to the smooth and the rough membranes obtained in Examples 1 to 3, and for each membrane it gives the average grain size D 50 , the average pore size (ie. the average diameter of the pores) the word “rough” or “smooth”, the distance d over which the roughness measurement is performed (by suitably setting the cut-off frequency of the filter), the average roughness R a , the ratio R a /D 50 , and the ratio d/D 50 .
  • the roughness measurements were performed using a recording "Surfcom-1" roughness meter as manufactured by Tokyo Seimitsu Co. Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)

Abstract

A filter membrane for filtering liquid food stuffs or hot gases and including at least one filter layer. The membrane is constituted by a sintered inorganic material comprising grains which are fixedly connected to one another and the average roughness of the surface of said filter layer over a distance along said surface equal to at least five times the average grain size is less than one fifth of the average grain size in the region in question.

Description

This application is a continuation of application Ser. No. 487,680, filed Apr. 22, 1983, now abandoned.
The present invention relates to a filter membrane constituted by a sintered inorganic material including at least one fine-pored surface layer acting as the filter layer.
BACKGROUND OF THE INVENTION
Currently known membranes of this type have a surface which generally includes irregularities in the form of depressions and projections on a microscopic scale which lead to the following drawbacks:
(1) when using the membrane in direct filter mode, the interface between the membrane and the filter cake is irregular in shape and thus makes it more difficult to clean the surface of the filter when unclogging it; and
(2) when using the membrane in tangential filter mode, the tangential flow which is intended to prevent a filter cake from forming by washing away particles which are stopped at the pore inlets, is incapable of washing away particles trapped at pore inlets which are situated in the bottoms of depressions. Further, the particles being washed away tangentially are washed up against surface projections, thereby building up collections of particles on the upstream side of such projections and thus beginning the formation of a filter cake.
The depressions and projections on the surface of the membrane thus reduce the overall permeability of the membrane and make it necessary to unclog the membrane more frequently, thereby complicating the use of the filter.
Preferred implementations of the present invention mitigate these drawbacks by providing a filter membrane which clogs up relatively slowly, which can be quickly and easily unclogged, eg. by applying reverse pressure, and which can be used for filtration or ultrafiltration of very hot and/or corrosive liquids or gases.
SUMMARY OF THE INVENTION
The present invention provides a filter membrane including at least one filter layer and constituted by a sintered inorganic material comprising grains which are fixedly connected to one another, the improvement wherein the average roughness of the surface of said filter layer over a distance along said surface equal to at least five times the average grain size is less than one fifth of the average grain size in the region in question.
Advantageously the roughness is less than one tenth of the average grain size.
In one implementation of the invention, at least 90% by weight of the grains in the surface layer are less than twice the average grain size, and at least 90% by weight of said grains are more than half the average grain size.
The porosity of the filter layer may be in the range 30% to 40% by volume.
The filter layer may be deposited on a support layer which has greater porosity and which may be constituted by several sub-layers of different porosity.
All the layers and sub-layers are made of grains which are fixedly connected to one another, and the various layers and sub-layers are also fixedly connected to one another.
The filter layer and the support layer are advantageously of the same nature, and may be constituted by at least one material chosen from the group constituted by metal oxides, silicon carbide, silicon nitride, silicon and aluminium oxynitrides (SiALON), borides, and glasses.
The material may thus be alumina which is at least 99.9% pure.
The invention also provides a method of manufacturing a filter membrane, in particular where the surface filter layer is supported on a support layer. In accordance with the invention, the method comprises preparing a slip comprising fine grains of the inorganic material which is to constitute the filter layer, together with a dispersing agent so as to obtain a thoroughly deflocculated suspension of fine grains, the slip is then applied to the support layer, excess slip is removed and the deposited thin layer is dried. Then the support layer with the thin layer it is supporting are baked at a temperature suitable for sintering the grains of the inorganic material.
Optionally there may be an intermediate step of filtering the slip through the support layer after it has been appplied thereto, and before baking.
Advantageously, an organic thickening agent may be added to the slip provided that it does not hinder deflocculation.
Further, before the slip is applied to the support layer, it may advantageously be subjected to prolonged grinding in order to break up any agglomerations of particles and to ensure that the particles are thoroughly dispersed throughout the suspension.
It is convenient to measure surface roughness over a distance equal to at least five times the average grain size.
Measurements performed over shorter distances would not be statistically significant since they would take too few grains into account.
However, there is no point in measuring surface roughness over too long a distance. In such cases the measured value of roughness would include not only local projections and depressions due to grains which are irregularly placed relative to one another, and therefore a hinderance to good filtering, but also gently sloping surface undulations which have no deleterious effects on filtering.
Thus measurements over a distance of five to fifteen times the average grain size give satisfactory values of surface roughness.
Grain size is defined as being the average diameter of a sphere of same density as the grain which, when placed in a liquid, would sediment at the same speed as the grain in question. This is the definition used in well known particle size measuring apparatus using the sedimentation method, and it is the method which was used to determine the grain sizes specified in the examples.
The average size of a set of grains is designated below as D50 and is the size such that 50% by weight of the grains in the set are larger than D50 leaving 50% by weight which are smaller than D50.
The average roughness of the membrane surface is defined as follows:
An X axis is taken to run parallel to the average surface of the membrane (on the side facing the fluid to be filtered) and a Y axis is taken perpendicular thereto such that y=f(x) defines the height of the surface above or below the average surface. The average height is defined as h, where: ##EQU1##
The average roughness is then defined as Ra where: ##EQU2##
When performing roughness measurements with a roughness meter, a signal from a detector is filtered so as to take into account only high frequencies corresponding to variations in height over a short distance. Any given cut-off frequency of the filter corresponds to a particular length (in microns) along the surface over which the instrument is measuring. By using a high cut-off frequency corresponding to a length which is greater than five average size grains but not greater than about fifteen average size grains, the roughness measurement only takes account of variations in height equal to one or a few grains. If a low cut-off frequency is used, the measured roughness combines grain-sized variations in height together with larger surface undulations.
Using a cut-off frequency which corresponds to a length which is longer than five average grain sizes, the average roughness Ra of a filter membrane in accordance with the invention is such that:
R.sub.a <0.02D.sub.50
and preferably:
R.sub.a <0.10D.sub.50
When the filter layer is a distinct layer different from the support layer, the pore diameter may lie in the range 0.01 microns to 20 microns, with the average grain size lying in the range 0.02 microns to 50 microns.
In the support layer, the pore diameter may lie in the range 2 to 50 microns, with the average grain size lying in the range 5 to 200 microns.
MORE DETAILED DESCRIPTION
There follows a description given by way of example of filter membranes in accordance with the invention, together with their methods of manufacture. Rough membranes are also described by way of comparison.
A membrane in accordance with the invention may be constituted as follows:
a support layer comprising a first sub-layer which is 1.5 to 2 mm thick and which has pores of average size in the range 10 to 20 microns; and a second sub-layer which is about 20 microns thick and which has pore of average size in the range 1 to 3 microns;
said support layer is advantageously in the form of a tube with an inside diameter of 7 to 15 mm for example and with the second sub-layer on its inside surface; and
a filter layer on the second sub-layer, the filter layer being 10 to 20 microns thick and having an average pore size in the range 0.2 to 0.8 microns.
The various layers are preferably 30% to 40% porous by volume.
The membrane is preferably made of sintered inorganic material as indicated above, but it could alternatively be made of carbon prepared by baking carbon grains which have been agglomerated by an organic binder.
The membrane is generally in the form of a bundle of tubes, with the layer of finest porosity being on the inside of each tube, however a plane membrane may also be made.
The membranes are made from metal oxide grains by preparing a thoroughly deflocculated slip of oxide particles whose grain sizes have small dispersion. With the average particle size as measured by sedimentation designated D50, at least 90% by weight of the particles are less than twice D50, and 90% by weight of the particles are greater than half D50. In preparing the slip, any dispersing agent or other additive which ensures a high degree of deflocculation may be used; the important thing is for each particle to be in suspension in isolation from the other particles, ie. for there to be no, or at least very few, agglomerations of several particles. The suspension must be sufficiently viscous to prevent the particles sedimenting too rapidly. For this purpose a thickening agent is added to the slip, taking care to avoid agents which may have a deleterious effect on the deflocculation. The slip must sediment in the form of a dense sediment constituted by a compact heap of particles. A large proportion (at least 40%) is constituted by the particles with the remainder being constituted by the volume of liquid in between the particles. It is thus necessary to choose a thickening agent which, in conjunction with the wetting agent, makes it possible to obtain a dense sediment at least 40% of which is constituted by particles. Thickening agents which prevent this from happening must be avoided.
The slip is applied to the surface of the membrane which is to receive the smooth surface layer in such a manner as to leave a uniform film of slip on said surface.
The slip deposit is dried and then baked to sinter the particles so that they weld together and so that the layer which they constitute is also welded to the layer on which it is deposited.
Instead of merely applying the deflocculated slip to the surface of the membrane, a smooth surface layer may also be obtained by filtering the slip through the membrane so that the liquid passes through the membrane leaving the particles which were in suspension trapped at the first porous layer of the membrane through which they could not pass.
There follow some specific examples of preparing membranes in accordance with the invention.
EXAMPLE 1
A two layer tubular membrane is prepared using the method described in published French patent application No. 2 463 636. Tubes are thus obtained having a first, or support, layer which is 1.5 mm thick with an average pore diameter of 15 microns, and a second layer on the inside surface of the tube which is 20 to 30 microns thick with an average pore diameter of 1 micron.
The following steps are performed to deposit a smooth third layer having an average pore diameter of 0.26 microns on said second layer:
(1) a slip is prepared having the following composition:
(1.1) 8% by weight alumina particles with an average grain size (as measured after grinding) of 0.55 microns.
(1.2) 91.84% by weight water with polyethylene glycol (Union Carbide's Carbowax 4000C) added to obtain a viscosity of 5 poises.
(1.3) 0.16% by weight Polyplastic's DARVAN C dispersing agent.
(2) the slip is ground for 24 hours in a 25 liter ball grinder for the purpose of breaking up any grain agglomerations and to thoroughly disperse the particles. The grinder contains:
(2.1) 25 kg of 10 mm diameter alumina balls.
(2.2) 7 liters of slip.
(3) The tube is filled with the slip after grinding and allowed to empty under gravity. A film of slip remains on the inside surface of the tube. This film is dried and then baked under an oxidizing atmosphere at 1300° C. to form a layer which is 20 to 30 microns thick with an average pore diameter of 0.26 microns and a substantially smooth surface, whose degree of roughness is given in a table below.
Membranes have also been prepared using the same procedure except that the polyethylene glycol (Carbowax 4000 ) in the slip was replaced with ethylhydroxyethylcellulose (Bermocoll) and that no dispersing agent was added. These membranes have a rough surface, with a degree of roughness given in the table below.
EXAMPLE 2
A single layer tubular membrane is prepared using the method described in published French patent application No. 2 463 636, and stopping once the support tube thus obtained is 2 mm thick with an average pore diameter of 15 microns,
The following steps are performed to deposit a smooth layer on the inside of the tube having an average pore diameter of 1.9 microns:
(1) a slip having the same composition as in Example 1 is prepared, except that the average grain size of the alumina is 1.2 microns after grinding.
(2) the slip is ground in the same manner as in Example 1.
(3) The tube is filled with the slip after grinding and is allowed to empty under gravity. A film of slip remains on the inside surface of the tube. This film is dried and then baked under an oxidizing atmosphere at about 1500° C. to form a layer which is 20 to 30 microns thick with an average pore diameter of 1.8 microns and a substantially smooth surface, whose degree of roughness is given in a table below.
Membranes have also been prepared using the same procedure except that the polyethylene glycol (Carbowax 4000) in the slip was replaced with ethylhydroxyethylcellulose (Bermocoll) and that no wetting agent was added. These membranes have a rough surface, with a degree of roughness given in the table below.
EXAMPLE 3
Similar to Example 2, but the starting product has alumina particles of 1.6 microns average size, and baking takes place at about 1550° C. The average pore size is 2 microns when wetting agent is used and 1.8 microns when wetting agent is not used.
The following table applies to the smooth and the rough membranes obtained in Examples 1 to 3, and for each membrane it gives the average grain size D50, the average pore size (ie. the average diameter of the pores) the word "rough" or "smooth", the distance d over which the roughness measurement is performed (by suitably setting the cut-off frequency of the filter), the average roughness Ra, the ratio Ra /D50, and the ratio d/D50.
The roughness measurements were performed using a recording "Surfcom-1" roughness meter as manufactured by Tokyo Seimitsu Co. Ltd.
              TABLE                                                       
______________________________________                                    
(all linear dimensions expressed in microns)                              
                 Average       Roughness                                  
                                       R.sub.a                            
                                            d                             
Membrane  D.sub.50                                                        
                 pore size                                                
                          d    (ie. R.sub.a)                              
                                       D.sub.50                           
                                            D.sub.50                      
______________________________________                                    
EXAMPLE 1                                                                 
(a) Smooth                                                                
          0.55    0.26    8    0.05    0.09 14.5                          
(b) Rough 0.55    0.20    8    0.13    0.24 14.5                          
EXAMPLE 2                                                                 
(a) Smooth                                                                
          1.20   1.8      8    0.14    0.12 6.7                           
(b) Rough 1.20   1.5      8    0.30    0.25 6.7                           
EXAMPLE 3                                                                 
(a) Smooth                                                                
          1.6    2.0      8    0.24    0.15 5                             
(b) Rough 1.6    1.8      8    0.42    0.26 5                             
______________________________________                                    

Claims (5)

I claim:
1. A method of manufacturing a granular filter membrane having an average surface roughness measured over a distance equal to at least five times an average grain size of said membrane that is less than one fifth of said average grain size in the region in question, wherein the method comprises
preparing a thin slip comprising a suspension in a liquid vehicle of fine grains of an inorganic material selected from the group consisting of metal oxides, silicon carbide, silicon nitride, silicon and aluminum oxynitrides (SiALON), borides, and glasses, together with a dispersing agent in an amount sufficient to obtain a thoroughly deflocculated suspension of fine grains, and a thickening agent which does not hinder deflocculation;
depositing the slip onto a porous support layer having pores of greater size than said filter layer;
draining off excess slip so as to leave a thin uniform layer on the support;
drying the deposited thin layer; and then
baking the support layer with the thin layer it is supporting at a temperature suitable for sintering the grains of the inorganic material.
2. A method according to claim 1, including an intermediate step of filtering the slip through the support layer after it has been applied thereto, and before drying.
3. A method according to claim 1, wherein the slip is subjected to prolonged grinding before being applied to the support layer.
4. A method of manufacturing a granular filter membrane having an average surface roughness measured over a distance equal to at least five times an average grain size of said membrane that is less than one fifth of said average grain size in the region in question, wherein the method comprises
preparing a thin slip consisting essentially of a suspension in a liquid vehicle of fine grains of an inorganic material selected from the group consisting of metal oxides, silicon carbide, silicon nitride, silicon and aluminum oxynitrides (SiALON), borides, and glasses, together with a dispersing agent in an amount sufficient to obtain a thoroughly deflocculated suspension of fine grains, and a thickening agent which does not hinder deflocculation;
depositing the slip onto a porous support layer having pores of greater size than said filter layer;
draining off excess slip so as to leave a thin uniform layer on the support;
drying the deposited thin layer; and then
baking the support layer with the thin layer it is supporting at a temperature suitable for sintering the grains of the inorganic material.
5. A filter membrane including at least one filter layer having an exposed surface and being composed of a sintered inorganic material in the form of grains which are fixedly connected to one another, said inorganic material being selected from the group consisting of metal oxides, silicon carbide, silicon nitride, silicon and aluminum oxynitrides (SiALON), borides, and glasses, wherein the improvement comprises the filter layer having been formed by depositing onto a porous support layer a thin slip consisting essentially of a thoroughly deflocculated suspension of fine grains of said organic material in a liquid vehicle, together with a dispersing agent in an amount sufficient to obtain thorough deflocculation of said grains and a thickening agent which does not hinder deflocculation, the porous support layer having pores of greater size than said filter layer, draining off excess slip so as to leave a thin uniform layer on the support, and baking the filter membrane at a temperature sufficient to sinter the grains of the inorganic material, such that the average roughness of the surface of said sintered filter layer over a distance along said surface equal to at least five times the average grain size is less than one fifth of the average grain size in the region in question.
US06/763,305 1982-04-28 1985-08-05 Filter membrane and method of manufacturing it Expired - Lifetime US4698157A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8207298A FR2525912A1 (en) 1982-04-28 1982-04-28 FILTRATION MEMBRANE, AND PROCESS FOR PREPARING SUCH A MEMBRANE
FR8207298 1982-04-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06487680 Continuation 1983-04-22

Publications (1)

Publication Number Publication Date
US4698157A true US4698157A (en) 1987-10-06

Family

ID=9273483

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/763,305 Expired - Lifetime US4698157A (en) 1982-04-28 1985-08-05 Filter membrane and method of manufacturing it

Country Status (6)

Country Link
US (1) US4698157A (en)
EP (1) EP0092840B1 (en)
JP (1) JPS58196818A (en)
CA (1) CA1202248A (en)
DE (1) DE3372182D1 (en)
FR (1) FR2525912A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863656A (en) * 1985-10-11 1989-09-05 Valmet Oy Microporous plate and method for manufacturing the same and suction drier apparatus
US4946592A (en) * 1986-10-10 1990-08-07 Societe Des Ceramiques Techniques Membrane filter
US4948736A (en) * 1987-03-20 1990-08-14 Toshiba Ceramics Co., Ltd. Continuous microorganism cultivating apparatus
US4983423A (en) * 1988-05-24 1991-01-08 Ceramem Corporation Method of forming a porous inorganic membrane on a porous support using a reactive inorganic binder
US5004544A (en) * 1989-11-13 1991-04-02 Norton Company Reaction bonded silicon nitride filtration membranes
US5089134A (en) * 1989-12-28 1992-02-18 Toshiba Ceramics Co., Ltd. Silica glass filter
US5104546A (en) * 1990-07-03 1992-04-14 Aluminum Company Of America Pyrogens separations by ceramic ultrafiltration
WO1993002969A1 (en) * 1991-08-09 1993-02-18 Board Of Regents, The University Of Texas System High temperature wet oxidation using sintered separators
US5225276A (en) * 1987-09-26 1993-07-06 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Filter aid for analytical use and method for preparing the same
US5242595A (en) * 1991-04-25 1993-09-07 U.S. Filter/Illinois Water Treatment, Inc. Bacteria removal by ceramic microfiltration
US5252218A (en) * 1992-06-02 1993-10-12 Cargill, Incorporated Process for separating solid particulates from a nonaqueous suspension
EP0332789B1 (en) * 1988-03-17 1994-02-23 Societe Des Ceramiques Techniques Filter membrane and process for its preparation
US5358646A (en) * 1993-01-11 1994-10-25 Board Of Regents, The University Of Texas System Method and apparatus for multiple-stage and recycle wet oxidation
US5482633A (en) * 1993-10-12 1996-01-09 Cargill, Incorporated Process for removing vegetable oil waxes by fast cooling vegetable oil and using a porous non-metallic inorganic filter
US5551472A (en) 1994-08-01 1996-09-03 Rpc Waste Management Services, Inc. Pressure reduction system and method
US5552039A (en) * 1994-07-13 1996-09-03 Rpc Waste Management Services, Inc. Turbulent flow cold-wall reactor
US5582715A (en) * 1992-04-16 1996-12-10 Rpc Waste Management Services, Inc. Supercritical oxidation apparatus for treating water with side injection ports
US5591415A (en) * 1994-01-27 1997-01-07 Rpc Waste Management Services, Inc. Reactor for supercritical water oxidation of waste
US5620606A (en) 1994-08-01 1997-04-15 Rpc Waste Management Services, Inc. Method and apparatus for reacting oxidizable matter with particles
US5755974A (en) 1994-08-01 1998-05-26 Rpc Waste Management Services, Inc. Method and apparatus for reacting oxidizable matter with a salt
US5770174A (en) * 1992-04-16 1998-06-23 Rpc Waste Management Services, Inc. Method for controlling reaction temperature
US5785868A (en) * 1995-09-11 1998-07-28 Board Of Regents, Univ. Of Texas System Method for selective separation of products at hydrothermal conditions
US5824220A (en) * 1995-01-25 1998-10-20 T.A.M.I. Industries Inorganic porous support for a filter membrane, and method of manufacture
US5914042A (en) * 1993-06-10 1999-06-22 Pall Corporation Device and method for separating plasma from a blood product
US6001243A (en) 1996-06-07 1999-12-14 Chematur Engineering Ab Heating and reaction system and method using recycle reactor
US20020053543A1 (en) * 2000-09-01 2002-05-09 Haldor Topsoe A/S Method for the removal of particulate matter from aqueous suspension
WO2002092881A2 (en) * 2001-05-12 2002-11-21 Gkn Sinter Metals Gmbh Method for producing at least partially coated bodies with a coating consisting of a sinterable material
EP1281427A1 (en) * 2001-08-02 2003-02-05 Sefar AG Filter medium, manufacturing method and use
US6989101B2 (en) 2003-04-04 2006-01-24 The Clorox Company Microorganism-removing filter medium having high isoelectric material and low melt index binder
DE102005031856A1 (en) * 2005-05-13 2006-11-16 Atech Innovations Gmbh Process for the production of ceramic filters, engobe and ceramic filter
US7303683B2 (en) 2003-04-04 2007-12-04 The Clorox Company Microorganism-removing filter medium having high isoelectric material and low melt index binder
US20100300882A1 (en) * 2009-05-26 2010-12-02 General Electric Company Devices and methods for in-line sample preparation of materials

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2549736B1 (en) * 1983-07-29 1988-10-07 Ceraver FILTRATION MEMBRANE
NL8303079A (en) * 1983-09-05 1985-04-01 Stichting Energie PROCESS FOR THE PREPARATION OF CRACK-FREE SEMI-PERMEABLE INORGANIC MEMBRANES.
EP0237865B1 (en) * 1983-09-06 1990-04-04 Societe Des Ceramiques Techniques Process for producing a microfiltration, ultrafiltration or reverse osmosis element
DE3519620A1 (en) * 1984-06-04 1986-01-02 Norton Co., Worcester, Mass. DEVICE AND METHOD FOR CONTROLLING THE DIFFUSION OF FLUID COMPONENTS
JPS61192280A (en) * 1985-02-22 1986-08-26 Takeshi Kobayashi Apparatus for continuous cultivation of microorganism
FR2582956B1 (en) * 1985-06-10 1987-07-31 Lorraine Carbone MINERAL MEMBRANE SUPPORT FOR SEPARATE TECHNIQUES AND METHODS OF MANUFACTURE THEREOF
FR2600550B1 (en) * 1986-05-30 1990-10-19 Meridional Oenologie Centre METHODS OF MAKING THIN MEMBRANE COMPOSED OF A MINERAL ARRAY OF TITANIUM OXIDES AND SILICON AND POWDER COMPOSED OF SUBMICRONIC GRAINS IN MIXED OXIDES OF TITANIUM AND SILICON
FR2600266B1 (en) * 1986-06-19 1990-08-24 Lorraine Carbone PROCESS FOR MANUFACTURING A POROUS MINERAL MEMBRANE ON A MINERAL SUPPORT
JPS637814A (en) * 1986-06-30 1988-01-13 Ibiden Co Ltd Ceramic filter
FR2614214B1 (en) * 1987-04-23 1993-02-12 Commissariat Energie Atomique ORGANOMINERAL SEMI-PERMEABLE MEMBRANE AND ITS MANUFACTURING METHOD.
NL8702759A (en) * 1987-11-19 1989-06-16 Hoogovens Groep Bv METHOD FOR MANUFACTURING A MICRO-PERMEABLE MEMBRANE AND APPARATUS FOR APPLYING THIS MEMBRANE TO A CARRIER
JPH01299607A (en) * 1988-05-27 1989-12-04 Ngk Insulators Ltd Inorganic porous membrane
NL9401260A (en) * 1993-11-12 1995-06-01 Cornelis Johannes Maria Van Ri Membrane for microfiltration, ultrafiltration, gas separation and catalysis, method for manufacturing such a membrane, mold for manufacturing such a membrane, as well as various separation systems comprising such a membrane.
JP2726616B2 (en) * 1993-12-15 1998-03-11 日本碍子株式会社 Porous ceramic honeycomb filter
FR2723541B1 (en) * 1994-08-09 1996-10-31 Tami Ind PROCESS FOR MANUFACTURING FILTERING MINERAL STRUCTURES
WO2019010169A1 (en) * 2017-07-06 2019-01-10 Entegris, Inc. Silicon carbide filter membrane and methods of use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB817607A (en) * 1956-02-21 1959-08-06 Deutsche Edelstahlwerke Ag Filter bodies for the separation of minute suspended particles and a method of producing the same
DE1072543B (en) * 1959-12-31 Metallgesellschaft Aktiengesell schaft, Frankfurt/M Porous filter bodies and process for their manufacture
GB1358501A (en) * 1971-08-24 1974-07-03 Montedison Spa Process for the preparation of porous membranes
US3824112A (en) * 1970-07-01 1974-07-16 Research Corp Permeable wollastonite ceramic mass
US4356215A (en) * 1973-09-28 1982-10-26 Commissariat A L'energie Atomique Method of manufacturing supports for porous filters

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB556678A (en) * 1942-08-12 1943-10-15 James A Jobling & Company Ltd Improved method of making porous filter bodies of particles of glass
NL126633C (en) * 1958-02-24 1900-01-01
US3359622A (en) * 1963-02-06 1967-12-26 Poudres Metalliques Alliages Speciaux Ugine Carbone Process for making composite porous elements
JPS5515688B2 (en) * 1972-06-10 1980-04-25
JPS4988169A (en) * 1972-12-27 1974-08-23
CH603211A5 (en) * 1975-12-29 1978-08-15 Commissariat Energie Atomique Tubular filter elements comprising mineral layers on supports

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1072543B (en) * 1959-12-31 Metallgesellschaft Aktiengesell schaft, Frankfurt/M Porous filter bodies and process for their manufacture
GB817607A (en) * 1956-02-21 1959-08-06 Deutsche Edelstahlwerke Ag Filter bodies for the separation of minute suspended particles and a method of producing the same
US3824112A (en) * 1970-07-01 1974-07-16 Research Corp Permeable wollastonite ceramic mass
GB1358501A (en) * 1971-08-24 1974-07-03 Montedison Spa Process for the preparation of porous membranes
US4356215A (en) * 1973-09-28 1982-10-26 Commissariat A L'energie Atomique Method of manufacturing supports for porous filters

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863656A (en) * 1985-10-11 1989-09-05 Valmet Oy Microporous plate and method for manufacturing the same and suction drier apparatus
US5059366A (en) * 1986-10-10 1991-10-22 Societe Des Ceramiques Techniques Method of making a membrane filter
US4946592A (en) * 1986-10-10 1990-08-07 Societe Des Ceramiques Techniques Membrane filter
US4948736A (en) * 1987-03-20 1990-08-14 Toshiba Ceramics Co., Ltd. Continuous microorganism cultivating apparatus
US5225276A (en) * 1987-09-26 1993-07-06 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Filter aid for analytical use and method for preparing the same
US5417889A (en) * 1987-09-26 1995-05-23 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Method for preparing filter aid for analytical use
EP0332789B1 (en) * 1988-03-17 1994-02-23 Societe Des Ceramiques Techniques Filter membrane and process for its preparation
US4983423A (en) * 1988-05-24 1991-01-08 Ceramem Corporation Method of forming a porous inorganic membrane on a porous support using a reactive inorganic binder
AU624306B2 (en) * 1989-11-13 1992-06-04 Saint-Gobain/Norton Industrial Ceramics Corporation Reaction bonded silicon nitride filtration membranes
US5004544A (en) * 1989-11-13 1991-04-02 Norton Company Reaction bonded silicon nitride filtration membranes
US5089134A (en) * 1989-12-28 1992-02-18 Toshiba Ceramics Co., Ltd. Silica glass filter
US5104546A (en) * 1990-07-03 1992-04-14 Aluminum Company Of America Pyrogens separations by ceramic ultrafiltration
US5242595A (en) * 1991-04-25 1993-09-07 U.S. Filter/Illinois Water Treatment, Inc. Bacteria removal by ceramic microfiltration
WO1993002969A1 (en) * 1991-08-09 1993-02-18 Board Of Regents, The University Of Texas System High temperature wet oxidation using sintered separators
US5421998A (en) * 1991-08-09 1995-06-06 Board Of Regents, The University Of Texas System Apparatus for reverse-injection wet oxidation
US5454950A (en) * 1991-08-09 1995-10-03 Board Of Regents, The University Of Texas Method and apparatus for reverse-injection wet oxidation, sintered material catalytic reaction, sintered material filtration at supercritical conditions, sintered material gas separation, and high temperature pressurization
US5527466A (en) * 1991-08-09 1996-06-18 Board Of Regents, The University Of Texas System Cross-flow filtration apparatus and method
US5582715A (en) * 1992-04-16 1996-12-10 Rpc Waste Management Services, Inc. Supercritical oxidation apparatus for treating water with side injection ports
US5770174A (en) * 1992-04-16 1998-06-23 Rpc Waste Management Services, Inc. Method for controlling reaction temperature
US5252218A (en) * 1992-06-02 1993-10-12 Cargill, Incorporated Process for separating solid particulates from a nonaqueous suspension
US5358646A (en) * 1993-01-11 1994-10-25 Board Of Regents, The University Of Texas System Method and apparatus for multiple-stage and recycle wet oxidation
US5914042A (en) * 1993-06-10 1999-06-22 Pall Corporation Device and method for separating plasma from a blood product
US5482633A (en) * 1993-10-12 1996-01-09 Cargill, Incorporated Process for removing vegetable oil waxes by fast cooling vegetable oil and using a porous non-metallic inorganic filter
US5591415A (en) * 1994-01-27 1997-01-07 Rpc Waste Management Services, Inc. Reactor for supercritical water oxidation of waste
US5552039A (en) * 1994-07-13 1996-09-03 Rpc Waste Management Services, Inc. Turbulent flow cold-wall reactor
US5620606A (en) 1994-08-01 1997-04-15 Rpc Waste Management Services, Inc. Method and apparatus for reacting oxidizable matter with particles
US5755974A (en) 1994-08-01 1998-05-26 Rpc Waste Management Services, Inc. Method and apparatus for reacting oxidizable matter with a salt
US5551472A (en) 1994-08-01 1996-09-03 Rpc Waste Management Services, Inc. Pressure reduction system and method
US5823220A (en) 1994-08-01 1998-10-20 Rpc Waste Management Services, Inc. Pressure reduction system and method
US5824220A (en) * 1995-01-25 1998-10-20 T.A.M.I. Industries Inorganic porous support for a filter membrane, and method of manufacture
US5785868A (en) * 1995-09-11 1998-07-28 Board Of Regents, Univ. Of Texas System Method for selective separation of products at hydrothermal conditions
US6017460A (en) 1996-06-07 2000-01-25 Chematur Engineering Ab Heating and reaction system and method using recycle reactor
US6001243A (en) 1996-06-07 1999-12-14 Chematur Engineering Ab Heating and reaction system and method using recycle reactor
US20020053543A1 (en) * 2000-09-01 2002-05-09 Haldor Topsoe A/S Method for the removal of particulate matter from aqueous suspension
US6773601B2 (en) 2000-09-01 2004-08-10 Haldor Topsoe A/S Method for the removal of particulate matter from aqueous suspension
WO2002092881A2 (en) * 2001-05-12 2002-11-21 Gkn Sinter Metals Gmbh Method for producing at least partially coated bodies with a coating consisting of a sinterable material
WO2002092881A3 (en) * 2001-05-12 2003-04-10 Gkn Sinter Metals Gmbh Method for producing at least partially coated bodies with a coating consisting of a sinterable material
EP1281427A1 (en) * 2001-08-02 2003-02-05 Sefar AG Filter medium, manufacturing method and use
US6989101B2 (en) 2003-04-04 2006-01-24 The Clorox Company Microorganism-removing filter medium having high isoelectric material and low melt index binder
US7303683B2 (en) 2003-04-04 2007-12-04 The Clorox Company Microorganism-removing filter medium having high isoelectric material and low melt index binder
DE102005031856A1 (en) * 2005-05-13 2006-11-16 Atech Innovations Gmbh Process for the production of ceramic filters, engobe and ceramic filter
US20100300882A1 (en) * 2009-05-26 2010-12-02 General Electric Company Devices and methods for in-line sample preparation of materials

Also Published As

Publication number Publication date
EP0092840A1 (en) 1983-11-02
JPS6256772B2 (en) 1987-11-27
FR2525912B1 (en) 1984-07-20
JPS58196818A (en) 1983-11-16
EP0092840B1 (en) 1987-06-24
DE3372182D1 (en) 1987-07-30
CA1202248A (en) 1986-03-25
FR2525912A1 (en) 1983-11-04

Similar Documents

Publication Publication Date Title
US4698157A (en) Filter membrane and method of manufacturing it
CA2028692C (en) Ceramic filter and process for making it
US4069157A (en) Ultrafiltration device
EP0857702B1 (en) Method for producing ceramic substrate
US4888114A (en) Sintered coating for porous metallic filter surfaces
US4810273A (en) Porous ceramic filter
US4724078A (en) Porous material and tubular filter made of said material
US6225246B1 (en) Functionally gradient ceramic structures
JPS5834006A (en) Filter structure, production thereof and ultrafiltration apparatus using same
EP1609519A1 (en) Base for honeycomb filter, method for producing same and honeycomb filter
CA2036331C (en) Membrane device for a filtration, separation or catalytic reaction process
JPH11322465A (en) Porous ceramic material and its preparation
US5874000A (en) Fibre-coated filter element
JPH01502494A (en) Filter structure and method for forming filter structure
US5089134A (en) Silica glass filter
GB2170515A (en) Making sintered porous metal articles by centrifuging
JP2004089838A (en) Separation membrane module and its manufacturing method
JPH03284328A (en) Ceramic membraneous filter and production thereof
JPH0250767B2 (en)
RU2048974C1 (en) Method of manufacturing sintered porous articles
JP2001260117A (en) Base material for honeycomb filter and manufacturing method for the same
JP2934865B2 (en) Silica glass filter
JPH0925184A (en) Ceramic porous film and its production
Howe et al. STUDIES IN POROSITY AND PERMEABILITY CHARACTERISTICS OF POROUS BODIES 1
RU1817734C (en) Baked filtering material production method

Legal Events

Date Code Title Description
AS Assignment

Owner name: CERAVER, 12, RUE DE LA BAUME 75008 PARIS, FRANCE,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GILLOT, JACQUES;REEL/FRAME:004735/0704

Effective date: 19830322

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment
REMI Maintenance fee reminder mailed