US4696541A - Optical cable having a plurality of basic elements arranged in a common sheath - Google Patents

Optical cable having a plurality of basic elements arranged in a common sheath Download PDF

Info

Publication number
US4696541A
US4696541A US06/563,463 US56346383A US4696541A US 4696541 A US4696541 A US 4696541A US 56346383 A US56346383 A US 56346383A US 4696541 A US4696541 A US 4696541A
Authority
US
United States
Prior art keywords
basic
elements
optical cable
basic elements
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/563,463
Other languages
English (en)
Inventor
Helmut Haag
Klaus Nothofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kabel Rheydt AG
Original Assignee
AEG Kabel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AEG Kabel AG filed Critical AEG Kabel AG
Assigned to AEG KABEL AKTIENGESELLSCHAFT reassignment AEG KABEL AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HAAG, HELMUT, NOTHOFER, KLAUS
Application granted granted Critical
Publication of US4696541A publication Critical patent/US4696541A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • G02B6/4413Helical structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables

Definitions

  • the present invention relates to an optical cable, or optical fiber cable, of the type described in AEG-KABEL Mitander [AEG Cable Reports], No. 1/82, pages 2-4.
  • a cable is composed of a plurality of basic elements arranged in a common sheath, each basic element including a stable sheath and at least one optical fiber loosely guided in the stable sheath.
  • a plurality of such basic elements is combined into a basic unit held together by mounting elements.
  • the basic units are composed of a plurality of basic elements which are twisted around a supporting element.
  • Each basic element includes a stable sheath in which one or a plurality of light conductive fibers are loosely guided so that mechanical stresses on the optical cable can have no adverse effect on the characteristics of the light-conductive fibers.
  • Each basic unit has a cross section which is of stable form.
  • a filler material producing longitudinal water tightness. e.g. petrolatum, a relatively large quantity of material is required.
  • Multi-fiber optical cables in which individual basic elements are twisted in layers have a smaller diameter and a smaller total space that must be filled, but the costs of manufacturing them are much higher than for the cables of the first-mentioned type.
  • an optical cable comprising a common sheath and a plurality of elongate basic elements enclosed by the common sheath, each basic element comprising a stable sheath and at least one optical fiber housed and loosely guided in the stable sheath, and the plurality of basic elements being assembled together to form a plurality of basic units each of which is composed of several basic elements and is deformable transverse to the length of the basic elements, the plurality of basic units being assembled together to form at least one cylindrical layer of the cable, with each basic unit in said circular layer having a noncircular cross-sectional configuration which is flattened in the radial direction of the cable, while the stable sheaths of the basic elements are not significantly deformed, as a result of a deformation pressure exerted radially inwardly on the circular layer.
  • the cross section of the basic units is not rigid but modifiable.
  • the individual basic elements of a basic unit can and need not be deformed, at least not significantly, so that the loose guidance of the optical fibers therein is not adversely affected.
  • the basic elements in a basic unit can be displaced with respect to one another so that the basic elements can distribute themselves in an optimum manner in the respective cabled position in an optical cable so that significantly less unused cable space remains.
  • the diameter of an optical cable containing a given number of basic elements becomes smaller and the requirement for fillers to obtain longitudinal water tightness is reduced.
  • a particularly high packing density results if the sheaths of the basic elements are also permitted to be slightly deformed.
  • a particularly favorable design for the basic units results if less than eight basic elements are twisted in one layer to form a hollow basic unit structure.
  • a twisted design of the basic units increases the flexibility of the optical cable, as does the smaller diameter.
  • the hollow basic units on the one hand, have the required stability for processing and handling and, on the other hand, can be given a different cross-sectional configuration by a relatively slight deformation pressure without thus requiring too much deformation of the sheaths of the individual basic elements.
  • a stress relief element can be placed between several basic elements of a unit. These stress relief elements must be loosely guided with much play. Their diameter should be selected to be less than 0.4 times the diameter of a basic element. It is of particular advantage if their diameter is approximately large enough, e.g. approximately 0.15 times the diameter of a basic element, so that one stress relief element fits into the cable space formed between three basic elements of a unit. With high demands for tensile strength, a plurality of thin elements can be used as the stress relief element.
  • the mounting elements which hold together the basic unit should not confine the unit to a particular form. Holding bands twisted around the basic unit in helical turns and/or elastic bands are of particular advantage.
  • each unit should be composed of five or six basic elements. In such a case, care must be taken that the holding elements are arranged loosely and expandably.
  • FIG. 1a is a cross-sectional view of a section of a layer of twisted basic units in an optical cable according to the prior art.
  • FIGS. 1b and 1c are views similar to that of FIG. 1a of two embodiments of the invention.
  • FIG. 2 is a simplified cross-sectional view of a basic element, to a larger scale than FIGS. 1.
  • FIG. 3 is a simplifed cross-sectional view of a nozzle used to reduce the cable diameter.
  • FIG. 1a shows a conventional optical cable of twisted units while FIGS. 1b and 1c are constructed according to the present invention.
  • a unit is formed of five basic elements 4 arranged in a circular pattern about a central element 5 and enclosed in a relatively rigid sheath. Several of these units are enclosed by a common sheath.
  • FIG. 1b five basic elements 4' are arranged in a somewhat flattened circular pattern about a central tension element 6' with the sheath of each element 4' being undeformed.
  • FIG. 1c a certain amount of deformation which is not yet damaging is permitted for the sheath of each element 4". This results in a further reduction of the thickness of the twisted layers.
  • the basic elements 4 are arranged in a fixed circular configuration and due to their close contact with central element 5, which may be composed of strands to increase tensile strength, can practically not be deformed out of this position.
  • Basic elements 4' and 4" of FIGS. 1b and 1c, respectively, of each basic unit indicated in FIGS. 1b and 1c, respectively, are able to change their relative positions with respect to their original circular ring arrangement because due to the internal cavities within the common sheath, it is possible for the basic elements to escape circumferentially in the cable.
  • Tension elements 6' and 6" are guided with much play in the originally existing cavity between the basic elements of a bundle and have such a small diameter that they fit into the interstice formed between three basic elements in the twisted layer of the optical cable.
  • FIG. 2 shows one basic element 4' or 4" containing a number of light-conductive fibers 8 spaced inwardly from stable but flexible sheath 7, and encircled by a helically wound supporting and cushioning thread 9.
  • An optical cable of the type here contemplated is composed of a plurality of layers each having the form shown in FIGS. 1.
  • the basic units of each layer are twisted around a cylindrical body.
  • the cylindrical body In the case of the first, or innermost, layer, the cylindrical body is a supporting body.
  • the supporting body In the case of subsequent layers, the supporting body is the immediately underlying layer.
  • Each layer is brought, during or after the twisting process, through a nozzle, or die as in FIG. 3, which reduces the outer diameter of the twisted layer. Due to the radially inwardly acting deformation pressure, the individual basic elements of the layer are distributed in such a manner that only a minimum of unused cavities remains in the cable.
  • the sheath 7 of the basic element 4' in not necessarily flexible, but can be of the same material as the sheath of basic element 4, such as e.g. polyester or polypropylene. Useful dimensions are 3 mm for the diameter and 0.3 mm for the wall-thickness.
  • the sheath 7 of the basic element 4" must have a radial flexibility, that so the circular cross-section of the basic element must be able to be changed to an elliptical cross-section by radial pressure to the unit. This can be achieved by using rubber-like plastic materials for the sheath 7 of the basic elements 4". For tensile reinforcement of the basic element, it can be covered for example with self-adhesive glass-filament-tape.
  • the holding tape to be used to keep each basic-unit together must be flexible to accomodate the variable circumference of the basic unit.
  • the permissible extensibility factor should be around 1.1.
  • the holding tape can be made of strech-type textile fibres.
  • the width should be 1 to 5 mm and the maximum thickness about 0.5 mm.
  • the pitch can be chosen between one to four times the nominal diameter of the basic unit.
  • the utilized nozzle can be a stainless-steel-nozzle having a slightly tapered inner diameter.
  • the cable with the layer to be compressed is usually conveyed through the nozzle by pulling the cable.
  • the amount of the radial compression should by limited by choosing the appropriate diameter d 2 of the nozzle to prevent damage to the basic elements or the holding tape. It can be useful to lubricate the basic units to reduce friction between the basic units and the nozzle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Conductors (AREA)
  • Ropes Or Cables (AREA)
  • Communication Cables (AREA)
US06/563,463 1982-12-20 1983-12-20 Optical cable having a plurality of basic elements arranged in a common sheath Expired - Fee Related US4696541A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3247090A DE3247090C2 (de) 1982-12-20 1982-12-20 Optisches Kabel mit mehreren in einer gemeinsamen Umhüllung angeordneten Adern
DE3247090 1982-12-20

Publications (1)

Publication Number Publication Date
US4696541A true US4696541A (en) 1987-09-29

Family

ID=6181162

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/563,463 Expired - Fee Related US4696541A (en) 1982-12-20 1983-12-20 Optical cable having a plurality of basic elements arranged in a common sheath

Country Status (5)

Country Link
US (1) US4696541A (fi)
AT (1) AT388816B (fi)
CA (1) CA1245489A (fi)
DE (1) DE3247090C2 (fi)
FI (1) FI74824C (fi)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868606A (en) * 1987-11-13 1989-09-19 Minolta Camera Kabushiki Kaisha Copying apparatus capable of forming various types of images
US4906067A (en) * 1988-03-31 1990-03-06 Siemens Aktiengesellschaft Optical cable comprising a plurality of bundle elements
US5067791A (en) * 1986-05-10 1991-11-26 Sumitomo Electric Industries, Ltd. Fiber identification in an optical fiber composite overhead ground wire
US5649043A (en) * 1995-07-25 1997-07-15 Alcatel Na Cable Systems, Inc. Optical fiber cable having truncated triangular profile tubes
WO2011081771A1 (en) * 2009-12-14 2011-07-07 Corning Cable Systems Llc Multifiber subunit cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2294460A1 (fr) * 1974-12-11 1976-07-09 Furukawa Electric Co Ltd Cable de communication optique
DE2854718A1 (de) * 1978-12-18 1980-07-03 Aeg Telefunken Kabelwerke Zugfestes kabel
GB1592192A (en) * 1978-05-30 1981-07-01 Bicc Ltd Electric cables

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2302662C2 (de) * 1973-01-19 1983-09-01 Siemens AG, 1000 Berlin und 8000 München Nachrichtenkabel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2294460A1 (fr) * 1974-12-11 1976-07-09 Furukawa Electric Co Ltd Cable de communication optique
GB1592192A (en) * 1978-05-30 1981-07-01 Bicc Ltd Electric cables
DE2854718A1 (de) * 1978-12-18 1980-07-03 Aeg Telefunken Kabelwerke Zugfestes kabel

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Design & Practical Consideration for Manufacturing a Non-metalic F.O.C. for Aerial Application" by Rahdman et al., Conference Cherry Hill, N.J., U.S.A. (18-20, Nov. 1980).
"Optical Fiber Trunk Cable Design" by Takashima, IEEE, Jun. 1981, International Conference on Communication.
Design & Practical Consideration for Manufacturing a Non metalic F.O.C. for Aerial Application by Rahdman et al., Conference Cherry Hill, N.J., U.S.A. (18 20, Nov. 1980). *
Optical Fiber Trunk Cable Design by Takashima, IEEE, Jun. 1981, International Conference on Communication. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067791A (en) * 1986-05-10 1991-11-26 Sumitomo Electric Industries, Ltd. Fiber identification in an optical fiber composite overhead ground wire
US4868606A (en) * 1987-11-13 1989-09-19 Minolta Camera Kabushiki Kaisha Copying apparatus capable of forming various types of images
US4906067A (en) * 1988-03-31 1990-03-06 Siemens Aktiengesellschaft Optical cable comprising a plurality of bundle elements
US5649043A (en) * 1995-07-25 1997-07-15 Alcatel Na Cable Systems, Inc. Optical fiber cable having truncated triangular profile tubes
WO2011081771A1 (en) * 2009-12-14 2011-07-07 Corning Cable Systems Llc Multifiber subunit cable
US8718428B2 (en) 2009-12-14 2014-05-06 Corning Cable Systems Llc Multifiber subunit cable
US9097869B2 (en) 2009-12-14 2015-08-04 Corning Optical Communications LLC Multifiber subunit cable
US9690061B2 (en) 2009-12-14 2017-06-27 Corning Digital Communications LLC Multifiber subunit cable

Also Published As

Publication number Publication date
FI834546A0 (fi) 1983-12-12
FI834546A (fi) 1984-06-21
FI74824B (fi) 1987-11-30
ATA442483A (de) 1989-01-15
CA1245489A (en) 1988-11-29
DE3247090A1 (de) 1984-06-20
FI74824C (fi) 1988-03-10
DE3247090C2 (de) 1986-05-28
AT388816B (de) 1989-09-11

Similar Documents

Publication Publication Date Title
US4374608A (en) Fiber optic cable
US5621842A (en) Optical fiber cable and device for manufacturing a cable of this kind
US4457583A (en) Method of making an optical fiber cable
US4143942A (en) Fiber optic cable and method of making same
US4966434A (en) Optical fiber cable
US4496214A (en) Optical cable
US4786137A (en) Optical cable with filling compound and parallel fibers
US4915762A (en) Process for making a high-pressure hose
US4169657A (en) Laminated strength members for fiber optic cable
US3842584A (en) Strand for a wire cable of synthetic wires and synthetic fibres
US6122427A (en) Spacer type optical fiber cable
US4696541A (en) Optical cable having a plurality of basic elements arranged in a common sheath
US6529662B1 (en) Optical fiber cable
US5862284A (en) Fiber optic cable without reinforcing members
US20040258375A1 (en) Optical fiber cable
US4741684A (en) Optical cable with filling compound and parallel fibers
US6424770B1 (en) Optical cable
KR100342519B1 (ko) 루즈튜브 옥내용 케이블
JP6961537B2 (ja) 光ファイバケーブル
JPS6362722B2 (fi)
US6002824A (en) Fiber optic cable without reinforcing members
WO2022050116A1 (ja) 光ケーブル及び光ケーブル製造方法
JP3346254B2 (ja) 光ファイバ心線
JPS6186717A (ja) 光ケ−ブルおよびその製造方法
JP3006493B2 (ja) 金属管型光ユニット

Legal Events

Date Code Title Description
AS Assignment

Owner name: AEG KABEL AKTIENGESELLSCHAFT, BONNENBROICHER STRAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:HAAG, HELMUT;NOTHOFER, KLAUS;REEL/FRAME:004687/0942

Effective date: 19860814

Owner name: AEG KABEL AKTIENGESELLSCHAFT,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAAG, HELMUT;NOTHOFER, KLAUS;REEL/FRAME:004687/0942

Effective date: 19860814

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19951004

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362