US4677512A - Magnetic reproducing apparatus - Google Patents

Magnetic reproducing apparatus Download PDF

Info

Publication number
US4677512A
US4677512A US06/883,028 US88302886A US4677512A US 4677512 A US4677512 A US 4677512A US 88302886 A US88302886 A US 88302886A US 4677512 A US4677512 A US 4677512A
Authority
US
United States
Prior art keywords
magnetic
layer
recording
recording layer
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/883,028
Inventor
Junichi Akiyama
Shu Chiba
Norikazu Sawazaki
Shigeru Yatabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Assigned to KABUSHIKI KAISHA TOSHIBA, A CORP. OF JAPAN reassignment KABUSHIKI KAISHA TOSHIBA, A CORP. OF JAPAN ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: YATABE, SHIGERU, AKIYAMA, JUNICHI, CHIBA, SHU, SAWAZAKI, NORIKAZU
Application granted granted Critical
Publication of US4677512A publication Critical patent/US4677512A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/332Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using thin films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/24Signal processing not specific to the method of recording or reproducing; Circuits therefor for reducing noise
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Definitions

  • the present invention relates to a magnetic recording/reproducing apparatus for a perpendicular magnetic recording medium and, more particularly, to a magnetic reproducing system.
  • a ring-shaped magnetic head is used for recording and reproduction.
  • a current is applied to the winding of the head so that a magnetic field generated across the head gap magnetizes the recording medium.
  • an electromotive force induced in the head in response to the signal magnetization on the medium is taken out as a reproduced signal.
  • This system has a problem in that as the recording wavelength becomes shorter, the demagnetizing field effect increases.
  • the system also has the defect that in reproducing, since the ring-shaped head is a magnetic flux detection type, the magnitude of the reproduced output signal depends upon the width of the track.
  • the conventional system has a limitation on a high density recording and reproducing.
  • a system for reproducing a signal by detecting a signal magnetic field from a magnetic recording medium is disclosed in Japanese Patent Early Publication No. 57-36407.
  • This system uses as a magnetic head a magnetic material with an inductance element coupled thereto, the magnetic head being used as a constituent of a tuning circuit.
  • a variation in magnetic field from the recording medium causes the permeability ( ⁇ ) of the magnetic material of the head to vary, resulting in the shift of a tuning frequency of the tuning circuit, or the quality factor (Q) of the tuning circuit to vary.
  • the variation in the tuning frequency and/or Q of the tuning circuit is used to take out the variation of the resonance output voltage of the tuning circuit.
  • a slight variation in magnetic field from the recording medium results in a great variation in voltage. According to the reproducing system, therefore a reproduced output having high S/N ratio can be obtained even if the width of the recording track is narrow, thereby allowing high-density recording and reproducing.
  • a magnetic material having a high permeability causes in general a ferromagnetic resonance absorption phenomenon in a high frequency region.
  • the permeability and loss of the magnetic material remarkably alter in the high frequency region even if the external magnetic field only slightly changes. Therefore, the above-mentioned reproducing system arranged to detect the signal magnetic field through the magnetic material is essentially suited for the high density recording/reproducing with narrow tracks because the reproduced output level depends only upon the intensity of the signal magnetic field rather than depending upon the magnetic flux. It is accordingly considered that an extremely high-density recording/reproducing system will be realized by combining this reproducing system with the perpendicular magnetic recording system.
  • this reproducing system has a problem in respect of the recording wavelength characteristics. This is due to the relationship between the distribution of the signal magnetic fields on the magnetic recording medium and the shape of the magnetic material. More specifically, the signal magnetic field on the magnetic recording medium becomes stronger as the wavelength is shorter, concentrating in the vicinity of the recording surface. The signal magnetic field becomes weak as the wavelength becomes long, spreading from the recording surface. Consequently, since the intensity and distribution of the magnetic field acting on the magnetic material are not uniform over the entire wavelength range, it is difficult to obtain a flat reproducing frequency response over a wide frequency range. The reproducing system is not practically suited for reproduction of video signals or audio signals.
  • An object of the present invention is to provide a magnetic recording/reproducing apparatus which is arranged to reproduce signals recorded on a perpendicular magnetic recording medium in a narrow track at a high S/N ratio and has a good frequency response over a wide frequency range.
  • a perpendicular magnetic recording medium for which a recording/reproducing apparatus of this invention is adapted comprises a perpendicular magnetic recording layer backed with a high-permeability layer.
  • a thin-film magnetic material is arranged to have its one end faced the recording layer of the recording medium.
  • a detecting member such as a coil is disposed in the proximity of the thin-film magnetic material so as to be magnetically coupled with the extended magnetized area of the high-permeability layer.
  • the detecting member is used as a tuning element of a tuning circuit to which a high-frequency energy is applied.
  • a resonance output voltage of the tuning circuit is changed, which is detected by a reproducing circuit to reproduce the recorded signal.
  • short-wavelength signals recorded on a narrow track of the perpendicular magnetic recording medium at an extremely high density can be successfully reproduced.
  • the magnetic field formed in the high permeability layer due to the signal magnetization is distributed in an extended area irrespective of the wavelength.
  • the magnetic field does not have a large gradient except in the vicinity of the signal magnetization at a position corresponding to the thin film magnetic material.
  • the effective region of the magnetic field in the reproduction of the signal is extremely wide. This is very advantageous in the reproduction of short-wavelength signals. A flat frequency response can also be expected.
  • FIGS. 1 to 14 show embodiments of the magnetic recording/reproducing apparatus according to the present invention.
  • FIG. 1 shows a first embodiment of the present invention.
  • a thin-film magnetic material 5 formed on a side of a supporting member (not shown) is disposed to have its one end faced recording layer 4 of recording medium 1.
  • a recording coil 6 wound about magnetic material 5, which is a main pole of a perpendicular magnetic recording head is supplied with a signal current from a recording circuit 7 to form a perpendicular signal magnetization 8.
  • the signal recorded in the form of perpendicular magnetization as described above is reproduced as described below according to the present invention.
  • a magnetic circuit is formed such that a magnetic flux generated by signal magnetization 8 in recording layer 4 directly under magnetic material 5 passes through magnetic material 5 and layer 3 and returns to signal magnetization 8.
  • an enlarged magnetized region 9 is formed in layer 3 in the longitudinal direction of recording medium 1 in accordance with the signal magnetization 8 of a small area of recording layer 4.
  • the magnetic variation, or the magnetic state in magnetized region 9, depends upon signal magnetization 8.
  • the magnetic variation in magnetized region 9 in high permeability layer 3 is detected by a detecting coil 10 which is arranged to be largely wound around magnetic material 5 as shown in FIG. 1 so as to be effectively coupled with the magnetic variation.
  • the coil 10 forms a tuning circuit together with a tuning capacitor 11 which is connected in parallel with coil 10.
  • a high frequency energy of 10 MHz or above is supplied from a high frequency oscillator 13 through a coupling capacitor 12 to the tuning circuit.
  • detecting coil 10 produces a high frequency magnetic field perpendicularly to recording medium 1. Since the high frequency magnetic field is normal to the magnetization of magnetized region 9, the magnetized region 9 causes a ferromagnetic resonance.
  • a tuning frequency and Q of the tuning circuit largely vary in accordance with the magnetized state of region 9 so that the resonance output voltage significantly alters.
  • the variation in the signal magnetization 8, i.e., the reproduced output corresponding to the recorded signal can be obtained by detecting the variation in the resonance output voltage by a detecting circuit 14 connected to the tuning circuit.
  • FIGS. 2 to 14 show other embodiments of the present invention, wherein the same reference numerals are used to designate the same parts in the embodiment of FIG. 1. Only the difference therebetween will be described for the simplicity of description.
  • FIG. 2 An embodiment of FIG. 2 is constructed in the same manner as the embodiment of FIG. 1 except that detecting coil 10 is provided on the base-layer side of recording medium 1.
  • the detecting coil 10 is disposed to be opposed to the thin-film magnetic material 5 on recording layer 4.
  • a non-magnetic conductor 17 is provided to surround magnetic material 5 except its one end facing recording layer 4 of recording medium 1.
  • one side of thin-film magnetic material 5 is in intimate contact with magnetic plate 18.
  • the magnetic resistance of the above-mentioned magnetic circuit reduces due to the presence of magnetic plate 18, thereby improving recording efficiency and reproducing sensitivity.
  • FIGS. 1 to 4 each have a combination of a perpendicular magnetic recording head using only one main pole (thin-film magnetic material 5) and a reproducing system according to the present invention.
  • the following embodiments shown in FIGS. 5 to 8 uses a perpendicular magnetic recording head having a main pole (thin-film magnetic material 5) and a block-form auxiliary pole 19 of magnetic material which is opposite to the main pole with perpendicular magnetic recording medium 1 interposed therebetween.
  • recording coil 6 is wound around auxiliary pole 19, which is of the so-called auxiliary-pole exciting type.
  • recording coil 6 is wound around thin-film magnetic material 5 together with detecting coil 10.
  • FIG. 7 shows an example in which recording coil 6 is wound around thin-film magnetic material 5, and detecting coil 10 is wound around auxiliary pole 19.
  • recording coil 6 and detecting coil 10 are together wound around auxiliary pole 19.
  • the enlarged magnetized region 9 is formed in high-permeability layer 3 correspondingly to the area of auxiliary pole 19 facing recording medium 1 by signal magnetization 8 of recording layer 4.
  • the magnetic variation in the magnetized region is detected by detecting coil 10 during reproduction, which is magnetically coupled to the magnetized region.
  • FIGS. 9 to 12 are provided with a yoke 20, 21, 22 formed of magnetic material adjacent to thin-film magnetic material 5 to effectively form a magnetic path going from magnetization 8 through magnetic material 5 back to high permeability layer 3.
  • a single yoke 20 is employed.
  • recording coil 6 is wound around yoke 20
  • detecting coil 10 is wound around thin-film magnetic material 5 and yoke 20.
  • recording coil 6 is wound around yoke 20, but detecting coil 10 is disposed on the base side of recording medium 1 to oppose yoke 20.
  • a yoke is divided into yokes 21 and 22 lengthwise of recording medium 1 with thin-film magnetic material 5 interposed therebetween.
  • the enlarged magnetized region is formed in high-permeability layer 3, which has a length corresponding to that of yoke 20, 21, 22.
  • detecting coil 10 is disposed so that the high frequency magnetic field produced therefrom is normal to the plane of the magnetic recording medium.
  • detecting coil 10 is disposed to surround magnetic material 5 to generate a perpendicular high frequency magnetic field.
  • the detecting coil need not be limited to the above-mentioned arrangement.
  • FIGS. 13 and 14 show still further embodiments of the present invention.
  • thin-film magnetic material 5 is formed by sputtering on a nonmagnetic block 31 such as glass, nonmagnetic ferrite or dielectric material.
  • a nonmagnetic coil support member 32 is adhered to thin film magnetic material 5, and detecting coil 10 is wound about support 32.
  • Detecting coil 10 may be formed by vapor-deposition or sputtering.
  • the high frequency magnetic field is parallel to the plane of the recording medium, but a magnetic circuit is formed as designated by the broken lines.
  • the detecting coil can detect the magnetic variation in the magnetized region as in the above embodiments.
  • a d.c. bias magnetic field may be applied to the recording medium by suitable means in parallel with the recording medium and the travelling direction thereof.
  • a magnetic yoke 33 is adhered to thin film magnetic material 5, and a nonmagnetic block 34 such as glass is provided under yoke 33.
  • a conductive thin film detector 10a is formed, by supttering, on the lower surface of block 34 in lateral direction of a recording medium. The magnetic variation in the magnetized area may be detected even by a flat detector without using a coiled detector as in the above-described embodiments.

Abstract

An apparatus for reproducing a signal recorded, in the form of a perpendicular signal magnetization, on a perpendicular magnetic recording layer backed with a high permeability layer of a magnetic recording medium. A thin-film magnetic material is disposed to face the recording layer so that an enlarged magnetized region is formed in the high permeability layer, which includes the position at which the magnetic material faces the recording layer. In this region, magnetic variation occurs in response to the signal magnetization of the recording layer at the position the magnetic material faces the recording layer. A detecting member such as a coil is disposed in the proximity of the magnetic material so as to be magnetically coupled to the enlarged magnetized region of the high permeability layer. The detecting member is used as a tuning element of a tuning circuit supplied with high frequency energy. A resonance output voltage of the high frequency circuit varies in response to the detection of magnetic variation in the high permeability layer. A reproducing circuit detects the variation in the resonance output voltage of the high frequency circuit to reproduce the signal recorded on the recording layer.

Description

This application is a division of application Ser. No. 633,915, filed on July 24, 1984 now abandoned.
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic recording/reproducing apparatus for a perpendicular magnetic recording medium and, more particularly, to a magnetic reproducing system.
With a conventional recording/reproducing system adapted for an in-plane oriented magnetic recording medium a ring-shaped magnetic head is used for recording and reproduction. To record a signal on the medium, a current is applied to the winding of the head so that a magnetic field generated across the head gap magnetizes the recording medium. To reproduce the signal from the recording medium, an electromotive force induced in the head in response to the signal magnetization on the medium is taken out as a reproduced signal. This system has a problem in that as the recording wavelength becomes shorter, the demagnetizing field effect increases. The system also has the defect that in reproducing, since the ring-shaped head is a magnetic flux detection type, the magnitude of the reproduced output signal depends upon the width of the track. Thus, the conventional system has a limitation on a high density recording and reproducing.
With a recently developed perpendicular magnetic recording/reproducing system a signal is recorded in a direction perpendicular to the plane of the recording medium. This system is not adversely affected by a demagnetizing field, and is essentially suitable for high density recording because the shorter a signal becomes in wavelength, the better recording is attained. However, with this conventional system reproduction is effected by detection of magnetic flux so that the magnitude of a reproduced output depends upon the width of a track. Therefore, taking into account the S/N ratio and reproducing sensitivity, the high-density recording cannot be effectively used.
A system for reproducing a signal by detecting a signal magnetic field from a magnetic recording medium is disclosed in Japanese Patent Early Publication No. 57-36407. This system uses as a magnetic head a magnetic material with an inductance element coupled thereto, the magnetic head being used as a constituent of a tuning circuit. In this system, a variation in magnetic field from the recording medium causes the permeability (μ) of the magnetic material of the head to vary, resulting in the shift of a tuning frequency of the tuning circuit, or the quality factor (Q) of the tuning circuit to vary. The variation in the tuning frequency and/or Q of the tuning circuit is used to take out the variation of the resonance output voltage of the tuning circuit. With this system, a slight variation in magnetic field from the recording medium results in a great variation in voltage. According to the reproducing system, therefore a reproduced output having high S/N ratio can be obtained even if the width of the recording track is narrow, thereby allowing high-density recording and reproducing.
A magnetic material having a high permeability causes in general a ferromagnetic resonance absorption phenomenon in a high frequency region. The permeability and loss of the magnetic material remarkably alter in the high frequency region even if the external magnetic field only slightly changes. Therefore, the above-mentioned reproducing system arranged to detect the signal magnetic field through the magnetic material is essentially suited for the high density recording/reproducing with narrow tracks because the reproduced output level depends only upon the intensity of the signal magnetic field rather than depending upon the magnetic flux. It is accordingly considered that an extremely high-density recording/reproducing system will be realized by combining this reproducing system with the perpendicular magnetic recording system.
However, this reproducing system has a problem in respect of the recording wavelength characteristics. This is due to the relationship between the distribution of the signal magnetic fields on the magnetic recording medium and the shape of the magnetic material. More specifically, the signal magnetic field on the magnetic recording medium becomes stronger as the wavelength is shorter, concentrating in the vicinity of the recording surface. The signal magnetic field becomes weak as the wavelength becomes long, spreading from the recording surface. Consequently, since the intensity and distribution of the magnetic field acting on the magnetic material are not uniform over the entire wavelength range, it is difficult to obtain a flat reproducing frequency response over a wide frequency range. The reproducing system is not practically suited for reproduction of video signals or audio signals.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a magnetic recording/reproducing apparatus which is arranged to reproduce signals recorded on a perpendicular magnetic recording medium in a narrow track at a high S/N ratio and has a good frequency response over a wide frequency range.
A perpendicular magnetic recording medium for which a recording/reproducing apparatus of this invention is adapted comprises a perpendicular magnetic recording layer backed with a high-permeability layer. To reproduce a signal recorded on the recording layer in the form of perpendicular signal magnetization, a thin-film magnetic material is arranged to have its one end faced the recording layer of the recording medium. As a result, in an extended area of the high-permeability layer including the position at which the magnetic material faces the recording layer, a magnetic variation occurs corresponding to the signal magnetization of the recording layer at the position at which the magnetic material faces the recording layer.
According to this invention, a detecting member such as a coil is disposed in the proximity of the thin-film magnetic material so as to be magnetically coupled with the extended magnetized area of the high-permeability layer. The detecting member is used as a tuning element of a tuning circuit to which a high-frequency energy is applied. When the magnetic variation in the high-permeability layer is detected by the detecting member a resonance output voltage of the tuning circuit is changed, which is detected by a reproducing circuit to reproduce the recorded signal.
According to the present invention, short-wavelength signals recorded on a narrow track of the perpendicular magnetic recording medium at an extremely high density can be successfully reproduced.
More particularly, most of the magnetic flux, generated from a signal magnetization recorded on the recording layer of the recording medium pass through a magnetic circuit extending from the signal magnetization through the thin-film magnetic material and the high-permeability layer to the signal magnetization. Therefore, the signal magnetization recorded in a very small region forms an extended magnetization in the high-permeability layer. When a signal recorded on a recording medium with no high permeability layer is detected by a thin film magnetic material, the signal magnetic field is abruptly attenuated as it departs from the surface of the recording medium. This becomes more prominent as the signal wavelength becomes shorter. Thus, reproduction of a signal having a short wavelength becomes difficult.
On the other hand, according to the present invention, the magnetic field formed in the high permeability layer due to the signal magnetization is distributed in an extended area irrespective of the wavelength. In addition, the magnetic field does not have a large gradient except in the vicinity of the signal magnetization at a position corresponding to the thin film magnetic material. Thus, the effective region of the magnetic field in the reproduction of the signal is extremely wide. This is very advantageous in the reproduction of short-wavelength signals. A flat frequency response can also be expected.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1 to 14 show embodiments of the magnetic recording/reproducing apparatus according to the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 shows a first embodiment of the present invention. A perpendicular magnetic recording medium 1 shown in a section along the direction of a track has a base layer 2, a high-permeability layer 3 formed on base layer 2, which is preferably formed of Fe-Ni alloy having a permeability of μ=1,000 or more; and a recording layer 4 formed on layer 3, which is formed of cobalt-chromium or barium-ferrite and has a perpendicular magnetic anisotropy.
A thin-film magnetic material 5 formed on a side of a supporting member (not shown) is disposed to have its one end faced recording layer 4 of recording medium 1. To record a signal, a recording coil 6 wound about magnetic material 5, which is a main pole of a perpendicular magnetic recording head, is supplied with a signal current from a recording circuit 7 to form a perpendicular signal magnetization 8.
On the other hand, the signal recorded in the form of perpendicular magnetization as described above is reproduced as described below according to the present invention. When magnetic material 5 is disposed on recording medium 1 in the same manner as in recording, a magnetic circuit is formed such that a magnetic flux generated by signal magnetization 8 in recording layer 4 directly under magnetic material 5 passes through magnetic material 5 and layer 3 and returns to signal magnetization 8. Thus, an enlarged magnetized region 9 is formed in layer 3 in the longitudinal direction of recording medium 1 in accordance with the signal magnetization 8 of a small area of recording layer 4. The magnetic variation, or the magnetic state in magnetized region 9, depends upon signal magnetization 8.
The magnetic variation in magnetized region 9 in high permeability layer 3 is detected by a detecting coil 10 which is arranged to be largely wound around magnetic material 5 as shown in FIG. 1 so as to be effectively coupled with the magnetic variation. The coil 10 forms a tuning circuit together with a tuning capacitor 11 which is connected in parallel with coil 10. A high frequency energy of 10 MHz or above is supplied from a high frequency oscillator 13 through a coupling capacitor 12 to the tuning circuit. In this case, detecting coil 10 produces a high frequency magnetic field perpendicularly to recording medium 1. Since the high frequency magnetic field is normal to the magnetization of magnetized region 9, the magnetized region 9 causes a ferromagnetic resonance.
Therefore, a tuning frequency and Q of the tuning circuit largely vary in accordance with the magnetized state of region 9 so that the resonance output voltage significantly alters. The variation in the signal magnetization 8, i.e., the reproduced output corresponding to the recorded signal can be obtained by detecting the variation in the resonance output voltage by a detecting circuit 14 connected to the tuning circuit.
FIGS. 2 to 14 show other embodiments of the present invention, wherein the same reference numerals are used to designate the same parts in the embodiment of FIG. 1. Only the difference therebetween will be described for the simplicity of description.
An embodiment of FIG. 2 is constructed in the same manner as the embodiment of FIG. 1 except that detecting coil 10 is provided on the base-layer side of recording medium 1. The detecting coil 10 is disposed to be opposed to the thin-film magnetic material 5 on recording layer 4.
In an embodiment shown in FIG. 3, a non-magnetic conductor 17 is provided to surround magnetic material 5 except its one end facing recording layer 4 of recording medium 1. Thus, since the high frequency magnetic field generated in detecting coil 10 during reproduction does not act upon magnetic material 5, only the magnetic variation in high permeability layer 3 can be accurately detected, thereby permitting a reproduction with good S/N ratio.
In an embodiment shown in FIG. 4 one side of thin-film magnetic material 5 is in intimate contact with magnetic plate 18. Thus, the magnetic resistance of the above-mentioned magnetic circuit reduces due to the presence of magnetic plate 18, thereby improving recording efficiency and reproducing sensitivity.
The embodiments shown in FIGS. 1 to 4 each have a combination of a perpendicular magnetic recording head using only one main pole (thin-film magnetic material 5) and a reproducing system according to the present invention. On the other hand, the following embodiments shown in FIGS. 5 to 8 uses a perpendicular magnetic recording head having a main pole (thin-film magnetic material 5) and a block-form auxiliary pole 19 of magnetic material which is opposite to the main pole with perpendicular magnetic recording medium 1 interposed therebetween.
In the embodiment of FIG. 5, recording coil 6 is wound around auxiliary pole 19, which is of the so-called auxiliary-pole exciting type. In FIG. 6 recording coil 6 is wound around thin-film magnetic material 5 together with detecting coil 10. FIG. 7 shows an example in which recording coil 6 is wound around thin-film magnetic material 5, and detecting coil 10 is wound around auxiliary pole 19. In FIG. 8 recording coil 6 and detecting coil 10 are together wound around auxiliary pole 19.
According to the embodiments of FIGS. 5 to 8, the enlarged magnetized region 9 is formed in high-permeability layer 3 correspondingly to the area of auxiliary pole 19 facing recording medium 1 by signal magnetization 8 of recording layer 4. The magnetic variation in the magnetized region is detected by detecting coil 10 during reproduction, which is magnetically coupled to the magnetized region.
Next, the embodiments of FIGS. 9 to 12 are provided with a yoke 20, 21, 22 formed of magnetic material adjacent to thin-film magnetic material 5 to effectively form a magnetic path going from magnetization 8 through magnetic material 5 back to high permeability layer 3. In the embodiments of FIGS. 9 and 10, a single yoke 20 is employed. In FIG. 9, recording coil 6 is wound around yoke 20, and detecting coil 10 is wound around thin-film magnetic material 5 and yoke 20. In FIG. 10, recording coil 6 is wound around yoke 20, but detecting coil 10 is disposed on the base side of recording medium 1 to oppose yoke 20. With the embodiments of FIGS. 11 and 12 a yoke is divided into yokes 21 and 22 lengthwise of recording medium 1 with thin-film magnetic material 5 interposed therebetween.
According to the embodiments of FIGS. 9 to 12, the enlarged magnetized region is formed in high-permeability layer 3, which has a length corresponding to that of yoke 20, 21, 22.
In the embodiments so far described, detecting coil 10 is disposed so that the high frequency magnetic field produced therefrom is normal to the plane of the magnetic recording medium. With the embodiment of FIG. 1, for example, detecting coil 10 is disposed to surround magnetic material 5 to generate a perpendicular high frequency magnetic field. In order to detect the magnetic variation in the enlarged magnetized region formed in the high-permeability layer of the perpendicular magnetic recording medium, the detecting coil need not be limited to the above-mentioned arrangement.
FIGS. 13 and 14 show still further embodiments of the present invention. In FIG. 13, thin-film magnetic material 5 is formed by sputtering on a nonmagnetic block 31 such as glass, nonmagnetic ferrite or dielectric material. A nonmagnetic coil support member 32 is adhered to thin film magnetic material 5, and detecting coil 10 is wound about support 32. Detecting coil 10 may be formed by vapor-deposition or sputtering. In the arrangement of detecting coil 10, the high frequency magnetic field is parallel to the plane of the recording medium, but a magnetic circuit is formed as designated by the broken lines. The detecting coil can detect the magnetic variation in the magnetized region as in the above embodiments. A d.c. bias magnetic field may be applied to the recording medium by suitable means in parallel with the recording medium and the travelling direction thereof.
In FIG. 14, a magnetic yoke 33 is adhered to thin film magnetic material 5, and a nonmagnetic block 34 such as glass is provided under yoke 33. A conductive thin film detector 10a is formed, by supttering, on the lower surface of block 34 in lateral direction of a recording medium. The magnetic variation in the magnetized area may be detected even by a flat detector without using a coiled detector as in the above-described embodiments.

Claims (6)

What is claimed is:
1. For use with a perpendicular magnetic recording medium having a magnetic recording layer having an easy axis of magnetization in the direction normal tothe surface thereof, a high permeability layer backed on the rear surface of said recording layer, and a base layer supporting said recording layer and said high permeability layer, an apparatus for reproducing a signal recorded on said recording layer in the form of a perpendicular signal magnetization in the easy axis of magnetization comprising:
a thin film of magnetic material supported by a supporting member and disposed to extend in the direction normal to the recording layer with one end of said thin film of magnetic material facing said recording layer of said magnetic recording medium at a time of the signal reproduction, a magnetic variation occurring, due to the perpendicular signal magnetization in said recording layer when said one end of said thin film of magnetic material faces said recording layer, in the part of said high permeability layer that locates in the vicinity of said one end of said thin film of magnetic material;
a magnetically shielding member for magnetically shielding said thin film of magnetic material except said one end of thin film which is adapted for contacting said recording medium;
a detecting coil member disposed to surround said magnetically shielding member and said thin film of magnetic material and magnetically coupled to said high permeability layer of said recording member to detect the magnetic variation occuring in said high permeability layer at the time of the signal reproduction;
a capacitor coupled to said detecting coil member to form a resonance circuit;
a high frequency signal source coupled to said resonance circuit for supplying a high frequency electrical signal to said resonance circurt to provide a resonance output voltage; and
reproducing circuit means coupled to said resonance circuit for reproducing the signal recorded on said recording medium in response to a variation in the resonance output voltage of said resonance circuit coupled to said high frequency signal source, the variation in the resonance output voltage of said resonance circuit resulting from detection of the magnetic variation occuring in said high permeability layer by said detecting coil member which is magnetically coupled to said high permeability layer.
2. The apparatus according to claim 1, wherein said detecting coil member is formed of a thin film of a conductor.
3. The apparatus according to claim 1, wherein said high permeability layer is formed of Fe-Ni alloy.
4. The apparatus according to claim 1, wherein said recording layer is formed of cobalt-chromium layer having perpendicular magnetic anisotropy.
5. The apparatus according to claim 1, wherein said recording layer is formed of barium-ferrite layer having perpendicular magnetic anisotropy.
6. The apparatus according to claim 1, wherein said shielding member is formed of a non-magnetic conductor.
US06/883,028 1983-07-27 1986-07-10 Magnetic reproducing apparatus Expired - Lifetime US4677512A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58136969A JPH06105481B2 (en) 1983-07-27 1983-07-27 Magnetic recording / reproducing device
JP58-136969 1983-07-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06633915 Division 1984-07-24

Publications (1)

Publication Number Publication Date
US4677512A true US4677512A (en) 1987-06-30

Family

ID=15187710

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/883,028 Expired - Lifetime US4677512A (en) 1983-07-27 1986-07-10 Magnetic reproducing apparatus

Country Status (5)

Country Link
US (1) US4677512A (en)
EP (1) EP0132852B1 (en)
JP (1) JPH06105481B2 (en)
CA (1) CA1244937A (en)
DE (1) DE3483290D1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777553A (en) * 1985-10-16 1988-10-11 Hitachi, Ltd. Magnetic head
US4858049A (en) * 1986-05-30 1989-08-15 Hitachi, Ltd. Magnetic film and magnetic head using the same
US5003423A (en) * 1984-12-03 1991-03-26 Olympus Optical Company Ltd. Vertical recording magnetic head
US5065094A (en) * 1990-08-07 1991-11-12 Seagate Technology, Inc. Two terminal magnetoresistive sensor having DC blocking capacitor
US5331491A (en) * 1991-03-07 1994-07-19 Sony Corporation High-density magnetic recording and reproducing head
US5815342A (en) * 1992-07-13 1998-09-29 Kabushiki Kaisha Toshiba Perpendicular magnetic recording/reproducing apparatus
US20030095356A1 (en) * 2001-11-21 2003-05-22 Yoshikazu Nakayama And Daiken Chemical Co., Ltd. Nano-magnetic head and nano-magnetic head device using the same
US6646827B1 (en) * 2000-01-10 2003-11-11 Seagate Technology Llc Perpendicular magnetic recording head with write pole which reduces flux antenna effect
US20070253106A1 (en) * 2006-04-28 2007-11-01 Tdk Corporation Magnetic head apparatus and magnetic recording and reproducing apparatus
US20070268016A1 (en) * 2006-05-16 2007-11-22 Cheng-Chung Chi Apparatus for detecting magnetic signals and signals of electric tunneling
US20080151436A1 (en) * 2006-12-21 2008-06-26 Tdk Corporation Magnetic recording method using ferromagnetic resonance and thin-film magnetic head for using the method
US20100328799A1 (en) * 2009-06-25 2010-12-30 Patrick Mesquita Braganca Spin Torque Oscillator Sensor
US20110007431A1 (en) * 2009-06-25 2011-01-13 Hitachi Global Storage Technologies Netherlands .B. V. Spin torque oscillator sensor enhanced by magnetic anisotropy
US20110063756A1 (en) * 2007-06-20 2011-03-17 Seagate Technology Llc Magnetic write device with a cladded write assist element
US20120050921A1 (en) * 2010-08-27 2012-03-01 Seagate Technology Llc Damped magnetic head

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756794B2 (en) * 1986-04-23 1995-06-14 日本板硝子株式会社 Sealed lead acid battery separator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2926844A (en) * 1952-03-14 1960-03-01 George C Devol Sensing device for magnetic record
US4120011A (en) * 1977-09-21 1978-10-10 Eastman Kodak Company Magnetic head employing easy axis thin film inductor
US4182987A (en) * 1977-09-21 1980-01-08 Eastman Kodak Company Magnetometer employing hard axis thin film inductor
JPS5736407A (en) * 1980-08-13 1982-02-27 Toshiba Corp Magnetic reproducer
JPS57179932A (en) * 1981-04-30 1982-11-05 Canon Inc Magnetic head
JPS58125220A (en) * 1982-01-21 1983-07-26 Matsushita Electric Ind Co Ltd Vertically magnetized recording and reproducing magnetic head
JPS58125219A (en) * 1982-01-21 1983-07-26 Matsushita Electric Ind Co Ltd Vertically magnetized recording and reproducing magnetic head
US4530016A (en) * 1982-07-16 1985-07-16 Tokyo Shibaura Denki Kabushiki Kaisha Magnetic recording and reproducing apparatus
US4575777A (en) * 1981-12-08 1986-03-11 Kabushiki Kaisha Suwa Seikosha Magnetic recording and reproducing head

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1190037B (en) * 1963-09-16 1965-04-01 Akad Wissenschaften Ddr System for a gapless magnetic head for writing and / or (only) reading of magnetically stored information
JPS5744212A (en) * 1980-08-26 1982-03-12 Seiko Epson Corp Magnetic head for vertical magnetic recording and reproduction
JPS57123504A (en) * 1981-01-22 1982-08-02 Toshiba Corp Magnetic recording and reproducing system
JPS5848203A (en) * 1981-09-16 1983-03-22 Toshiba Corp Magnetic recording and reproducing device
JPS58122601A (en) * 1982-01-14 1983-07-21 Toshiba Corp Magnetic recorder and reproducer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2926844A (en) * 1952-03-14 1960-03-01 George C Devol Sensing device for magnetic record
US4120011A (en) * 1977-09-21 1978-10-10 Eastman Kodak Company Magnetic head employing easy axis thin film inductor
US4182987A (en) * 1977-09-21 1980-01-08 Eastman Kodak Company Magnetometer employing hard axis thin film inductor
JPS5736407A (en) * 1980-08-13 1982-02-27 Toshiba Corp Magnetic reproducer
US4464691A (en) * 1980-08-13 1984-08-07 Tokyo Shibaura Denki Kabushiki Kaisha Magnetic reproducing system
JPS57179932A (en) * 1981-04-30 1982-11-05 Canon Inc Magnetic head
US4575777A (en) * 1981-12-08 1986-03-11 Kabushiki Kaisha Suwa Seikosha Magnetic recording and reproducing head
JPS58125220A (en) * 1982-01-21 1983-07-26 Matsushita Electric Ind Co Ltd Vertically magnetized recording and reproducing magnetic head
JPS58125219A (en) * 1982-01-21 1983-07-26 Matsushita Electric Ind Co Ltd Vertically magnetized recording and reproducing magnetic head
US4530016A (en) * 1982-07-16 1985-07-16 Tokyo Shibaura Denki Kabushiki Kaisha Magnetic recording and reproducing apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003423A (en) * 1984-12-03 1991-03-26 Olympus Optical Company Ltd. Vertical recording magnetic head
US4777553A (en) * 1985-10-16 1988-10-11 Hitachi, Ltd. Magnetic head
US4858049A (en) * 1986-05-30 1989-08-15 Hitachi, Ltd. Magnetic film and magnetic head using the same
US5065094A (en) * 1990-08-07 1991-11-12 Seagate Technology, Inc. Two terminal magnetoresistive sensor having DC blocking capacitor
US5331491A (en) * 1991-03-07 1994-07-19 Sony Corporation High-density magnetic recording and reproducing head
US5815342A (en) * 1992-07-13 1998-09-29 Kabushiki Kaisha Toshiba Perpendicular magnetic recording/reproducing apparatus
US6646827B1 (en) * 2000-01-10 2003-11-11 Seagate Technology Llc Perpendicular magnetic recording head with write pole which reduces flux antenna effect
US20030095356A1 (en) * 2001-11-21 2003-05-22 Yoshikazu Nakayama And Daiken Chemical Co., Ltd. Nano-magnetic head and nano-magnetic head device using the same
US6735046B2 (en) * 2001-11-21 2004-05-11 Yoshikazu Nakayama Nano-magnetic head and nano-magnetic head device using the same
US7791838B2 (en) * 2006-04-28 2010-09-07 Tdk Corporation Magnetic head apparatus and magnetic recording and reproducing apparatus
US20070253106A1 (en) * 2006-04-28 2007-11-01 Tdk Corporation Magnetic head apparatus and magnetic recording and reproducing apparatus
US20070268016A1 (en) * 2006-05-16 2007-11-22 Cheng-Chung Chi Apparatus for detecting magnetic signals and signals of electric tunneling
US20080151436A1 (en) * 2006-12-21 2008-06-26 Tdk Corporation Magnetic recording method using ferromagnetic resonance and thin-film magnetic head for using the method
US7920357B2 (en) * 2006-12-21 2011-04-05 Tdk Corporation Magnetic recording method using ferromagnetic resonance and thin-film magnetic head for using the method
US20110063756A1 (en) * 2007-06-20 2011-03-17 Seagate Technology Llc Magnetic write device with a cladded write assist element
US8582236B2 (en) * 2007-06-20 2013-11-12 Seagate Technology Llc Magnetic write device with a cladded write assist element
US20100328799A1 (en) * 2009-06-25 2010-12-30 Patrick Mesquita Braganca Spin Torque Oscillator Sensor
US20110007431A1 (en) * 2009-06-25 2011-01-13 Hitachi Global Storage Technologies Netherlands .B. V. Spin torque oscillator sensor enhanced by magnetic anisotropy
US8259409B2 (en) 2009-06-25 2012-09-04 Hitachi Global Storage Technologies Netherlands B.V. Spin torque oscillator sensor
US8432644B2 (en) 2009-06-25 2013-04-30 HGST Netherlands B.V. Spin torque oscillator sensor enhanced by magnetic anisotropy
US20120050921A1 (en) * 2010-08-27 2012-03-01 Seagate Technology Llc Damped magnetic head
US8416529B2 (en) * 2010-08-27 2013-04-09 Seagate Technology Llc Magnetically damped return pole in a magnetic head

Also Published As

Publication number Publication date
EP0132852A3 (en) 1987-11-19
CA1244937A (en) 1988-11-15
JPS6028004A (en) 1985-02-13
EP0132852B1 (en) 1990-09-26
DE3483290D1 (en) 1990-10-31
EP0132852A2 (en) 1985-02-13
JPH06105481B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US4677512A (en) Magnetic reproducing apparatus
US4530016A (en) Magnetic recording and reproducing apparatus
EP0634739B1 (en) Magnetoresistance effect magnetic head and composite magnetic head
US4593332A (en) Magnetic reproduction system utilizing magnetic body as capacitor
US4635152A (en) Magnetic resonance-type playback apparatus including a magnetic material having magnetic anisotropy
US6795263B2 (en) Magnetic head
US4609950A (en) Magnetic head apparatus with variable inductance
EP0514976B1 (en) Combined read/write magnetic head
US4680657A (en) Method and apparatus for reproducing magnetically recorded signals with a D.C. biasing magnetic field produced by a D.C. biasing coil
US4803582A (en) Perpendicular magnetization type magnetic head having a magnetic pole part which forms a closed magnetic path
JPH05234170A (en) Magnetic head
CA1203899A (en) Magnetic recording and reproducing apparatus
JPS6224848B2 (en)
JPH0370845B2 (en)
JPH05166137A (en) Magnetic head and recording/reproducing device
JP2601850B2 (en) Magnetic playback device
JPH061524B2 (en) Magnetic reproducing device
JPS6028005A (en) Magnetic recording and reproducing device
JPH01184709A (en) Thin film magnetic head
JPS6028006A (en) Magnetic recording and reproducing device
JPS60129907A (en) Magnetic reproducer
JPS6028007A (en) Magnetic recording and reproducing device
JPH0490101A (en) Vertical magnetic recorder
JPS5848203A (en) Magnetic recording and reproducing device
JPS60129906A (en) Magnetic reproducer

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, A CORP. OF JAPAN,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AKIYAMA, JUNICHI;CHIBA, SHU;SAWAZAKI, NORIKAZU;AND OTHERS;SIGNING DATES FROM 19840716 TO 19840718;REEL/FRAME:004700/0881

Owner name: KABUSHIKI KAISHA TOSHIBA, 72 HORIKAWA-CHO, SAIWAI-

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:AKIYAMA, JUNICHI;CHIBA, SHU;SAWAZAKI, NORIKAZU;AND OTHERS;REEL/FRAME:004700/0881;SIGNING DATES FROM 19840716 TO 19840718

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12