US4395481A - Method for the manufacture of resist structures - Google Patents

Method for the manufacture of resist structures Download PDF

Info

Publication number
US4395481A
US4395481A US06/305,798 US30579881A US4395481A US 4395481 A US4395481 A US 4395481A US 30579881 A US30579881 A US 30579881A US 4395481 A US4395481 A US 4395481A
Authority
US
United States
Prior art keywords
resist
wave
rays
short
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/305,798
Inventor
Siegfried Birkle
Roland Rubner
Hans Hauschildt
Eva-Maria Rissel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BIRKLE, SIEGFRIED, RISSEL, EVA-MARIA, RUBNER, ROLAND, HAUSCHILDT, HANS
Application granted granted Critical
Publication of US4395481A publication Critical patent/US4395481A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/577Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices for plural loads

Definitions

  • the present invention relates to a method for the manufacture of resist structures of the positive resist type by means of short-wave UV rays.
  • the manufacture of positive resist structures by means of short-wave UV radiation is known, the range of between about 180 and 260 nm being used with preference.
  • the resist structures or masks produced, which preferably have a thickness of about 1 ⁇ m, are used especially in the fabrication of integrated circuits.
  • PMMA polymethylmethacrylate
  • This resist material is distinguished by high contrast and is sufficiently thermostable for use in such thermal processes in semiconductor technology in which temperatures above 135° C. are not exceeded. If commercially available short-wave UV lamps such as mercury low pressure lamps, xenon-mercury high pressure lamps or deuterium lamps are used, however, PMMA is too insensitive, i.e., excessively long exposure times are required for forming resist patterns. In the manufacture of integrated circuits by irradiation, it is extremely important to hold as low as possible the energy dose and the exposure time required for sufficient breaking down of polymer material so that the process can be carried out practically as well as economically within justifiable limits.
  • Polybutene sulfone While about 100-times more sensitive to UV rays at 184 nm than PMMA, is not suitable for the thermal processes being practiced in semiconductor technology, such as "lift-off" processes, dry etching processes and ion implantation, because of the low dimensional heat stability and the thermal instability (depolymerization at temperatures of about 70° C.).
  • a further disadvantage of the positive resist PBS is the excessively high absorptivity for short-wave UV rays, which leads to very limited resolution, such that the resist masks of 1 ⁇ m thickness, frequently required for structuring processes, can no longer be realized for transferring very small structures onto semiconductor substrates.
  • resist materials such as poly-2,2,3,4,4,4-hexafluorobutylmethacrylate and polymethylisopropenyl ketone, while about 5 to 6 times more sensitive than PMMA and therefore suitable for structuring resist films 1 ⁇ m thick, have a dimensional heat stability (glass or glass transition temperature T g ⁇ 50° C. and 62° C., respectively) which is likewise so low, however, that they are not suited for thermal processes such as occur in semiconductor technology.
  • a dimensional heat stability glass or glass transition temperature T g ⁇ 50° C. and 62° C., respectively
  • a particular disadvantage of such a material is an extremely high UV absorption in the application range of interest below 260 nm, so that only varnish films less than 0.5 ⁇ m thick can be structured with relatively steep flanks. Films of such thickness, however, have only very limited etching resistance.
  • a further disadvantage is the high spectral sensitivity of the varnish above 300 nm, i.e., high resolution can be achieved only through the use of either interference filters which are expensive and heavily reduce the intensity, or appropriately surface-coated reflection mirrors.
  • the sensitizers are liquid benzoic acid derivatives which absorb in the typical emission range of, for example, a xenon-mercury short-arc lamp, and pass the energy to the PMMA, and thereby cause more chain breaks.
  • a polymethylmethacrylate sensitized in this manner is used, adverse effects on the resist properties can result with consequent limitations of the applications.
  • multiply-structured substrates with a height profile are varnished by means of the centrifuging technique, the structure corners receive less varnish than the remainder of the substrate surface.
  • the structure should have steep resist flanks
  • the resist structure should be chemically resistant to wet etching processes used in semiconductor technology, and thermally resistant in dry etching and "lift off" processes;
  • the expensive and intensity-reducing interference filters or appropriately surface-coated reflection mirrors otherwise required for eliminating the longer-wave UV lamp emission region should be dispensed with.
  • the resist material should have increased sensitivity and resolution in the wavelength range between about 180 and 260 nm, also in layer thicknesses of more than 0.5 nm, as well as high thermal stability, and the resist material should furthermore be completely transparent in the wavelength region above 260 nm.
  • the resist material comprises a copolymer of:
  • the resist material used in the method according to the present invention meets the specified requirements to a high degree. Due to its increased thermal stability, the resist material can be used in semiconductor-technology processes such as dry etching processes and metallization according to the additive method, at which it is subjected to temperatures above 135° C. As compared to PMMA, for example, the resist material used in the method according to the present invention exhibits improved dimensional heat stability and a higher glass temperature (T g >125° C.) and the contrast properties are equally good.
  • T g >125° C. glass temperature
  • the sensitivity of the resist material used in the method of the present invention is 7 times higher than that of PMMA. A particularly advantageous effect is shown with this material in the spectral absorptivity which, as compared to PMMA, exists below 220 nm.
  • the resist material is transparent above 260 nm, so that the resolution is not impaired by the longer-wave UV components of commercially available lamps, and performance-reducing and expensive interference filters or appropriately surface-coated reflection mirrors can be omitted.
  • the radiation with short-wave UV light takes place here under oxygen exclusion, preferably in an inert gas or in a vacuum.
  • the copolymerizate used as the resist material in the method according to the present invention preferably contains 30 to 50 mol % of the ethylenically unsaturated monomer with chlorine and/or cyan substituents.
  • the alkylmethacrylate units of the copolyermizate are, in particular, methylmethacrylate and tert-butylmethacrylate.
  • the units of the ethylenically unsaturated monomer, which is not a methacrylate, are in particular methyl- ⁇ -cyanoacrylate, methyl- ⁇ -chloroacrylate, ⁇ -chloroacrylonitrile and ⁇ -chloroacrylic acid.
  • copolymers of methylmethacrylate and methyl- ⁇ -chloroacrylate or methyl- ⁇ -cyanoacrylate preferably are used.
  • the copolymers used in the method according to the present invention can be prepared by solution polymerization, using a free radical initiator.
  • the polymerization preferably is performed at temperatures between about 50° and 100° C. where, depending on the other polymerization conditions, polymers with an average numerical molecular weight in the range of about 20 ⁇ 10 3 to 1000 ⁇ 10 3 and with an average weight molecular weight in the range of about 40 ⁇ 10 3 to 2000 ⁇ 10 3 result.
  • the polymer materials are centrifuged in the form of suitable solutions on a substrate by the so-called spin-coating method up to the desired layer thickness of about 50 A to 10 ⁇ m, and preferably of about 0.5 to 2 ⁇ m, and are heated (to evaporate the solvent and to eliminate the mechanical stresses in the polymer film) for a predetermined, definite time, preferably not less than 15 minutes and not more than 2 hours, beyond the glass temperature of the polymer, but below its decomposition temperature, preferably in the range between 120° and 170° C.
  • the increased sensitivity of the polymer materials make them suitable to a particular degree, especially also in conjunction with developers such as methylethyl ketone, for methods for generating structures using short-wave UV rays with commercially available lamps. This results in short exposure times, and the method becomes economically feasible. Due to the exclusive absorptivity for UV rays below 260 nm, in particular the short-wave UV content of the commerical light sources can be utilized without the need to eliminate the long wave emission range by expensive filters which also reduce the useful UV radiation intensity considerably.
  • the co-polymers used in the method according to the present invention are found to be particularly advantageous because, contrary to PMMA, they absorb UV energy also below 220 nm and thus contribute to an increase in sensitivity.
  • a transparent film about 0.6 ⁇ m thick is prepared on a silicon wafer with a silicon dioxide surface by spinning at about 4000 rpm. After drying the film for about 45 minutes at about 170° C., the resist material, which is partly covered up by a slot mask, is irradiated with a low-pressure mercury lamp for different periods of time. The film then is developed at 20° C. in a developer mixture of methylethyl ketone and ethanol for 2 minutes, rinsed and then post-dried for 30 minutes at about 120° C. The exposed zones are dissolved-out by the developer, according to the doses, to different degrees, so that a contrast curve is obtained directly. The actual thickness which remains in the non-irradiated zone is about 97 to 100% of the original film thickness.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Materials For Photolithography (AREA)

Abstract

The invention relates to a method for the manufacture of positive resist structures by means of short-wave UV rays and has the objective to develop such a method in a manner such that increased sensitivity and resolution as well as high thermal stability and, in addition, transparency in the wave-length range above 260 nm can be achieved. According to the invention, it is provided for this purpose to use as the resist material copolymers of 1 to 70 mol % alkylmethacrylate with an alkyl radical having 1 to 4 C atoms, and 99 to 30 mol % of an ethylenically unsaturated monomer with chlorine and/or cyan substituents. The method according to the invention is particularly well suited for producing resist structures about 0.5 to 2 μm thick by means of UV rays in the wave-length range between about 180 to 260 nm.

Description

BACKGROUND OF THE INVENTION
The present invention relates to a method for the manufacture of resist structures of the positive resist type by means of short-wave UV rays.
The manufacture of positive resist structures by means of short-wave UV radiation (deep UV rays) is known, the range of between about 180 and 260 nm being used with preference. The resist structures or masks produced, which preferably have a thickness of about 1 μm, are used especially in the fabrication of integrated circuits.
For manufacturing resist structures of the type mentioned, a number of resist materials is already being used. One of these materials is polymethylmethacrylate (PMMA). This resist material is distinguished by high contrast and is sufficiently thermostable for use in such thermal processes in semiconductor technology in which temperatures above 135° C. are not exceeded. If commercially available short-wave UV lamps such as mercury low pressure lamps, xenon-mercury high pressure lamps or deuterium lamps are used, however, PMMA is too insensitive, i.e., excessively long exposure times are required for forming resist patterns. In the manufacture of integrated circuits by irradiation, it is extremely important to hold as low as possible the energy dose and the exposure time required for sufficient breaking down of polymer material so that the process can be carried out practically as well as economically within justifiable limits.
Polybutene sulfone (PBS), while about 100-times more sensitive to UV rays at 184 nm than PMMA, is not suitable for the thermal processes being practiced in semiconductor technology, such as "lift-off" processes, dry etching processes and ion implantation, because of the low dimensional heat stability and the thermal instability (depolymerization at temperatures of about 70° C.). A further disadvantage of the positive resist PBS is the excessively high absorptivity for short-wave UV rays, which leads to very limited resolution, such that the resist masks of 1 μm thickness, frequently required for structuring processes, can no longer be realized for transferring very small structures onto semiconductor substrates.
Other resist materials such as poly-2,2,3,4,4,4-hexafluorobutylmethacrylate and polymethylisopropenyl ketone, while about 5 to 6 times more sensitive than PMMA and therefore suitable for structuring resist films 1 μm thick, have a dimensional heat stability (glass or glass transition temperature Tg ˜50° C. and 62° C., respectively) which is likewise so low, however, that they are not suited for thermal processes such as occur in semiconductor technology.
It already has been attempted to use a commercially available photographic varnish of the novolaks and diazoquinones type as the deep-UV resist because of the excellent etching resistance and thermal stability. A particular disadvantage of such a material, however, is an extremely high UV absorption in the application range of interest below 260 nm, so that only varnish films less than 0.5 μm thick can be structured with relatively steep flanks. Films of such thickness, however, have only very limited etching resistance. A further disadvantage is the high spectral sensitivity of the varnish above 300 nm, i.e., high resolution can be achieved only through the use of either interference filters which are expensive and heavily reduce the intensity, or appropriately surface-coated reflection mirrors.
It also has been attempted to sensitize PMMA, while retaining its other good resist properties, to thereby increase the sensitivity about 5 times. The sensitizers are liquid benzoic acid derivatives which absorb in the typical emission range of, for example, a xenon-mercury short-arc lamp, and pass the energy to the PMMA, and thereby cause more chain breaks. However, if a polymethylmethacrylate sensitized in this manner is used, adverse effects on the resist properties can result with consequent limitations of the applications. In particular, if multiply-structured substrates with a height profile are varnished by means of the centrifuging technique, the structure corners receive less varnish than the remainder of the substrate surface. The danger exists, therefore, that in the centrifuging process and in the so-called "prebake", the liquid sensitizer evaporates faster at the less varnished stages and, therefore, different sensitivity regions are formed on the substrate, which can have a substantial adverse effect on the resolution. A similar disadvantageous effect on the quality of the structure can be caused by the liquid or highly volatile additives during the so-called "post-bake". In the case of thicker varnish layers, there is furthermore the danger that so-called "pinholes" are formed during the evaporation of the sensitizer.
In the efficient manufacture of positive resist structures, preferably about 1 μm thick, by means of short-wave UV rays, the following requirements should be met:
a low UV dose should be required for structuring;
the structure should have steep resist flanks;
the resist structure should be chemically resistant to wet etching processes used in semiconductor technology, and thermally resistant in dry etching and "lift off" processes;
high resolution should be ensured by utilizing the UV spectral range below 260 nm and by the particular spectral absorptivity of the resist material;
through making the resist transparent above 260 nm, the expensive and intensity-reducing interference filters or appropriately surface-coated reflection mirrors otherwise required for eliminating the longer-wave UV lamp emission region should be dispensed with.
As pointed out above, these requirements in their totality heretofore have been met only unsatisfactorily, since only part of the mentioned requirements can be achieved at any one time with the resist materials used to date.
SUMMARY OF THE INVENTION
It is an object of the present invention to describe a method for the manufacture of positive resist structures by means of short-wave UV rays, in which the above-mentioned requirements are met. In particular, the resist material should have increased sensitivity and resolution in the wavelength range between about 180 and 260 nm, also in layer thicknesses of more than 0.5 nm, as well as high thermal stability, and the resist material should furthermore be completely transparent in the wavelength region above 260 nm.
According to the present invention, this and other objects are achieved by the provision that the resist material comprises a copolymer of:
(a) 1 to 70 mol % alkylmethacrylate with an alkyl radical having 1 to 4 C atoms; and
(b) 99 to 30 mol % of an ethylenically unsaturated monomer with chlorine and/or cyan substituents.
The resist material used in the method according to the present invention meets the specified requirements to a high degree. Due to its increased thermal stability, the resist material can be used in semiconductor-technology processes such as dry etching processes and metallization according to the additive method, at which it is subjected to temperatures above 135° C. As compared to PMMA, for example, the resist material used in the method according to the present invention exhibits improved dimensional heat stability and a higher glass temperature (Tg >125° C.) and the contrast properties are equally good. The sensitivity of the resist material used in the method of the present invention, however, is 7 times higher than that of PMMA. A particularly advantageous effect is shown with this material in the spectral absorptivity which, as compared to PMMA, exists below 220 nm. This better utilizes the short-wave range of commercially available deep-UV lamps. On the other hand, like PMMA, the resist material is transparent above 260 nm, so that the resolution is not impaired by the longer-wave UV components of commercially available lamps, and performance-reducing and expensive interference filters or appropriately surface-coated reflection mirrors can be omitted.
The method according to the invention is carried out generally as follows:
(a) First, a film of an (uncrosslinked) polymer material with the above-described composition is exposed with a predetermined pattern to short-wave UV rays in the range between about 180 and 260 nm;
(b) The exposure to short-wave UV light is continued until the polymer material is broken down (in the exposed zones) into low-molecular products or into polymers having better dissolution properties; and
(c) The breakdown products in the exposed regions then are removed.
The radiation with short-wave UV light takes place here under oxygen exclusion, preferably in an inert gas or in a vacuum.
The copolymerizate used as the resist material in the method according to the present invention preferably contains 30 to 50 mol % of the ethylenically unsaturated monomer with chlorine and/or cyan substituents. The alkylmethacrylate units of the copolyermizate are, in particular, methylmethacrylate and tert-butylmethacrylate. The units of the ethylenically unsaturated monomer, which is not a methacrylate, are in particular methyl-α-cyanoacrylate, methyl-α-chloroacrylate, α-chloroacrylonitrile and α-chloroacrylic acid. In the method according to the present invention, copolymers of methylmethacrylate and methyl-α-chloroacrylate or methyl-α-cyanoacrylate preferably are used.
From U.S. Pat. No. 4,011,351 it is known that for preparing a positive resist picture by means of electron beams, among other things, a non-crosslinked polymer material with a content of 50 to 99 mol % polymerized alkylmethacrylate units with 1 to 4 C atoms in the alkyl group and 50 to 1 mol % of polymerized units of at least one other ethylenically unsaturated monomer with a halogen and/or cyan substituent can be used. However, it could not be anticipated that polymer materials of this kind also are suitable for exposure by short-wave UV rays in the range of 180 to 260 nm. Thus, it was found surprising that, for example, a copolymerizate with approximately 38 mol % methyl-α-chloroacrylate and 62 mol % methylmethacrylate is about 7 times more sensitive than the heretofore most sensitive polymethylmethyacrylate.
From the fact that the mentioned copolymer also is about 3 to 4 times more sensitive than PMMA to exposure to electrons, under comparable development criteria, it cannot be concluded generally, as will be shown in the following, that all good electron resists are at the same time good resists for exposure to UV rays. Thus, it is known, for example, that a copolymer of methylmethacrylate and methacrylic acid is about 100 times more sensitive as an electron resist than polymethylmethacrylate, but with respect to the sensitivity to short-wave UV rays no difference can be found between the two polymer materials. Hexafluorobutylmethacrylate which likewise is about 100 times more sensitive to exposure by electrons than polymethylmethacrylate, exhibits a sensitivity to shortwave UV rays reduced by a factor of 20.
Even more striking is the behavior of a highly sensitive electron negative resist, used in production for the making of masks, of the polyglycidyl methacrylate type when exposed to short-wave UV rays. This negative resist exhibits not only a UV sensitivity reduced by a factor of 100 in the range of 180 to 260 nm, but it even becomes a positive resist. The resist properties, which are clearly influenced considerably by the type of radiation, indicate distinctly that the possible application of resist materials to the various lithographic processes cannot be predicted and must be ascertained in each individual case.
The copolymers used in the method according to the present invention can be prepared by solution polymerization, using a free radical initiator. The polymerization preferably is performed at temperatures between about 50° and 100° C. where, depending on the other polymerization conditions, polymers with an average numerical molecular weight in the range of about 20×103 to 1000×103 and with an average weight molecular weight in the range of about 40×103 to 2000×103 result.
With the method according to the present invention, the polymer materials are centrifuged in the form of suitable solutions on a substrate by the so-called spin-coating method up to the desired layer thickness of about 50 A to 10 μm, and preferably of about 0.5 to 2 μm, and are heated (to evaporate the solvent and to eliminate the mechanical stresses in the polymer film) for a predetermined, definite time, preferably not less than 15 minutes and not more than 2 hours, beyond the glass temperature of the polymer, but below its decomposition temperature, preferably in the range between 120° and 170° C.
The increased sensitivity of the polymer materials make them suitable to a particular degree, especially also in conjunction with developers such as methylethyl ketone, for methods for generating structures using short-wave UV rays with commercially available lamps. This results in short exposure times, and the method becomes economically feasible. Due to the exclusive absorptivity for UV rays below 260 nm, in particular the short-wave UV content of the commerical light sources can be utilized without the need to eliminate the long wave emission range by expensive filters which also reduce the useful UV radiation intensity considerably. The co-polymers used in the method according to the present invention are found to be particularly advantageous because, contrary to PMMA, they absorb UV energy also below 220 nm and thus contribute to an increase in sensitivity.
DETAILED DESCRIPTION OF THE INVENTION
The invention is explained in further detail with the aid of an illustrative example and the accompanying FIGURE.
0.208 mol methyl-α-chloroacrylate and 0.792 mol methylmethacrylate are dissolved in benzene. To this solution are added 0.5 mMol azoisobutyronitrile and heat is applied under the exclusion of air to about 65° C. for about 8 hours. The polymer obtained is precipitated from the solution with hexane, and subsequently is re-precipitated from chloroform/hexane. After drying in a vacuum (at a pressure of less than 13 Pa) at room temperature, 26 g of polymer are obtained, the viscosity number of which is about 50 ml/g, as measured in butanone at 20° C. The composition was determined on the basis of the chlorine content and gave a content of 38 mol % methyl-α-chloroacrylate and 62 mol % methylmethacrylate.
With a 7.5% solution of the polymer in chlorobenzene, a transparent film about 0.6 μm thick is prepared on a silicon wafer with a silicon dioxide surface by spinning at about 4000 rpm. After drying the film for about 45 minutes at about 170° C., the resist material, which is partly covered up by a slot mask, is irradiated with a low-pressure mercury lamp for different periods of time. The film then is developed at 20° C. in a developer mixture of methylethyl ketone and ethanol for 2 minutes, rinsed and then post-dried for 30 minutes at about 120° C. The exposed zones are dissolved-out by the developer, according to the doses, to different degrees, so that a contrast curve is obtained directly. The actual thickness which remains in the non-irradiated zone is about 97 to 100% of the original film thickness.
In order to demonstrate experimentally the real sensitivity increase which can be obtained with the method according to the present invention as compared to polymethylmethacrylate, a PMMA film was prepared under comparable conditions, irradiated and developed with a likewise negligible dark loss.
The result of the comparison experiments can be seen in the FIGURE where the sensitivity curves are shown; the exposure time t in minutes is plotted on the abscissa and the normalized layer thickness d/d0 on the ordinate. It is seen from the FIGURE that the sensitivity can be increased by a factor of 7 with the method according to the present invention (curve A) as compared to PMMA (curve B).

Claims (3)

What is claimed is:
1. In a method for the manufacture of resist structures on the basis of positive resists wherein a polymer material in the form of a layer or film is exposed with a predetermined pattern to short-wave UV rays and the exposed portions of the layer or film thereafter removed, the improvement wherein the polymer material comprises a copolymer of:
(a) 1 to 70 mol percent alkylmethacrylate with an alkyl radical having 1 to 4 C atoms; and
(b) 30 to 99 mol percent of an ethylenically unsaturated monomer having chlorine and/or cyan substituents.
2. The method according to claim 1 wherein said polymer material is a copolymer of methylmethacrylate and methyl-α-chloroacrylate.
3. The method according to claim 1 wherein said polymer material is a copolymer of methylmethacrylate and methyl-α-cyanoacrylate.
US06/305,798 1980-09-29 1981-09-25 Method for the manufacture of resist structures Expired - Fee Related US4395481A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3036615 1980-09-29
DE19803036615 DE3036615A1 (en) 1980-09-29 1980-09-29 METHOD FOR PRODUCING RESIST STRUCTURES

Publications (1)

Publication Number Publication Date
US4395481A true US4395481A (en) 1983-07-26

Family

ID=6113074

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/305,798 Expired - Fee Related US4395481A (en) 1980-09-29 1981-09-25 Method for the manufacture of resist structures

Country Status (6)

Country Link
US (1) US4395481A (en)
EP (1) EP0048899B1 (en)
JP (1) JPS57118240A (en)
AT (1) ATE21779T1 (en)
CA (1) CA1176902A (en)
DE (2) DE3036615A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609615A (en) * 1983-03-31 1986-09-02 Oki Electric Industry Co., Ltd. Process for forming pattern with negative resist using quinone diazide compound
US4675273A (en) * 1986-02-10 1987-06-23 Loctite (Ireland) Limited Resists formed by vapor deposition of anionically polymerizable monomer
US4675270A (en) * 1986-02-10 1987-06-23 Loctite (Ireland) Limited Imaging method for vapor deposited photoresists of anionically polymerizable monomer
WO2000003058A1 (en) * 1998-07-10 2000-01-20 Ball Semiconductor, Inc. Cvd photo resist and deposition
WO2002092651A1 (en) * 2001-05-11 2002-11-21 Clariant International Ltd Polymer suitable for photoresist compositions
US20060275694A1 (en) * 2005-06-07 2006-12-07 International Business Machines Corporation High resolution silicon-containing resist

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0076524A1 (en) * 1981-10-06 1983-04-13 Kabushiki Kaisha Toshiba Radiation-sensitive positive resist
US4536240A (en) 1981-12-02 1985-08-20 Advanced Semiconductor Products, Inc. Method of forming thin optical membranes
DE3246825A1 (en) * 1982-02-24 1983-09-01 Max Planck Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen POSITIVE RESIST MATERIAL
IE892044A1 (en) * 1989-06-23 1991-01-02 Loctite Ireland Ltd Photoresists formed by polymerisation of di-unsaturated¹monomers
CA2019669A1 (en) * 1989-11-21 1991-05-21 John Woods Anionically polymerizable monomers, polymers thereof, and use of such polymers in photoresists
JP6365015B2 (en) * 2014-06-30 2018-08-01 大日本印刷株式会社 POSITIVE RESIST COMPOSITION AND METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING RESIST PATTERN USING THE POSITIVE RESIST COMPOSITION

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011351A (en) * 1975-01-29 1977-03-08 International Business Machines Corporation Preparation of resist image with methacrylate polymers
JPS5441207A (en) * 1977-07-25 1979-04-02 Dolzhenkov Boris S Method and apparatus for aerodynamic agitation of molten liquid metal
JPS55140836A (en) * 1979-04-19 1980-11-04 Fujitsu Ltd Pattern forming method
US4268607A (en) * 1977-12-20 1981-05-19 Vlsi Technology Research Association Method of patterning a resist layer for manufacture of a semiconductor element
US4273856A (en) * 1977-11-07 1981-06-16 Fujitsu Limited Positive resist terpolymer composition and method of forming resist pattern

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4719279A (en) * 1978-05-22 1979-11-29 Western Electric Co. Inc. Lithographic resist and device processing utilizing same
JPS5518638A (en) * 1978-07-27 1980-02-08 Chiyou Lsi Gijutsu Kenkyu Kumiai Ionized radiation sensitive positive type resist
JPS5653114A (en) * 1979-10-08 1981-05-12 Kohjin Co Ltd Preparation of polymeric material for positive resist sensitive to radiation and far ultraviolet rays
JPS5654434A (en) * 1979-10-11 1981-05-14 Kohjin Co Ltd Radiation and far ultraviolet ray sensitive positive type resist method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011351A (en) * 1975-01-29 1977-03-08 International Business Machines Corporation Preparation of resist image with methacrylate polymers
JPS5441207A (en) * 1977-07-25 1979-04-02 Dolzhenkov Boris S Method and apparatus for aerodynamic agitation of molten liquid metal
US4273856A (en) * 1977-11-07 1981-06-16 Fujitsu Limited Positive resist terpolymer composition and method of forming resist pattern
US4268607A (en) * 1977-12-20 1981-05-19 Vlsi Technology Research Association Method of patterning a resist layer for manufacture of a semiconductor element
JPS55140836A (en) * 1979-04-19 1980-11-04 Fujitsu Ltd Pattern forming method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609615A (en) * 1983-03-31 1986-09-02 Oki Electric Industry Co., Ltd. Process for forming pattern with negative resist using quinone diazide compound
US4675273A (en) * 1986-02-10 1987-06-23 Loctite (Ireland) Limited Resists formed by vapor deposition of anionically polymerizable monomer
US4675270A (en) * 1986-02-10 1987-06-23 Loctite (Ireland) Limited Imaging method for vapor deposited photoresists of anionically polymerizable monomer
WO2000003058A1 (en) * 1998-07-10 2000-01-20 Ball Semiconductor, Inc. Cvd photo resist and deposition
US6179922B1 (en) 1998-07-10 2001-01-30 Ball Semiconductor, Inc. CVD photo resist deposition
WO2002092651A1 (en) * 2001-05-11 2002-11-21 Clariant International Ltd Polymer suitable for photoresist compositions
US6686429B2 (en) 2001-05-11 2004-02-03 Clariant Finance (Bvi) Limited Polymer suitable for photoresist compositions
US20060275694A1 (en) * 2005-06-07 2006-12-07 International Business Machines Corporation High resolution silicon-containing resist
US7659050B2 (en) 2005-06-07 2010-02-09 International Business Machines Corporation High resolution silicon-containing resist

Also Published As

Publication number Publication date
JPH0149935B2 (en) 1989-10-26
ATE21779T1 (en) 1986-09-15
EP0048899B1 (en) 1986-08-27
DE3036615A1 (en) 1982-05-13
EP0048899A2 (en) 1982-04-07
JPS57118240A (en) 1982-07-23
EP0048899A3 (en) 1983-01-19
DE3175216D1 (en) 1986-10-02
CA1176902A (en) 1984-10-30

Similar Documents

Publication Publication Date Title
US4395481A (en) Method for the manufacture of resist structures
TWI663476B (en) Radiation-sensitive or actinic ray-sensitive resin composition and resist film using the same, mask blanks, method for forming resist pattern, method for manufacturing electronic device and electronic device
US4789622A (en) Production of resist images, and a suitable dry film resist
US4286049A (en) Method of forming a negative resist pattern
US4389482A (en) Process for forming photoresists with strong resistance to reactive ion etching and high sensitivity to mid- and deep UV-light
US5688634A (en) Energy sensitive resist material and process for device fabrication using the resist material
US4476217A (en) Sensitive positive electron beam resists
US4701342A (en) Negative resist with oxygen plasma resistance
JPS6037548A (en) Plasma developable negative resist compound for electron beam, x ray and optical lithography and manufacture thereof
GB2079481A (en) Method for the formation of surface relief patterns using deep ultraviolet radiation exposure of resist composition
US4262083A (en) Positive resist for electron beam and x-ray lithography and method of using same
US4608281A (en) Improvements in sensitivity of a positive polymer resist having a glass transition temperature through control of a molecular weight distribution and prebaked temperature
JPS59198446A (en) Photosensitive resin composition and using method thereof
US4414313A (en) Sensitive positive electron beam resists
JPS5828571B2 (en) Resist formation method for microfabrication
US4656119A (en) Method of manufacturing X-ray resist
US4302529A (en) Process for developing a positive electron resist
JPH0480377B2 (en)
US4604305A (en) Improvements in contrast of a positive polymer resist having a glass transition temperature through control of the molecular weight distribution and prebaked temperature
JPS592038A (en) Negative type resist composition
JPH01217341A (en) Pattern forming method of positive type electron beam resist
Imamura et al. Chloromethylated poly (naphthyl methacrylate) as electron beam and photo resist
US4409318A (en) Photosensitive element containing a polymer of an indenone based compound and a methacrylate compound
US4363867A (en) Process of imaging using an indanone containing material
JPS5857734B2 (en) Film forming method

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, MUNCHEN, GERMANLY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:BIRKLE, SIEGFRIED;RUBNER, ROLAND;HAUSCHILDT, HANS;AND OTHERS;REEL/FRAME:003934/0382;SIGNING DATES FROM 19810903 TO 19810915

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M170); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 19910728