US4351921A - Resin composition for use in uncoated exterior material - Google Patents

Resin composition for use in uncoated exterior material Download PDF

Info

Publication number
US4351921A
US4351921A US06/221,359 US22135980A US4351921A US 4351921 A US4351921 A US 4351921A US 22135980 A US22135980 A US 22135980A US 4351921 A US4351921 A US 4351921A
Authority
US
United States
Prior art keywords
weight
resin composition
monomer
resin
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/221,359
Inventor
Kazuo Kishida
Akira Hasegawa
Yasunori Kawachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Assigned to MITSUBISHI RAYON CO., LTD. reassignment MITSUBISHI RAYON CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HASEGAWA, AKIRA, KAWACHI, YASUNORI, KISHIDA, KAZUO
Application granted granted Critical
Publication of US4351921A publication Critical patent/US4351921A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • This invention relates to a resin composition for use in uncoated exterior materials markedly excellent in appearance and having impact resistance and weather resistance.
  • ABS resin is a typical instance of this sort of resins, it has a serious fault that it contains diene type rubber as the elastomer component so that it is poor in weather resistance and its outdoor use is limited. Though this fault can be somewhat overcome by adding an ultraviolet absorber or an antioxidant, the weather resistance of ABS resin cannot greatly be improved by such a technique. Accordingly, it is the present state of things that the surface of ABS resin is plated or coated to improve its weather resistance and to enable its outdoor use. However, such treatments of ABS resin surface necessitate many steps of processings and have a problem that they are apt to cause environmental pollutions. In the field of outdoor uses such as automobiles and domestic electric apparatuses used outdoors, therefore, it is particularly desired to develop a thermoplastic resin composition which can retain excellent appearance, impact resistance and weather resistance even if used outdoors for a long period of time without plating nor coating.
  • acrylic ester rubber As a method for satisfying such a desire, the use of saturated rubber as the elastomer has been proposed in various manners.
  • the use of acrylic ester rubber is its one example, about which many studies have been conducted hitherto.
  • acrylic ester rubber has a fault that it is slower than diene rubber in elastic recovery, and if a resin composition comprising such a rubber and a rigid resin is injectoin-molded the rubber particles are markedly oriented and a pearl-like pattern is formed in the neighborhood of the gate of the molded product which is undesirable from the view-point of appearance and injures the commercial value.
  • the present inventors studied the problem that pearl-like pattern develops when acrylic ester rubber is used and found that the above-mentioned problem can be solved by letting a crosslinked resin exist inside the acrylic ester rubber particle, based on which a patent application was made previously. According to the subsequent study, however, when such a polymer is used gloss, hardness and weather resistance are somewhat lowered though the development of pearl-like pattern in the neighborhood of gate of molded product can be reduced considerably, so that sufficiently satisfactory characteristics cannot yet be exhibited in the above-mentioned special fields of use such as automobiles and outdoor domestic electric apparatuses.
  • a resin composition for use in uncoated exterior materials quite excellent in appearance and resistant to impact and weather enough to achieve the above-mentioned object can be obtained by combining, in respectively specified proportions, a graft copolymer having a high rubber content with a rigid resin otherwise obtained by suspension polymerization or the like and optionally further with a diene rubber-containing thermoplastic resin, said graft copolymer being obtained by graft-polymerizing a crosslinked acrylic rubber having a multi-layer structure which contains, in its particle, a specified quantity of rigid crosslinked resin having a core particle diameter falling in a specified range with a mixture of other monomers so that the proportion of said crosslinked acrylic rubber comes to 50% by weight or more.
  • the essentiality of this invention consists in a resin composition for use in uncoated exterior materials remarkably excellent in appearance and resistant to impact and weather wherein 10-70% by weight of a graft copolymer (I) having a high rubber content obtainable by polymerizing 50-10% by weight of a monomer mixture (c) comprising 10-90% by weight of at least one aromatic vinyl monomer and 90-10% by weight of at least one ethylenic unsaturated monomer having the following general formula:
  • R represents hydrogen or CH 3 and X represents CN or COOR 1 (R 1 is alkyl group having 1-8 carbon atoms) in the presence of a latex of a crosslinked acrylic rubber having a multi-layer structure which contains, in its particle 5-30% by weight of a rigid crosslinked resin (a) having a core particle diameter of 0.25-0.40 ⁇ and of which outer layer is constituted of 45-85% by weight of a crosslinked acrylic ester polymer (b) constituted mainly of an acrylic ester so that the total amount of components (a) through (c) is 100% by weight, 90-30% by weight of a rigid thermoplastic resin (II) comprising 10-90% by weight of at least one aromatic vinyl monomer and 90-10% by weight of at least one ethylenic unsaturated monomer having the following general formula:
  • R is hydrogen or CH 3 and X is CN or COOR 1 (R 1 is alkyl group having 1-8 carbon atoms), and 0-50% by weight of a diene rubber-containing thermoplastic resin (III) are blended together so that the total amount of components (I) through (III) is 100% by weight.
  • the most important characteristic feature of this invention consists in that a resin composition excellent in appearance, gloss, impact strength, weather resistance etc. can be obtained by making the particle diameter of rigid crosslinked resin latex, constituting the core of crosslinked acrylic rubber particle having multi-layer structure, greater than the diameter in prior ones and, at the same time, employing the high rubber content blend method which comprises blending a graft polymer of high rubber content, obtainable by graft-copolymerizing the cross-linked acrylic rubber having multi-layer structure with a mixture of other monomers so that the proportion of the former is 50% by weight or more, with a rigid thermoplastic resin and optionally further with a diene rubber-containing thermoplastic resin.
  • the high rubber content blend method which comprises blending a graft polymer of high rubber content, obtainable by graft-copolymerizing the cross-linked acrylic rubber having multi-layer structure with a mixture of other monomers so that the proportion of the former is 50% by weight or more, with a rigid thermoplastic resin and optionally further with a diene
  • the resin composition of this invention contains a core structure of rigid crosslinked resin inside the particle of crosslinked acrylic ester polymer rubber, the rubber particles do not easily aggregate at the time of molding and no pearl-like pattern develops in the neighborhood of the gate of molded product.
  • the resin composition of this invention assumes an excellent appearance and, at the same time, exhibits quite excellent resistances to impact, weather, etc.
  • the blend of high rubber content graft polymer and rigid thermoplastic resin can exhibit the above-mentioned various excellent characteristics by itself, it can also be blended with a diene rubber-containing thermoplastic resin in an appropriate proportion, if necessary, to make the best of the characteristic features of both the materials. That is, an acrylic ester rubber has a higher glass transition point than diene rubber so that it is usually poor in impact strength in the low temperature range, and this can be improved by blending it with a diene rubber.
  • the rigid crosslinked resin (a) used in this invention which constitutes the core of the inner layer of multi-layer crosslinked acrylic rubber particle is not particularly limited so far as it is rigid at ordinary temperature and obtainable by the usual emulsion polymerization.
  • it is a product of crosslinking polymerization of the graft resin forming monomer, mentioned later, itself or the mixture thereof.
  • crosslinking monomers having at least two non-conjugated C ⁇ C bonds including, for example, unsaturated acid esters of polyols such as ethylene glycol dimethacrylate and butanediol diacrylate; unsaturated alcohol esters of polybasic acids such as triallyl cyanurate and triallyl isocyanurate; divinyl compounds such as divinylbenzene; and unsaturated alcohol esters of unsaturated acids such as allyl methacrylate and diallyl phthalate, can be used.
  • the amount of the crosslinking agent used is 0.01-3% by weight and preferably 0.1-2% by weight.
  • alkyl esters wherein the alkyl is C 1 -C 12 alkyl such as methyl, ethyl, n-propyl, n-butyl, 2-ethylhexyl, n-lauryl or the like; aromatic esters such as benzyl acrylate and phenethyl acrylate; and the like can be used.
  • acrylic ester In order that the polymer keeps as rubbery state below ordinary temperature, it is necessary to use said acrylic ester and preferably C 1 -C 8 alkyl ester in an amount of 60% by weight or more based on the monomers constituting crosslinked acrylic ester polymer (b).
  • acrylic esters methacrylic esters such as methyl methacrylate and n-butyl methacrylate, as well as acrylonitrile, styrene and the like can be referred to.
  • This acrylic ester rubber is generally required to have a cross-linked network structure. In this invention also, it must form a crosslinked structure.
  • a crosslinking agent having at least two non-conjugated C ⁇ C bonds of which examples include unsaturated acid esters of polyols such as ethylene glycol dimethacrylate and butanediol diacrylate; unsaturated alcohol esters of polybasic acids such as triallyl cyanurate and triallyl isocyanurate; divinyl compounds such as divinylbenzene and unsaturated alcohol esters of unsaturated acids such as allyl methacrylate and diallyl phthalate, is mixed as a crosslinking agent with a monomer or monomer mixture mainly comprising the above-mentioned acrylic ester and then polymerized. Otherwise, an organic peroxide such as benzoyl peroxide is added after the polymerization and heated in the state of latex. Combination of these two methods can also be employed.
  • unsaturated acid esters of polyols such as ethylene glycol dimethacrylate and butanediol diacrylate
  • the technique of the so-called seed polymerization which comprises polymerizing 45-85% by weight of a mixture (b) consisting of a monomer or monomer mixture constituted mainly of the above-mentioned acrylic ester and the above-mentioned crosslinking agent in the presence of 5-30% by weight (as solid component) of the above-mentioned rigid crosslinked resin latex (a) having a particle diameter of 0.25-0.40 ⁇ under such a condition as to suppress the formation of new particles.
  • a mixture (b) consisting of a monomer or monomer mixture constituted mainly of the above-mentioned acrylic ester and the above-mentioned crosslinking agent in the presence of 5-30% by weight (as solid component) of the above-mentioned rigid crosslinked resin latex (a) having a particle diameter of 0.25-0.40 ⁇ under such a condition as to suppress the formation of new particles.
  • the post-cross-linking process can also be employed which comprises polymerizing said monomer or monomer mixture, then adding an organic peroxide so that the total amount of the organic peroxide and the monomer used is 45-85% by weight, and heating the whole in the state of a latex.
  • the multi-layer crosslinked acrylic rubber thus polymerized has a degree of swelling of about 5-15 and a gel content of about 85-95.
  • the crosslinking agent is appropriately added at the time of seed polymerization or post-crosslinking in such an amount as to give a degree of swelling and a gel content falling in the respective ranges mentioned above. Usually, it is appropriately added in an amount ranging from 0.1% to 10% by weight.
  • the degree of swelling and the gel content of the multi-layer crosslinked acrylic rubber are measured in the following manner.
  • a film is prepared from latex and dipped in methyl ethyl ketone at 30° C. for 48 hours.
  • Degree of swelling and gel content can be expressed by W 1 /W 2 and W 2 /W 0 ⁇ 100, respectively, wherein W 0 is the weight of film before dipping, W 1 isthe weight of film after swelling and W 2 is the weight of absolutely dry film after swelling.
  • the resin part from several stages of grafts by variously changing the degree of grafting and the degree of polymerization or to employ the emulsion-suspension process for transforming the system from an emulsion system to a suspension system at the time of graft polymerization.
  • the multi-stage graft polymerization impact strength and flow property of the finally obtained resin composition can be improved further.
  • aromatic vinyl monomer styrene and ⁇ -methylstyrene can be referred to.
  • compound of general formula CH 2 CRX
  • acrylonitrile, methacrylonitrile, and methyl, ethyl, propyl and butyl esters of acrylic acid and methacrylic acid, and the like can be referred to.
  • the degree of grafting of the grafted resin part (c) onto the multi-layer crosslinked acrylic rubber constituted of aforementioned (a) and (b) is preferably at least 10%.
  • the degree of grafting is expressed by (W 4 -W 5 )/W 5 ⁇ 100 when a graft polymer having a known weight W 3 is subjected to a direct refluxing in acetone at 70° C. for 2 hours, the insoluble fraction is isolated by centrifugation and its weight after absolute dryness is denoted by W 4 .
  • W 5 is the weight of multi-layer crosslinked acrylic rubber in the graft polymer weighing W 3 .
  • the proportion of multi-layer crosslinked acrylic rubber in the graft polymer (I) obtained by the above-mentioned process is specified in the range of 50-90% by weight, owing to which the resin composition of this invention for use in uncoated exterior materials having various excellent characteristics can be obtained.
  • graft polymer (I) having a high rubber content thus obtained is blended with 90-30% by weight of rigid thermoplastic resin (II) otherwise produced to obtain various molding materials.
  • the polymerization process of these rigid thermoplastic resins is not particularly limited, polymers obtained by suspension or bulk polymerization process are more advantageous to use in various properties such as hardness, gloss and the
  • the resin composition of this invention may be used in the form of the blended mixture itself of aforementioned graft polymer (I) and rigid thermoplastic resin (II). If necessary, however, it may be blended further with a diene rubber-containing thermoplastic resin (III) having a diene rubber content of at least 10% by weight so that the content of (III) of the total resin composition is 0-50% by weight and the total amount of components (I) through (III) is 100% by weight.
  • a diene rubber polybutadiene, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer and the like can be referred to.
  • ABS resin can be referred to.
  • various colorants, stabilizers to light and heat, inorganic or organic granular, powdery or fibrous fillers, foaming agents and the like may be added to the resin composition of this invention for use in uncoated exterior materials.
  • the resin composition of this invention for use in uncoated exterior materials can be molded according to various processing methods such as injection molding, extrusion molding, etc. and can be utilized as various molded products excellent in appearance, weather resistance, impact resistance, etc. and particularly as molded products for use in automobiles and domestic electric apparatuses used outdoors. It can also be utilized as a constitutional element, such as outermost laminate material, of other multi-layer structures.
  • the crosslinked resin latex thus obtained had a particle diameter of 0.26 ⁇ .
  • the crosslinked acrylic rubber thus obtained having said crosslinked resin as a core had a degree of swelling of 8.0, a gel content of 90% and a particle diameter of 0.30 ⁇ .
  • the latex thus obtained was poured into 5 times its amount of aqueous calcium chloride solution with stirring to coagulate it, after which it was made free from liquid, washed and dried to obtain a graft polymer having a high rubber content.
  • melt index (MI) was determined by measuring the gram number of polymer flowing out during 10 minutes at 200° C. under a load of 5 kg
  • surface gloss was determined by forming a flat plate having a thickness of 1/8 inch and measuring its specular gloss at incident and reflective angles of 60° according to ASTM-D523-62T.
  • MI melt index
  • surface gloss was determined by forming a flat plate having a thickness of 1/8 inch and measuring its specular gloss at incident and reflective angles of 60° according to ASTM-D523-62T.
  • degree of swelling and gel content of crosslinked acrylic rubber were measured by the aforementioned methods.
  • Comparative Example 3 is a case in which no resin core is present in the acrylic rubber particle
  • Comparative Examples 4-5 are cases in which the balance of multi-layer crosslinked acrylic rubber is not good
  • Comparative Example 6 is a case in which the content of multi-layer crosslinked acrylic rubber in the graft polymer is small
  • Comparative Example 7 is a case in which the content of said rubber is large contrarily.
  • Example 3 By repeating the procedures of Example 1, various test pieces were prepared and various properties were evaluated, except that, in the procedure of graft polymerization of (C) in Example 1, a graft polymer was prepared by polymerization a mixture of graft resin forming monomer, mercaptan and benzoyl peroxide in two portions divided at a ratio of 60:40. The results are shown in Table 3. It is apparent from the results of Table 3 that the graft polymer obtained by the procedure of multi-stage graft polymerization in step (C) improves the impact resistance of the final resin composition.
  • Example 15 By repeating the procedures of Example 1, various test pieces were prepared and various properties were evaluated, except that, in the blending procedure of step (D) of Example 1, a ternary blend system comprising ABS resin having a butadiene-styrene rubber content of 50% by weight in addition to graft polymer and rigid thermoplastic resin at a blending ratio of 10:50:40 (Example 15) or 10:30:60 (Example 16), in the mentioned order, was employed. The results are shown in Table 3.
  • Example 3 By repeating the procedures of Example 1, various test pieces were prepared and various properties were evaluated, except that, in the procedure of step (D) of Example 1, graft polymer and suspension particles were blended together so that the content of multi-layer crosslinked acrylic rubber in the whole resin composition was 40%.
  • the results herein obtained, as well as the results obtained by using the test pieces obtained in Example 1, are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

A resin composition for use in uncoated exterior materials markedly excellent in appearance and having high impact resistance and weather resistance wherein 10-70% by weight of a graft copolymer (I) having a high rubber content, 90-30% by weight of a rigid thermoplastic resin (II) comprising 10-90% by weight of at least one aromatic vinyl monomer and 90-10% by weight of at least one ethylenic unsaturated monomer having the following general formula:
CH.sub.2 =CRX
wherein R represents hydrogen or CH3 group and X represents CN or COOR1 group (R1 represents alkyl group having 1-8 carbon atoms), and 0-50% by weight of a diene rubber-containing thermoplastic resin (III) are blended together so that the total amount of components (I) through (III) is 100% by weight, said graft copolymer (I) having a high rubber content being obtained by polymerizing 50-10% by weight of a monomer mixture (c) comprising 10-90% by weight of at least one aromatic vinyl monomer and 90-10% by weight of at least one ethylenic monomer having the following general formula:
CH.sub.2 =CRX
wherein R represents hydrogen or CH3 group and X represents CN or COOR1 group (R1 represents alkyl group having 1-8 carbon atoms) in the presence of a latex of a crosslinked acrylic rubber having a multi-layer structure which contains, in its particle, 5-30% by weight of a rigid crosslinked resin (a) having a core particle diameter of 0.25-0.40μ and of which outer layer part is constructed of 45-85% by weight of a crosslinked acrylic ester type polymer (b) constituted mainly of an acrylic ester, so that the total amount of components (a) through (c) is 100% by weight.

Description

This invention relates to a resin composition for use in uncoated exterior materials markedly excellent in appearance and having impact resistance and weather resistance.
It has been usual hitherto to reinforce a rigid resin with an elastomer in order to give the resin an impact resistance. Though ABS resin is a typical instance of this sort of resins, it has a serious fault that it contains diene type rubber as the elastomer component so that it is poor in weather resistance and its outdoor use is limited. Though this fault can be somewhat overcome by adding an ultraviolet absorber or an antioxidant, the weather resistance of ABS resin cannot greatly be improved by such a technique. Accordingly, it is the present state of things that the surface of ABS resin is plated or coated to improve its weather resistance and to enable its outdoor use. However, such treatments of ABS resin surface necessitate many steps of processings and have a problem that they are apt to cause environmental pollutions. In the field of outdoor uses such as automobiles and domestic electric apparatuses used outdoors, therefore, it is particularly desired to develop a thermoplastic resin composition which can retain excellent appearance, impact resistance and weather resistance even if used outdoors for a long period of time without plating nor coating.
As a method for satisfying such a desire, the use of saturated rubber as the elastomer has been proposed in various manners. The use of acrylic ester rubber is its one example, about which many studies have been conducted hitherto. However, acrylic ester rubber has a fault that it is slower than diene rubber in elastic recovery, and if a resin composition comprising such a rubber and a rigid resin is injectoin-molded the rubber particles are markedly oriented and a pearl-like pattern is formed in the neighborhood of the gate of the molded product which is undesirable from the view-point of appearance and injures the commercial value.
The present inventors studied the problem that pearl-like pattern develops when acrylic ester rubber is used and found that the above-mentioned problem can be solved by letting a crosslinked resin exist inside the acrylic ester rubber particle, based on which a patent application was made previously. According to the subsequent study, however, when such a polymer is used gloss, hardness and weather resistance are somewhat lowered though the development of pearl-like pattern in the neighborhood of gate of molded product can be reduced considerably, so that sufficiently satisfactory characteristics cannot yet be exhibited in the above-mentioned special fields of use such as automobiles and outdoor domestic electric apparatuses.
In view of such a situation, the inventors conducted earnest studies with the aim of obtaining a resin composition which can be used outdoors for a long period of time without applying any plating nor coating treatment, such as those employed in ABS resin, to the surface of its molded product. As the result, it was found that a resin composition for use in uncoated exterior materials quite excellent in appearance and resistant to impact and weather enough to achieve the above-mentioned object can be obtained by combining, in respectively specified proportions, a graft copolymer having a high rubber content with a rigid resin otherwise obtained by suspension polymerization or the like and optionally further with a diene rubber-containing thermoplastic resin, said graft copolymer being obtained by graft-polymerizing a crosslinked acrylic rubber having a multi-layer structure which contains, in its particle, a specified quantity of rigid crosslinked resin having a core particle diameter falling in a specified range with a mixture of other monomers so that the proportion of said crosslinked acrylic rubber comes to 50% by weight or more. Based on this finding, this invention was accomplished.
Thus, the essentiality of this invention consists in a resin composition for use in uncoated exterior materials remarkably excellent in appearance and resistant to impact and weather wherein 10-70% by weight of a graft copolymer (I) having a high rubber content obtainable by polymerizing 50-10% by weight of a monomer mixture (c) comprising 10-90% by weight of at least one aromatic vinyl monomer and 90-10% by weight of at least one ethylenic unsaturated monomer having the following general formula:
CH.sub.2 =CRX
wherein R represents hydrogen or CH3 and X represents CN or COOR1 (R1 is alkyl group having 1-8 carbon atoms) in the presence of a latex of a crosslinked acrylic rubber having a multi-layer structure which contains, in its particle 5-30% by weight of a rigid crosslinked resin (a) having a core particle diameter of 0.25-0.40μ and of which outer layer is constituted of 45-85% by weight of a crosslinked acrylic ester polymer (b) constituted mainly of an acrylic ester so that the total amount of components (a) through (c) is 100% by weight, 90-30% by weight of a rigid thermoplastic resin (II) comprising 10-90% by weight of at least one aromatic vinyl monomer and 90-10% by weight of at least one ethylenic unsaturated monomer having the following general formula:
CH.sub.2 =CRX
wherein R is hydrogen or CH3 and X is CN or COOR1 (R1 is alkyl group having 1-8 carbon atoms), and 0-50% by weight of a diene rubber-containing thermoplastic resin (III) are blended together so that the total amount of components (I) through (III) is 100% by weight.
When acrylic ester type rubbers were used in the prior techniques, the diameter of rubber particle had to be controlled so as to fall in the range of 0.1-0.3μ because the appearance of molded product changed with diameter of rubber particle and various problems such as lack of gloss, drop in impact strength and the like occurred depending on the diameter of rubber particle. Accordingly, in the process of the above-mentioned patent application wherein a crosslinked resin was let exist inside acrylic ester type rubber particle, it was necessary to control the particle diameter of crosslinked resin latex so as to become 0.24μ or less with consideration of the above-mentioned restriction on the rubber particle diameter.
On the contrary, the most important characteristic feature of this invention consists in that a resin composition excellent in appearance, gloss, impact strength, weather resistance etc. can be obtained by making the particle diameter of rigid crosslinked resin latex, constituting the core of crosslinked acrylic rubber particle having multi-layer structure, greater than the diameter in prior ones and, at the same time, employing the high rubber content blend method which comprises blending a graft polymer of high rubber content, obtainable by graft-copolymerizing the cross-linked acrylic rubber having multi-layer structure with a mixture of other monomers so that the proportion of the former is 50% by weight or more, with a rigid thermoplastic resin and optionally further with a diene rubber-containing thermoplastic resin. Such a fact that the above-mentioned excellent characteristics can be obtained by increasing the diameter of rigid crosslinked resin particle constituting the core and employing the high rubber content blend method has not hitherto been known in the field of resin compositions containing acrylic rubber as a main component, and it is a surprising fact.
Since the resin composition of this invention contains a core structure of rigid crosslinked resin inside the particle of crosslinked acrylic ester polymer rubber, the rubber particles do not easily aggregate at the time of molding and no pearl-like pattern develops in the neighborhood of the gate of molded product. Thus the resin composition of this invention assumes an excellent appearance and, at the same time, exhibits quite excellent resistances to impact, weather, etc.
Though the blend of high rubber content graft polymer and rigid thermoplastic resin, mentioned above, can exhibit the above-mentioned various excellent characteristics by itself, it can also be blended with a diene rubber-containing thermoplastic resin in an appropriate proportion, if necessary, to make the best of the characteristic features of both the materials. That is, an acrylic ester rubber has a higher glass transition point than diene rubber so that it is usually poor in impact strength in the low temperature range, and this can be improved by blending it with a diene rubber.
The rigid crosslinked resin (a) used in this invention which constitutes the core of the inner layer of multi-layer crosslinked acrylic rubber particle is not particularly limited so far as it is rigid at ordinary temperature and obtainable by the usual emulsion polymerization. Preferably, however, it is a product of crosslinking polymerization of the graft resin forming monomer, mentioned later, itself or the mixture thereof. As the crosslinking agent, crosslinking monomers having at least two non-conjugated C═C bonds including, for example, unsaturated acid esters of polyols such as ethylene glycol dimethacrylate and butanediol diacrylate; unsaturated alcohol esters of polybasic acids such as triallyl cyanurate and triallyl isocyanurate; divinyl compounds such as divinylbenzene; and unsaturated alcohol esters of unsaturated acids such as allyl methacrylate and diallyl phthalate, can be used. The amount of the crosslinking agent used is 0.01-3% by weight and preferably 0.1-2% by weight. If its amount is less than 0.01% by weight, a defect appears in the appearance of the molded product finally obtained. If it exceeds 3% by weight, flow property and impact strength drop undesirably. It is important in this invention to control the particle diameter of crosslinked resin latex so as to fall in the range of 0.25-0.40μ in preparing this rigid crosslinked resin. When the particle diameter of this core part is in the above-mentioned range, a high impact strength can be exhibited.
As the acrylic ester constituting the main component of the crosslinked acrylic ester polymer (b) constructing the outer layer part of the rubber particle, alkyl esters wherein the alkyl is C1 -C12 alkyl such as methyl, ethyl, n-propyl, n-butyl, 2-ethylhexyl, n-lauryl or the like; aromatic esters such as benzyl acrylate and phenethyl acrylate; and the like can be used. In order that the polymer keeps as rubbery state below ordinary temperature, it is necessary to use said acrylic ester and preferably C1 -C8 alkyl ester in an amount of 60% by weight or more based on the monomers constituting crosslinked acrylic ester polymer (b). As the monomer copolymerizable with these acrylic esters, methacrylic esters such as methyl methacrylate and n-butyl methacrylate, as well as acrylonitrile, styrene and the like can be referred to. This acrylic ester rubber is generally required to have a cross-linked network structure. In this invention also, it must form a crosslinked structure. In order to form a crosslinked structure, a crosslinking agent having at least two non-conjugated C═C bonds, of which examples include unsaturated acid esters of polyols such as ethylene glycol dimethacrylate and butanediol diacrylate; unsaturated alcohol esters of polybasic acids such as triallyl cyanurate and triallyl isocyanurate; divinyl compounds such as divinylbenzene and unsaturated alcohol esters of unsaturated acids such as allyl methacrylate and diallyl phthalate, is mixed as a crosslinking agent with a monomer or monomer mixture mainly comprising the above-mentioned acrylic ester and then polymerized. Otherwise, an organic peroxide such as benzoyl peroxide is added after the polymerization and heated in the state of latex. Combination of these two methods can also be employed.
In producing the multi-layer crosslinked acrylic rubber in the practice of this invention, the technique of the so-called seed polymerization is employed which comprises polymerizing 45-85% by weight of a mixture (b) consisting of a monomer or monomer mixture constituted mainly of the above-mentioned acrylic ester and the above-mentioned crosslinking agent in the presence of 5-30% by weight (as solid component) of the above-mentioned rigid crosslinked resin latex (a) having a particle diameter of 0.25-0.40μ under such a condition as to suppress the formation of new particles. Further, the post-cross-linking process can also be employed which comprises polymerizing said monomer or monomer mixture, then adding an organic peroxide so that the total amount of the organic peroxide and the monomer used is 45-85% by weight, and heating the whole in the state of a latex. From the viewpoint of physical properties, it is preferable that the multi-layer crosslinked acrylic rubber thus polymerized has a degree of swelling of about 5-15 and a gel content of about 85-95. For this reason, the crosslinking agent is appropriately added at the time of seed polymerization or post-crosslinking in such an amount as to give a degree of swelling and a gel content falling in the respective ranges mentioned above. Usually, it is appropriately added in an amount ranging from 0.1% to 10% by weight. Herein, the degree of swelling and the gel content of the multi-layer crosslinked acrylic rubber are measured in the following manner. Thus, a film is prepared from latex and dipped in methyl ethyl ketone at 30° C. for 48 hours. Degree of swelling and gel content can be expressed by W1 /W2 and W2 /W0 ×100, respectively, wherein W0 is the weight of film before dipping, W1 isthe weight of film after swelling and W2 is the weight of absolutely dry film after swelling.
Next, in the presence of the multi-layer crosslinked acrylic rubber latex obtained by the above-mentioned process, 50-10% by weight of resin forming monomer mixture (c) comprising 10-90% by weight of at least one aromatic vinyl monomer and 90-10% by weight of at least one ethylenic unsaturated monomer having the aforementioned general formula CH2 =CRX is graft-polymerized by adding said (c) into the latex either at once or in several portions or continuously in the presence of a radical forming initiator so that the total amount of rigid crosslinked resin (a), crosslinked acrylic ester polymer (b) and said resin forming monomer mixture (c) is 100% by weight, whereby graft polymer (I) is obtained. In this case, it is allowable to construct the resin part from several stages of grafts by variously changing the degree of grafting and the degree of polymerization or to employ the emulsion-suspension process for transforming the system from an emulsion system to a suspension system at the time of graft polymerization. By the multi-stage graft polymerization, impact strength and flow property of the finally obtained resin composition can be improved further.
As said aromatic vinyl monomer, styrene and α-methylstyrene can be referred to. As the compound of general formula CH2 =CRX, acrylonitrile, methacrylonitrile, and methyl, ethyl, propyl and butyl esters of acrylic acid and methacrylic acid, and the like can be referred to.
The degree of grafting of the grafted resin part (c) onto the multi-layer crosslinked acrylic rubber constituted of aforementioned (a) and (b) is preferably at least 10%. Herein, the degree of grafting is expressed by (W4 -W5)/W5 ×100 when a graft polymer having a known weight W3 is subjected to a direct refluxing in acetone at 70° C. for 2 hours, the insoluble fraction is isolated by centrifugation and its weight after absolute dryness is denoted by W4. W5 is the weight of multi-layer crosslinked acrylic rubber in the graft polymer weighing W3.
It is one of the characteristic features of this invention that the proportion of multi-layer crosslinked acrylic rubber in the graft polymer (I) obtained by the above-mentioned process is specified in the range of 50-90% by weight, owing to which the resin composition of this invention for use in uncoated exterior materials having various excellent characteristics can be obtained.
Next, 10-70% by weight of the graft polymer (I) having a high rubber content thus obtained is blended with 90-30% by weight of rigid thermoplastic resin (II) otherwise produced to obtain various molding materials. Said rigid thermoplastic resin (II) is obtained by polymerizing a monomer mixture comprising 10-90% by weight of at least one aromatic vinyl monomer (its concrete examples are the same as above) and 90-10% by weight of at least one ethylenic unsaturated monomer having a general formula of CH2 =CRX (its concrete examples are the same as above), of which concrete examples include styrene-acrylonitrile copolymer, α-methylstyrene-styrene-acrylonitrile copolymer, styrene-acrylonitrile-methyl methyacrylate copolymer and the like. Though the polymerization process of these rigid thermoplastic resins is not particularly limited, polymers obtained by suspension or bulk polymerization process are more advantageous to use in various properties such as hardness, gloss and the like.
The resin composition of this invention may be used in the form of the blended mixture itself of aforementioned graft polymer (I) and rigid thermoplastic resin (II). If necessary, however, it may be blended further with a diene rubber-containing thermoplastic resin (III) having a diene rubber content of at least 10% by weight so that the content of (III) of the total resin composition is 0-50% by weight and the total amount of components (I) through (III) is 100% by weight. As said diene rubber, polybutadiene, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer and the like can be referred to. As a typical example of said diene rubber-containing thermoplastic resin, ABS resin can be referred to.
Depending on the object, various colorants, stabilizers to light and heat, inorganic or organic granular, powdery or fibrous fillers, foaming agents and the like may be added to the resin composition of this invention for use in uncoated exterior materials.
The resin composition of this invention for use in uncoated exterior materials can be molded according to various processing methods such as injection molding, extrusion molding, etc. and can be utilized as various molded products excellent in appearance, weather resistance, impact resistance, etc. and particularly as molded products for use in automobiles and domestic electric apparatuses used outdoors. It can also be utilized as a constitutional element, such as outermost laminate material, of other multi-layer structures.
This invention will be concretely illustrated with reference to examples infra. In the examples, % and parts are by weight unless otherwise referred to. The particle diameters were determined in the following manner. Thus, by using an uncrosslinked resin latex comprising methyl methacrylate/acrylonitrile/styrene (20/20/60% by weight), a calibration curve was prepared from the relation between electron microscopically determined particle diameter and absorbance of a dilution (0.5 g/liter) of the latex at a wavelength of 700 mμ. Particle diameters of various latexes were determined by measuring their absorbances and reading out the diameters on the calibration curve. The calibration curve is shown in FIG. 1.
EXAMPLE 1 (A) Preparation of crosslinked resin latex
200 parts of deionized water was placed in a reaction vessel. After replacement with nitrogen, the temperature was elevated till the inner temperature reached 80° C. Into the vessel, 0.06 part of potassium persulfate was added and then the following mixture was continuously poured over a time period of 30 minutes:
______________________________________                                    
Methyl methacrylate (MMA)                                                 
                         2.4 parts                                        
Acrylonitrile (AN)       2.4 parts                                        
Styrene (St)             7.2 parts                                        
Triallyl isocyanurate (TAIC)                                              
                         0.06 part                                        
Pelex OTP (dioctyl sulfosuccinate                                         
                         0.3 part                                         
type emulsifier manufactured by                                           
Kao Atlas K.K.)                                                           
______________________________________                                    
About one hour after pouring the mixture, the exothermic reaction was completed. The crosslinked resin latex thus obtained had a particle diameter of 0.26μ.
(B) Preparation of multi-layer crosslinked acrylic rubber
0.24 part of potassium persulfate was added to the latex of crosslinked resin obtained in (A), after which the following mixture was poured thereinto continuously over a time period of 2 hours:
______________________________________                                    
n-Butyl acrylate (BuA) 43.2 parts                                         
AN                      4.8 parts                                         
TAIC                    0.24 part                                         
Pelex OTP               0.30 part                                         
______________________________________                                    
The crosslinked acrylic rubber thus obtained having said crosslinked resin as a core had a degree of swelling of 8.0, a gel content of 90% and a particle diameter of 0.30μ.
(C) Preparation of graft polymer
Subsequently, the following mixture was continuously poured into the crosslinked acrylic rubber latex of (B) over a time period of 2 hours:
______________________________________                                    
MMA                    8 parts                                            
AN                     8 parts                                            
St                    24 parts                                            
n-Octylmercaptan       0.04 part                                          
Benzoyl peroxide       0.20 part                                          
______________________________________                                    
The latex thus obtained was poured into 5 times its amount of aqueous calcium chloride solution with stirring to coagulate it, after which it was made free from liquid, washed and dried to obtain a graft polymer having a high rubber content.
(D) Blending and evaluation of properties
50 parts of the graft polymer obtained in (C) was blended with 50 parts of suspension particles otherwise prepared by using a monomer mixture of MMA, AN and St (MMA/AN/St=20/20/60 (%)) so that the content of the multi-layer crosslinked acrylic rubber in the total resin composition was 30%. Further, 1 part of barium stearate and 0.1 part of Tinuvin P (ultraviolet absorber manufactured by Geigy Co.) were added to this resin composition, and the resulting mixture was pelletized by means of an extruder. Various test pieces were prepared from this pellet by injection molding, with which various properties were evaluated. The results are shown in Table 1. In Table 1, notched Izod impact strength was measured according to ASTM-D-256, melt index (MI) was determined by measuring the gram number of polymer flowing out during 10 minutes at 200° C. under a load of 5 kg, and surface gloss was determined by forming a flat plate having a thickness of 1/8 inch and measuring its specular gloss at incident and reflective angles of 60° according to ASTM-D523-62T. The same methods of evaluation are employed also in the examples and comparative examples mentioned later. Degree of swelling and gel content of crosslinked acrylic rubber were measured by the aforementioned methods.
EXAMPLES 2-3 and Comparative Examples 1-2
The procedures and evaluation mentioned in (A), (B), (C) and (D) of Example 1 were repeated, except that, in the procedure of (A), crosslinked resin latexes having different particle diameters were prepared. The results are also shown in Table 1.
                                  TABLE 1                                 
__________________________________________________________________________
                        Content                                           
       Particle                                                           
            Particle    of cross-                                         
       diameter                                                           
            diameter    linked              Appea-                        
       of cross-                                                          
            of cross-   acrylic                                           
                              Notched       rance                         
       linked                                                             
            linked                                                        
                 Degree                                                   
                     Gel                                                  
                        rubber in                                         
                              Izod          of                            
       resin                                                              
            acrylic                                                       
                 of  con-                                                 
                        the total                                         
                              strength                                    
                                   MI       molded                        
       latex                                                              
            rubber                                                        
                 swel-                                                    
                     tent                                                 
                        resin com-                                        
                              (kg-cm/                                     
                                   (g/10                                  
                                       Surface                            
                                            product                       
No.    (μ)                                                             
            (μ)                                                        
                 ling                                                     
                     (%)                                                  
                        position                                          
                              cm.sup.2)                                   
                                   min)                                   
                                       gloss                              
                                            (*)                           
__________________________________________________________________________
Example 1                                                                 
       0.26 0.30 8   90 30    15   1.0 96   o                             
Example 2                                                                 
       0.29 0.31 9   89 30    23   1.1 95   ⊚              
Example 3                                                                 
       0.35 0.40 9   91 30    24   1.0 95   ⊚              
Comparative                                                               
Example 1                                                                 
       0.10 0.14 13  93 30     3   0.5 89   Δ                       
Comparative                                                               
Example 2                                                                 
       0.18 0.23 12  91 30     4   0.7 93   Δ                       
__________________________________________________________________________
 (*)-                                                                     
 ⊚ : Excellent,                                            
  o: Good,                                                                
 Δ : Passable,                                                      
  x: Bad;                                                                 
 the marks mean the same in the subsequent examples and comparative       
 examples also.                                                           
It is apparent from the results of Table 1 that the final resin composition is excellent in impact resistance when the particle diameter of crosslinked resin latex is greater than 0.25μ while it is poor in impact resistance when the particle diameter is smaller than 0.25μ. It is also understandable that flow property is bad and appearance of molded product is not good in the latter case.
EXAMPLES 4-8 and Comparative Examples 3-7
Graft polymers were prepared in the same manner as in Example 1, wherein the monomer composition of rigid crosslinked resin part (a) was AN/St/triallyl cyanurate (TAC)=25/75/0.5 (part), the monomer composition of crosslinked acrylic ester polymer part (b) was BuA/AN/TAC=90/10/0.5 (part), the monomer composition of graft resin part (c) was AN/St=25/75 (part), and the proportions of (a), (b) and (c) were varied as shown in Table 2. They were blended with suspension particles having a composition of AN/St=25/75 (part) so that the content of the multi-layer crosslinked acrylic rubber in the total resin composition was 30%. From these resin compositions, various test pieces were prepared in the same manner as in Example 1, with which their properties were evaluated. The results are shown in Table 2.
Comparative Example 3 is a case in which no resin core is present in the acrylic rubber particle, Comparative Examples 4-5 are cases in which the balance of multi-layer crosslinked acrylic rubber is not good, Comparative Example 6 is a case in which the content of multi-layer crosslinked acrylic rubber in the graft polymer is small, and Comparative Example 7 is a case in which the content of said rubber is large contrarily.
                                  TABLE 2                                 
__________________________________________________________________________
              Particle                                                    
                    Content of                                            
              diameter                                                    
                    crosslinked                                           
       Proportion in                                                      
              of    acrylic rubber                                        
                            Notched                                       
       graft polymer                                                      
              crosslinked                                                 
                    in the total                                          
                            Izod        Appearance                        
       (%)    resin latex                                                 
                    resin composi-                                        
                            strength                                      
                                   Surface                                
                                        of molded                         
No.    (a)                                                                
         (b)                                                              
            (c)                                                           
              (μ)                                                      
                    tion (%)                                              
                            (kg-cm/cm.sup.2)                              
                                   gloss                                  
                                        product                           
__________________________________________________________________________
Comparative                                                               
Example 3                                                                 
        0                                                                 
         60 40                                                            
              --    30      23     90   x                                 
Example 4                                                                 
        6                                                                 
         54 40                                                            
              0.28  30      23     95   o                                 
Example 5                                                                 
       12                                                                 
         48 40                                                            
              0.28  30      20     96   ⊚                  
Comparative                                                               
Example 4                                                                 
       24                                                                 
         36 40                                                            
              0.30  30       9     93   Δ                           
Example 6                                                                 
       20                                                                 
         60 20                                                            
              0.30  30      17     95   ⊚                  
Example 7                                                                 
       30                                                                 
         50 20                                                            
              0.33  30      15     95   o                                 
Comparative                                                               
Example 5                                                                 
       40                                                                 
         40 20                                                            
              0.35  30       8     89   Δ                           
Comparative                                                               
Example 6                                                                 
       10                                                                 
         30 60                                                            
              0.22  30      12     85   x                                 
Example 8                                                                 
       13                                                                 
         52 35                                                            
              0.28  30      22     95   ⊚                  
Comparative                                                               
Example 7                                                                 
       30                                                                 
         65  5                                                            
              0.33  Incoagu-                                              
                            --     --   --                                
                    lable                                                 
__________________________________________________________________________
It is apparent from the results of Table 2 that, if the proportions of rigid crosslinked resin part (a), crosslinked acrylic ester polymer part (b) and graft resin part (c) in the graft polymer are out of the ranges specified in this invention, the balance of multi-layer crosslinked acrylic rubber becomes so bad as to deteriorate the impact resistance or the appearance of molded product.
EXAMPLE 9
By repeating the procedure of Example 1, a graft polymer was prepared, it was blended, various test pieces were prepared therefrom and various properties were evaluated, except that, in the procedure of (C) of Example 1, AN/St=10/30 (part) was used in place of MMA/AN/St=8/8/24 (part) as graft resin-forming monomer. The results are shown in Table 3.
EXAMPLE 10
By repeating the procedures of Example 1, various test pieces were prepared and various properties were evaluated, except that, in the procedure of graft polymerization of (C) in Example 1, a graft polymer was prepared by polymerization a mixture of graft resin forming monomer, mercaptan and benzoyl peroxide in two portions divided at a ratio of 60:40. The results are shown in Table 3. It is apparent from the results of Table 3 that the graft polymer obtained by the procedure of multi-stage graft polymerization in step (C) improves the impact resistance of the final resin composition.
EXAMPLES 11-13
By repeating the procedures of Example 1, graft polymers were prepared, they were blended, various test pieces were prepared therefrom and various properties were evaluated, except that the monomers used in the preparation of crosslinked resin latex in step (A) and in the preparation of graft polymer in step (C) were constituted as shown in the following table. The results are shown in Table 3.
______________________________________                                    
(A) Crosslinked        (C) Graft                                          
resin-forming          resin-forming                                      
monomer                monomer                                            
______________________________________                                    
Example 11                                                                
        MMA          2.4    parts                                         
                                 MMA    8 parts                           
        AN           2.4    parts                                         
                                 AN     8 parts                           
        St           7.2    parts                                         
                                 St    24 parts                           
        TAC          0.06   part                                          
Example 12                                                                
        MMA          2.4    parts                                         
                                 MMA    8 parts                           
        AN           2.4    parts                                         
                                 AN     8 parts                           
        St           7.2    parts                                         
                                 St    24 parts                           
        Allyl meth-                                                       
        acrylate (AMA)                                                    
                     0.06   part                                          
Example 13                                                                
        AN           3      parts                                         
                                 AN    10 parts                           
        St           9      parts                                         
                                 St    30 parts                           
        AMA          0.06   part                                          
______________________________________                                    
EXAMPLE 14
By repeating the procedure of Example 1, various test pieces were prepared and various properties were evaluated, except that, in the blending procedure of step (D) of Example 1, 50 parts of graft polymer was blended with 50 parts of powdery rigid thermoplastic resin obtained from a monomer mixture of α-methylstyrene/acrylonitrile/styrene=50/25/25 (%). The results are shown in Table 3.
EXAMPLES 15-16
By repeating the procedures of Example 1, various test pieces were prepared and various properties were evaluated, except that, in the blending procedure of step (D) of Example 1, a ternary blend system comprising ABS resin having a butadiene-styrene rubber content of 50% by weight in addition to graft polymer and rigid thermoplastic resin at a blending ratio of 10:50:40 (Example 15) or 10:30:60 (Example 16), in the mentioned order, was employed. The results are shown in Table 3.
EXAMPLE 17
By repeating the procedures of Example 1, various test pieces were prepared and various properties were evaluated, except that, in the procedure of step (D) of Example 1, graft polymer and suspension particles were blended together so that the content of multi-layer crosslinked acrylic rubber in the whole resin composition was 40%. The results herein obtained, as well as the results obtained by using the test pieces obtained in Example 1, are shown in Table 3.
In Table 3, impact weather resistance is expressed by the maintenance of Dynstat impact strength after accelerated sunshine exposure for 600 hours.
                                  TABLE 3                                 
__________________________________________________________________________
            Content of                                                    
       Particle                                                           
            crosslinked                                                   
                   Content                                                
       diameter                                                           
            acrylic                                                       
                   of                Impact                               
       of cross-                                                          
            rubber in                                                     
                   butadiene-                                             
                         Notched Izod                                     
                                     weather                              
       linked                                                             
            the total                                                     
                   styrene                                                
                         strength Sur-                                    
                                     resis-                               
                                          Appearance                      
       resin                                                              
            resin compo-                                                  
                   rubber                                                 
                         (kg-cm/cm.sup.2)                                 
                                  face                                    
                                     tance                                
                                          of molded                       
No.    latex (μ)                                                       
            sition (%)                                                    
                   (%)   20° C.                                    
                             -20° C.                               
                                  gloss                                   
                                     (%)  product                         
__________________________________________________________________________
Example  9                                                                
       0.26 30     0     18  --   95 90   o                               
Example 10                                                                
       0.26 30     0     17  --   95 90   o                               
Example 11                                                                
       0.28 30     0     17  --   96 90   o                               
Example 12                                                                
       0.25 30     0     15  --   96 90   o                               
Example 13                                                                
       0.30 30     0     23  --   95 90   o                               
Example 14                                                                
       0.26 30     0     15  --   95 90   o                               
Example 15                                                                
       0.26 30     5     35  7    96 80   o                               
Example 16                                                                
       0.26 18     5     21  6    94 50   o                               
Example 17                                                                
       0.26 40     0     41  --   94 90   o                               
Example  1                                                                
       0.26 30     0     15       96 90   o                               
Commercial                                                                
ABS resin                                                                 
       --   --     Unknown                                                
                         24  11   93 20   o                               
__________________________________________________________________________

Claims (12)

What is claimed is:
1. A resin composition for use in uncoated exterior materials markedly excellent in appearance and having high impact resistance and weather resistance wherein 10-70% by weight of graft copolymer (I) having a high rubber content, 90-30% by weight of a rigid thermoplastic resin (II) comprising 10-90% by weight of at least one aromatic vinyl monomer and 90-10% by weight of at least one ethylenic unsaturated monomer having the following general formula:
CH.sub.2 =CRX
wherein R represents hydrogen or CH3 group and X represents CN or COOR1 group (R1 represents alkyl group having 1-8 carbon atoms), and 0-50% by weight of a diene rubber-containing thermoplastic resin (III) are blended together so that the total amount of components (I) through (III) is 100% by weight, said graft copolymer (I) having a high rubber content being obtained by polymerizing 50-10% by weight of a monomer mixture (c) comprising 10-90% by weight of at least one aromatic vinyl monomer and 90-10% by weight of at least one ethylenic monomer having the following general formula:
CH.sub.2 =CRX
wherein R represents hydrogen or CH3 group and X represents CN or COOR1 group (R1 represents alkyl group having 1-8 carbon atoms) in the presence of a latex of a crosslinked acrylic rubber having a multi-layer structure which contains, in its particle, 5-30% by weight of a rigid crosslinked resin (a) having a core particle diameter of 0.25-0.40μ and of which outer layer part is constructed of 45-85% by weight of a crosslinked acrylic ester type polymer (b) constituted mainly of an acrylic ester, so that the total amount of components (a) through (c) is 100% by weight.
2. A resin composition for use in uncoated exterior materials according to claim 1, wherein said rigid crosslinked resin (a) is obtained by the crosslinking polymerization of (1) at least one aromatic vinyl monomer or (2) at least one ethylenic unsaturated monomer having a general formula, CH2 =CRX, wherein R and X are as defined above, or (3) a monomer mixture of said (1) and said (2).
3. A resin composition for use in uncoated exterior materials according to claim 2, wherein said crosslinking polymerization is carried out in the presence of 0.01-3% by weight of a crosslinking agent.
4. A resin composition for use in uncoated exterior materials according to claim 2, wherein said crosslinking agent is selected from the group consisting of unsaturated acid esters of polyols, unsaturated alcohol esters of polybasic acids, divinyl compounds and unsaturated alcohol esters of unsaturated acids.
5. A resin composition for use in uncoated exterior materials according to claim 1, wherein said crosslinked acrylic ester type polymer (b) is so constructed that alkyl ester having 1-8 carbon atoms occupies 60% by weight or more of the constitutional monomers.
6. A resin composition for use in uncoated exterior materials according to claim 1, wherein said crosslinked acrylic ester type polymer (b) is obtained by (1) mixing a crosslinking agent with the monomer and then polymerizing the mixture, or by (2) adding an organic peroxide after the polymerization, monomer and then heating the mixture, or by (3) combining the above-mentioned procedures (1) and (2).
7. A resin composition for use in uncoated exterior materials according to claim 6, wherein said crosslinking agent is selected from the group consisting of unsaturated acid esters of polyols, unsaturated alcohol esters of polybasic acids, divinyl compounds and unsaturated alcohol esters of unsaturated acids.
8. A resin composition for use in uncoated exterior materials according to claim 6, wherein the amount of said crosslinking agent or said organic peroxide is 0.1-10% by weight.
9. A resin composition for use in uncoated exterior materials according to claim 1, wherein said crosslinked acrylic rubber having a multi-layer structure constituted of (a) and (b) has a degree of swelling of 5-15 and a gel content of 85-95.
10. A resin composition for use in uncoated exterior materials according to claim 1, wherein said graft polymer (I) having a high rubber content is obtained by a multi-stage graft polymerization method wherein the monomer mixture (c) is added portionwise into the latex of the crosslinked acrylic rubber having a multi-layer structure.
11. A resin composition for use in uncoated exterior materials according to claim 1, wherein the degree of grafting of the monomer mixture (c) grafted onto the crosslinked acryl rubber having a multi-layer structure is at least 10%.
12. A resin composition for use in uncoated exterior materials according to claim 1, wherein the content of diene rubber in said diene rubber-containing thermoplastic resin is at least 10% by weight.
US06/221,359 1980-01-11 1980-12-29 Resin composition for use in uncoated exterior material Expired - Lifetime US4351921A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP194380A JPS5699247A (en) 1980-01-11 1980-01-11 Resin composition for noncoated cladding
JP55-1943 1980-01-11

Publications (1)

Publication Number Publication Date
US4351921A true US4351921A (en) 1982-09-28

Family

ID=11515690

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/221,359 Expired - Lifetime US4351921A (en) 1980-01-11 1980-12-29 Resin composition for use in uncoated exterior material

Country Status (7)

Country Link
US (1) US4351921A (en)
JP (1) JPS5699247A (en)
AU (1) AU539296B2 (en)
CA (1) CA1146296A (en)
DE (1) DE3100382A1 (en)
GB (1) GB2067205B (en)
IT (1) IT1134940B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526929A (en) * 1980-08-13 1985-07-02 Mitsubishi Rayon Company, Limited Resin composition usable without being coated
US4731414A (en) * 1986-06-20 1988-03-15 General Electric Company Blends of an ASA terpolymer, an acrylic polymer and an acrylate based impact modifier
US4831079A (en) * 1986-06-20 1989-05-16 General Electric Company Blends of an ASA terpolymer, an acrylic polymer and an acrylate based impact modifier
US4959418A (en) * 1985-08-29 1990-09-25 Bayer Aktiengesellschaft Polymers in particle form with improved properties, for the preparation of thermoplastic moulding materials
US20030162895A1 (en) * 2002-02-28 2003-08-28 General Electric Company Weatherable styrenic blends with improved translucency
US20030236350A1 (en) * 2002-06-21 2003-12-25 General Electric Company Impact-modified compositions
US20040225069A1 (en) * 2003-05-09 2004-11-11 General Electric Company Impact-modified compositions and method
US20050171297A1 (en) * 2004-02-04 2005-08-04 General Electric Company Impact-modified compositions and method
KR100518033B1 (en) * 1998-09-08 2005-12-21 주식회사 한솔케미칼 Latex composition for paper coating
US20060069210A1 (en) * 2002-06-21 2006-03-30 Berzinis Albin P Impact-modified compositions

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3206136A1 (en) * 1982-02-20 1983-09-01 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING THERMOPLASTIC MOLDS
JPS58222139A (en) * 1982-06-18 1983-12-23 Mitsubishi Rayon Co Ltd Thermoplastic resin composition
CA1217291A (en) * 1983-12-01 1987-01-27 Kazuo Kishida Thermoplastic resin composition having excellent impact resistance and heat resistance
JP3090942B2 (en) * 1990-11-02 2000-09-25 三菱化学株式会社 Thermoplastic resin composition for refrigerator inner box and refrigerator inner box obtained by molding the same
JPH11502540A (en) * 1995-02-01 1999-03-02 バイエル・アントバーペン・エヌ・ベー Polymer blends with improved colorability
KR100815995B1 (en) * 2006-06-08 2008-03-21 제일모직주식회사 Acrylate-Styrene- Acrylonitrile Grafted Copolymer with Excellent Impact Strength at Low and Room Temperature, Coloring, and Weatherability, and Thermoplastic Resin Composition Containing Same
KR20130090307A (en) 2012-02-03 2013-08-13 주식회사 엘지화학 Acrylic impact modifier and thermoplastic resin composition comprising thereof
EP2759570B1 (en) * 2012-10-11 2016-01-13 LG Chem, Ltd. Alkyl acrylate-vinyl aromatic compound-vinyl cyanide compound copolymer having improved low temperature impact strength, and polycarbonate composition comprising same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830878A (en) * 1970-12-18 1974-08-20 Mitsubishi Rayon Co Weather-and impact-resistant resin composition comprising a graft copolymer containing multi-layer polymer particles and a rigid resin
JPS5230996A (en) * 1975-09-04 1977-03-09 Natl Inst For Res In Inorg Mater Electron beam processing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830878A (en) * 1970-12-18 1974-08-20 Mitsubishi Rayon Co Weather-and impact-resistant resin composition comprising a graft copolymer containing multi-layer polymer particles and a rigid resin
JPS5230996A (en) * 1975-09-04 1977-03-09 Natl Inst For Res In Inorg Mater Electron beam processing device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528330A (en) * 1980-08-13 1985-07-09 Mitsubishi Rayon Co., Ltd. Resin composition usable without being coated
US4526929A (en) * 1980-08-13 1985-07-02 Mitsubishi Rayon Company, Limited Resin composition usable without being coated
US4959418A (en) * 1985-08-29 1990-09-25 Bayer Aktiengesellschaft Polymers in particle form with improved properties, for the preparation of thermoplastic moulding materials
US4731414A (en) * 1986-06-20 1988-03-15 General Electric Company Blends of an ASA terpolymer, an acrylic polymer and an acrylate based impact modifier
US4831079A (en) * 1986-06-20 1989-05-16 General Electric Company Blends of an ASA terpolymer, an acrylic polymer and an acrylate based impact modifier
KR100518033B1 (en) * 1998-09-08 2005-12-21 주식회사 한솔케미칼 Latex composition for paper coating
US20030162895A1 (en) * 2002-02-28 2003-08-28 General Electric Company Weatherable styrenic blends with improved translucency
US6720386B2 (en) 2002-02-28 2004-04-13 General Electric Company Weatherable styrenic blends with improved translucency
US20030236350A1 (en) * 2002-06-21 2003-12-25 General Electric Company Impact-modified compositions
US20060069210A1 (en) * 2002-06-21 2006-03-30 Berzinis Albin P Impact-modified compositions
US8969476B2 (en) 2002-06-21 2015-03-03 Sabic Global Technologies B.V. Impact-modified compositions
US20040225069A1 (en) * 2003-05-09 2004-11-11 General Electric Company Impact-modified compositions and method
US20050171297A1 (en) * 2004-02-04 2005-08-04 General Electric Company Impact-modified compositions and method

Also Published As

Publication number Publication date
JPS6229453B2 (en) 1987-06-26
AU539296B2 (en) 1984-09-20
IT1134940B (en) 1986-08-20
AU6570080A (en) 1981-07-16
GB2067205B (en) 1983-12-21
JPS5699247A (en) 1981-08-10
IT8119007A0 (en) 1981-01-05
CA1146296A (en) 1983-05-10
DE3100382A1 (en) 1981-11-19
GB2067205A (en) 1981-07-22
DE3100382C2 (en) 1992-06-17

Similar Documents

Publication Publication Date Title
US4351921A (en) Resin composition for use in uncoated exterior material
US4528330A (en) Resin composition usable without being coated
KR100815995B1 (en) Acrylate-Styrene- Acrylonitrile Grafted Copolymer with Excellent Impact Strength at Low and Room Temperature, Coloring, and Weatherability, and Thermoplastic Resin Composition Containing Same
CA1188022A (en) Multi-layer structure polymer composition having an inner two-layer elastic polymer structure
US5063259A (en) Clear, impact-resistant plastics
US4473679A (en) Thermoplastic acrylic elastomers
US4487890A (en) Process for producing impact resistant resins
US4052525A (en) Multi-layer structure acrylic polymer composition
AU654057B2 (en) Multi-layered polymers
US4108946A (en) Graft-polymer composition of rubber for reinforcing crosslinked resin
KR0177813B1 (en) Particulate graft polymer with improved adhesion between grafting base and graft sheath
KR101441315B1 (en) Acrylate-Styrene-Acrylonitrile Graft Copolymer Having Excellent Impact-resistance, Weather-resistance, and Dyeability Property, and Method for Preparing The Same
KR101441314B1 (en) Acrylate-Styrene-Acrylonitrile Graft Copolymer Having Excellent Impact-resistance, Weather-resistance, and Dyeability Property, and Method for Preparing The Same
KR101666701B1 (en) Acrylic Rubber Modified Graft Copolymer Having Excellent Impact-resistance and Colorability, and Method for Preparing Same
US4433103A (en) Impact-resistant methacrylic resin composition
US5382625A (en) Thermoplastic moulding compositions with high notched impact strength
JPH0420022B2 (en)
JPS6126646A (en) Thermoplastic resin composition
JP2796595B2 (en) Multilayer polymer and resin composition
JPH08333489A (en) Rubberlike polymer latex for base rubber of rubber-reinforced vinyl polymer, rubber-reinforced vinyl polymer, and thermoplastic polymer composition
CA1269779A (en) Coating film for a high luminance reflector
EP0587309B1 (en) Toughened polar thermoplastics
JPH04180949A (en) Aas resin composition with good flowability
JPH04146910A (en) Multilayer graft copolymer
JPS62235349A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI RAYON CO., LTD. 3-19, KYOBASHI-2-CHOME,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:KISHIDA, KAZUO;HASEGAWA, AKIRA;KAWACHI, YASUNORI;REEL/FRAME:003966/0722

Effective date: 19801210

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M170); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M171); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M185); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12