US4263815A - Automobile transmission having noiseless shifting for reverse gear - Google Patents
Automobile transmission having noiseless shifting for reverse gear Download PDFInfo
- Publication number
- US4263815A US4263815A US06/022,688 US2268879A US4263815A US 4263815 A US4263815 A US 4263815A US 2268879 A US2268879 A US 2268879A US 4263815 A US4263815 A US 4263815A
- Authority
- US
- United States
- Prior art keywords
- gear
- reverse
- shift
- drive shaft
- reverse gear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/20—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially using gears that can be moved out of gear
- F16H3/40—Gearings for reversal only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/02—Final output mechanisms therefor; Actuating means for the final output mechanisms
- F16H63/30—Constructional features of the final output mechanisms
- F16H63/302—Final output mechanisms for reversing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/19—Gearing
- Y10T74/19219—Interchangeably locked
- Y10T74/19284—Meshing assisters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/19—Gearing
- Y10T74/19637—Gearing with brake means for gearing
Definitions
- This invention relates to an improved automobile transmission of the type having a reverse gear on the drive shaft which cooperates with a shift gear axially displaceable on a stationary axle.
- the shift gear is rotatable on the stationary axle and is axially displaceable along the stationary axle to move into and out of engagement with the reverse gear.
- the shift gear When shifted into reverse, the shift gear first engages the reverse gear, which is on the drive shaft, and once having engaged the reverse gear, with further axial displacement, engages a counter gear wheel fixed on the transmission output shaft.
- the reverse gear is formed by a gear shaper cutter which cuts the gear out of the drive shaft. In order to do so, a sufficiently wide relief groove is needed on at least one side of the gear, at least in the engaging area of the adjacent gear, which relief groove would no longer be available if the width (axial length) of the reverse gear were enlarged, as would be required if the reverse gear were to engage the shift gear through the entire axial displacement of the shift gear. Moreover, the constant meshing of the shift gear with reverse gear, as would then occur in all operating states of the engine, whether forward or reverse, itself generates considerable noise and is thus undesirable.
- the present invention is an improved automobile transmission of the type having a drive shaft with a reverse gear thereon adapted to engage a shift gear axially displaceable on a stationary axle, which provides for shifting into reverse gear without producing the customary gear grinding and associated noise and transmission shock.
- a synchromesh ring gear is provided on the drive shaft having a tooth profile corresponding to that of the reverse gear and thus adapted to mesh with the shift gear, and positioned to engage the shift gear when the shift gear is in its disengaged position from the reverse gear.
- the shift gear in all operating states of the transmission, engages either the reverse gear or the ring gear. Since the ring gear and reverse gear rotate on a common drive shaft and have corresponding tooth configurations, the shift gear will already be rotating at the same speed as the reverse gear and may be axially shifted from the ring gear to the reverse gear smoothly and without any griding noises.
- the ring gear may consist of a non-metallic material, and preferably a relatively resilient material such as plastic. When formed of such material, gearing noises between the ring gear and the shift gear will not be produced when the two are engaged.
- the ring gear is fixed on the drive shaft in any suitable manner, for example by prestressing, cementing, or vulcanizing onto the shaft.
- the area where the ring is to be attached the drive shaft is provided with a form-fitting configuration to cooperate with the ring gear, for example knurling, or a bore or grooves, in order to attach the ring gear more securely to the drive shaft.
- an automobile transmission is contained in a transmission housing 1 and cooperating axle drive housing 2 adjacent thereto.
- a drive shaft 3 connected to the engine crankshaft by a clutch, not shown, acts as the input for the transmission.
- the output shaft 4 of the transmission is connected to the drive axle, not shown, in a conventional manner.
- a shift gear 6 rotates about a stationary axle 5, and is axially displaceable along the axle 5 for the purpose of shifting into reverse gear.
- the drive shaft 3 and output shaft 4 have been represented as lying in a common plane with the stationary shaft 5.
- the stationary shaft 5 is displaced to one side with respect to a plane passing through the longitudinal axes of shafts 3 and 4.
- Shift gear 6 is shown in its disengaged position in the drawing. As can be seen therein, when it is desired to shift into reverse, the shift gear 6 is displaced toward the right. The gear 6 first meshes with the reverse gear 8, which is contained on the drive shaft 3. Upon further displacement towards the right, the shift gear 6 meshes with the counter gear 7 on the output shaft 4. Thus there is attained a reverse in the direction of rotation between the drive shaft 3 and the output shaft 4, with a suitable transmission gear ratio corresponding to the respective numbers of teeth on the gears 7 and 8.
- the gear 7 is coupled to the output shaft 4 by a synchronizing device 9.
- the synchromesh device 9 acts to synchronize the shifting of the first and second gears: the gears 10 and 11 shown in the drawing associated with the first speed of the transmission, and the gears 12 and 13 with the second speed.
- these pairs of gears are constantly engaged with each other and are shown as separated in the drawing in order to better illustrate the present invention (i.e. the illustration of the three shafts 3, 4, and 5 in a common plane).
- the shift gear 6 When the shift gear 6 is in its disengaged position, as shown in the drawing, it constantly engages a synchromesh ring gear 15, which is fixed on the drive shaft 3 and has a tooth profile corresponding to the reverse gear 8.
- the ring gear therefore, may be formed of a non-metallic material, since strength is not essential.
- the ring gear 15 consists of a rubber or plastic material, for example, acetal resin, so that even with constant meshing no gear noises are produced between the ring gear 15 and shift gear 6.
- the ring gear 15 consists of a plastic material, for reduced noise, and is formed directly onto the drive shaft 3 by spraying.
- the drive shaft 3 is provided with a beading or knurling, indicated at 16, on its periphery to assist in this process.
- the ring gear 15 could be in the form of two plastic half shells which are fastened onto the drive shaft 3, for example by cementing, to be secured against twisting.
- the ring gear 15 may be attached by vulcanizing onto the drive shaft 3.
- gear grinding between the shift gear 6 and the counter gear 7, upon further displacement to the right of the shift gear 6, will also not occur due to the synchronizing device 14.
- the synchronizing device 14 is actuated to brake the rotation of the shift gear 6 and thereby eliminate any grinding and gear clash of the shift gear 6 and counter gear 7.
- the operation of the synchronizing device 14 is described in greater detail in the aforementioned U.S. patent application Ser. No. 961,773, which is incorporated herein by reference.
- a transmission according to the present invention not only may be shifted smoothly into reverse gear without the customary transmission gear grinding, but will operate in all forward gears without producing any gearing noises as would otherwise be caused if the reverse gear were in constant engagement with the shift gear.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gear-Shifting Mechanisms (AREA)
- Structure Of Transmissions (AREA)
- Gears, Cams (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19782813292 DE2813292A1 (de) | 1978-03-28 | 1978-03-28 | Antriebswelle fuer schaltgetriebe von kraftfahrzeugen |
DE2813292 | 1978-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4263815A true US4263815A (en) | 1981-04-28 |
Family
ID=6035562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/022,688 Expired - Lifetime US4263815A (en) | 1978-03-28 | 1979-03-21 | Automobile transmission having noiseless shifting for reverse gear |
Country Status (2)
Country | Link |
---|---|
US (1) | US4263815A (de) |
DE (1) | DE2813292A1 (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4463622A (en) * | 1980-01-11 | 1984-08-07 | Deere & Company | Transmission and reverse gear synchronizing therefor |
US4526052A (en) * | 1982-02-05 | 1985-07-02 | Nissan Motor Company, Ltd. | Synchromesh mechanism for transmission |
US4558607A (en) * | 1982-11-27 | 1985-12-17 | Dr. Ing. H.C.F. Porsche A.G. | Gear-type change-speed transmission for motor vehicles |
US4656883A (en) * | 1983-08-23 | 1987-04-14 | Ab Volvo | Motor vehicle gearbox |
US4836041A (en) * | 1987-07-13 | 1989-06-06 | Fiat Auto S.P.A. | Motor vehicle gearbox with a device for synchronised engagement of reverse |
US6658953B2 (en) * | 2001-05-18 | 2003-12-09 | Hyundai Motor Company | Reverse shift device of manual transmission |
US20090057061A1 (en) * | 2007-08-31 | 2009-03-05 | Gm Global Technology Operations, Inc. | Gearbox comprising gear pump |
EP3208494A1 (de) * | 2016-02-22 | 2017-08-23 | Veljekset Hietamäki Ay | Getriebe |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014117484A1 (de) * | 2014-11-28 | 2016-06-02 | Koki Technik Transmission Systems Gmbh | Sperrelement für eine Schaltwelle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2085019A (en) * | 1936-01-17 | 1937-06-29 | Packard Motor Car Co | Motor vehicle |
US2857777A (en) * | 1955-02-07 | 1958-10-28 | Gen Motors Corp | Gear assembly |
US2892524A (en) * | 1954-08-20 | 1959-06-30 | Sinclair Harold | Clutches for transmitting rotary motion |
US3425527A (en) * | 1967-07-07 | 1969-02-04 | Lloyd J Wolf | Transmission clutch |
-
1978
- 1978-03-28 DE DE19782813292 patent/DE2813292A1/de not_active Withdrawn
-
1979
- 1979-03-21 US US06/022,688 patent/US4263815A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2085019A (en) * | 1936-01-17 | 1937-06-29 | Packard Motor Car Co | Motor vehicle |
US2892524A (en) * | 1954-08-20 | 1959-06-30 | Sinclair Harold | Clutches for transmitting rotary motion |
US2857777A (en) * | 1955-02-07 | 1958-10-28 | Gen Motors Corp | Gear assembly |
US3425527A (en) * | 1967-07-07 | 1969-02-04 | Lloyd J Wolf | Transmission clutch |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4463622A (en) * | 1980-01-11 | 1984-08-07 | Deere & Company | Transmission and reverse gear synchronizing therefor |
US4526052A (en) * | 1982-02-05 | 1985-07-02 | Nissan Motor Company, Ltd. | Synchromesh mechanism for transmission |
US4558607A (en) * | 1982-11-27 | 1985-12-17 | Dr. Ing. H.C.F. Porsche A.G. | Gear-type change-speed transmission for motor vehicles |
US4656883A (en) * | 1983-08-23 | 1987-04-14 | Ab Volvo | Motor vehicle gearbox |
US4836041A (en) * | 1987-07-13 | 1989-06-06 | Fiat Auto S.P.A. | Motor vehicle gearbox with a device for synchronised engagement of reverse |
US6658953B2 (en) * | 2001-05-18 | 2003-12-09 | Hyundai Motor Company | Reverse shift device of manual transmission |
US20090057061A1 (en) * | 2007-08-31 | 2009-03-05 | Gm Global Technology Operations, Inc. | Gearbox comprising gear pump |
CN101377235B (zh) * | 2007-08-31 | 2013-08-21 | Gm全球科技运作股份有限公司 | 有齿轮泵的变速器 |
US8739930B2 (en) * | 2007-08-31 | 2014-06-03 | GM Global Technology Operations LLC | Gearbox comprising gear pump |
EP3208494A1 (de) * | 2016-02-22 | 2017-08-23 | Veljekset Hietamäki Ay | Getriebe |
Also Published As
Publication number | Publication date |
---|---|
DE2813292A1 (de) | 1979-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4912998A (en) | Gear arrangement | |
US4509381A (en) | Splined press fit connection in gear wheel assembly | |
US5695033A (en) | Synchronizing apparatus for transmission | |
US4263815A (en) | Automobile transmission having noiseless shifting for reverse gear | |
US2753731A (en) | Power transmission mechanism | |
US4573371A (en) | Auxiliary power transmission having synchronizing mechanism | |
GB1586826A (en) | Synchronized change-speed gear unit | |
ES8300187A1 (es) | Dispositivo amortiguador de torsion, especialmente para dis-co de friccion de embrague de vehiculo automovil. | |
US2846038A (en) | Multiple clutch mechanism with blocker teeth | |
US3043414A (en) | Dog clutches, applicable notably to synchronizers | |
EP0299930B1 (de) | Motorfahrzeuggetriebe mit einer Vorrichtung zum synchronisierten Rückschalten | |
US2521730A (en) | Shift mechanism | |
EP1282791B1 (de) | Gruppenschaltgetriebe | |
US3585873A (en) | Synchronizing device for bevel-wheel reversing gear systems | |
DE68911853T2 (de) | Mehrstufiges Wechselgetriebe. | |
US3110382A (en) | Synchronizer clutch mechanism | |
US4330053A (en) | Meshing device for an after-running transmission shaft | |
US2831372A (en) | Vehicle drive mechanisms | |
US3137376A (en) | Means for coupling transmission gears | |
US5251499A (en) | Intermediate gear type starter motor | |
JPS62228735A (ja) | 歯車伝動装置 | |
JPS55163365A (en) | Speed change gear | |
US2205473A (en) | Power transmission | |
US2516850A (en) | Planetary shift mechanism | |
EP0882908A2 (de) | Mehrgängiges Handschaltgetriebe für Kraftfahrzeuge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |