US4245572A - Furnace cooling system - Google Patents

Furnace cooling system Download PDF

Info

Publication number
US4245572A
US4245572A US06/035,492 US3549279A US4245572A US 4245572 A US4245572 A US 4245572A US 3549279 A US3549279 A US 3549279A US 4245572 A US4245572 A US 4245572A
Authority
US
United States
Prior art keywords
plate
cooling
hollow
furnace
bores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/035,492
Inventor
Kenneth C. Sharp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US06/035,492 priority Critical patent/US4245572A/en
Application granted granted Critical
Publication of US4245572A publication Critical patent/US4245572A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements

Definitions

  • the system relies on the use of heat pipes.
  • a heat pipe is a relatively simple structure that transmits thermal energy very efficiently, it is a sealed enclosure containing a fluid material and a wick. One end of the pipe is situated adjacent a heat source and the other end adjacent a heat sink.
  • the fluid is so chosen as to be liquid at the sink temperature and in the vapour phase at the heat source temperature.
  • the vapour diffuses from the hot end by the capillary action of the wick.
  • Heat pipes are most often cylindrical in shape, but can be made in other forms, for example a laminar shape.
  • FIG. 1 is a view of a vertical section through part of the wall of a blast furnace
  • FIG. 2 is a horizontal section through a cooling plate
  • FIG. 3 is a vertical section along the line X--X of the cooling plate of FIG. 2;
  • FIG. 4 is a horizontal section through an alternative cooling plate
  • FIG. 5 is a vertical section along the line X-Y of the cooling plate of FIG. 4.
  • FIG. 1 the part of the furnace shown is the lower bosh zone and the zone around a tuyere 2.
  • the walls of the blast furnace are built up in layers and cooling plates 1 are interposed with these layers at intervals.
  • the cooling plates are tapered towards their inner-facing edges 3 and are partially hollow.
  • the interiors of the cooling plates 1 receive a flow of cooling water via inlets 4 at their rearwardly-facing edges.
  • each plate 1 located in the walls of the furnace is a generally flat structure having a first portion 5 which is solid and is the end of the plate which is located closer to the interior of the furnace.
  • An enclosure-defining wall 6 extends from the circumference of the rearwardly facing surface of the portion 5 and defines a chamber 7 for the cooling fluid.
  • a back plate 8 is welded onto the wall 6 to complete the enclosure of the cooling chamber 7.
  • the back plate includes inlet and outlet apertures connecting with the cooling chambers of other cooling plates.
  • the solid portion 5 of the plate includes a number of bores 9 extending from its rearward surface towards its front edge 3.
  • These bores terminate before the front edge 3 of the solid portion 5 and are so dimensioned to receive cylindrical heat pipes 10 so that when located in the bores 9 the heat pipes 10 extend to a considerable extent out from the portion 5 into the cooling chamber 7.
  • Sealing rings 11 are provided at the openings of the bores 9 on the rearward facing surface of the portion 5 so that a water tight seal is maintained around heat pipes 10 when located in the bores.
  • the heat pipes can be moved towards and away from the inner-facing edge 3 of the plate by moving them within the bores 9 so that some heat pipes may be positioned further from the hottest surface so that they remain operative even when the hot ends of the fully inserted heat pipe have been worn back.
  • the cooling plate may include a removable back plate 12 connected to a flange 13 extending from the enclosure wall 6.
  • the connection may be by means of bolts 14, allowing the back plate 12 to be removed so that the heat pipes may be removed or their positions in the bores altered.
  • Each plate in the system may be fabricated from copper, or alternatively it may be cast in alloy steel, refractory or a combination of metal and high conductivity refractory.
  • the heat pipes may be curved to suit the contour of the cooling plates and may be partly cast in the solid portions 5 of the cooling plates.

Abstract

A furnace cooling wall construction including a cooling plate built into the wall disposed transversely with one or more heat pipes enclosed in the plate and extending between a cooling chamber in the plate and adjacent the inner end of the plate with cooling water circulated to the chamber for circulation by the heat pipe.

Description

BACKGROUND OF THE INVENTION
One of the major inconveniences and sources of expense in the operation of a shaft furnace is the need to replace the refractory lining of the furnace at intervals. By cooling the refractory lining it can be made to last longer, but the replacement of the cooling means increases the complexity and expense of the re-lining operation. One method of cooling shaft furnaces known as plate cooling has been known for many years and has generally found favour. This method involves the provision of water-cooled plates in the refractory lining of the furnaces, which plates extend transversely with respect to the working surface of the lining. These plates are usually built into the furnace walls as the furnaces lining is built up. This type of cooling is particularly suitable for the bosh zone of the furnace although it can be used in other zones. It is usual for about seven to nine cooling plates to be interconnected by intermediate water inlet and outlets so that a single main water inlet and a single main water outlet only need be provided for this series of plates. This type of cooling is very efficient whilst it is operative normally since the cooled face of the plate is close to the inner face of the lining of the furnace. However, when leakage occurs, and in mid to late campaigns this is frequent, then serious water ingress can occur.
OBJECTS OF THE INVENTION
It is an object of the present invention to provide an improved cooling system for a shaft furnace. The system relies on the use of heat pipes.
A heat pipe is a relatively simple structure that transmits thermal energy very efficiently, it is a sealed enclosure containing a fluid material and a wick. One end of the pipe is situated adjacent a heat source and the other end adjacent a heat sink. The fluid is so chosen as to be liquid at the sink temperature and in the vapour phase at the heat source temperature. The vapour diffuses from the hot end by the capillary action of the wick. Heat pipes are most often cylindrical in shape, but can be made in other forms, for example a laminar shape.
DESCRIPTION OF THE DRAWINGS
In the drawings:
FIG. 1 is a view of a vertical section through part of the wall of a blast furnace;
FIG. 2 is a horizontal section through a cooling plate;
FIG. 3 is a vertical section along the line X--X of the cooling plate of FIG. 2;
FIG. 4 is a horizontal section through an alternative cooling plate; and
FIG. 5 is a vertical section along the line X-Y of the cooling plate of FIG. 4.
DESCRIPTION OF PREFERRED EMBODIMENT
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings.
In FIG. 1 the part of the furnace shown is the lower bosh zone and the zone around a tuyere 2. The walls of the blast furnace are built up in layers and cooling plates 1 are interposed with these layers at intervals.
The cooling plates are tapered towards their inner-facing edges 3 and are partially hollow. The interiors of the cooling plates 1 receive a flow of cooling water via inlets 4 at their rearwardly-facing edges.
Referring to FIGS. 2 and 3, each plate 1 located in the walls of the furnace is a generally flat structure having a first portion 5 which is solid and is the end of the plate which is located closer to the interior of the furnace. An enclosure-defining wall 6 extends from the circumference of the rearwardly facing surface of the portion 5 and defines a chamber 7 for the cooling fluid. A back plate 8 is welded onto the wall 6 to complete the enclosure of the cooling chamber 7. The back plate includes inlet and outlet apertures connecting with the cooling chambers of other cooling plates. The solid portion 5 of the plate includes a number of bores 9 extending from its rearward surface towards its front edge 3. These bores terminate before the front edge 3 of the solid portion 5 and are so dimensioned to receive cylindrical heat pipes 10 so that when located in the bores 9 the heat pipes 10 extend to a considerable extent out from the portion 5 into the cooling chamber 7. Sealing rings 11 are provided at the openings of the bores 9 on the rearward facing surface of the portion 5 so that a water tight seal is maintained around heat pipes 10 when located in the bores. The heat pipes can be moved towards and away from the inner-facing edge 3 of the plate by moving them within the bores 9 so that some heat pipes may be positioned further from the hottest surface so that they remain operative even when the hot ends of the fully inserted heat pipe have been worn back.
MODIFIED EMBODIMENT
Referring to FIGS. 4 and 5, in an alternative arrangement the cooling plate may include a removable back plate 12 connected to a flange 13 extending from the enclosure wall 6. The connection may be by means of bolts 14, allowing the back plate 12 to be removed so that the heat pipes may be removed or their positions in the bores altered.
Each plate in the system may be fabricated from copper, or alternatively it may be cast in alloy steel, refractory or a combination of metal and high conductivity refractory. The heat pipes may be curved to suit the contour of the cooling plates and may be partly cast in the solid portions 5 of the cooling plates.

Claims (4)

What is claimed is:
1. In a furnace wall construction having at least one cooling plate built into the wall, said plate being disposed transversely in the wall, at least one heat pipe enclosed in said plate extending toward the interior of the furnace, the wall of the furnace being built up in layers and said cooling plate disposed at intervals between the layers, said cooling plate being tapered toward its edge facing the interior of the furnace, said plate being at least partially hollow, an inlet adjacent the rearwardly facing edge of the plate to receive a flow of cooling water into said hollow, said rearwardly facing edge comprising a back plate welded to the plate to enclose the hollow and form a cooling chamber through which the cooling water is circulated, said back plate including an inlet and an outlet for the circulation of said cooling water connected with cooling chambers of other plates, said cooling plate including a solid portion extending from said interior edge to said hollow and having a plurality of bores extending from adjacent the interior edge to the hollow, and heat pipes in said bores extending into the cooling chamber formed by said hollow.
2. A furnace wall construction as in claim 1 wherein sealing rings are provided around said heat pipes adjacent to the inner ends of said bores to seal the bores around the heat pipes adjacent to the hollow cooling chamber.
3. A furnace wall construction as in claim 2 wherein said cooling plate is fabricated from copper.
4. A furnace wall construction as in claim 1 wherein the rearwardly facing edge is comprised of a back plate removable from the cooling plate by means of removable bolts.
US06/035,492 1979-05-30 1979-05-30 Furnace cooling system Expired - Lifetime US4245572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/035,492 US4245572A (en) 1979-05-30 1979-05-30 Furnace cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/035,492 US4245572A (en) 1979-05-30 1979-05-30 Furnace cooling system

Publications (1)

Publication Number Publication Date
US4245572A true US4245572A (en) 1981-01-20

Family

ID=21883035

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/035,492 Expired - Lifetime US4245572A (en) 1979-05-30 1979-05-30 Furnace cooling system

Country Status (1)

Country Link
US (1) US4245572A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664618A (en) * 1984-08-16 1987-05-12 American Combustion, Inc. Recuperative furnace wall
US20080111287A1 (en) * 2004-12-20 2008-05-15 Andco Metal Industry Products, Inc. Systems and Methods of Cooling Blast Furnaces
CN103644740A (en) * 2013-11-18 2014-03-19 苏州边枫电子科技有限公司 Cooling plate with cooling partition plates in metallurgical furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US628790A (en) * 1898-12-28 1899-07-11 Ambrose Porter Gaines Cooling device for furnace-walls.
US3679194A (en) * 1969-08-20 1972-07-25 William Dyfrig Jones Coolers
SU499300A1 (en) * 1974-07-12 1976-01-15 Киевский Ордена Ленина Политехнический Институт Им. 50-Летия Великой Октябрьской Социалистической Революции Refrigerator for metallurgical shaft furnaces
US4169387A (en) * 1976-12-07 1979-10-02 Hans List Transducer for mechanical measured variables, especially a pressure transducer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US628790A (en) * 1898-12-28 1899-07-11 Ambrose Porter Gaines Cooling device for furnace-walls.
US3679194A (en) * 1969-08-20 1972-07-25 William Dyfrig Jones Coolers
SU499300A1 (en) * 1974-07-12 1976-01-15 Киевский Ордена Ленина Политехнический Институт Им. 50-Летия Великой Октябрьской Социалистической Революции Refrigerator for metallurgical shaft furnaces
US4169387A (en) * 1976-12-07 1979-10-02 Hans List Transducer for mechanical measured variables, especially a pressure transducer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664618A (en) * 1984-08-16 1987-05-12 American Combustion, Inc. Recuperative furnace wall
US20080111287A1 (en) * 2004-12-20 2008-05-15 Andco Metal Industry Products, Inc. Systems and Methods of Cooling Blast Furnaces
CN103644740A (en) * 2013-11-18 2014-03-19 苏州边枫电子科技有限公司 Cooling plate with cooling partition plates in metallurgical furnace

Similar Documents

Publication Publication Date Title
CA1121422A (en) Roof assembly for an electric arc furnace
US4033561A (en) Cooling plates for blast furnaces
CN102712958A (en) cooling stave for a metallurgical furnace
GB1571789A (en) Furnace cooling element
US4245572A (en) Furnace cooling system
US4235173A (en) Furnace cooling apparatus
KR19990067865A (en) Cooling Plate for Shaftfurnace
WO1980001000A1 (en) Cooling of surfaces adjacent molten metal
JPH11217609A (en) Cooling element for vertical furnace
CA1125502A (en) Furnace cooling system
US3323495A (en) Hood organization for use with converters employed in steel making process
US4157816A (en) Shaft furnace cooling
US4660593A (en) Hot-blast gate valve
GB2048445A (en) A water cooled cover for an industrial furnace
US3799524A (en) Cooling arrangement for a converter vessel wall
GB989996A (en) Combustion chamber linings
UA124852C2 (en) Cooling plate for metallurgical furnace
US5295666A (en) Cooling plates for blast furnaces and cooling installation employing this type of plate
US1962593A (en) Blast furnace apparatus
US3603570A (en) Bell furnace for annealing treatment of metal sheets
US4561639A (en) Cooling plate for metallurgical furnaces
US4225122A (en) Device for cooling plate coolers of blast furnaces
SE8004528L (en) ISOSTATIC HOT PRESSURE
GB1444507A (en) Protecting refractory linings of furnaces by cooling
EP0071580A2 (en) Ingot mould with tubular crystallizer