US4091544A - Drying process - Google Patents

Drying process Download PDF

Info

Publication number
US4091544A
US4091544A US05/768,013 US76801377A US4091544A US 4091544 A US4091544 A US 4091544A US 76801377 A US76801377 A US 76801377A US 4091544 A US4091544 A US 4091544A
Authority
US
United States
Prior art keywords
sodium
temperature
acid
water
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/768,013
Other languages
English (en)
Inventor
James Peyton Hutchins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US05/768,013 priority Critical patent/US4091544A/en
Priority to DE19782805128 priority patent/DE2805128A1/de
Priority to CA296,525A priority patent/CA1096139A/en
Priority to IT20180/78A priority patent/IT1158435B/it
Priority to FR7803863A priority patent/FR2380515A1/fr
Priority to GB5448/78A priority patent/GB1598374A/en
Priority to JP1482778A priority patent/JPS53122680A/ja
Application granted granted Critical
Publication of US4091544A publication Critical patent/US4091544A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3945Organic per-compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/005Drying solid materials or objects by processes not involving the application of heat by dipping them into or mixing them with a chemical liquid, e.g. organic; chemical, e.g. organic, dewatering aids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B7/00Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00
    • F26B7/005Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00 using admixture with sorbent materials and heat, e.g. generated by the mixture

Definitions

  • the present invention is related to a process for drying a water-wet mixture of materials, at least one of which is hydratable.
  • the process involves allowing the mixture to be formed into spherical particles, flakes, ribbons or other desired configuration. The chosen forms are then cooled to a temperature sufficiently low so that the hydratable material is hydrated. To remove the unwanted waters of hydration and free water the material is heated to a temperature which allows the water to be driven off but will not cause the forms to soften and stick together. This process allows for the elimination of the need for further size reduction and the associated dust.
  • Dry mixtures of materials are desirable in many different situations. Included among these situations are the inclusion of a solid diluent with such materials as a dry peroxy acid compound, a surfactant compound, a dry fertilizer material or an enzyme. These materials are only a few of the many which may be benefited by the present process's ability to: (1) form particles which are quickly dried; and (2) form small particles without the usual inherent dustiness associated with such formation.
  • the present invention relates to a process for drying a mixture of hydratable materials and nonhydratable materials.
  • the process involves the careful controlling of the drying temperatures to ensure hydration of the hydratable material(s) and the proper degree of subsequent water removal without the formation of adverse product properties.
  • the process of the present invention comprises following steps:
  • hydratable materials suitable for use in the process herein are sodium sulfate, calcium bromide, ferric bromide, ferric chloride, ferric nitrate, lithium bromide, sodium acetate, sodium arsenate, sodium perborate, sodium phosphite, sodium acid phosphite, stannous chloride, among many others.
  • a preferred member of this group is sodium sulfate. If certain ions are undesirable for the use to which the dried mixture is to be put, compounds containing them are preferably avoided. For example, mixtures for use in a clothes washer should preferably not contain excessive amounts of iron compounds.
  • nonhydratable materials as indicated hereinbefore can be any material which the formulator desires to combine with the hydratable material.
  • the following are only a small example of the many agents which may find use in the present invention. Included are solid peroxyacid materials, surfactants, enzymes, fertilizers and other solid bleaching agents such as sodium hypochlorite.
  • a preferred nonhydratable material for use in the present process is a normally solid peroxyacid compound.
  • a compound is "normally solid” if it is in dry or solid form at room temperature.
  • Such peroxyacid compounds are the organic peroxyacids and water-soluble salts thereof which in aqueous solution yield a species containing a --O--O - moiety.
  • These materials have the general formula ##STR1## wherein R is an alkylene group containing from 1 to about 20 carbon atoms or a phenylene group and Y is hydrogen, halogen, alkyl, aryl or any group which provides an anionic moiety in aqueous solution.
  • Such Y groups can include, for example, ##STR2## wherein M is H or a water-soluble, salt-forming cation.
  • the organic peroxyacids and salts thereof operable in the instant invention can contain either one or two peroxy groups and can be either aliphatic or aromatic.
  • the organic peroxyacid is aliphatic
  • the unsubstituted acid has the general formula ##STR3## where Y, for example, can be CH 3 , CH 2 Cl, ##STR4## and n can be an integer from 1 to 20.
  • the alkylene linkage and/or Y (if alkyl) can contain halogen or other noninterfering substituents.
  • the unsubstituted acid has the general formula ##STR6## wherein Y is hydrogen, halogen, alkyl, ##STR7## for example.
  • the percarboxy and Y groupings can be in any relative position around the aromatic ring.
  • the ring and/or Y group (if alkyl) can contain any noninterfering substituents such as halogen groups.
  • aromatic peroxyacids and salts thereof include monoperoxyphthalic acid, diperoxyterephthalic acid, 4-chlorodiperoxyphthalic acid, the monosodium salt of diperoxyterephthalic acid, m-chloroperoxybenzoic acid, p-nitroperoxybenzoic acid, and diperoxyisophthalic acid.
  • the amount of moisture present in the water-wet mixture of (A) is not critical. Depending upon the amount of hydratable material desirable (acceptable) in the final composition, various amounts of water may be bound to the hydratable material in the form of waters of hydration. Generally, however, the amount of water will be from about 10% to 30% based on the weight of all of the components present in the mixture.
  • step (A) into smaller units as specified in step (B) can be done in any of many different ways.
  • the mixture may be formed into thin strips or noodles and then cut into smaller sizes to form particles; thin sheets may be formed and then broken into smaller pieces; or spherical shapes may be formed initially for use in that shape in the final composition.
  • the latter shapes may be formed, for example, by pumping the mixture through a nozzle into a tower having the temperature desired in step (C).
  • the formation of the desired shapes may also be done in two parts with part being done in step (B) and part in step (C).
  • the temperature to which the units of step (B) is reduced will depend on the hydratable materials(s) selected for use. Since it is desirable to at least case harden the particles, the temperature should be at or below the hydration temperature of the hydratable material. If a mixture of hydratable materials are used, the temperature can easily be determined by considering the total amount of hydratable materials present and their hydration temperatures. Examples of various hydratable materials and their approximate hydration temperatures are given below:
  • the temperature should preferably be reduced to a point below the above values.
  • the achievement of the desired temperature can be made in a number of different ways including conventional heat exchangers, blowing air and temperature controlled spraying towers.
  • the time of exposure to this low temperature can be varied by the processor and will be determined largely by the amount of hydratable materials present and the thickness of the individual particles. The temperature and time of exposure, therefore, can easily be determined by the processor depending on the type of equipment used and the physical properties of the individual particles.
  • the drying of the solid particles in step (D), as indicated hereinbefore, is for the purpose of removing the amount of free water and water of hydration desired by the formulator.
  • the air temperature must not be allowed, however, to reach a point where the shaped particles would become soft and stick together. Such problem occur at different air temperatures depending on the hydratable material used and the size and shape of the particles.
  • the maximum air temperature is about 130° F (55° C) for particles in the shape of small noodles. At 130° F air temperature, the surface temperature of the solids, because of the cooling effect of evaporating water, is below the hydration temperature of sodium sulfate.
  • the nonhydratable material is a peroxyacid and a low level of residual moisture is desired, it is necessary that steps be taken to ensure that the drying temperature does not allow the peroxyacid to exothermally decompose.
  • Another way to help control the exotherm problem is to put an agent into the mixture which can release water at about the exotherm point, thereby controlling it. Agents of this type will be discussed subsequently.
  • the time of exposure to the drying temperature is variable depending on the temperature chosen, the hydratable material, the thickness of the individual particles and the drying technique, but will generally be from about several minutes to several hours at 100°-135° F.
  • the actual unit used for this final drying can be any which does not involve the particles pressing together. Included are fluid bed dryers, moving belt dryers (forced air circulation), and any kind of forced air circulation dryers such as the Wyssmont Turbodryer supplied by Wyssmont Company of Ft. Lee, N.J.
  • compositions containing the peracid compound which is preferably in granular particulate form, may contain agents which aid in making the product completely safe, as well as stable. These agents can be designated as carriers.
  • peroxyacids are susceptible to a number of different stability problems, as well as being likely to cause some problems. Looking at the latter first, peroxyacids decompose exothermally and when the material is in dry granular form the heat generated must be controlled to make the product safe.
  • the best exotherm control agents are those which are capable of liberating moisture at a temperature slightly below the decomposition temperature of the peroxyacid employed.
  • U.S. Pat. No. 3,770,816, Nov. 6, 1973, to Nielsen, incorporated herein by reference discloses a wide variety of hydrated materials which can serve as suitable exotherm control agents.
  • magnesium sulfate .7H 2 O magnesium formate dihydrate, calcium sulfate (CaSO 4 .2H 2 O), calcium lactate hydrate, calcium sodium sulfate (CaSO 4 .2Na 2 SO 4 .2H 2 O), and hydrated forms of such things as sodium aluminum sulfate, potassium aluminum sulfate, ammonium aluminum sulfate and aluminum sulfate.
  • Preferrred hydrates are the alkali metal aluminum sulfates, particularly preferred is potassium aluminum sulfate.
  • Other preferred exotherm control agents are those materials which lose water as the result of chemical decomposition such as boric acid, malic acid and maleic acid. The exotherm control agent is preferably used in an amount of from about 100 to about 200% based on the weight of the peroxyacid compound.
  • a preferred chelating system for the present invention is a mixture of 8-hydroxyquinoline and an acid polyphosphate preferably acid sodium pyrophosphate.
  • the acid polyphosphate can be a mixture of phosphoric acid and sodium pyrophosphate wherein the ratio of the former to the latter is from about 0.5:1 to about 2:1 and the ratio of the mixture to 8-hydroxyquinoline is from about 0.2:1 to about 5:1.
  • Additional agents which may be used to aid in giving good bleaching performance include such things as pH adjustment agents, bleach activators and minors such as coloring agents, dyes and perfumes.
  • Typical pH adjustment agents are used to alter or maintain aqueous solutions of the instant compositions within the 5 to 10 pH range in which peroxyacid bleaching agents are generally most useful.
  • pH adjustment agents can be either of the acid or base type.
  • acidic pH adjustment agents designed to compensate for the presence of other highly alkaline materials include normally solid organic and inorganic acids, acid mixtures and acid salts.
  • Such acidic pH adjustment agents include citric acid, glycolic acid, tartaric acid, gluconic acid, glutamic acid, sulfamic acid, sodium bisulfate, potassium bisulfate, ammonium bisulfate and mixtures of citric acid and lauric acid.
  • Citric acid is preferred by virtue of its low toxicity and hardness sequestering capability.
  • Optional alkaline pH adjustment agents include the conventional alkaline buffering agents.
  • buffering agents include such salts as carbonates, bicarbonates, silicates, pyrophosphates and mixtures thereof.
  • Sodium bicarbonate and tetrasodium pyrophosphate are highly preferred.
  • Optional ingredients if utilized in combination with the active peroxyacid/hydratable material system of the instant invention to form a complete bleaching product, comprise from about 50 to about 95% by weight of the total composition. Conversely, the amount of bleaching system is from about 5 to about 50% of the composition.
  • Optional ingredients such as the exotherm control agent and the metal chelating agent are preferably mixed with the peroxyacid and the hydratable material in step (A), thereby becoming a part of the dry units formed in the process. Others such as the pH adjustment agents are added as separate particles. Such other ingredients may be coated with, for example, an inert fatty material if the ingredients are likely to cause degradaton of the peroxyacid.
  • the bleaching compositions as described above can also be added to and made a part of conventional fabric laundering detergent compositions.
  • optional materials for the instant bleaching compositions can include such standard detergent adjuvants as surfactants and builders.
  • Optional surfactants are selected from the group consisting of organic anionic, nonionic, ampholytic and zwitterionic surfactants and mixtures thereof.
  • Optional builder materials include any of the conventional organic builder salts including carbonates, silicates, acetates, polycarboxylates, and phosphates. If the instant bleaching compositions are employed as part of a conventional fabric laundering detergent composition, the instant bleaching particles generally comprise from about 1 to about 40% by weight of such conventional detergent compositions. Conversely, the instant bleaching compositions can optionally contain from about 60 to about 99% by weight of conventional surfactant and builder materials. Further examples of suitable surfactants and builders are given below.
  • Water-soluble salts of the higher fatty acids are useful as the anionic surfactant herein.
  • This class of surfactants includes ordinary alkali metal soaps such as the sodium, potassium, ammonium and alkanolammonium salts of higher fatty acids containing from about 8 to about 24 carbon atoms and preferably from about 10 to about 20 carbon atoms. Soaps can be made by direct saponification of fats and oils or by the neutralization of free fatty acids. Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium or potassium tallow and coconut soaps.
  • anionic surfactants includes water-soluble salts, particularly the alkali metal, ammonium and alkanolammonium salts, of organic sulfuric reaction products having in their molecular structure an alkyl group containing from about 8 to about 22 carbon atoms and a sulfonic acid or sulfuric acid ester group.
  • alkyl is the alkyl portion of acyl groups.
  • this group of synthetic surfactants which can be used in the present detergent compositions are the sodium and potassium alkyl sulfates, especially those obtained by sulfating the higher alcohols (C 8 -C 18 carbon atoms) produced by reducing the glycerides of tallow or coconut oil; and sodium and potassium alkyl benzene sulfonates, in which the alkyl group contains from about 9 to about 15 carbon atoms in straight chain or branched chain configuration, e.g., those of the type described in U.S. Pat. Nos. 2,220,099, and 2,477,383, incorporated herein by reference.
  • anionic surfactant compounds useful herein include the sodium alkyl glyceryl ether sulfonates, especially those ethers or higher alcohols derived from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfonates and sulfates; and sodium or potassium salts of alkyl phenol ethylene oxide ether sulfate contaning about 1 to about 10 units of ethylene oxide per molecule and wherein the alkyl groups contain about 8 to about 12 carbon atoms.
  • Other useful anionic surfactants herein include the water-soluble salts of esters of ⁇ -sulfonated fatty acids containing from about 6 to 20 carbon atoms in the ester group; water-soluble salts of 2-acyloxy-alkane-1-sulfonic acids containing from about 2 to 9 carbon atoms in the acyl group and from about 9 to about 23 carbon atoms in the alkane moiety; alkyl ether sulfates containing from about 10 to 20 carbon atoms in the alkyl group and from about 1 to 30 moles of ethylene oxide; water-soluble salts of olefin sulfonates containing from about 12 to 24 carbon atoms; and ⁇ -alkyloxy alkane sulfonates containing from about 1 to 3 carbon atoms in the alkyl group and from about 8 to 20 carbon atoms in the alkane moiety.
  • Preferred water-soluble anionic organic surfactants herein include linear alkyl benzene sulfonates containing from about 11 to 14 carbon atoms in the alkyl group; the tallow range alkyl sulfates; the coconut range alkyl glyceryl sulfonates; and alkyl ether sulfates wherein the alkyl moiety contains from about 14 to 18 carbon atoms and wherein the average degree of ethoxylation varies between 1 to 6.
  • Specific preferred anionic surfactants for use herein include: sodium linear C 10 -C 12 alkyl benzene sulfonate; triethanolamine C 10 -C 12 alkyl benzene sulfonate; sodium tallow alkyl sulfate; sodium coconut alkyl glyceryl ether sulfonate; and the sodium salt of a sulfated condensation product of tallow alcohol with from about 3 to about 10 moles of ethylene oxide.
  • anionic surfactants can be used separately herein or as mixtures.
  • Nonionic surfactants include the water-soluble ethoxylates of C 10 -C 20 aliphatic alcohols and C 6 -C 12 alkyl phenols. Many nonionic surfactants are especially suitable for use as suds controlling agents in combination with anionic surfactants of the type disclosed herein.
  • Semi-polar surfactants useful herein include water-soluble amine oxides containing one alkyl moiety of from about 10 to 28 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from 1 to about 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of about 10 to 28 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from about 10 to 28 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from 1 to 3 carbon atoms.
  • Ampholytic surfactants include derivatives of aliphatic or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic moiety can be straight chain or branched and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and at least one aliphatic substituent contains an anionic water-solubiizing group.
  • Zwitterionic surfactants include derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds in which the aliphatic moieties can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and one contains an anionic water-solubilizing group.
  • compositions can also comprise those detergency builders commonly taught for use in laundry compositions.
  • Useful builders herein include any of the conventional inorganic and organic water-soluble builder salts, as well as various water-insoluble and so-called "seeded" builders.
  • Inorganic detergency builders useful herein include, for example, water-soluble salts of phosphates, pyrophosphates, orthophosphates, polyphosphates, phosphonates, carbonates, bicarbonates, borates and silicates.
  • Specific examples of inorganic phosphate builders include sodium and potassium tripolyphosphates, phosphates, and hexametaphosphates.
  • the polyphosphonates specifically include, for example, the sodium and potassium salts of ethylene diphosphonic acid, the sodium and potassium salts of ethane 1-hydroxy-1,1-diphosphonic acid, and the sodium and potassium salts of ethane-1,1,2-triphosphonic acid. Examples of these and other phosphorus builder compounds are disclosed in U.S. Pat.
  • Sodium tripolyphosphate is an especially preferred, water-soluble inorganic builder herein.
  • Non-phosphorus containing sequestrants can also be selected for use herein as detergency builders.
  • Specific examples of non-phosphorus, inorganic builder ingredients include water-soluble inorganic carbonate, bicarbonate, borate and silicate salts.
  • the alkali metal, e.g., sodium and potassium, carbonates, bicarbonates, borates (Borax) and silicates are particularly useful herein.
  • Water-soluble, organic builders are also useful herein.
  • the alkali metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates, succinates, and polyhydroxysulfonates are useful builders in the present compositions and processes.
  • Specific examples of the polyacetate and polycarboxylate builder salts include sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylene diamine tetraacetic acid, nitrilotriacetic acid, oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid.
  • Highly preferred non-phosphorous builder materials include sodium carbonate, sodium bicarbonate, sodium silicate, sodium citrate, sodium oxydisuccinate, sodium mellitate, sodium nitrilotriacetate, and sodium ethylenediaminetetraacetate, and mixtures thereof.
  • materials capable of forming the water-insoluble reaction product include the water-soluble salts of carbonates, bicarbonates, sequicarbonates, silicates, aluminates and oxalates.
  • the alkali metal, especially sodium, salts of the foregoing materials are preferred for convenience and economy.
  • Another type of builder useful herein includes various substantially water-insoluble materials which are capable of reducing the hardness content of laundering liquors, e.g., by ion-exchange processes.
  • Examples of such builder materials include the phosphorylated cloths disclosed in U.S. Pat. No. 3,424,545, Bauman, issued Jan. 28, 1969, incorporated herein by reference.
  • the complex aluminosilicates i.e., zeolite-type materials
  • zeolite-type materials are useful presoaking/washing adjuvants herein in that these materials soften water, i.e., remove Ca ++ hardness.
  • zeolite materials and a method of preparation appears in Milton, U.S. Pat. No. 2,882,243, issued Apr. 14, 1959, incorporated herein by reference.
  • Bleaching granules prepared using the process of the present invention can be admixed with other granules of optional bleaching or detergent composition materials.
  • Actual particle size of either the bleach containing granules or optional granules of additional material is not critical. If, however, compositions are to be realized having commercially acceptable flow properties, certain granule size limitations are highly preferred. In general, all granules of the instant compositions preferably range in size from about 100 microns to 3000 microns, more preferably from about 100 microns to 1300 microns.
  • granules of the present invention are of approximately the same size. Therefore, preferably the ratio of the average granule sizes of the bleach-containing granules and optional granules of other materials varies between 0.5:1 and 2.0:1.
  • Bleaching compositions of the present invention are utilized by dissolving them in water in an amount sufficient to provide from about 1.0 ppm to 100 ppm available oxygen in solution. Generally, this amounts to about 0.01 to 0.2% by weight of composition in solution. Fabrics to be bleached are then contacted with such aqueous bleaching solutions.
  • composition is prepared and processed according to the present invention:
  • the above blend having a temperature of about 90° F is extruded into 1/16 inch diameter noodles, chilled for about 8 seconds on a belt over which cold air (40°-50° F) is blown, broken into 1/4-3/8 inch long segments and dried for about 3 hours at 120°-125° F by means of a turbodryer.
  • the particles following the cooling at 40°-50° F for about 8 seconds are solidified. Further, the particles after the final drying step do not lump together.
  • Example I A composition identical to that of Example I but containing no sodium sulfate is prepared. The process of Example I cannot be followed since the particles exposed to the 40°-50° F temperature do not solidify.
  • Example I A compositon identical to that of Example I but containing 1 part of sodium sulfate instead of 6 is prepared.
  • the process is identical to that of Example I except that the time of exposure to the 40°-50° F temperature is increased to 115 seconds. Such increase in exposure time is required to achieve the desired solidification.
  • Example I A composition identical to that of Example I but contaning 3 parts of sodium sulfate instead of 6 is prepared.
  • the process is identical to that of Example I except that the time of exposure to the 40°-50° F temperature is increased to 23 seconds. Such increase in exposure time is required to achieve the desired solidificaton.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Glanulating (AREA)
US05/768,013 1977-02-11 1977-02-11 Drying process Expired - Lifetime US4091544A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US05/768,013 US4091544A (en) 1977-02-11 1977-02-11 Drying process
DE19782805128 DE2805128A1 (de) 1977-02-11 1978-02-07 Verfahren zum trocknen eines mit wasser befeuchteten materialgemisches
CA296,525A CA1096139A (en) 1977-02-11 1978-02-09 Drying process
IT20180/78A IT1158435B (it) 1977-02-11 1978-02-10 Processo per essiccare una miscela, umida di acqua, formata da materiali di cui uno almeno e' idratabile, evitando che i nuovi componenti rammolliscano o si appiccichino tra di loro
FR7803863A FR2380515A1 (fr) 1977-02-11 1978-02-10 Procede de sechage d'un melange de matieres dont l'une est hydratable
GB5448/78A GB1598374A (en) 1977-02-11 1978-02-10 Drying process
JP1482778A JPS53122680A (en) 1977-02-11 1978-02-10 Drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/768,013 US4091544A (en) 1977-02-11 1977-02-11 Drying process

Publications (1)

Publication Number Publication Date
US4091544A true US4091544A (en) 1978-05-30

Family

ID=25081264

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/768,013 Expired - Lifetime US4091544A (en) 1977-02-11 1977-02-11 Drying process

Country Status (7)

Country Link
US (1) US4091544A (de)
JP (1) JPS53122680A (de)
CA (1) CA1096139A (de)
DE (1) DE2805128A1 (de)
FR (1) FR2380515A1 (de)
GB (1) GB1598374A (de)
IT (1) IT1158435B (de)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4497757A (en) * 1983-01-31 1985-02-05 The Procter & Gamble Company Energy efficient hydration process
US4655781A (en) * 1984-07-02 1987-04-07 The Clorox Company Stable bleaching compositions
US4659519A (en) * 1984-07-02 1987-04-21 The Clorox Company Process for synthesizing alkyl monoperoxysuccinic acid bleaching compositions
US4818425A (en) * 1986-05-28 1989-04-04 Akzo N.V. Process for the preparation of diperoxydodecanedioic acid-containing agglomerates and compositions in which these agglomerates are used as bleaching component
US4863626A (en) * 1985-08-21 1989-09-05 The Clorox Company Encapsulated enzyme in dry bleach composition
US4865759A (en) * 1985-08-21 1989-09-12 The Clorox Company Dry peracid based bleaching product
US4917811A (en) * 1988-09-20 1990-04-17 Lever Brothers Company Bleach compositions and process for making same
EP0396341A2 (de) * 1989-05-01 1990-11-07 The Procter & Gamble Company Agglomeriertes Persäurebleichmittelgranulat und Verfahren zu dessen Herstellung
US5049298A (en) * 1988-11-25 1991-09-17 Akzo Nv Process for the preparation of bleaching granules
US5089167A (en) * 1985-08-21 1992-02-18 The Clorox Company Stable peracid bleaching compositions: organic peracid, magnesium sulfate and controlled amounts of water
US5093021A (en) * 1985-08-21 1992-03-03 The Clorox Company Encapsulated enzyme in dry bleach composition
US5167854A (en) * 1985-08-21 1992-12-01 The Clorox Company Encapsulated enzyme in dry bleach composition
US5211874A (en) * 1985-08-21 1993-05-18 The Clorox Company Stable peracid and enzyme bleaching composition
TR25837A (tr) * 1990-05-31 1993-09-01 Procter & Gamble KüLCELENDIRILMIS PEROKSIASIT AGARTICI GRANüLü VE BUNU YAPMAYA MAHSUS YÖNTEM.
US5254287A (en) * 1985-08-21 1993-10-19 The Clorox Company Encapsulated enzyme in dry bleach composition
EP0570881A2 (de) * 1992-05-19 1993-11-24 Hoechst Aktiengesellschaft Verfahren zur Herstellung staubarmer Granulate
US5296156A (en) * 1988-11-25 1994-03-22 Akzo N.V. Bleaching granules
EP0592033A1 (de) * 1992-10-07 1994-04-13 The Procter & Gamble Company Verfahren zur Herstellung von Peroxysäure enthaltenden Partikeln
WO1998004672A1 (en) * 1996-07-31 1998-02-05 The Procter & Gamble Company A process and composition for detergents
US5716591A (en) * 1992-01-27 1998-02-10 Nuova Terni Industrie Chimiche S.P.A. Process for producing calcium nitrate-urea adduct
US6162784A (en) * 1996-07-31 2000-12-19 The Procter & Gamble Company Process and composition for detergents

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8810630D0 (en) * 1988-05-05 1988-06-08 Unilever Plc Process for preparing bodies containing peroxyacid & compositions comprising said bodies

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2825655A (en) * 1955-06-29 1958-03-04 Du Pont Process for stabilizing polysaccharide xanthates and products
US2882609A (en) * 1956-05-07 1959-04-21 Templeton Robert Alexa Spencer Manufacture of dried edible products
US3137630A (en) * 1961-06-09 1964-06-16 Eastman Kodak Co Process for preparing a dry, finely divided, gelatin particle product
US3770816A (en) * 1969-07-23 1973-11-06 Ppg Industries Inc Diperisophthalic acid compositions
US3923944A (en) * 1974-01-28 1975-12-02 Dow Chemical Co Briquetting calcium chloride particulate
US3963118A (en) * 1974-10-31 1976-06-15 O. M. Scott & Sons Company Fertilizer composition containing ferrous salt

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6883374A (en) * 1973-05-14 1975-11-13 Procter & Gamble Bleaching compositions
JPS5115038A (ja) * 1974-07-22 1976-02-06 Hironori Hirai Oopunendoseiboki

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2825655A (en) * 1955-06-29 1958-03-04 Du Pont Process for stabilizing polysaccharide xanthates and products
US2882609A (en) * 1956-05-07 1959-04-21 Templeton Robert Alexa Spencer Manufacture of dried edible products
US3137630A (en) * 1961-06-09 1964-06-16 Eastman Kodak Co Process for preparing a dry, finely divided, gelatin particle product
US3770816A (en) * 1969-07-23 1973-11-06 Ppg Industries Inc Diperisophthalic acid compositions
US3923944A (en) * 1974-01-28 1975-12-02 Dow Chemical Co Briquetting calcium chloride particulate
US3963118A (en) * 1974-10-31 1976-06-15 O. M. Scott & Sons Company Fertilizer composition containing ferrous salt

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4497757A (en) * 1983-01-31 1985-02-05 The Procter & Gamble Company Energy efficient hydration process
US4655781A (en) * 1984-07-02 1987-04-07 The Clorox Company Stable bleaching compositions
US4659519A (en) * 1984-07-02 1987-04-21 The Clorox Company Process for synthesizing alkyl monoperoxysuccinic acid bleaching compositions
US5089167A (en) * 1985-08-21 1992-02-18 The Clorox Company Stable peracid bleaching compositions: organic peracid, magnesium sulfate and controlled amounts of water
US5254287A (en) * 1985-08-21 1993-10-19 The Clorox Company Encapsulated enzyme in dry bleach composition
US4863626A (en) * 1985-08-21 1989-09-05 The Clorox Company Encapsulated enzyme in dry bleach composition
US4865759A (en) * 1985-08-21 1989-09-12 The Clorox Company Dry peracid based bleaching product
US5211874A (en) * 1985-08-21 1993-05-18 The Clorox Company Stable peracid and enzyme bleaching composition
US5167854A (en) * 1985-08-21 1992-12-01 The Clorox Company Encapsulated enzyme in dry bleach composition
US5093021A (en) * 1985-08-21 1992-03-03 The Clorox Company Encapsulated enzyme in dry bleach composition
US4919836A (en) * 1986-05-28 1990-04-24 Akzo N.V. Process for the preparation of diperoxydodecanedioic acid-containing agglomerates and compositions in which these agglomerates are used as bleaching component
US4818425A (en) * 1986-05-28 1989-04-04 Akzo N.V. Process for the preparation of diperoxydodecanedioic acid-containing agglomerates and compositions in which these agglomerates are used as bleaching component
AU616304B2 (en) * 1988-09-20 1991-10-24 Unilever Plc Bleach compositions and process for making same
US4917811A (en) * 1988-09-20 1990-04-17 Lever Brothers Company Bleach compositions and process for making same
US5049298A (en) * 1988-11-25 1991-09-17 Akzo Nv Process for the preparation of bleaching granules
US5296156A (en) * 1988-11-25 1994-03-22 Akzo N.V. Bleaching granules
EP0396341A2 (de) * 1989-05-01 1990-11-07 The Procter & Gamble Company Agglomeriertes Persäurebleichmittelgranulat und Verfahren zu dessen Herstellung
AU643206B2 (en) * 1989-05-01 1993-11-11 Procter & Gamble Company, The Agglomerated peroxyacid bleach granule and process for making same
EP0396341A3 (de) * 1989-05-01 1992-01-22 The Procter & Gamble Company Agglomeriertes Persäurebleichmittelgranulat und Verfahren zu dessen Herstellung
TR25837A (tr) * 1990-05-31 1993-09-01 Procter & Gamble KüLCELENDIRILMIS PEROKSIASIT AGARTICI GRANüLü VE BUNU YAPMAYA MAHSUS YÖNTEM.
US5716591A (en) * 1992-01-27 1998-02-10 Nuova Terni Industrie Chimiche S.P.A. Process for producing calcium nitrate-urea adduct
EP0570881A2 (de) * 1992-05-19 1993-11-24 Hoechst Aktiengesellschaft Verfahren zur Herstellung staubarmer Granulate
EP0570881A3 (en) * 1992-05-19 1994-08-24 Hoechst Ag Process for manufacture of low-dust granules
US6066365A (en) * 1992-05-19 2000-05-23 Hoechst Aktiengesellschaft Process for the preparation of low-dust granules
US5536435A (en) * 1992-10-07 1996-07-16 The Procter & Gamble Company Process for making peroxyacid containing particles
EP0592033A1 (de) * 1992-10-07 1994-04-13 The Procter & Gamble Company Verfahren zur Herstellung von Peroxysäure enthaltenden Partikeln
WO1998004672A1 (en) * 1996-07-31 1998-02-05 The Procter & Gamble Company A process and composition for detergents
US6162784A (en) * 1996-07-31 2000-12-19 The Procter & Gamble Company Process and composition for detergents

Also Published As

Publication number Publication date
IT1158435B (it) 1987-02-18
DE2805128A1 (de) 1978-08-17
FR2380515B1 (de) 1984-01-06
CA1096139A (en) 1981-02-24
DE2805128C2 (de) 1988-04-14
FR2380515A1 (fr) 1978-09-08
GB1598374A (en) 1981-09-16
JPS53122680A (en) 1978-10-26
JPH0332600B2 (de) 1991-05-13
IT7820180A0 (it) 1978-02-10

Similar Documents

Publication Publication Date Title
US4091544A (en) Drying process
US4126573A (en) Peroxyacid bleach compositions having increased solubility
US4100095A (en) Peroxyacid bleach composition having improved exotherm control
US4170453A (en) Peroxyacid bleach composition
US4233235A (en) Method for making diperoxyacids
US4119660A (en) Method for making diperoxyacids
US4259201A (en) Detergent composition containing organic peracids buffered for optimum performance
EP0070067B2 (de) Wäschebleichmittelprodukt mit geregelter Freigabe des Bleichmittels
EP0122763B1 (de) Bleichmittelzusammensetzungen
US4180485A (en) Spray-dried detergent compositions
JPH037720B2 (de)
US4450089A (en) Stabilized bleaching and laundering composition
US5055218A (en) Bleach granules containing an amidoperoxyacid
EP0267175A2 (de) Sulfon-Peroxycarbonsäuren
AU643206B2 (en) Agglomerated peroxyacid bleach granule and process for making same
US4497757A (en) Energy efficient hydration process
US4455249A (en) Stabilized bleach and laundering composition
US4123377A (en) Particulate detergent composition containing dibasic magnesium hypochlorite
WO1991017234A1 (en) Granular laundry detergent compositions containing chlorine scavengers
EP0000970B1 (de) Verfahren zur Herstellung von Diperoxysäuren
US4314949A (en) Process for making peroxycarboxylic acids
US3707554A (en) Alkali metal n-halo-alkanesulfonamides as bleaching agents and methods of their preparation
US3455834A (en) Process for production of detergent tablets
JPH06501723A (ja) 過炭酸塩を含有する洗剤
CA1079295A (en) Method for making diperoxyacids